
Papillon - A Solaris Security Module

Documentation

Version 0.4.3

(c) 2000-2002 Konrad Rieck (kr@roqe.org)

September 3, 2002

1

I said to the Sun, ”Good morning, Sun!
Rise and shine today!” - Dean Martin

0The Solaris Logo is a trademark or a registered trademark of Sun Microsystems, Inc.

2

Contents

1 Introduction 4
1.1 Overview . 4
1.2 What it does . 4
1.3 Release Notes . 5

2 Installation and Configuration 7
2.1 Getting Papillon . 7
2.2 Requirements . 7
2.3 Compilation . 8

2.3.1 Configuration src/Makefile . 8
2.3.2 Configuration src/papillon.h . 9
2.3.3 Configuration src/papillon.c . 9
2.3.4 Compilation . 10
2.3.5 Testing the module . 10
2.3.6 Installation . 11

3 Runtime Configuration 13
3.1 papctl Options . 13
3.2 Examples . 13
3.3 Known problems . 14

4 Papillon’s functionality 15
4.1 Features . 15

4.1.1 Restricted Proc . 15
4.1.2 Pseudo Promiscuous Flag . 15
4.1.3 Module Hiding . 16
4.1.4 Secure STDIO File Descriptors . 16

4.2 Protections . 16
4.2.1 Symbolic Link Protection . 17
4.2.2 Hard Link Protection . 17
4.2.3 FIFO Protection . 17
4.2.4 Chroot Protection . 18

5 Closing 19
5.1 Bug Reports . 19
5.2 Thanks . 19

References 20

3

1 Introduction

1.1 Overview

Welcome to the mysterious world of Papillon. This documentation covers all information regarding the
functionality, the usage and the installation of the Papillon module. You should read this documentation
carefully since only a properly installed and configured module will provide the security mechanisms
introduced in this document.

Papillon is a security module designed for the Solaris Operating Environment (Solaris OE) 8 [SOE]. It
has been tested against the Intel and the Sparc Edition of the Solaris OE 8. Papillon tries to be as
compatible with Sun Microsystems DDI/DDK as possible, and should also work on the Solaris OE 9
beta and following.

1.2 What it does

Papillon improves the security of a system by adding new functionality to the kernel. The added
security mechanisms have been inspired by Solar Designer’s Openwall Linux Kernel Patch [OW] and
the HAP Linux Kernel Patch [HAP] which fixes common Unix security problems that are also present
in the Solaris OE.

Papillon is designed to prevent attacks driven by system users. It doesn’t include any restriction to the
super-user. It can be an addition to already exisiting security mechanisms such as the BSM (Solaris’
Basic Security Module) and the non-executable stack on Solaris Sparc Edition.

The module is automatically loaded at boot time when entering multiuser level (init 2) and installs
two kinds of new functionality in the kernel: so called features and protections.

Features Features add completely new functionality to the kernel, they can be switched on or off
either at compilation time or even at runtime using the provided control tool papctl.

Features included in Papillon currently are:

• Restricted Proc

• Pseudo Promiscuous Flag

• Module Hiding

• Secure STDIO File Descriptors

Protections Protections restrict access to resources if specific conditions occur. A protection has
a behaviour that can be none (for doing nothing), warn (for warning only) or deny (for warning and
denying access to the resource).

Protections included in Papillon currently are:

• Symbolic Link Protection

• Hard Link Protection

4

• FIFO Protection

• Chroot Protection

See the section about features and protections for detailed information about how they work and what
they do.

1.3 Release Notes

• Version 0.4.3
Added support for compilation on 64 bit sys-
tem using the GNU C Compiler version 3.x.

Fixed wrong path to linker and adjusted
compilation flags for generic compilation,
thanks to Adam Morley.

Fixed missing memset() symbol when using
broken compiler setup and header mixture,
thanks to Erik Parker for reporting.

This version is considered to be stable, the
Beta flag has been removed from the version
number.

• Version 0.4.2b
Added the ability to give read permission to
the /proc to a group by using the definition
SUSER GID.

Fixed the warning output, module claimed
to deny access even though only warning
mode was enabled.

• Version 0.4.1b
The compilation process automatically de-
tects system’s bit width and compiles the
64 bit module only on systems running a 64
bit kernel.

The Sparc package now contains both, the
32 and the 64 bit module.

Improved small stability and performance is-
sues.

