
1

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 1

Intermediate DCL Programming

David J. Dachtera
djesys@fsi.net

DJE Systems
http://www.djesys.com/

In this presentation, we’ll build on the concepts
presented in the Introduction to DCL
Programming.

We’ll introduce some of the more advanced
functions and operations, including Searching
for files, File I/O, parsing strings read from files,
and using symbol substitution.

2

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 2

Agenda - Review Intro

Basic DCL Concepts
Commands
Verbs

Symbols

IF-THEN
IF-THEN-ENDIF
IF-THEN-ELSE-ENDIF
Labels, GOTO

First, we’ll go over the basics we discussed in
the introductory session. We’ll take another look
at commands, verbs and symbols. We’ll review
conditional expressions and basic logical
controls.

3

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 3

Agenda - Review Intro., Cont’d

GOSUB-RETURN
Common Lexical Functions

F$CVTIME

F$GETQUI

F$GETSYI
F$GETDVI

PARAMETERS
Batch jobs that reSUBMIT themselves

We’ll go over simple internal subroutines,
common lexical functions, and processing
parameters passed to a procedure. We’ll review
using simple F$GETQUI() items to gather the
information needed to allow a procedure to
resubmit itself.

4

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 4

Agenda - Intermediate

SUBROUTINE - ENDSUBROUTINE
CALL subroutine [p1[p2[…]]]
Why CALL instead of GOSUB?
More Lexical Functions

F$SEARCH

F$TRNLNM

F$ENVIRONMENT
F$PARSE

F$ELEMENT

We’ll then get deeper into some of the more
advanced functions like complex internal
subroutines, some of the more useful lexical
functions, ...

5

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 5

Agenda - Intermediate, Cont’d

F$SEARCHing for files
File I/O
File Read Loops
Using F$ELEMENT to parse input strings
F$ELEMENT loops
Symbol Substitution

Using Apostrophes (‘symbol’, “’’symbol’”)

Using Ampersand (&)

...processing wildcarded file specifications,
reading and writing disk files, parsing strings and
parameters, and using symbol substitution.

6

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 6

DCL Command Elements

$ verb parameter_1 parameter_2

DCL Commands consist of a verb and
one or more parameters.

We begin our review with the basics of DCL
commands.

A DCL command usually consists of a verb and
one or more parameters.

7

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 7

DCL Verbs

Internal commands
ASSIGN, CALL, DEFINE, GOSUB, GOTO,
IF, RETURN, SET, STOP, others…

External commands
APPEND, BACKUP, COPY, DELETE,
PRINT, RENAME, SET, SUBMIT, others...

Some commands are internal to DCL. Others
are facilitated by programs external to DCL.
Notice that some of the SET and STOP
commands are internal and some are external.

8

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 8

DCL Verbs, Cont’d

“Foreign” Commands
$ symbol = value

Examples:
$ DIR :== DIRECTORY/SIZE=ALL/DATE

$ ZIP :== $ZIP/VMS

Some commands are created by you, the user.
These are called foreign commands, since
they’re not actually part of the command tables,
or appear in the command tables with different
default qualifiers and/or parameters.

9

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 9

More Foreign Commands

The DCL$PATH Logical Name (V6.2 +)

Behaves similar to the DOS or UN*X “path”:
.COM and .EXE files can be sought by way

of DCL$PATH

$ DEFINE DCL$PATH MYDISK:[MYDIR.PROGS]

DCL$PATH can even be a search list:

$ DEFINE DCL$PATH -

MYDISK:[MYDIR.COM],MYDISK:[MYDIR.EXE]

Another way to find “foreign” or external
commands is to use the DCL$PATH logical
name. DCL$PATH was introduced in OpenVMS
V6.2.

DCL$PATH behaves very much like the DOS or
UN*X “path” - .COM and .EXE files can be
located via the DCL$PATH path.

DCL$PATH can have a single translation or it
can be a search list.

10

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 10

DCL$PATH Caveat

Specifying an asterisk (“*”) at the DCL
prompt, or an invalid specification which
results in DCL seeing an asterisk or other
wildcard specification, can produce
undesirable results:
$ *

$ dirdisk:*.txt

%DCL-W-NOLBLS, label ignored - use only within command procedures

.

.

.

There is an aspect of DCL$PATH of which you
need to be aware:

DCL will observe wildcard specifications when
seeking a file by way of DCL$PATH. This can
produce undesired results.

