

Beyond Nonpaged Pool

Design Specification

Rev. 2.2

Clair Grant and Burns Fisher

05/30/96

�

Reviewers

Dave Bernardo�
Exec Group�
�
Yehia Beyh�
QTV�
�
Richard Bishop�
SDA�
�
Verell Boaen�
CIPCA Project Leader�
�
Karen Marion�
V7.1 Project leader�
�
Mike Meagher�
Documentaiton�
�
Karen Noel�
Exec Group�
�
Lenny Szubowicz�
I/O Project Leader�
�

This document is located in:

star::docd$:[evms.project_documents]ds-beyond_nonpaged_pool.doc, .ps

Revision History

Rev�
Date�
Author�
Comment�
�
�
�
�
�
�
1.0�
04/12/96�
Fisher/Grant�
creation�
�
1.1�
04/17/96�
Clair Grant�
add reviewer list, redo AUTOGEN section, remove SGN$GL_NPAG_BAX_MAX, add MMG$GL_BAP�
�
2.0�
04/26/96�
Fisher/Grant�
many changes and additions resulting from meeting with Verell Boaen�
�
2.1�
05/29/96�
Burns Fisher�
Update to “as built”�
�
2.2�
05/30/96�
Clair Grant�
Update AUTOGEN section�
�
�
Table Of Contents

� TOC \o "1-3" �1. General Purpose Allocate/Deallocate	� GOTOBUTTON _Toc358091058 � PAGEREF _Toc358091058 �4��

1.1 General Characteristics	� GOTOBUTTON _Toc358091059 � PAGEREF _Toc358091059 �4��

1.2 Allocate Pool	� GOTOBUTTON _Toc358091060 � PAGEREF _Toc358091060 �4��

1.3 Deallocate Pool	� GOTOBUTTON _Toc358091061 � PAGEREF _Toc358091061 �5��

1.4 Register Pool Information	� GOTOBUTTON _Toc358091062 � PAGEREF _Toc358091062 �5��

1.5 Trim Pool List	� GOTOBUTTON _Toc358091063 � PAGEREF _Toc358091063 �6��

1.6 Callback routine	� GOTOBUTTON _Toc358091064 � PAGEREF _Toc358091064 �6��

1.7 Inline Macros	� GOTOBUTTON _Toc358091065 � PAGEREF _Toc358091065 �7��

1.8 What VA Will BAP Be In	� GOTOBUTTON _Toc358091066 � PAGEREF _Toc358091066 �7��

2. Implementation of New Pool Routines for Version 7.1	� GOTOBUTTON _Toc358091067 � PAGEREF _Toc358091067 �7��

2.1 Implementation Details	� GOTOBUTTON _Toc358091068 � PAGEREF _Toc358091068 �8��

2.1.1 New Global Data	� GOTOBUTTON _Toc358091069 � PAGEREF _Toc358091069 �8��

2.1.2 Data Structures	� GOTOBUTTON _Toc358091070 � PAGEREF _Toc358091070 �9��

2.1.3 SYSBOOT	� GOTOBUTTON _Toc358091071 � PAGEREF _Toc358091071 �11��

2.1.4 AUTOGEN	� GOTOBUTTON _Toc358091072 � PAGEREF _Toc358091072 �11��

2.1.5 Initialization	� GOTOBUTTON _Toc358091073 � PAGEREF _Toc358091073 �12��

2.1.6 Reclamation routines	� GOTOBUTTON _Toc358091074 � PAGEREF _Toc358091074 �13��

2.1.7 Allocate/Deallocate Routines	� GOTOBUTTON _Toc358091075 � PAGEREF _Toc358091075 �13��

2.1.8 Registration Routine	� GOTOBUTTON _Toc358091076 � PAGEREF _Toc358091076 �13��

2.1.9 Debug (MON) Variants	� GOTOBUTTON _Toc358091077 � PAGEREF _Toc358091077 �14��

3. Tools	� GOTOBUTTON _Toc358091078 � PAGEREF _Toc358091078 �14��

3.1 SDA	� GOTOBUTTON _Toc358091079 � PAGEREF _Toc358091079 �14��

3.2 VMSTEST	� GOTOBUTTON _Toc358091080 � PAGEREF _Toc358091080 �14��

3.3 DCL	� GOTOBUTTON _Toc358091081 � PAGEREF _Toc358091081 �14��

�

�

General Purpose Allocate/Deallocate

Some bus/device combinations such as the PCI/CIPCA have requirements for memory with a restricted range of physical addresses. We call this restricted-range memory BAP (Bus Addressable Pool). Currently, drivers for such devices use ad hoc techniques to find and manage BAP.

The immediate purpose of this project is to provide a central, standardized method of managing BAP. However, we assume there will be other classes of memory to manage in the future; therefore, the new routines are being defined in a general way so as to allow them to allocate and deallocate any type of pool as well as to return 64-bit VAs. The pool class BAP will be the first instance of a new pool type accessible via these new general routines. These routines will also manage class NPP, traditional non-paged pool.

General Characteristics

This spec defines interfaces using C conventions. In addition, the following typedefs will be in effect:

#pragma pointer_size 64	/* Default to 64-bit addresses */

typedef void * long_pointer;	/* Use to avoid ambiguity */

typedef unsigned __int32 uint32;	/* 32-bit unsigned int */

typedef unsigned __int64 uint64;	/* 64-bit unsigned int */

typedef enum _PoolType

{

 MMG$K_POOLTYPE_NPP=0,

 MMG$K_POOLTYPE_BAP /* = 1*/

} PoolType;

All the routines specified below will maintain and check the same debugging aids currently used in non-paged pool, including:

Pool poisoning and checking (using the same SYSGEN parameters as non-paged pool)

Ring buffer (using the same buffer as non-paged pool, but with different “routine name” opcodes to indicate that the operation happened in the _POOL routines for BAP or NPP memory.

Allocate Pool

int exe$allocate_pool(uint64 size_request, PoolType pool_type, uint64 alignment,

			uint64 *allocated_size, long_pointer return_memory);

This routine works just like exe_std$alononpaged, except that you can specify a pool type and an alignment. If pool_type is MMG$K_POOLTYPE_NPP and alignment is 0, it acts exactly like alononpaged. If pool_type is MMG$K_POOLTYPE_BAP, it returns BAP memory.

If alignment is 0, then the caller does not request any special alignment (although this routine will never return anything less than 64-byte aligned). If alignment is greater than 0, the pool returned is guaranteed to be at worst on the specified boundary (1 to 6=64-byte boundary,...,14=8K boundary, the maximum allowed). If the allocation request is less than a page, an aligned request is also guaranteed and not to cross a page boundary on the current machine. For memory which has only 64-byte or less alignment requirements but must be within a page, a value of 1 is acceptable.

The allocated size is returned to the quadword pointed to by allocated_size.

Possible return values are:

SS$_NORMAL - The memory was allocated as requested

SS$_INSFMEM -There was insufficient memory available to satisfy the request.

SS$_BADPARAM - The specified pool_type or alignment was illegal.

Deallocate Pool

void exe$deallocate_pool(void *address,PoolType pool_type, uint64 size);

This routine works just like exe_std$deanonpaged and _siz except that you must specify a type. The _MON version will check that the memory you are returning is truly of the type you specified, insofar as it can, and BUGCHECK if it can tell that the type is incorrect.

If size is non-0, it must match exactly the amount of memory that was originally allocated (not requested). If size is 0, the size must be located in a word at offset irp$w_size from the start of the block. Notice that you must specify the size explicitly if the block is longer than 64K.