The documentation is now available in
the Portable Document Format, thanks to
Markus C. Gottwald and Manuel Beetz for
support.

The module has been running stable for over
3 months now, therefore this and future re-
leases are now labeled Beta instead of Alpha.

• Version 0.4.0a
The chroot protection has been recoded in-
spired by the newly released HAP Linux Ker-
nel Patch. The following syscalls are re-
stricted in a chroot environment: chroot(),

mount(), mknod(), xmknod(), modctl()
and chmod(). See last section of this docu-
ment for a detailed description.

Reorganized the syscall interception archi-
tecture, syscalls[] holds the systems de-
fault syscalls depending on the bit width
while syscalls32[] holds the 32 bit
syscalls on 64 bit systems.

Fixed a typo in the papctl tool that caused
incorrect help output.

Fixed an incorrect string buffer that caused
the pseudo promiscuous flag not to work on
64 bit systems.

Fixed a 64 bit calculation problem in the
readdir() routine. File hiding is now sup-
ported on all types of Solaris kernel (32 bit
and 64 bit).

• Version 0.3.5a
Heiko Krupp contributed an initial imple-
mentation for a chroot protection that is
based on matching ’..’ and ’/’ ocurrences
in path string provided to the chroot()
syscall.

• Version 0.3.4a
Fixed a security problem in the communica-
tion with papctl. An attacker would have
been able to change the configuration with
a patched version of papctl.

Enabled most of the module and file hiding
mechanisms on 64 bit systems. Only the
readdir() interception which hides the mod-
ule’s file from directory listings is disabled
until the code has been properly ported to
support 64 bit dirent stuff.

• Version 0.3.3a
This is the first public release of Papillon. All
features and protections have been tested on
Intel and Sparc 32 bit systems. The file hid-
ing has been disabled on UltraSparc 64 bit

5

systems, all other features and protections have been successfully tested.

6

2 Installation and Configuration

2.1 Getting Papillon

Papillon is available from the Roqefellaz website [RQ] You can directly access the Papillon page [PAP]
at http://www.roqe.org/papillon.

After receiving the source package of Papillon papillon-0.4.3 .tar.gz, extract the sources and
enter the source directory.

zcat papillon-0.4.3 .tar.gz | tar -xvf -
cd papillon-0.4.3

You should always download the latest version of Papillon. Kernel development is very critical, small
bugs can cause real damage. See the section about bug reports for more information.

2.2 Requirements

In order to compile Papillon you need some general development environment.

• make
You need a command that automates the compilation process. You can use the Solaris make
/usr/ccs/bin/make from the SUNWsprot package or install GNU make that is part of the
Solaris Software Companion CD [SCD] or available at SunFreeware [SFW].

• cc or gcc
In order to compile the module, you need a working C compiler. If you are compiling the module
for a 32 bit system such as any Intel Edition or any non-UltraSparc system, you can use both the
Sun C Compiler [FC] which is part of the SUNWspro / Forte C package or the GNU C Compiler
also available on the Solaris Software Companion CD [SCD] or at SunFreeware [SFW].

Note: If you receive the following message no C compiler is installed on your system.
You need to get one of the compilers mentioned above.

/usr/ucb/cc: language optional software package not installed

Note: If you are compiling the module for a 64 bit system, you have to use the Sun
C Compiler [FC] or the GNU C Compiler version 3.x. The GNU C Compiler version
2.9.x is not able to build proper 64 bit objects.

You can check whether your are running a 32 bit or 64 bit sytem, by executing the
following command: /usr/bin/isainfo -b

• ld
A linker is also necessary to compile papillon. You can use the default linker /usr/ccs/bin/ld
from the SUNWtoo package or the GNU linker which is not part of the Solaris Software Companion
CD but SunFreeware [SFW].

7

 http://www.roqe.org/papillon

2.3 Compilation

Precompilation configuration is done in three files of the source tree: src/Makefile, src/papillon.h
and src/papillon.c. The first is designed for common configurations while the latters are designed
for advanced configurations.

2.3.1 Configuration src/Makefile

You need to decide which features and protections to compile into the module. By default all features
and protections are included. Edit the file src/Makefile and change the following variables if
necessary.

• SYSCONFDIR=/etc
You should not change your system configuration directory unless you store configuration and
boot scripts in another directory, which is very untypical.