Even an invalid specification might be
interpreted as a wildcard specification. The
second example shows what can happen if a
space is left out of a DIRECTORY command.

11

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 11

DCL$PATH Caveat

Determine what might be found via a
wildcard specification:

$ DIR DCL$PATH:*.COM;

$ DIR DCL$PATH:*.EXE;

You can determine in advance what might be
found via a wildcard specification. Just issue a
DIRECTORY command for .COM files and
another for .EXE files.

12

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 12

DCL$PATH Caveat

Avoid wildcard problems:

Place a “$.EXE” program and a “$.COM”
in the DCL$PATH path. Each should just
exit without doing anything.

URL:
http://www.djesys.com/freeware/vms/make_$.dcl

Download, RENAME to .COM and invoke it.
$ @make_$.com

To avoid problems, you can place a “$.EXE”
program or a “$.COM” procedure in the
DCL$PATH path.

A DCL procedure to create these can be
downloaded from the internet at the URL shown
in the slide.

13

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 13

Conditional Statements

$ IF condition(s) THEN statement

$ IF condition(s) THEN -

$ statement

$ IF condition

$ THEN

$ statement(s)

$ ELSE

$ statement(s)

$ ENDIF

DCL provides conditional constructs including
IF-THEN statements and IF-THEN-ELSE-ENDIF
blocks.

14

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 14

Basic Logical Control
$ GOTO label

.

.

.

$label:

$ GOSUB label

.

.

.

$label:

$ statement(s)

$ RETURN

DCL provides for logical control of program flow
by way of labels and the GOTO and GOSUB
statements.

15

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 15

More Internal Subroutines

$ CALL subroutine_name[p1[p2[...]]]

.

.

.

$subroutine_name: SUBROUTINE

$ statement(s)

$ EXIT

$ ENDSUBROUTINE

DCL provides internal SUBROUTINEs that act
like external procedures. This allows for easier
parameter passing than GOSUB, also.

16

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 16

Why CALL?

● The CALL statement allows parameters
to be passed on the command line.

● SUBROUTINEs act like another
procedure depth. (Can be useful when
you don’t want local symbols to remain
when the subroutine completes.)

The CALL statement allows parameters to be
passed to the SUBROUTINE.

SUBROUTINEs act like another procedure
depth. Local symbols are local to the subroutine
and global symbols are visible to the
SUBROUTINE.

17

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 17

Searching for Files

F$SEARCH(string_expression)
ddcu:[dir]FILE.TXT
ddcu:[*]FILE.TXT
ddcu:[dir]*.DAT
ddcu:[dir]*.*

Use for finding files with/without wild
cards.

Getting onto the intermediate topics, we begin
with the F$SEARCH lexical function.

F$SEARCH() is useful for finding files using both
absolute and wildcarded file specifications.

If the file you specify is not found, F$SEARCH
returns a null string.

If you supply a wildcarded filespec, F$SEARCH
returns the next matching filespec on each
subsequent invocation. When there are no more
matching files, a null string is returned.

18

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 18

File Search Loops
$ SV_FSP :=

$LOOP_1:

$ FSP = F$SEARCH(P1)

$ IF FSP .EQS. “” THEN GOTO EXIT_LOOP_1

$ IF SV_FSP .EQS. “” THEN SV_FSP = FSP

$ IF FSP .EQS. SV_FSP THEN GOTO EXIT_LOOP_1

$ statement(s)

$ SV_FSP = FSP

$ GOTO LOOP_1

$EXIT_LOOP_1:

To avoid locked loops, check that the filespec.
Returned by F$SEARCH() is not the same as the
last iteration.

Here’s an example of a loop which uses
F$SEARCH.

Note that if the search specification is not
wildcarded, F$SEARCH will return the same
string over and over. The example shows how to
avoid locked loops by saving the filespec after
each invocation and comparing the previous
string to the current string. If they match, exit the
loop.

19

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 19

Multiple F$SEARCH Streams

To have more than one F$SEARCH()
stream, specify a context identifier.

Examples:
$ vbl1 = F$SEARCH(SRC1, 111111)

$ vbl2 = F$SEARCH(SRC2, 121212)

You can have more than one F$SEARCH
stream at a time. Just supply a unique context
identifier for each stream.

20

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 20

File I/O Statements

OPEN - Make a file available

READ - Get data from a file

WRITE - Output data to a file

CLOSE - Finish using a file

DCL provides four statements for performing file
I/O: OPEN, READ, WRITE and CLOSE.

Use OPEN to begin using a file.