Register Pool Information

int exe$register_pool_info(PoolType pool_type, int (*need_memory_callback)(PoolType poolType,CallbackInfo *info), uint64 min_size, uint64 max_size, uint64 base_address, uint64 length_address, uint64 additional_info);

This routine is used by a memory consumer to register that consumer’s requirements for a particular pool type. Pool_type must be valid for each call to this routine; however any other parameter may be specified as NULL. If a parameter is specified as NULL, that parameter is not registered; it may be registered by a subsequent call to this routine.

Except for the above paragraph, the exact semantics of this routine (including which parameters are significant) are defined by each pool-type. For pool type NPP, this routine has no effect in Gryphon, and no parameters are significant. For BAP, consumers must register themselves by specifying the minimum amount of BAP that they can tolerate, the maximum amount of BAP that they will ever use, and the minimum and maximum physical addresses that they can tolerate. (For Gryphon, the MON version will bugcheck if a minimum other than 0 is specified.) The memory management routines will accumulate this information such that AUTOGEN can use it for tuning SYSGEN parameters

BAP consumers can also optionally register a callback routine, which is described in section � REF _Ref355079694 \n �1.6�.

Possible return values are:

SS$_NORMAL - Registration accepted

SS$_INSFMEM- We know immediately that even the minimum requested amount of the specified pool type is unavailable, either because there is not enough or because the combination of registered parameters by this caller as well as others makes it impossible (for example, a minimum amount of 5 megs with a maximum address of 1 meg). Notice that if we can’t tell if there is enough memory at registration time, we may return SS$_NORMAL here and still return SS$_INSFMEM when you try to allocate memory later.

SS$_BADPARAM - An illegal pool type or other parameter was specified.

Trim Pool List

int exe$trim_pool_list(uint64 size,PoolType pool_type, int percent)

This routine is essentially identical to the routine exe_std$trim_list except that a pool type must be supplied. The lookaside list specified by size is trimmed to percent % of its original size. The parameter percent must be a value between 1 and 100.

Possible return values are:

SS$_NORMAL - The list was trimmed as requested.

SS$_INSFMEM - There was insufficient memory available to re-populate the list. The specified list is left with fewer than percent packets on it.

SS$_BADPARAM - The specified pool_type was illegal

Callback routine

One parameter to exe$register_pool_info is a pointer to a callback routine. This section describes the characteristics of this routine.

The template of the callback routine should look like this:

int need_memory(PoolType pool_type, CallbackInfo *info)

which the memory management code can call as a last resort when it can't satisfy an allocation request. When need_memory_callback is called, the memory consumer should release as much memory as it can. The info parameter to the callback routine is a pointer to a CallbackInfo structure defined as:

	typedef _callbackInfo

	{

		BOOL	min_size;

		uint64 current_request;

	} CallbackInfo;

If min_size is true, we are operating in a minimal environment and the consumer should make its best effort to cut back to the minimum size that it registered (if it keeps more than the minimum size, other consumers are likely to be shortchanged).

Current_request is a “hint” indicating the size of the current request that triggered the callback. If min_size is false, the consumer can use this value to decide how much memory to return.

The consumer has the following restrictions when the callback routine is called:

The callback will always be in kernel mode, but may be at any IPL between 0 and IPL$_POOL. The consumer is responsible for its own synchronization.

The only memory management call that is allowed during the callback is exe$deallocate_pool.

Unless IPL is raised to IPL$_POOL it is possible to have multiple simultaneous callbacks

Inline Macros

The infrastructure to build inline macros for allocation and deallocation will be provided. In particular the current NPOOL_DATA structure pointed at by the global cell EXE$AR_NPOOL_DATA will be expanded to allow macros to find the info they need about other pool types. It is TBD who will provide the macros themselves

What VA Will BAP Be In

The new routines are 64b routines, so BAP could be in either S0 or S2. However, the underlying list-management routines are 32b, and I don't propose to change this for V7.1. Thus, BAP will be in S0.