• SBINDIR=/usr/sbin
This is the location where the control tool papctl will be installed. You may change this to
any path as long as the Papillon module and the command stay on the same type of filesystem.
Otherwise the papctl command cannot be hidden.

• KERNELDIR=/usr/kernel/misc
This is the place where the Papillon module will be installed. There is no need to change this
unless you know what you are doing. Loading of the module using modload should always be
performed using an absolute path.

• FEATURES=-DRSTPROC -DSECSTDFD -DPPROMISC -DMODHIDING
By changing the values of this variable you can exclude features. To exclude a feature, remove
its definition from the FEATURES variable. Excluded features are not compiled into the module,
they cannot be enabled at later time without recompiling the module.

Definition Feature
-DRSRPROC Restricted Proc
-DSECSTDFD Secure STDIO File Descriptors
-DPPROMISC Pseudo Promiscuous Flag
-DMODHIDING Module Hiding

• PROTECTIONS=-DSYMPROT -DFIFOPROT -DHARDPROT
By changing the values of this variable you can exclude protections. To exclude a protection,
remove its definition from the PROTECTIONS variable. As with the features, excluded protection
can only be included through recompilation.

Definition Protection
-DSYMPROT Symbolic Link Protection
-DFIFOPROT FIFO Protection
-DHARDPROT Hardlink Protection
-DCHROOTPROT Chroot Protection

8

• CC=cc
This is the definition for the compiler used to compile the Papillon module. Papillon can be
compiled with the Sun C Compiler cc as with the GNU C Compiler gcc. Depending on the
choice of the compiler you need to adjust the compiler options CFLAGS32 and CFLAGS64. See
the comments in the Makefile.

Note: If you want to compile Papillon for a 64 bit environment (Solaris OE on
UltraSparc) you have to use the Sun C Compiler or the GNU C Compiler version 3.x.

• COPTS=-DSVR4 -DSOL2
This line describes options send to the C Compiler. For debug support add the definition -DDEBUG.
If you are using the GNU C Compiler, you may also add -Wall to see more warning messages.

You can also modify other variables in the file src/Makefile but in general everything should work
on a default Solaris OE installation.

2.3.2 Configuration src/papillon.h

If you are an advanced user and have some experience with kernel modules, you can also edit other
files inside the src directory. The following changes can be done in src/papillon.h

• Changing the super-group
If you want to allow a group of users read access to the restricted proc, change the definition
SUSER GID to an existing unix group. By default read access is granted to the super-user group
GID 0.

• Changing the super-user
By default Papillon assumes that the super-user is using the UID 0. If for some reason you want
to change this and also restrict UID 0, change the definition SUSER UID to a different user id.

• Changing the communication syscall
Papillon uses an unused syscall for communication. papctl uses this syscall to export and import
the configuration of Papillon from userspace to kernelspace and vice versa.

The syscall number is defined by SYS papcomm. If you are sure that this syscall is used on
your system, e.g. by a third party software, change the value to another unused system
call. You can retrieve a list of all used system calls by examining the system header file
/usr/include/sys/systm.h.

2.3.3 Configuration src/papillon.c

• Modifing the default runtime configuration
When the Papillon module is loaded it activates a compiled-in runtime configuration. This
configuration can be changed using the command papctl.

You may change the default runtime configuration in src/papillon.c. Read the section about
runtime configuration and adjust the values in the pap config t config struct.

9

• Adding files to hide
The struct pap modfiles t modfiles[] holds the files to be hidden. If you want to add a
file, e.g. /usr/bin/foobar, extend the struct by adding the following line before the { NULL,
NULL, NULL } line:

{ "/usr/bin/foobar", NULL, NULL },
You can only hide files on the same filesystem type where the module itself resides.

2.3.4 Compilation

Compilation is rather simple and straight-forward

cd src
make
cd ..

2.3.5 Testing the module

Before you permanently install Papillon, it is wise to run some tests. Load the module into the kernel
by executing the following command.

modload ./src/papillon

Run the control tool papctl to check if the module has been loaded successfully and the configuration
gets correctly exported.

./src/papctl -g
Current configuration of the Papillon module:

- Features
Restricted Proc: on
Pseudo Promiscuous Flag: on
Module Hiding: on
Secure STDIO File Descriptors: on

- Protections
Symlink Protection: deny
Hardlink Protection: deny
Fifo Protection: deny
Chroot Protection: deny

Now compile the test suite that is part of the Papillon source package.