Use READ to get data from a file.

Use WRITE to write data to a file or to update
existing records.

Use CLOSE to finish using a file and release the
associated resources.

21

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 21

File I/O - OPEN
$ OPEN logical_name filespec

$ OPEN

/ERROR=label

/READ

/WRITE

/SHARE={READ|WRITE}

The OPEN statement makes a file available for
processing. It establishes a “channel identifier”
which you can use in READ and WRITE
statements as well as in the CLOSE statement
to finish using the file.

/READ opens the file for reading. The file must
exist.

/WRITE opens the file for writing. If not
accompanied by /READ, a new file is created.

/SHARE specifies how other I/O streams may
use the file.

22

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 22

File I/O - READ
$ READ logical_name symbol_name

$ READ
/DELETE
/END_OF_FILE
/ERROR
/INDEX
/KEY
/MATCH
/NOLOCK
/PROMPT
/TIME_OUT ! Terminals only

The READ statement retrieves data from a file.

The qualifiers shown provide for labels to
receive control in case of error or at end of file,
and provide ways to specify a key to match,
which index to search, how to match the key
value specified (RMS indexed files), a prompt
string to use when READing from a terminal,
and a TIME_OUT value for a time to wait for
input from a terminal.

23

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 23

File I/O - WRITE
$ WRITE logical_name symbol_name

$ WRITE

/ERROR

/SYMBOL ! Use for long strings

/UPDATE

The WRITE statement is used to write data to a
file or to update an existing record in a file.

/ERROR is used to specify a label where control
should be transferred when an error occurs.

/UPDATE is used to update an existing record.

/SYMBOL is used to write strings longer than
255 bytes.

24

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 24

File I/O - CLOSE
$ CLOSE logical_name

$ CLOSE

/ERROR

/LOG

The CLOSE statement is used to finish using a
file. The buffers are flushed and all associated
resources are released.

/ERROR is used to specify a label where control
should be transferred when an error occurs.

/LOG is used to avoid an error message when
closing a file that isn’t open.

25

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 25

File I/O - READ Loops
$ OPEN/READ INFLE MYFILE.DAT

$READ_LOOP:

$ READ/END=EOF_INFLE INFLE P9

$ statement(s)

$ GOTO READ_LOOP

$EOF_INFLE:

Here’s an example of a loop to read a file and
process its records.

The /END_OF_FILE qualifier is used to direct
control to the “EOF_INFLE” label at end of file.

26

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 26

Parse - F$ELEMENT()
$ vbl = F$ELEMENT(index, delim, string)

index - an integer value

delim - the delimiter character

string - the string to parse

F$ELEMENT() returns the delimiter
character when no more elements exist.

Example:
$ ELEM = F$ELEMENT(0, “,”, P1)

Moving on to some more advanced lexical
functions, we start with F$ELEMENT. Use this to
parse strings by searching for specific
characters, such as comma, pipe symbol,
space, etc.

The “index” starts at zero. The “delim” parameter
can be any single character.

If the value of “index” points to an element
beyond the end of the string, the function returns
the delimiter character.

27

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 27

String Parsing Loops
$ CNTR = 0

$LOOP_1:

$ ELEM = F$ELEM(CNTR, “,” P1)

$ CNTR = CNTR + 1

$ IF ELEM .EQS. “” THEN GOTO LOOP_1

$ IF ELEM .EQS. “,” THEN GOTO EXIT_LOOP_1

$ statement(s)

$ GOTO LOOP_1

$EXIT_LOOP_1:

Here’s an example of a loop for retrieving all the
elements of a string. In the example, elements of
the string are delimited by commas.

Note that the index is incremented before the
element returned is examined. This is one way
to help avoid locked loops. Ignoring null
elements might not always be desirable.

When F$ELEMENT returns a comma, control is
transferred to the EXIT_LOOP_1 label.

28

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 28

Symbol Substitution

Two forms of symbol substitution:

&symbol_name

‘ symbol_name ’ or “’’ symbol_name ’”

Let’s look at symbol substitution. DCL provides
two “passes”: one for symbols preceded by an
ampersand (“&”) and another for symbols
preceded by an apostrophe, or two apostrophes
when used within a quoted string.

29

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 29

Symbol Substitution

Order of Substitution:
1. Ampersand(&)
2. Apostrophe(‘)

Symbol substitution occurs in the order shown.

First, symbols preceded by an ampersand are
processed. The value of a symbol preceded by
an ampersand is treated as a single “word” or
token.