Implementation of New Pool Routines for Version 7.1

The new routines have been created by cloning the corresponding non-paged pool routines and porting them to a 64-bit capable language, adding new listheads for the new pool type BAP, and calling the same bottom-level routines to manage the basic lists (e.g. EXE$ALLOCATE,LAL$xxx.). Specifically I have cloned exe_std$alononpaged and exe_std$alononpaged_aln for exe$allocate_pool, exe_std$deanonpaged for exe$deallocate_pool, and exe_std$trim_list for exe$trim_pool_list) as well as a few other routines that they are based on (e.g. exe$alononpaged_var) and ported them to C.

This approach has three major advantages:

It does not disturb the existing npage pool code

The code can all be tested with non-paged pool listheads as well as BAP listheads

We end up with clean generalized routines that can be used in the future for additional different pool types and/or S2 pool.

Implementation Details

Note: All routines are standard call, so no jsb variants needed. For MON version, we can get the caller's address from the C built-in ASM, so there is no need for internal/external versions.

All routines will use the new code for both the NPP and BAP pool. When NPP is specified, these routines and the old non-paged pool routines are completely compatible with each other. If we get a bad pool type, bugcheck in the MON version, return SS$_BADPARAM.

New Global Data

EXE$GL_NPAG_BAP_MIN - Sysgen parameter indicating the minimum BAP size (bytes) that the system can tolerate.

EXE$GL_NPAG_BAP_MIN - Sysgen parameter indicating the maximum BAP size (bytes) that the system might ever need.

MMG$GQ_BAP - VA of BAP

EXE$GQ_BAP_VARIABLE - list head for BAP variable packets

Note: Until we rototill MEMORYALC.MAR sometime in the indefinite future, all pool must be in S0. The GQ addresses above can only have 0 or FFFFFFFF in the the most significant longword.

EXE$GQ_BAP_MAX_REQUEST_SIZE - maximum of BAP sizes requested via exe$register_pool_info

EXE$GQ_BAP_MIN_REQUEST_SIZE - minimum of BAP sizes requested via exe$register_pool_info

EXE$GQ_BAP_MAX_PA_REGISTERED - the smallest of maximum BAP physical address requested via exe$register_pool_info.

EXE$GQ_BAP_MIN_PA_REGISTERED - largest minimum BAP physical address requested via exe$register_pool_info.

EXE$GQ_BAP_NUM_REGISTRATIONS - The number of times a maximum size for BAP was registered..

EXE$GL_NPAGEDYN - This cell takes the place of SGN$GL_NPAGEDYN as the value of the sysgen parameter NPAGEDYN. SGN$GL_NPAGEDYN now contains the actual initially-allocated size of non-paged pool (which may be greater than the sysgen parameter if BAP is allocated within NPP).

EXE$GL_NPAGEVIR - This cell takes the place of SGN$GL_NPAGEVIR as the value of the sysgen parameter NPAGEVIR. SGN$GL_NPAGEVIR now contains the actual initially-allocated VA space of non-paged pool (which may be greater than the sysgen parameter if BAP is allocated within NPP).

Data Structures

NPOOL_DATA

This structure already exists in the MEMORYALC_DYN module. It appears to have started life as a series of individual cells which blossomed into a structure rather informally over the years. The structure has been extended and formalized as part of the BAP project.

NPOOL_DATA contains information about a pool. For example, it contains pointers to the variable list head, to the ring buffer, and to list counters; it also contains the lookaside listheads, the reclaim interval, and the number of allocated bytes from the variable list.

In order to maintain compatibility, NPOOL_DATA is actually the union of two similar structures, one for non-paged pool and one for subsequent pools. The non-paged pool version is pointed to (as always) by the global cell EXE$AR_NPOOL_DATA. The non-paged pool version contains pointers to the NPOOL_DATA structures of other pool types.