10

cd test
make

Stay in the test directory. Execute the test.sh shell script. Make sure no one is on your system.
Follow the instructions printed by test.sh.

./test.sh
This script will check if Papillon is running and all enabled
protections are working.

WARNING: In order to check for possible attacks, it is necessary
to create a vulnerable environment in /tmp/fake. Before
proceeding, check that your machine is running in single
user mode.

Continue (y/n): y

- Checking for a restricted proc... Yes
- Checking for hardlink attack protection... Yes
- Checking for symlink attack protection... Yes
- Checking for fifo attack protection... Yes
- Checking for fifo64 attack protection... Yes
- Checking for STDIO attack protection... Yes
- Checking for STDIO64 attack protection... Yes
- Checking for chroot protection... Yes
- Checking for chroot64 protection... Yes

Done.

Make the module visible and unload it. Use modinfo to determin the module id of Papillon and replace
ID in the last line with this number.

cd ..
modinfo
./src/papctl -s m=off
modunload -i ID

If during the process described above the system panics or any other major problems occur, send a bug
report to kr@roqe.org and describe in detail your system, your configuration and the problem that
occured. See the section bug reports for more information.

2.3.6 Installation

From the src directory you are able to install the module.

11

cd src
make install
cd ..

These commands will create the following files on your system. (If you have modified some of the path
variables in the file src/Makefile , paths may differ)

• /usr/kernel/misc/papillon
The kernel module

• /usr/sbin/papctl
The control tool

• /etc/init.d/papillon
A script that loads papillon at boot time

• /etc/rc2.d/S06papillon
A hardlink to the script etc/init.d/papillon which loads papillon in init level 2 (Multi-User).

You can use the following sequence to uninstall the installed files.

cd src
make uninstall
cd ..

Note: Papillon adds a script to the init directory so that the module is loaded at boot
time. If you have volume management enabled problems concerning setting the con-
figuration using papctl may occur. Disable the volume management by moving the
/etc/rc2.d/S92volmgt script to a save place. If you don’t want to disable volume man-
agement, read the part about how to cope with the problems in the runtime configuration
section.

If all of these files have been installed on your system, you can activate the module by running

/etc/init.d/papillon start

If you reboot your system, Papillon will automatically be loaded when switching to multiuser level.

12

3 Runtime Configuration

If Papillon is loaded, you can use the control tool papctl to toggle features and protections. Below is
a list of the commandline and some examples.

Note: If Papillon is loaded and hidden, you are not able to view it on the list of loaded
modules generated by modinfo. The control tool papctl is the only way to test if the
module is loaded or not in this case.

3.1 papctl Options

Usage:
papctl -s variable=value [variable=value ...]
papctl g | -v | -h

Options:
-g get current configuration of the loaded module.
-s variable=value ... set current configuration of the loaded module.
-h print this help.
-v print version information.

In order to toggle features or protections you have to assign variables the correspoding values. This is
the table of all variables, their values and their description.

Variable Description Possible values
r Restricted Proc on, off
p Pseudo Promiscuous Flag on, off
m Module Hiding on, off
i Secure STDIO File Descriptor on, off
s Symbolic Link Protection none, warn, deny
h Hardlink Protection none, warn, deny
f Fifo Protection none, warn, deny
c Chroot Protection none, warn, deny

3.2 Examples

1. You have loaded the module and want to turn off the restricted proc while setting the symbolic
link protection to warn only mode.

papctl -s r=off s=warn

2. You want to disable the complete module but not unload it.

papctl -s r=off p=off m=on i=off s=none h=none f=none

13

3. You want to enable all features of Papillon and leave the protection configuration untouched.

papctr -s r=on p=on m=on i=on

3.3 Known problems

• Volume management locks papctl
There is a known problem that causes papctl to fail if the volume management has been loaded
after the Papillon module. You can detect this problem if papctl outputs the following error
message:

papctl -s f=none
Error: ##
Configuration blocked. Volmgt running?

You can fix this problem by turning the volume management off, configuring the module, and
then reactivating the volume management.

/etc/init.d/volmgt stop
papctl -s f=none
/etc/init.d/volmgt start

• Volume management locks unloading
If Papillon reports device busy while unloading, there is probably a locking conflict with the vol-
ume management. Turning the volumne management off, unloading the module and reactivating
the volume management should fix this problem.