Second, symbols preceded by apostrophes are
processed. When expanded, the value of a
symbol preceded by apostrophe is treated as
one or more “words” or tokens.

30

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 30

Symbol Substitution

Use order of substitution to your
advantage:

$ SYMB := ‘PREFIX’SYMBOL

$ vbl = &SYMB

This slide shows how you can use symbol
substitution to your own advantage.

This can be useful. This can also lead quickly to
confusion.

31

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 31

Symbol Substitution

Command line length limits:

Before symbol substitution: 255 bytes

After symbol substitution: 1024 bytes

The maximum length of a command line before
symbol substitution is 255 bytes.

DCL has a somewhat larger internal buffer
which allows for the results of symbol
substitution.

See the HELP topics “=“ and “:=“ for further
information. (Steve Hoffman)

32

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 32

Symbol “Scope”

Determine symbol scope for the current
procedure depth:

$ SET SYMBOL/SCOPE=(keyword(s))

- [NO]LOCAL

- [NO]GLOBAL

Can help prevent problems due to symbols defined
locally at another procedure depth or globally.

Controlling symbol scope can help control
confusion when a symbol name is used in more
than one nested procedure.

When symbol scope is set to NOLOCAL, local
symbols from lesser procedure depths are
“invisible” to the current procedure depth all
“greater” depths.

When symbol scope is set to NOGLOBAL,
global symbols are “invisible” to the current
procedure depth all “greater” depths.

33

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 33

Symbol “Scope”

$ SET SYMBOL/SCOPE=(keyword(s))

Other Qualifiers: /ALL , /VERB and /GENERAL

/VERB applies only to the first “token” on a

command line.

/GENERAL applies to all other “tokens” on a

command line.

/ALL applies to both.

Other SET SYMBOL/SCOPE qualifiers control
how the symbol scoping rules are applied.

/VERB applies to the first “token” (or “word”) on
a command line.

/GENERAL applies to all other “tokens” (or
“words”) on a command line.

/ALL applies to all of the “tokens” (or “words”) on
a command line.

“Words” are delimted by the space (ASCII 32)
character for DCL’s purposes.

34

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 34

String Operations

Concatenation:
$ vbl = string1 + string2

Example:
$ PROC = F$ENVIRONMENT(“PROCEDURE”)

$ DEVC = F$PARSE(PROC,,, “DEVICE”)

$ DRCT = F$PARSE(PROC,,, “DIRECTORY”)

$ FLOC = DEVC + DRCT

Connecting two or more shorter strings together
is known as “concatenating”. The original strings
remain unchanged. The target string includes
the contents of the original strings as one longer
string. No spaces or other characters are
inserted or appended.

The example illustrates the use of the
F$ENVIRONMENT and F$PARSE lexical
functions. Two elements of the procedure file
specification are then concatenated together for
use later on in the procedure.

35

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 35

String Operations

Reduction:
$ vbl = string - substring

Example:
$ DVN = F$GETDVI(“SYS$DISK”, “ALLDEVNAM”)

$ DNM = DVN - “_” - “:”

$ SHOW SYMBOL DNM

 DNM = “DJVS01$DKA0”

Removing a substring from a longer string is
known as string reduction. The first instance of
the substring is removed from the longer string,
and the result is stored in the target symbol.

The example illustrates stripping the underscore
and colon from a device name.

36

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 36

String Operations

Substring Replacement:

$ vbl[start,length] = string

Example:
$ nam := hydrichlor

$ nam[4,1] := o

$ show symbol nam

 NAM = “HYDROCHLOR”

Substrings within a longer string can be
replaced. The starting position and the length of
replacement (in bytes) are indicated within the
square brackets following the name of the target
string. The colon-equal operator (“:=“)or the
colon-equal-equal operator (“:==“) MUST be
used for this type of assignment.

The example illustrates replacing a single
character near the middle of a string.

37

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 37

String Operations

Binary Assignment:

$ vbl[start_bit,bit_count] = integer

Examples:

$ CR[0,8] = 13

$ LF[0,8] = 10

$ ESC[0,8]= 27

$ CSI[0,8]= 155

Binary values can also be assigned using the
square brackets following the name of the target
symbol.

The equal operator (“=“) or equal-equal operator
(“==“) MUST be used for this type of
assignment.

The first value within the brackets is the bit
displacement into the target field. The second
value is the number of bits to be affected by the
assignment.