Here is the NPOOL_DATA structure definition:

typedef struct _npool_data

{

 union

 {

 struct /*This part used for non-paged pool's npool_data */

	 {

 unsigned __int64 ioc_gq_irplist;

 unsigned int ioc_gl_reclaiminterval;

 unsigned int ioc_gl_varallocbytes;

 unsigned int ioc_ar_ringbuf;

 unsigned int ioc_ar_nextnph;

 unsigned __int64 ioc_gq_srplist;

 unsigned int ioc_gl_ringbufcnt;

 unsigned int ioc_ar_listattempts;

 unsigned int ioc_ar_listfails;

 unsigned int ioc_ar_listdeallocs;

 unsigned int ioc_gl_variable_list [2];

 unsigned __int64 ioc_gq_listheads [81];

 union

		{

		 struct _npool_data *npool$ar_pool_data [2];

		 struct

		 {

			 void *npool$ar_npp_pool_data;

			 void *npool$ar_bap_pool_data;

		 } npool$r_sda_pool_data;

 } pool_data_overlay;

 } non_paged;

 struct/*This part for new pool types beyond non-paged pool */

	 {

 struct _pool_map *npool$ps_pool_map;

 unsigned int npool$l_dummy1;

		/*Could be used to extend above to quadword address */

 unsigned int npool$l_reclaiminterval;

 unsigned int npool$l_varallocbytes;

 unsigned int npool$l_ringbuf;

		/*0 means we use the ring buffer from non-paged pool */

 unsigned int npool$l_nextnph;

 unsigned int npool$l_pool_map_size;

		/*Number of bytes allcoated for POOL_MAP */

 unsigned int npool$l_pool_map_segments;

		/*Number of segments in POOL_MAP actually used */

 unsigned int npool$l_ringbufcnt;

 unsigned int npool$ar_listattempts;

 unsigned int npool$ar_listfails;

 unsigned int npool$ar_listdeallocs;

 void *npool$ar_variable_list;

 unsigned int npool$l_var_list_msl;

		/*Reserved so variable list can become a long pointer */

 unsigned __int64 npool$q_listheads [81];

 union

		{

 unsigned int npool$l_pool_flags;

 struct

		 {

 unsigned npool$v_not_npp : 1;

			 /* Note: If this NPOOL *does* represent non-paged

			 pool, there is an address here, which will not 				 have bit 0 set. Thus, this flg is always valid*/

 unsigned npool$v_pool_separate : 1;

 unsigned npool$v_pool_within_npp : 1;

 unsigned npool$v_minimum_mode : 1;

 unsigned npool$v_fill_0 : 4;

 } npool$r_pool_flag_bits;

 } npool$r_pool_flags_overlay;

 unsigned int npool$l_filler3;

 unsigned __int64 npool$q_filler4;

 } new_pools;

 } npool_overlay;

} NPOOL_DATA;

POOL_MAP

This structure describes non-contiguous segments of pool. It is used by SDA to display pool information. An array of pool_maps are built for each pool type except NPP, and pointed to by the pool’s NPOOL_DATA structure’s npool$ps_pool_map member. Npool$ l_poolmap_size contains the number of bytes allocated for the pool map array and npool$l_poolmap_segments indicates how many segments in the pool_map array are actually valid. The pool_map structure definition is:

typedef struct _pool_map

{

 void *pool_map$pq_segment_address;

 unsigned __int64 pool_map$q_segment_length;

} POOL_MAP;

Pool-specific data arrays

There are a series of static (in Bliss terms, OWN) data arrays, indexed by pool type, which hold any pointers or data that is used during allocation and deallocation and which is specific to a pool type. By filling in these arrays during initialization and indexing into them during allocate and deallocate, we can use the same code for all pool types without having to make any pool type decisions in the fast code paths.