• No such file or directory message when loading Papillon
The Solaris tool modload that is used to load kernel modules into kernel space outputs the fol-
lowing error message if any error occurs: No such file or directory. This message doesn’t
necessary indicate a missing file, but may also be caused by a missing symbol, a broken binary,
etc.

In order to get more information, it is necessary to log more detailed error messages from modload
using the syslog facility kern.info.

14

4 Papillon’s functionality

This section lists all features and protections that are included in the Papillon module. You should
carefully read this section in order to understand how Papillon works and how it achieves an improvement
in the system security.

4.1 Features

As mentioned in the introduction the so called features of Papillon can be switched on or off either on
compilation or even on runtime. See the sections about compilation and runtime configuration how to
do both.

4.1.1 Restricted Proc

By default users on the Solaris OE are able to monitor all active processes (e.g. ps, top). An attacker
that has local access to the system might gather useful information by watching system daemons and
other users processes. The public information about all running processes also represent a lack of
privacy, if a system hosts several independant users.

If the Restricted Proc feature is active, users are only able to view their own processes (processes that
are running under their user id uid). There is no possibilty for a user to monitor other users processes
since Papillon effects the proc filesystem directly. An attacker which has a local account on the system
gains no further information from running commands such as ps or top. Of cause the super-user is
able to view all processes. A special group of users can be added that are also able to view inside the
restricted proc.

Papillon extends the access() function of the proc vnode operations provided by prvnodeops to
implement the above feature. Unfortunatley the Solaris OE sets the correct permission on the files
inside the proc filesystem but does not implement an access() in the proc kernel module. Papillon
simply adds this missing access() function.

4.1.2 Pseudo Promiscuous Flag

The Solaris OE 8 and previous versions don’t provide a promiscuous mode flag for network cards that
is exported to the user. An administrator is not able to monitor a network device for an attacker that
is sniffing.

Papillon is able to log all attempts to turn a network device into promiscuous mode that are done using
the DPLI Interface. Requests that are performed using a different approach are not detected. Most
sniffers use the DLPI Interface.

Papillon intercepts the putmsg() syscall and filters messages that match a DLPI requests (dl primitive
== DL PROMISCON REQ and dl level == DL PROMISC PHYS). If a message contains the command for
putting a network device into promiscuous mode a warning is send to the syslog. The module is not
able to log when a network interface changes back from promiscuous mode to normal operation mode.

15

4.1.3 Module Hiding

In most cases it is not necessary to hide a security module. But if an administrator wants to monitor an
exisiting attacker, it might be necessary to make the attacker believe that this system is not protected
by any security software.

Papillon is able to remove itself from the list of loaded kernel modules. Papillon denies any access the
module’s files and hides the module’s files from directory listings including the module itself, initscripts
and the papctl control program. The super-user is able to view and access all of these files. The list
of files to be hidden can be extended at compilation time.

Papillon unlinks itself from the list of loaded modules and relinks itself back in if requested. It also
intercepts the vop lookup() function from his module’s file vnode. Access to the file is denied if not
the super-user accesses the file. Papillon also intercepts the vop readdir() function of its parent
directory and removes itself from all directory listings by patching the length of previous dirent64
entry using d len. The entry for Papillon is covered this way.

4.1.4 Secure STDIO File Descriptors

By default Unix uses the file descriptors 0, 1 and 2 for special purposes.

• File descriptor 0 represents the Standard Input Stream STDIN

• File descriptor 1 represents the Standard Output Stream STDOUT

• File descriptor 2 represents the Standard Error Stream STDERR

If an attacker closes one of these file descriptors and executes an insecure program with the suid/sgid bit
(permission mode 4000/2000 or u+s/g+s) set, a file descriptor inside the program might be assigned
to one of the closed standard file descriptors. In this case information written to STDIN, STDOUT or
STDERR might be written to a file. By using this technique an attacker is able to destroy or even modify
system files.

Papillon intercepts the execution of all binaries that have the suid/sgid bit set. If the STDIO File
Descriptors are closed, Papillon fake opens them during the execution of the suid/sgid program. No
suid/sgid program is able to accidently assign a file to the STDIO File Descriptors.

Papillon intercepts the execve() syscall and watches binaries with the suid/sgid bit (Vnode mode
S ISUID or S ISGID) set. If the Standard File Descriptors are closed, they are faked opened using the
kernel allocation routine ualloc(). After executing the original syscall the allocated file descriptors
are set free.