38

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 38

DCL “Arrays”

DCL does not support arrays in the usual
sense. However, you can use a counter
within a loop to create a list of variables:

$ CNTR = 0

$LOOP:

$ CNTR = CNTR + 1

$ FIELD_’CNTR’ = vbl

$ IF CNTR .LE. 12 THEN -

$ GOTO LOOP

While DCL does not support arrays in the sense
of subscripted variables as one might find in a
3GL, a counter can be used to sequentially
create variables with a number appended to the
variable name. This can be done using symbol
substitution to create a target variable name, as
shown the example.

39

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 39

Integer Operations

DCL supports the four basic arithmetic
operations:

+ Add
- Subtract
* Multiply
/ Divide

DCL can perform arithmetic operations on
integer values. Integers are treated as signed
longword (32 bit) values.

40

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 40

Boolean Operations

DCL supports assignment of boolean
values:

$ vbl = (condition)

Examples:
$ TRUE = (1 .EQ. 1)

$ FALSE = (1 .EQ. 0)

The “truth” value of conditional expressions can
be assigned to variables for use in multiple
comparisons within a procedure.

41

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 41

Logical Operations

DCL supports logical AND, OR and NOT

$ vbl = (int1 .AND. int2)

$ vbl = (int1 .OR. int2)

$ vbl = (.NOT. int3)

Examples:
$ STATUS = &$STATUS

$ SEVERITY = (STATUS .AND. 7)

$ FAILURE = (.NOT. (SEVERITY .AND. 1))

$ EXIT_STATUS = (STATUS .OR. %X10000000)

DCL provides the logical AND and logical OR
boolean operators, and the NOT operator.

The examples show the use of the .AND., .NOT.
and .OR. operators. Notice that FAILURE is
taken as the logical NOT of a condition that
would indicate success.

42

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 42

Error Trapping

Using the “ON” statement, you can set
multiple levels of error trapping:

$ ON WARNING THEN statement

$ ON ERROR THEN statement

$ ON SEVERE_ERROR THEN statement

$ ON CONTROL_Y THEN statement

Turn error trapping off or on:
$ SET NOON

$ SET ON

Through the use of the “ON” statement and the
“SET ON” and “SET NOON” statements, you
can control how DCL behaves when various
type of errors or events occur.

A WARNING event occurs when the severity is
zero(0) (($STATUS .AND. 7) .EQ. 0).

An ERROR event occurs when the severity is
two(2) (($STATUS .AND. 7) .EQ. 2).

A SEVERE ERROR event occurs when the
severity is four(4) (($STATUS .AND. 7) .EQ. 4).

43

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 43

Handling Errors

$ SET NOON

$ statement

$ STATUS = &$STATUS

$ SEVERITY = (STATUS .AND. 7)

$ IF SEVERITY .EQ. 0 THEN -

$ GOSUB ANNOUNCE_WARNING

$ IF SEVERITY .EQ. 2 THEN -

$ GOSUB ANNOUNCE_ERROR

$ IF SEVERITY .EQ. 4 THEN -

$ GOSUB ANNOUNCE_FATALERROR

This code segment illustrates how to trap and
handle errors without DCL’s intervention.

After the “statement” is executed, the value of
$STATUS is saved, and the SEVERITY is
derived from the saved STATUS.

Different actions are taken depending upon the
value of the SEVERITY symbol.

44

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 44

Lexical - F$TRNLNM

Use to translate logical names.
$ vbl = F$TRNLNM(-

logical_name,-

table_name,-

index,-

mode,-

case,-

item)

Does NOT support wildcard look-ups!

Now, we’ll look at some more lexical functions.

F$TRNLNM() is used to get the translation of a
logical name, isolate the translation to a specific
logical name table, index or mode, or to
determine such characteristics about a logical
name.

Notice that F$TRNLNM() does NOT support
wildcarded logical name expressions.

F$TRNLNM() supercedes the older
F$LOGICAL().

45

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 45

Lexical - F$ENVIRONMENT

Get information about the process
environment.

$ vbl = F$ENVIRONMENT(keyword)

Some useful keywords:
CAPTIVE “TRUE” or “FALSE”
DEFAULT Current default ddcu:[dir]
MESSAGE Qualifier string
PROCEDURE Fully qualified filespec.
Others...

The F$ENVIRONMENT() lexical can be used to
get information about the current process
environment.

The example keywords shown are some of the
more useful keywords. Other keywords are
available to determine the CONTROL characters
currently enabled, the current procedure depth,
the current DCL prompt string, the current
default file protection, the current symbol scope,
etc.

46

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 46

Lexical - F$ENVIRONMENT

A useful example:

$ DFLT = F$ENVIRONMENT(“DEFAULT”)

$ MSG = F$ENVIRONMENT(“MESSAGE”)

$ SET DEFAULT ddcu:[dir]

$ SET MESSAGE/NOFACI/NOSEVE/NOIDE/NOTEXT

$ statement(s)

$ SET MESSAGE’MSG’

$ SET DEFAULT &DFLT

This example illustrates one method of
suppressing messages selectively. The
technique shown is to use the
F$ENVIRONMENT lexical to save the
MESSAGE display state, change it to what is
wanted, then change it back to the original state.

47

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 47

Lexical - F$PARSE

Use to verify or extract portions of a file
specification.

$ vbl = F$PARSE(-

filespec,-

default_spec,-

related_spec,-

field,-

parse_type)

The F$PARSE() lexical can be used to verify a
file specification or to extract portions of a valid
file specification.

The “parse_type” keywords are SYNTAX_ONLY
and NO_CONCEAL.

SYNTAX_ONLY parses a file spec and returns
values whether the specified file exists or not.

NO_CONCEAL can be used to get the
translation of a logical defined with the
CONCEALED translation attribute.

48

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 48

Lexical - F$PARSE

A useful example:

$ DFSP = F$ENVIRONMENT(“DEFAULT”) + “.COM”

$ FSP = F$PARSE(“LOGIN”, DFSP)

$ SHOW SYMBOL FSP

 “FSP” = “MYDISK:[MYDIR]LOGIN.COM;”

Another use of F$PARSE is to complete a
partial file specification, applying default values
for those portions not specified.

The example shown illustrates how “LOGIN” can
be expanded by applying appropriate default
values for the other portions of the file
specification.

49

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 49

Lexical - F$PARSE

Another useful example:

$ PROC = F$ENVIRONMENT(“PROCEDURE”)

$ DEVC = F$PARSE(PROC,,, “DEVICE”)

$ DRCT = F$PARSE(PROC,,, “DIRECTORY”)

$ DFLT = F$ENVIRONMENT(“DEFAULT”)

$ FLOC = DEVC + DRCT

$ SET DEFAULT &FLOC

$ statement(s)

$ SET DEFAULT &DFLT

This example illustrates how F$PARSE can be
used to extract portions of a file specification.

In the example, a new default disk and directory
specification is derived from the disk and
directory where the currently executing DCL
procedure is found, the current default disk and
directory are saved, then the new default is
applied. A (series of) statement(s) is(are)
executed, then the original default disk and
directory specification is restored.

50

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 50

Lexical - F$GETQUI

Get information about queues and jobs
on them.

$ vbl = F$GETQUI(-

function,-

item,-

object_identifier,-

flags)

Can be complicated, is definitely useful.

The F$GETQUI() lexical function can be used to
get information about queues and the jobs on
those queues.

F$GETQUI() can be complicated to use; but its
usefulness is well worth the effort.

51

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 51

Lexical - F$GETQUI

Functions:
CANCEL_OPERATION
DISPLAY_ENTRY
DISPLAY_FILE
DISPLAY_FORM
DISPLAY_JOB
DISPLAY_MANAGER
DISPLAY_QUEUE
TRANSLATE_QUEUE

This slide lists some of the available function
codes. Using these, your procedure can get
information about a queue, an entry, a form, a
job (where the entry number is not yet known), a
queue manager or a logical queue.

The CANCEL_OPERATION function can be
used to intentionally destroy the current context.
This is useful before creating a new context, to
ensure that any previous context has been
cleared.

52

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 52

Lexical - F$GETQUI

Some useful items:
AFTER_TIME
FILE_SPECIFICATION
ENTRY_NUMBER
JOB_NAME
QUEUE_NAME
QUEUE_PAUSED
QUEUE_STOPPED

There’s LOTS more item codes!

This slide lists just a few of the many items that
can be returned about a queue, a job, a form,
etc.

The DCL Dictionary, Volume 1 is very useful to
have at hand when using F$GETQUI(), as all of
the available functions, item codes and other
arguments are listed.

53

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 53

Lexical - F$GETQUI

Typical usage:
 1. Use DISPLAY_QUEUE to establish
 a queue context (object=“*”)
 2. Use DISPLAY_JOB to display jobs
 on the queue (object=“*”).
 3. Loop back to #2 until no more jobs.
 4. Loop back to #1 until a null queue
 name is returned.

When getting information about all the jobs on a
queue, first create the queue context using
DISPLAY_QUEUE. Then use DISPLAY_JOB
repeatedly to loop through all the jobs in the
queue.

54

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 54

Lexical - F$GETQUI

To retrieve multiple items about a queue
or a job, use the FREEZE_CONTEXT
flag on all but the last F$GETQUI for that
item.
Example:

$ QN = F$GETQUI(“DISPLAY_QUEUE”,”QUEUE_NAME”,-

“*”, “FREEZE_CONTEXT”)

$ NN = F$GETQUI(“DISPLAY_QUEUE”,-

”SCSNODE_NAME”, “*”,)

When displaying multiple items about a queue, a
job, etc., use the FREEZE_CONTEXT flag on all
the items but the last. This prevents the current
context from being advanced to the next queue,
job, etc. until all the needed items about each
queue, job, etc. have been retrieved.

55

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 55

Lexical - F$CVTIME
Most useful for adding and subtracting days,
hours, minutes and/or seconds to/from a date.

Examples:
$ NEXT_WEEK = F$CVTIME(“+7-”, “ABSOLUTE”,)

$ MONTH_END = (F$CVTIME(“+1-”,, “DAY”) .EQ. 1)

$ YEAR_END = (MONTH_END .AND. -

 (F$CVTIME(“+1-”,, “MONTH”) .EQ. 1))

$ NOW = F$CVTIME(,, “TIME”)

$ LATER = F$CVTIME(,, “TIME”)

$ ELAPSED_TIME = -

F$CVTIME(“’’LATER’-’’NOW’,, “TIME”)

The F$CVTIME() function returns multiple
elements of a date/time expression. It also
performs conversion from one format to another,
and allows for the addition or subtraction of
days, hours, minutes, seconds, etc. from a
known date/time or the current date time.

The examples show how to:

1. get the date/time for a week from now.

2. see if tomorrow is the first of the month/year.

3. get an elapsed time based on a starting time
and an ending time (may not cross midnight
more than once!).

56

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 56

Lexical - F$EXTRACT

Use to extract substrings.

$ vbl = F$EXTRACT(-

offset,- ! Zero relative!

length,-

string)

Note:
The offset is “zero-relative”; i.e., starts at zero(0).

Earlier in this session, we looked at substring
replacements. The F$EXTRACT() lexical
function allows substring extraction.

The original string is left unchanged; only the
contents of the requested substring are
returned.

Note that the offset is “zero-relative”. The first
character in a string has an offset of zero(0).
The offset of the last character in a string is
equal to the length of the string minus one(1) .

57

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 57

Lexical - F$GETDVI

Use to get information about devices.

$ vbl = F$GETDVI(“ddcu:”, item)

Some useful items:
ALLDEVNAM
FREEBLOCKS
LOGVOLNAM
MAXBLOCK
TT_ACCPORNAM

Many others…

The F$GETDVI() lexical is used to get
information about devices in the system, or to
see if a device exists.

Some of the valid items are listed. Many more
items are available.

58

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 58

Lexical - F$EDIT

Use to modify strings.

$ vbl = F$EDIT(string, keyword(s))

Keywords:
COLLAPSE
COMPRESS
LOWERCASE
TRIM
UNCOMMENT
UPCASE

The F$EDIT() lexical function is used to modify
strings.

Strings can be COLLAPSEd (all spaces and
TABs are removed), COMPRESSed (spaces
and TABs between words are reduced to a
single space), converted to upper/lower case,
TRIMmed of leading and trailing spaces and
TABs, and comments can be stripped off. The
comment delimiter is the exclamation point(“!”).

59

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 59

Lexical - F$GETJPI

Use to get information about your process
or process tree.

$ vbl = F$GETJPI(pid, item)

To get info. about the current process, specify PID
as null (“”) or zero(0).

Example:
$ MODE = F$GETJPI(0, “MODE”)

The F$GETJPI() lexical function is used to get
information about the current job or process.

To get information about the current process,
specify the PID as a null string (“”) or a zero(0).

The example shows how to retrieve the mode of
the current process. This could also be retrieved
using the F$MODE() lexical function.

60

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 60

Lexical - F$GETJPI

Some useful items:
IMAGNAME
MASTER_PID
MODE
PID
PRCNAM
USERNAME
WSSIZE

This slide shows just a few of the more useful
items than can be retrieved for a process. Many
item codes are available.

Refer to the on-line HELP or DCL Dictionary,
Volume 1 for a complete listing.

61

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 61

Lexical - F$GETJPI

A note of caution:

The AUTHPRIV and CURPRIV items
can return strings which are too long to
manipulate.

A note of caution about a couple F$GETJPI()
items codes:

The AUTHPRIV and CURPRIV items can return
strings which are too long to manipulate. Use
them with caution.

62

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 62

Lexical - F$GETSYI

Use to get information about the system.
$ vbl = F$GETSYI(item[,nodename][,cluster_id])

Can be used to retrieve the value of any system
parameter, as well as values associated with some
other keywords (see HELP or the DCL Dictionary).

Some useful items:
CLUSTER_MEMBER HW_NAME
CLUSTER_ FTIME NODENAME
CLUSTER_ NODES

The F$GETSYI() lexical function can be used to
retrieve many useful items of information about
the running OpenVMS system.

Any system parameter value can be retrieved,
as well as some information about the cluster
and the hardware on which the system is
running.

63

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 63

F$CONTEXT and F$PID

Use to locate selected processes.

Use F$CONTEXT to set up selection
criteria.

Use F$PID to locate selected processes.

When used together, the F$CONTEXT and
F$PID functions provide a means to look up
processes on the system by a number of
selection criteria.

64

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 64

F$CONTEXT and F$PID

Use F$CONTEXT to set up selection
criteria.

$ TMP = F$CONTEXT(“PROCESS”, -

CTX, “MODE”, “INTERACTIVE”, “EQL”)

$ TMP = F$CONTEXT(“PROCESS”, -

CTX, “NODE”, “*”, “EQL”)

Selection criteria are cumulative.

Use the F$CONTEXT function to set up your
selection criteria. This allows a programmatic
way of locating processes by name, by mode, by
UIC, etc. without the need to use intermediate
files or parse the output of a DCL command
such as SHOW SYSTEM.

Multiple selection criteria can be specified by
issuing multiple invocations of F$CONTEXT.
The context constructed this way can be used
with the F$PID function to return the PIDs of all
processes matching the selection criteria
specified.

65

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 65

F$CONTEXT and F$PID

Use F$PID to locate selected processes.

$LOOP:

$ PID = F$PID(CTX)

$ IF PID .EQS. “” THEN GOTO EXIT_LOOP

$ statement(s)

$ GOTO LOOP

$EXIT_LOOP:

$ IF F$TYPE(CTX) .EQS. “PROCESS_CONTEXT” THEN -

$ TMP = F$CONTEXT(“PROCESS”, CTX, “CANCEL”)

Once you have set up your selection context,
pass that context symbol to F$PID() and invoke
it in a loop until a null PID string if returned.

By default, F$PID() will return the PIDs of all
processes in the system (local to a cluster
node).

To locate all processes in the cluster matching
the other selection criteria, include an
F$CONTEXT invocation specifying an item code
of NODENAME, a matching string of “*” and a
match criterion of “EQL”.

66

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 66

Other Lexical Functions
Lexicals

 A set of functions that return information about character

 strings and attributes of the current process.

 Additional information available:

 F$CONTEXT F$CSID F$CVSI F$CVTIME F$CVUI F$DEVICE

 F$DIRECTORY F$EDIT F$ELEMENT F$ENVIRONMENT F$EXTRACT

 F$FAO F$FILE_ATTRIBUTES F$GETDVI F$GETJPI F$GETQUI F$GETSYI

 F$IDENTIFIER F$INTEGER F$LENGTH F$LOCATE F$MESSAGE F$MODE

 F$PARSE F$PID F$PRIVILEGE F$PROCESS F$SEARCH F$SETPRV

 F$STRING F$TIME F$TRNLNM F$TYPE F$USER F$VERIFY

Other lexical functions exist as well as those
discussed in this presentation. The slide shows
the output of “HELP Lexical” and shows all of
the available lexical function names.

Refer to the DCL Dictionary, Volume 1 for
complete information on the available lexical
functions.

67

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 67

Q & A

Speak now or forever hold your peas.

Please step to the microphone to ask your
questions.

Please limit yourself to one question. If you have
another, step to the end of the line and await
another turn.

Practical examples and problem fixes are
always welcome, of course!

68

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Intermediate DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 68

Thank You!

Remember to fill out the evaluation forms!

If evaluation forms are available, please
remember to fill them out and return them to the
presenter.