The data arrays used in MEMORYALC_POOL currently are as follows:

poolVariableListHead[pooltype] - Pointer to the variable list head

poolFixedListHead[pooltype] - Pointer to the lookaside list heads

poolListAttemptCounter - Pointer to counters of attempts to allocate from lookaside lists

poolListFailureCounter - Pointer to counters of failures to allocate from lookaside lists

poolListDeallocateCounter - Pointer to counters of deallocations to lookaside lists

nphAllocate - “Opcode” used in the ring buffer for allocate (no alignment) operations

nphDeallocate - “Opcode” used for deallocate (implicit size) operations

nphDeallocateSized - “Opcode” used for deallocate with size explicitly specified

nphAllocateAligned - “Opcode” used in the ring buffer for allocate aligned

poolVariableAllocatedBytes - Number of bytes currently allocated from variable list

SYSBOOT

If EXE$GL_NPAG_BAP_MAX <= 0, then there is no BAP.

If EXE$GL_NPAG_BAP_MAX > 0, and if EXE$GL_NPAG_BAP_MAX_PA is less than the maximum physical address on the system then 1) create BAP, 2) put its address in MMG$GQ_BAP, and 3) initialize its list head EXE$GQ_BAP_VARIABLE.

If EXE$GL_NPAG_BAP_MAX > 0, and if EXE$GL_NPAG_BAP_MAX_PA is greater than or equal to the maximum physical address on the system then BAP will be within non-paged pool. Add EXE$GL_NPAG_BAP_MAX to EXE$GL_NPAGEVIR and put the result in SGN$GL_NPAGEVIR. Add EXE$GL_NPAG_BAP_MIN to EXE$GL_NPAGEDYN and put the result in SGN$GL_NPAGEDYN, and proceed to allocate non-paged pool using the increased values

AUTOGEN

AGEN$FEEDBACK gets the value of EXE$GL_BAP_MIN_REQUEST_SIZE, EXE$GL_BAP_MAX_REQUEST_SIZE and EXE$GL_BAP_MIN_PA_REQUESTED. This information is written to AGEN$FEEDBACK.DAT for later use by Autogen.

Autogen gets any supplied values of NPAG_BAP_MIN, NPAG_BAP_MAX and NPAG_BAP_MAX_PA. If a system manager specifies a value for these parameters in MODPARAMS.DAT it will override any calculated values. ADD_, MIN_, and MAX_ can also be used to control the values.

Use supplied values and AGEN$FEEDBACK values to determine final settings of NPAG_BAP_MIN, NPAG_BAP_MAX, NPAG_BAP_MAX_PA. Put normal parameter information in AGEN$PARAMS.REPORT.

Determine if BAP is a separate pool:

 If NPAG_BAP_MAX_PA is greater than the highest PA in the system, then

	- set SEPARATE_BAP to false, and

	- set initial size of BAP to NPAG_BAP_MIN

 If NPAG_BAP_MAX_PA is less than the highest PA in the system, then

	- set SEPARATE_BAP to true, and

	- set initial size of BAP to NPAG_BAP_MAX

Based on value of SEPERATE_BAP put appropriate information in AGEN$PARAMS.REPORT stating such.

Include the initial BAP size into all alogorithms for determining the amount of physical memory allocated to VMS.

Adjust Nonpaged pool feedback calculation to exclude BAP addition if BAP is included in normal pool.

Initialization

First initialize the static data arrays for NPP, and initialize the npool$ar_pool_data pointers to point at NPP’s pool_data and BAP’s pool_data (called bapData). Also initialize the NPP pool_data’s variable_list pointer.

For BAP, set bapData.npool$v_not_npp to say that this is not an NPP-type npool_data structure. Now determine where BAP is. If EXE$GQ_BAP_VARIABLE is non-0, then BAP has been allocated separately by SYSBOOT. Set a bapData.npool$v_pool_separate to say so and record the current BAP maximum PA as exe$gq_npag_bap_max_pa (which SYSBOOT used). Otherwise, if EXE$GL_BAP_MAX is non-0 then BAP is allocated within non-paged pool. Set the listheads for BAP to point to NPP and set the BAP-within-npp flag and record the current BAP maximum PA as being the top of physical memory. Finally, if EXE$GL_BAP_MAX is also 0, then no BAP is allocated, so do not set any flags and don’t record a maximum PA.