4.2 Protections

Protections restrict access to resources (e.g. opening file) if specific conditions occur (e.g. the file is
located in a directory with the sticky bit set). A protection has a behaviour that can be none (for doing
nothing), warn (for warning only) or deny (for warning and denying access to the resource). You can
customize the default behaviour of your protections at compilation time. You are also able to change
the behaviour on runtime.

16

4.2.1 Symbolic Link Protection

Directories with the sticky bit (permission mode +t or 1000) and write-all (Permission mode a+w or
0222) permissions have a specific behaviour: files created in such a directory can only be removed by
the file owner or the super-user eventhough write permissions are granted to all users, e.g. /tmp. An
attacker can use this feature to drive a symbolic link attack. A symbolic link attack is basicly based on
a symbolic link that has the name of a temporary file and links to a file the attacker wants to modify.

Papillon provides a simple symbolic link protection. If a user wants to follow a symbolic link that is
within a directory with the sticky bit set, access is denied if all of the following conditions are true:

• The parent directory of the symbolic link has the sticky bit set

• The symbolic link is not owned by the user who wants to follow it

• The parent directory of the symbolic link has a different owner than the symbolic link itself

This protection mechanism especially protects the super-user privileges, an attacker is not able to gain
super-user privileges, if the admin executes a binary that creates insecure temporary files.

Papillon watches all calls to the open() and open64() syscalls, if a symbolic link is to be opened that
is placed in a directory with the sticky bit (Vnode mode S ISVTX) set and the above conditions match,
the open fails with permission denied (EPERM).

4.2.2 Hard Link Protection

An attacker can perform most symbolic link attacks by using hard links. If the symbolic links are
protected, it is likely that hard links will be used in exploits. There is also another problem with hard
links in the Solaris OE. Users are able to create hard links, that they cannot delete afterwards, e.g. by
hard linking to /etc/password .

Papillon fixes both problems. If the hard link protection is active users can not create hard links to
files they donnot own. The super-user is able to create hard links to all files.

The link() syscall is intercepted and the above protections are implemented. Papillon returns per-
mission denied (EPERM).

4.2.3 FIFO Protection

A FIFO (e.g. a file created with mkfifo) that is inside a directory with the sticky bit set and write-all
permissions can be opened by an attacker using the open flag O CREAT. In this case all saved content
inside the FIFO will be lost.

Papillon restricts access to FIFOs inside directories with the sticky bit set and write-all permissions.
Open access to FIFOs is denied if all of the following conditions are true:

• The parent directory of the FIFO has the sticky bit set

• The FIFO will be opened with the O CREAT flag

• The FIFO is not owned by the user who wants to open it

17

• The user is not the super-user

• The parent directory of the FIFO has a different owner than FIFO itself

Papillon watches all calls to the open() and open64() syscalls, if a FIFO is to be opened with the
O CREAT flag in a directory with the sticky bit (Vnode mode S ISVTX) set, access is denied if the above
conditions match. In this case Papillon returns permission denied (EPERM).

4.2.4 Chroot Protection

The chroot() syscall is often used to create another security layer between an application and the
operating systems, but it has been initially designed as a safe (not secure) development environment.
An attacker that gained root in a chroot jail will soon focus on breaking out of the jail. Amoung the
rich set of possibities Papillon protects against the most common techniques used.

• An attacker could try to change the chroot root node by calling chroot() inside a chroot
environment.

• He could try to mount a filesystem outside the chroot environment into it.

• He could create block or char nodes that correspond to peripheries outside the chroot jail, e.g.
disks, ttys.

• He could try to load a module into the kernel and manually change the chroot root node.

• He could try to set permissions on executable files inside the chroot environment to suid or sgid.

Papillon prevents these attacks if a process runs in a chroot jail. Therefore the module intercepts the
following syscalls and restricts access to them if the running process has the chroot vnode set (u.u rdir
!= NULL): chroot(), mount(), mknod, xmknod, modctl and chmod. Inside the intercepted syscalls
Papillon checks if one of the conditions mentioned above has occured and if positive forces the syscall
to return permission denied, error number EPERM.

18

5 Closing

5.1 Bug Reports

Papillon has been developed in the free time of the author. It is a non-commercial opensource project.
Papillon tries to offer a maximum of stability, but due to the reasons mentioned above, it can fail to
do so.

Therefore it is essential that users experiencing bugs report them to the author by sending an email to

Konrad Rieck <kr@roqe.org>

Include detailed information when, where and how the bug occured. If necessary add parts of log files
such as syslog. If the system dumped core, don’t send core files. Instead move to the crash directory
/var/crash/<hostname>/ and execute:

echo \$c | mdb unix.0 vmcore.0

You should retrieve a backtrace of the kernel thread that paniced. Include this trace in the email
instead of attaching any core file.

5.2 Thanks

The author would like to thank Job de Haas for his ideas, support and the fun during their presentation
at HAL2001.

Thanks to Fabian Kroenner for hours of constructive discussions regardings Papillon and its future,
there would have been no release without his support.

Thanks also go to Heiko Krupp who contributed the initial implementation of the chroot protection
and is supporting the project with his own code and ideas.

Konrad Kretschmer was so gentle to read through the complete documentation eleminating at least
the obvious misspellings and Markus C. Gottwald and Manuel Beetz who contributed parts of the
documentation system.

The author also would like to thank Philipp Stucke and Skyper who provided some of the test envi-
ronment.

Thanks to following persons who contributed beta test reports and/or feedback (in order of appearance):
Sergei Rousakov, Michael Parkin, Adam Mazza, Adam Morley, Juri Haberland, Erik Parker and Eric
Thern.

19

References

[SOE] Solaris Operating Environment

The official Solaris Operating Environment site including several downloads information and
patches at the Sun Microsystems, Inc. website.

http://www.sun.com/software/solaris

[SFW] SunFreeware

Large collection of precompiled packages from the open source community including the GNU
Compiler Collection, GNU make and other usefull development utilities.

http://www.sunfreeware.com

[SCD] Solaris Software Companion CD

A compilation of opensource utilities released by Sun Microsystems, Inc. and shipped with some
Solaris versions including the GNU Compiler Collection, GNU make, GNU emacs and a lot of
other interesting packages.

http://www.sun.com/software/solaris/freeware

[FC] Forte C

Forte C has replaced the Sun Workshop and includes the Sun C Compiler necessary to compile
64 bit kernel modules. An evaluation version is available at the link below.

http://www.sun.com/forte/c

[OW] Openwall Linux Kernel Patch

Site of the Linux kernel patch Papillon has been inspired by. Most of the features relevant to
Solaris OE have been adopted from this patch written by Solar Designer.

http://www.openwall.org/linux

[HAP] HAP Linux Kernel Patch

A Linux kernel patch that is installed upon the Openwall Linux patch. It adds even more security
features to the Linux kernel and also influenced Papillon’s features and protections especially the
chroot() protection.

http://www.doutlets.com/downloadables/hap.phtml

[RQ] The Roqefellaz

A small website that has been initiated by the author and some of his friends to publish opensource
projects they develop in their free time.

http://www.roqe.org

[PAP] Papillon - Solaris Security Module

The official website of the Papillon module. Updates and future versions can be obtained from
this place.

http://www.roqe.org/papillon

[WDD] Writing Device Drivers

This book published by Sun was a guide when developing Papillon. It focuses on device drivers
but also contains information concerning other types of kernel modules.

http://docs.sun.com

20

http://www.sun.com/software/solaris
http://www.sunfreeware.com
http://www.sun.com/software/solaris/freeware
http://www.sun.com/forte/c
http://www.openwall.org/linux
http://www.doutlets.com/downloadables/hap.phtml
http://www.roqe.org
http://www.roqe.org/papillon
http://docs.sun.com

[SI] Solaris Internals

This excellent book by Jim Mauro and Richard McDougall focuses on the concrete and also on
the theoretical parts of the Solaris kernel implementation.

http://www.solarisinternals.com

21

http://www.solarisinternals.com

	Introduction
	Overview
	What it does
	Release Notes

	Installation and Configuration
	Getting Papillon
	Requirements
	Compilation
	Configuration src/Makefile
	Configuration src/papillon.h
	Configuration src/papillon.c
	Compilation
	Testing the module
	Installation

	Runtime Configuration
	papctl Options
	Examples
	Known problems

	Papillon's functionality
	Features
	Restricted Proc
	Pseudo Promiscuous Flag
	Module Hiding
	Secure STDIO File Descriptors

	Protections
	Symbolic Link Protection
	Hard Link Protection
	FIFO Protection
	Chroot Protection

	Closing
	Bug Reports
	Thanks

	References