Now set up the pool-specific data arrays: If bapData.npool$v_pool_within_npp is set, then point all the listhead and counter data arrays to NPP, but set the ring buffer opcodes to BAP codes. Otherwise, point the listhead and counter data arrays to the separate BAP listheads and counter.

Finally, set up the reclaim TQE identically to the way it is done in the init routine of MEMORYALC_DYN, except that the tqe calls exe$reclaim_pool_lists for BAP instead of exe$reclaim_lists.

Reclamation routines

Gentle: Use cloned routines, performing the same functions as those in MEMORYALC_DYN. For unknown pool_types, bugcheck in the MON version and return SS$_BADPARAM for the MIN version.

Aggressive: There will be no expanding of BAP as there is with nonpaged pool. Therefore, the list trimming activities of aggressive reclamation do not apply to BAP.

Flush: When we can’t satisfy a request from a list or variable, flush all the list packets back to variable pool and then go through the list of callback routines, calling them (round-robin) until we get enough memory back. If that doesn’t produce the needed result, return failure

Allocate/Deallocate Routines

Use pool_type to get the listheads chosen in the init routine, and use the algorithms from the alonpag routines to allocate from either the fixed lookaside list or the variable list. If that fails, flush (see previous section) and try again. If that fails, call any callback routines that have been registered. If that fails, return SS$_INSFMEM.

Registration Routine

For pooltype NPP, return SS$_NORMAL.

For BAP, we first register the information for AUTOGEN’s use:

If maxPA is specified, and if it is less than exe$gq_bap_min_pa_registered (or the latter is 0) save maxPA exe$gq_bap_min_pa_registered.

Do the same with minPA, maximizing it against exe$gq_bap_min_pa_registered

Add the maxSize parameter to exe$gq_bap_max_request_size.

Add the minSize parameter to exe$gq_bap_min_request_size.

Now we attempt to ensure that we can honor at least minimal allocation requests from the registering consumers:

Compare the requested minimum PA against the current minimum BAP pa. If it is less, then the consumer request BAP with a lower PA than we can guarantee. Return SS$_INSFMEM.

Subtract the registered minimum PA from the registered maximum PA and compare the result with the total registered minimum request size. If it is less, then consumers have required more memory than they have allowed physical address space. Return SS$_INSFMEM.

Check the registered minimum PA to make sure it is 0. If not, bugcheck for the mon version or return SS$_INSFMEM for the min version.

Check to see if the consumer requested a non-0 minimum BAP size. If so, and if there SYSBOOT did not allocate any BAP, we will try to. Allocate a chunk with a size matching the minimum requested from non-paged pool using the alononpaged_lim to ensure the physical address requirements match. If we succeed, immediately deallocate the chunk to the BAP listhead and set the flags npool$v_minimum_mode and bapData.npool$v_separate in bapData. Update the BAP segment descriptor to match.

Finally, check whether the consumer registered a callback routine. If so, store the procedure value in a static array. (This should be dynamically allocated like the segment descriptor, but is not yet.)

Debug (MON) Variants

The MON version of these routines will have the same statistics gathered, and make the same checks as those in MEMORYALC_DYN. We will use the same SYSGEN parameter for pool checking (so the poison pattern etc. are all the same as what is used for non-paged pool).

There will be separate statistics counters for BAP and for nonpaged-pool; however the same ring buffer will be used so that a debugger can see the interrelationship among the operations on BAP and NPP.

Tools

SDA

SDA will be documented separately. However, in general, the SHOW POOL commands have been enhanced to understand BAP, and to be able to filter by type and subtype.

VMSTEST

Poolexer will be modified to support the new routines.

DCL

$SHOW MEMORY will need to be modified to show BAP as well as nonpaged and paged pool.

�PAGE �14�

�PAGE �14�

