From: Hoff Hoffman [hoffman@xdelta.zko.dec.nospam] Sent: Thursday, July 03, 2003 1:16 PM To: Info-VAX@Mvb.Saic.Com Subject: OpenVMS Frequently Asked Questions (FAQ), Part 7/9 Finding and using Software __________________________________________________________ 13.12 Where can I get Zip, Unzip, self-extracting zip, etc? Many packages are provided in ZIP, GZIP, or BZIP2 format, which requires you to acquire the associated unzip tool to unpack it. You can get ZIP and UNZIP and related and similar tools from the following areas: o http://www.openvms.compaq.com/freeware/freeware50/000tools/ o http://www.openvms.compaq.com/freeware/freeware50/bzip2/ o http://www.openvms.compaq.com/freeware/freeware50/info- zip/ o http://www.openvms.compaq.com/freeware/freeware40/000tools/ o ftp://ftp.process.com/vms-freeware/unzip.alpha_exe o ftp://ftp.process.com/vms-freeware/unzip.vax_exe o http://www.decus.de:8080/www/vms/sw/zip.htmlx o http://www.djesys.com/zip.html o http://www.djesys.com/unzip.html or you can request the FILESERV_TOOLS package from the e-mail server. Beware: The [000TOOLS...] pre-built versions of ZIP on the OpenVMS Freeware V4 (http://www.openvms.compaq.com/freeware/freeware40/) CD-ROM will erroneously return BILF errors on OpenVMS V7.2 and later. Use of the source on the Freeware V4 to rebuild the ZIP image(s), or acquiring a pre-built ZIP image from one of the above areas can avoid this. The pre-built version of ZIP on the Freeware V4 kit is older than the included ZIP sources, and it contains a latent bug.] Directions for creaating and using the sfx self- extracting zip file compression mechanism are available in the unzip kit that is available at: o http://www.openvms.compaq.com/freeware/freeware50/unzip542/ Specifically: o http://www.openvms.compaq.com/freeware/freeware50/UNZIP542/UNZIPSFX.TXT 13-25 Finding and using Software If you want to build the zip images for yourself (eg: for an older OpenVMS version), pull over the entire contents of: o http://www.openvms.compaq.com/freeware/freeware50/unzip542/vms- binaries/ and invoke LINK.COM. HP OpenVMS Engineering uses a tool known as FTSV for creating self-extracting compressed files using the OpenVMS DCX compression tools, as seen with various OpenVMS ECO (patch) kits. sfx provides better compression than does DCX. The FTSV and its related FTSO package have only limited availability outside HP, and are not standard products. __________________________________________________________ 13.13 Are VAX Hardware Emulators Available? Software-based emulators of the VAX architecture and for specific VAX hardware platforms are available from various sources: o SRI CHARON-VAX http://www.softresint.com/ o Tim Stark's TS10 http://sourceforge.net/projects/ts10/ o Bob Supnik's Trailing Edge http://simh.trailing-edge.com/ VAX emulators that operate on PC systems and/or on OpenVMS Alpha systems are available. For information on an alternative to using a VAX emulator- on the available DECmigrate VAX executable image translator- please see Section 13.11. 13-26 _______________________________________________________ 14 Hardware Information __________________________________________________________ 14.1 What are the OpenVMS differences among VAX, Alpha, and IA-64? In terms of software, very few. As of OpenVMS V6.1, the VAX and Alpha platforms are very close to "feature parity". OpenVMS on IA-64 is expected to have "feature parity" with OpenVMS Alpha, and is based on the same source pool. Most applications can just be recompiled and run. Some differences to be aware of: o The default double-precision floating type on OpenVMS Alpha is VAX G_float, whereas on VAX it is usually D_float. D_float is available on Alpha, but D_float values are converted to G_float for computations and then converted back to D_float when stored. Because the G_float type has three fewer fraction bits than D_float, some applications may get different results. IEEE float types are also available on OpenVMS Alpha. o The preferred floating point format on Alpha and IA-64 is IEEE. o Data alignment is extremely important for best performance on Alpha. This means that data items should be allocated at addresses which are exact multiples of their sizes. Quadword alignment will offer the best performance, especially for character values and those smaller than 32 bits. Compilers will naturally align variables where they can and will issue warnings if they detect unaligned data items. o HP C is the only C compiler HP offers on OpenVMS Alpha, and is a direct descendant of Compaq C and DEC C on OpenVMS Alpha. HP C is compatible with DEC C on OpenVMS VAX, but is somewhat different from the older VAX C compiler most people are familiar 14-1 Hardware Information with. Read up on the /EXTERN_MODEL and /STANDARD qualifiers to avoid the most common problems. In additon to HP C, there are open-source ports such as Gnu C available for OpenVMS. o The page size on Alpha and IA-64 systems is variable, but is at least 8 kilobytes. This can have some effect on applications which use the $CRMPSC system service as well as on the display of available memory pages. The page size is available from $GETSYI(SYI$_PAGE_SIZE). There are also a number of manuals which discuss migration to OpenVMS Alpha available on the documentation CD-ROM media, both in the main documentation and in the archived documentation section. On more recent OpenVMS Alpha versions, OpenVMS Alpha has begun to add features and support not available on OpenVMS VAX. Salient new areas include the following: o 64-bit addressing in OpenVMS Alpha V7.0 and later o Multi-host SCSI support (SCSI TCQ) in V6.2 and later o PCI support (platform-dependent) o OpenVMS Galaxy support in V7.2 and later __________________________________________________________ 14.2 Seeking performance information for Alpha (and VAX) systems? HP makes a wide range of performance documents available through its FTP and WWW Internet servers (see Section 3.2). The following contain information on current Alpha and VAX products: o http://www.compaq.com/alphaserver/servers.html o http://www.compaq.com/alphaserver/vax/index.html The following sites contain information on various retired VAX and Alpha products: o http://www.compaq.com/alphaserver/archive/index.html 14-2 Hardware Information o http://www.compaq.com/alphaserver/performance/perf_ tps.html Also see CPU2000: o http://www.spec.org/osg/cpu2000/ o http://www.spec.org/osg/cpu2000/results/cpu2000.html __________________________________________________________ 14.3 Console Commands, Serial Lines, and Controls? This section contains information on VAX and Alpha consoles, and details related to console commands, serial lines, and configuration settings. _____________________________ 14.3.1 What commands are available in the Alpha SRM console? In addition to the normal BOOT commands and such (see Section 14.3.5.1 for some details) and the normal contents of the console HELP text, operations such as I/O redirection and floppy disk access are possible at the SRM console prompt: 1 Format a FAT floppy, and insert it into the AlphaStation floppy drive. 2 Perform the following at AlphaStation SRM Console : >>> show * > env.dat >>> show conf > conf.dat >>> cat env.dat > fat:env.dat/dva0 >>> cat conf.dat > fat:conf.dat/dva0 3 You may use the SRM "ls" command to display the contents of the floppy. >>> ls fat:env.dat/dva0 >>> ls fat:conf.dat/dva0 4 You can now transfer the FAT-format floppy to another system. 14-3 Hardware Information _____________________________ 14.3.2 What does SRM mean? What is PALcode? The abbreviation SRM is derived from the Alpha System Reference Manual, the specification of the Alpha architecture and the associated firmware. PALcode is a name assigned to a particular set of functions provided by the SRM firmware. PALcode is used to provide low-level functions required by higher-level operating system or application software, functions which may not be directly available in Alpha hardware. PALcode is implemented using available Alpha instructions and using the Alpha processor, though PALcode operates in a mode which simplifies programming. PALcode is also permitted access to processor-specific and otherwise internal features of a particular Alpha microprocessor implementation; microprocessor-specific features which are not easily accessable to operating system or application code. _____________________________ 14.3.3 Alpha COM ports and VAX console serial line information? This section contains information on the Alpha COM communication ports, and related settings, as well as on the VAX console bulkhead and VAX console serial line connection. _____________________________ 14.3.3.1 Which terminal device name is assigned to the COM ports? COM2 is normally TTA0:. COM1 is normally TTB0: if the Alpha workstation is booted with the SRM console environment variable set to graphics, and is OPA0: if the console is set to serial. _____________________________ 14.3.3.2 Which serial port is the console on the MicroVAX 3100? Just to keep life interesting, the MicroVAX 3100 has some "interesting" console ports behaviours based on the setting of the BREAK enable switch. When the console is not enabled to respond to BREAK, MMJ-1 is the console port. MMJ-3 will (confusingly) output 14-4 Hardware Information the results of the selftest in parallel with MMJ-1. When the console is enabled to respond to BREAK, MMJ-3 becomes the console port, and MMJ-1 will (confusingly) output the results of selftest in parallel with MMJ-3. _____________________________ 14.3.3.3 How can I set up an alternate console on a VAXstation? Most VAXstation systems have a switch-often labeled S3-that enables one of the serial lines as the system console. Various members of the DEC 3000 series Alpha systems also have a similarly-labled S3 switch for selection of the alternate console. Also see Section 14.3.6, Section 11.11, and Section 14.19. _____________________________ 14.3.3.4 Please explain the back panel of the MicroVAX II The MicroVAX-series console bulkhead was used with the KA630, KA650, KA655 processors. There are three controls on the console bulkhead of these systems: Triangle-in-circle-paddle: halt enable. dot-in-circle: halt () is enabled, and auto-boot is disabled. dot-not-in-circle: halt () is disabled, and auto-boot is enabled. Three-position-rotary: power-up bootstrap behaviour arrow: normal operation. face: language inquiry mode. t-in-circle: infinite self-test loop. Eight-position-rotary: console baud rate selection select the required baud rate; read at power-up. There are several different bulkheads involved, including one for the BA23 and BA123 enclosures, and one for the S-box (BA2xx) series enclosure. The console bulkheads typically used either the MMJ serial line connection, or the MicroVAX DB9 (not 14-5 Hardware Information the PC DB9 pinout), please see the descriptions of these in section WIRES1. For available adapters, see Section 14.29. Also present on the console bulkhead is a self-test indicator: a single-digit LED display. This matches the final part of the countdown displayed on the console or workstation, and can be used by a service organization to determine the nature of a processor problem. The particular countdown sequence varies by processor type, consult the hardware or owner's manual for the processor, or contact the local hardware service organization for information the self-test sequence for a particular processor module. Note that self-tests 2, 1 and 0 are associated with the transfer of control from the console program to the (booting) operating system. _____________________________ 14.3.4 What are Alpha console environment variables? Alpha systems have a variety of variables with values set up within the SRM system console. These environment variables control the particular behaviour of the console program and the system hardware, the particular console interface presented to the operating system, various default values for the operating system bootstrap, and related control mechanisms-in other words, "the environment variables provide an easily extensible mechanism for managing complex console state." The specific environment variables differ by platform and by firmware version-the baseline set is established by the Alpha Architecture: AUTO_ACTION ("BOOT", "HALT", "RESTART", any other value assumed to be HALT), BOOT_DEV, BOOTDEF_DEV, BOOTED_DEV, BOOT_FILE, BOOTED_FILE, BOOT_OSFLAGS, BOOTED_OSFLAGS, BOOT_RESET ("ON", "OFF"), DUMP_DEV, ENABLE_AUDIT ("ON", "OFF"), LICENSE, CHAR_SET, LANGUAGE, TTY_DEV. 14-6 Hardware Information OpenVMS Galaxy firmware can add console environment variables beginning with such strings as LP_* and HP_*, and each particular console implementation can (and often does) have various sorts of platform-specific extensions beyond these variables... The contents of a core set of environment variables are accessible from OpenVMS using the f$getenv lexical and the sys$getenv system service. (These calls are first documented in V7.2, but have been around for quite a while.) Access to arbitary console environment variables is rather more involved, and not directly available. _____________________________ 14.3.5 What are the boot control flag values? Both VAX and Alpha primary bootstraps support flag values; a mechanism which permits the system manager to perform specific customizations or site-specific debugging of the OpenVMS system bootstrap. While very similar, there are differences between VAX and Alpha systems in this area. _____________________________ 14.3.5.1 What are the Alpha APB boot flag values? The following flags are passed (via register R5) to the OpenVMS Alpha primary bootstrap image APB.EXE. These flags control the particular behaviour of the bootstrap: BOOT -FL root,flags bit description --- ---------------------------------------------- 14-7 Hardware Information 0 CONV Conversational bootstrap 1 DEBUG Load SYSTEM_DEBUG.EXE (XDELTA) 2 INIBPT Stop at initial system breakpoints if bit 1 set (EXEC_INIT) 3 DIAG Diagnostic bootstrap (loads diagboot.exe) 4 BOOBPT Stop at bootstrap breakpoints (APB and Sysboot) 5 NOHEADER Secondary bootstrap does not have an image header 6 NOTEST Inhibit memory test 7 SOLICIT Prompt for secondary bootstrap file 8 HALT Halt before transfer to secondary bootstrap 9 SHADOW Boot from shadow set 10 ISL LAD/LAST bootstrap 11 PALCHECK Disable PAL rev check halt 12 DEBUG_BOOT Transfer to intermediate primary bootstrap 13 CRDFAIL Mark CRD pages bad 14 ALIGN_FAULTS Report unaligned data traps in bootstrap 15 REM_DEBUG Allow remote high-level language debugger 16 DBG_INIT Enable verbose boot messages in EXEC_INIT 17 USER_MSGS Enable subset of verbose boot messages (user messages) 18 RSM Boot is controlled by RSM 19 FOREIGN Boot involves a "foreign" disk If you want to set the boot flags "permanently" use the SET BOOT_FLAGS command, e.g. >>> SET BOOT_OSFLAGS 0,1 _____________________________ 14.3.5.2 What are the VAX VMB boot flag values? The following flags are passed (via register R5) to the OpenVMS VAX primary bootstrap image VMB.EXE. These flags control the particular behaviour of the bootstrap: The exact syntax is console-specific, recent VAX consoles tend to use the following: >>> BOOT/R5:flags Bit Meaning --- ------- 14-8 Hardware Information 0 RPB$V_CONV Conversational boot. At various points in the system boot procedure, the bootstrap code solicits parameter and other input from the console terminal. If the DIAG is also on then the diagnostic supervisor should enter "MENU" mode and prompt user for the devices to test. 1 RPB$V_DEBUG Debug. If this flag is set, VMS maps the code for the XDELTA debugger into the system page tables of the running system. 2 RPB$V_INIBPT Initial breakpoint. If RPB$V_DEBUG is set, VMS executes a BPT instruction immediately after enabling mapping. 3 RPB$V_BBLOCK Secondary boot from the boot block. Secondary bootstrap is a single 512-byte block, whose LBN is specified in R4. 4 RPB$V_DIAG Diagnostic boot. Secondary bootstrap is image called [SYSMAINT]DIAGBOOT.EXE. 5 RPB$V_BOOBPT Bootstrap breakpoint. Stops the primary and secondary bootstraps with a breakpoint instruction before testing memory. 6 RPB$V_HEADER Image header. Takes the transfer address of the secondary bootstrap image from that file's image header. If RPB$V_HEADER is not set, transfers control to the first byte of the secondary boot file. 7 RPB$V_NOTEST Memory test inhibit. Sets a bit in the PFN bit map for each page of memory present. Does not test the memory. 8 RPB$V_SOLICT File name. VMB prompts for the name of a secondary bootstrap file. 14-9 Hardware Information 9 RPB$V_HALT Halt before transfer. Executes a HALT instruction before transferring control to the secondary bootstrap. 10 RPB$V_NOPFND No PFN deletion (not implemented; intended to tell VMB not to read a file from the boot device that identifies bad or reserved memory pages, so that VMB does not mark these pages as valid in the PFN bitmap). 11 RPB$V_MPM Specifies that multi-port memory is to be used for the total EXEC memory requirement. No local memory is to be used. This is for tightly-coupled multi-processing. If the DIAG is also on, then the diagnostic supervisor enters "AUTOTEST" mode. 12 RPB$V_USEMPM Specifies that multi-port memory should be used in addition to local memory, as though both were one single pool of pages. 13 RPB$V_MEMTEST Specifies that a more extensive algorithm be used when testing main memory for hardware uncorrectable (RDS) errors. 14 RPB$V_FINDMEM Requests use of MA780 memory if MS780 is insufficient for booting. Used for 11/782 installations. <31:28> RPB$V_TOPSYS Specifies the top level directory number for system disks with multiple systems. 14-10 Hardware Information _____________________________ 14.3.6 How do I boot an AlphaStation without monitor or keyboard? The AlphaStation series will boot without a keyboard attached. To use a serial terminal as the console, issue the SRM console command SET CONSOLE SERIAL followed by the console INIT command. Once this SRM command sequence has been invoked, the Alpha system will use the serial terminal. The DEC 3000 series has a jumper on the motherboard for this purpose. Various older Alpha workstations generally will not (automatically) bootstrap without a keyboard connected, due to the self-test failure that arises when the (missing) keyboard test fails. The usual settings for the console serial terminal (or PC terminal emulator acting as a serial console are: 9600 baud, 8 bits, no parity, one stop bit (9600 baud, 8N1). AlphaServer 4100 and derivative series platforms, and AlphaServer GS80, GS160, and GS320 series system consoles are capable of 57600 baud. See the COM2_BAUD console environment variable, and ensure that you have current SRM firmware version loaded. The AlphaStation and AlphaServer series use the PC DIN serial connector for the "COM1" and "COM2" serial lines, see Section 14.28 for details and pinout. _____________________________ 14.3.7 Downloading and using SRM console Firmware? This section discusses downloading and using Alpha console firmware, sometimes called PALcode. _____________________________ 14.3.7.1 Where can I get updated console firmware for Alpha systems? Firmware updates for HP Alpha systems are available from: o ftp://ftp.digital.com/pub/Digital/Alpha/firmware/index.html o ftp://ftp.digital.com/pub/Digital/Alpha/firmware/ 14-11 Hardware Information o ftp://ftp.digital.com/pub/Digital/Alpha/firmware/readme.html The latest and greatest firmware-if updated firmware has been released after the most recent firmware CD was distributed-is located at: o ftp://ftp.digital.com/pub/Digital/Alpha/firmware/interim/ For information on creating bootable floppies containing the firmware, and for related tools, please see the following areas: o ftp://ftp.digital.com/pub/DEC/Alpha/firmware/utilities/mkboot.txt o ftp://ftp.digital.com/pub/DEC/Alpha/firmware/utilities/mkbootarc.txt o ftp://ftp.digital.com/pub/DEC/Alpha/firmware/utilities/mkntboot.txt The SROM firmware loader expects an ODS-2 formatted floppy, see mkboot. As for which image to use, the ROM image uses a header and the file extension .ROM, and the SROM bootable floppy cannot use the .ROM file. To check the firmware loaded on recent OpenVMS Alpha systems, use the command: $ write sys$output f$getsyi("console_version") $ write sys$output f$getsyi("palcode_version") SDA> CLUE CONFIG Also see Section 14.3.7.2. _____________________________ 14.3.7.2 How do I reload SRM firmware on a half-flash Alpha system? Some of the AlphaStation series systems are "half- flash" boxes, meaning only one set of firmware (SRM or AlphaBIOS) can be loaded in flash at a time. Getting back to the SRM firmware when AlphaBIOS (or ARC) is loaded can be a little interesting... That said, this usually involves shuffling some files, and then getting into the AlphaBIOS firmware update sequence, and then entering "update srm" at the apu-> prompt. 14-12 Hardware Information To shuffle the files, copy the target SRM firmware file (as200_v7_0.exe is current) to a blank, initialized, FAT-format floppy under the filename A:\FWUPDATE.EXE From the AlphaBIOS Setup screen, select the Upgrade AlphaBIOS option. Once the firmware update utility gets going, enter: Apu-> update srm Answer "y" to the "Are you ready...?" Apu-> quit You've reloaded the flash. Now power-cycle the box to finish the process. Also see Section 14.3.7.1. _____________________________ 14.3.7.3 How do I switch between AlphaBIOS/ARC and SRM consoles? The specific steps required vary by system. You must first ensure that the particular Alpha system is supported by OpenVMS (see the SPD), that all core I/O components (graphics, disk controllers, etc) in the system are supported by OpenVMS (see the SPD), and that you have an OpenVMS distribution, that you have the necessary license keys (PAKs), and that you have the necessary SRM firmware loaded. A typical sequence used for switching over from the AlphaBIOS graphics console to the SRM console follows: 1 Press to get to the AlphaBIOS setup menu. 2 Pick the "CMOS Setup..." item. 3 Press to get to the "Advanced CMOS Setup" menu. 4 Change the "Console Selection" to "OpenVMS Console (SRM)". 5 Press , , then to save your changes. 6 Power-cycle the system. 14-13 Hardware Information Most Alpha systems support loading both the AlphaBIOS/ARC console and the SRM console at the same time, but systems such as the AlphaStation 255 are "half-flash" systems and do not support the presence of both the AlphaBIOS/ARC and SRM console firmware at the same time. If you have a "half-flash" system, you must load the SRM firmware from floppy, from a network download, or from a firmware CD-ROM. Following the normal AlphaBIOS or ARC firmware update sequence to the APU prompt, and then explictly select the target console. In other words, power up the system to the AlphaBIOS or ARC console, use the supplementary options to select the installation of new firmware (typically from CD-ROM), and then rather than using a sequence which updates the current firmware: Apu-> update -or- Apu-> update ARC Apu-> verify Apu-> quit Power-cycle the system Use the following sequence to specifically update (and load) SRM from AlphaBIOS/ARC on a "half-flash" system: Apu-> update SRM Apu-> verify Apu-> quit Power-cycle the system Use the following sequence to specifically update (and load) the AlphaBIOS/ARC console from SRM on a "half- flash" system: >>> b -fl 0,A0 ddcu BOOTFILE: firmware_boot_file.exe Apu-> update ARC Apu-> verify Apu-> quit Power-cycle the system 14-14 Hardware Information Once you have the SRM loaded, you can directly install OpenVMS or Tru64 UNIX on the system. Do not allow Windows NT to write a "harmless" signature to any disk used by OpenVMS, Tru64 UNIX, or Linux, as this will clobber a key part of the disk. (On OpenVMS, you can generally recover from this "harmless" action by using the WRITEBOOT tool.) If you have a "full-flash" system and want to select the SRM console from the AlphaBIOS or ARC console environment, select the "Switch to OpenVMS or Tru64 UNIX console" item from the "set up the system" submenu. Then power-cycle the system. If you have a "full-flash" system with the SRM console and want to select AlphaBIOS/ARC, use the command: >>> set os_type NT and power-cycle the system. For information on acquiring firmware, see Section 14.3.7.1. For information on OpenVMS license PAKs (for hobbyist use) see Section 2.7.3. For information on the Multia, see Section 14.4.1. Information on enabling and using the failsafe firmware loader for various systems-this tool is available only on some of the various Alpha platforms-is available in the hardware documentation for the system. This tool is used/needed when the firmware has been corrupted, and cannot load new firmware. The full list of AlphaBIOS key sequences-these sequences are needed when using an LK-series keyboard with AlphaBIOS, as AlphaBIOS expects a PC-style keyboard: 14-15 Hardware Information F1 Ctrl/A F2 Ctrl/B F3 Ctrl/C F4 Ctrl/D F5 Ctrl/E F6 Ctrl/F F7 Ctrl/P F8 Ctrl/R F9 Ctrl/T F10 Ctrl/U Insert Ctrl/V Delete Ctrl/W Backspace Ctrl/H Escape Ctrl/[ Return Ctrl/M LineFeed Ctrl/J (Plus) + upselect (some systems) (Minus) - downselect (some systems) TAB down arrow SHIFT+TAB up arrow __________________________________________________________ 14.4 What platforms will OpenVMS operate on? For the list of boxes that are officially and formally supported by OpenVMS Engineering, please see the OpenVMS Software Product Description (SPD). o http://www.compaq.com/info/spd/ OpenVMS typically uses SPD 25.01.xx and/or SPD 41.87.xx. _____________________________ 14.4.1 on the Alpha Multia? Yes, there are a set of unsupported images that permit specific OpenVMS Alpha versions to bootstrap on the Multia UDB system. These images and the associated instructions are available at the OpenVMS Freeware website: o http://www.openvms.compaq.com/freeware/freeware50/multia/ Instructions are included IN the kits. READ THE INSTRUCTIONS. PLEASE! 14-16 Hardware Information Some of the restrictions involved when running OpenVMS on the Multia system include (but may well not be limited to) the following: o The PCMCIA support was completely removed, because the Intel chip on the Multia was not compatable with the Cirrus chip on the Alphabook. This means, of course, that you will not see and cannot use any PCMCIA cards on a Multia. The Multia uses shared interrupts, and as a result, a special ZLXp-E series graphics device driver-one that does not use interrupts-is needed. This driver is provided in the kit. o The serial lines don't work. o If you have a Multia with a PCI slot, you can't use any PCI card that requires interrupts. o The SRM console on this system is very old and very fragile. (This SRM console was designed only and strictly for diagnostic use, and was not particularly tested or used with OpenVMS.) o If things don't work for you, don't expect to see any OpenVMS updates, nor SRM console updates, nor any support. o Do not expect to see any new versions of OpenVMS on the Multia nor on any other unsupported systems. If such new versions do appear and do work, please consider it as a pleasant surprise. The Multia images are not included on the OpenVMS Freeware V4.0 CD-ROM kit, the kit that was distributed with OpenVMS V7.2. (These images became available after Freeware V4.0 shipped.) Other sources of information for OpenVMS on Multia include: o http://www.djesys.com/vms/hobbyist/multia.html o http://www.djesys.com/vms/hobbyist/mltianot.html o http://www.djesys.com/vms/hobbyist/support.html o http://www.netbsd.org/Ports/alpha/multiafaq.html 14-17 Hardware Information o http://www.brouhaha.com/~eric/computers/udb.html _____________________________ 14.4.2 on AlphaPC 164LX? AlphaPC 164SX? OpenVMS Alpha is not supported on the AlphaPC 164LX and 164SX series, though there are folks that have gotten certain of the LX series to load SRM and bootstrap OpenVMS. (The Aspen Durango II variant, specifically.) One problem has been generally reported: ATA (IDE) bootstraps will fail; SCSI storage and a SCSI CD-ROM device is required. Also see Section 14.4.2.1. _____________________________ 14.4.2.1 on the NoName AXPpci33 system? Information on bootstrapping OpenVMS (using the Multia files described in Section 14.4.1) on the (unsupported) NoName AXPpci33 module is available at: o http://www.jyu.fi/~kujala/vms-in-axppci33.txt Tips for using the Multia files with the AXPpci33: o You have to use the Multia kit and follow the directions in ALPHA8, but do *not* load the Multia SRM firmware into the AXPpci33. Rather, download and use the latest firmware for the AXPpci33 from the HP Alpha firmware website instead. o 64 MB memory is generally necessary. o you cannot use any PCI cards, and if you plan on networking, you need to find an ISA Ethernet card supported by OpenVMS. o When the AXPpci33 board bootstraps, it will dump some stuff like a crash dump, but it will continue and-so far-this hasn't caused any particular hassles. o The system shutdown and reboot procedures do not work properly. 14-18 Hardware Information o The serial console is reported to not work, though the serial ports apparently do work. The status of the parallel port is unknown. o Rumour has it that you have one of the AXPpci33 motherboards with the PS/2 mouse and keyboard connectors and a VGA card (one that will work under DECwindows) and you can run DECwindows on the system. _____________________________ 14.4.3 on the Alpha XL series? No. OpenVMS does not support the Alpha XL series. OpenVMS can not, will not, and does not bootstrap on the Alpha XL series. The Alpha XL series was targeted for use (only) with the Microsoft Windows NT operating system. If you are very lucky, sometimes a particular unsupported Alpha box or motherboard will resemble a supported box sufficiently closely and can thus mimic that system and bootstrap. (No such family resemblances exist for the XL.) If you are exceedingly lucky, somebody here in OpenVMS Engineering will have put together a bootstrap kit-such as that for the Multia. (No Miata-like OpenVMS bootstrap kit exists for the XL.) _____________________________ 14.4.4 OpenVMS on the Personal Workstation -a and -au series? Though OpenVMS is not supported on the Personal Workstation -a series platforms, OpenVMS might or might not bootstrap on the platform. If you wish to attempt this, you must ensure that all graphics and all I/O controllers in the system are supported by OpenVMS. You must also ensure that you have the most current firmware loaded. 14-19 Hardware Information _____________________________ 14.4.4.1 OpenVMS on the Whitebox Windows-Only series Alpha? Though OpenVMS is not supported on the "Whitebox" series of Alpha platforms, OpenVMS might or might not bootstrap on the platform. These systems were specifically configured, targeted and supported only for use with the Microsoft Windows NT operating system. On some of the "Whitebox" systems, the following sequence of console commands can potentially be used to convert the system over to unsupported use by and for OpenVMS Hobbyist users. (But please note that if you wish to attempt this, you must ensure that all graphics and all I/O controllers in the system are supported by OpenVMS, and you must ensure that you have the most current SRM firmware loaded. (For information on locating and downloading the most current Alpha SRM firmware, please see Section 14.3.7.1.) And you must realize that the resulting Whitebox configuration will be entirely unsupported and may or may not be stable and useful.) set os_type vms cat nvram ! too see what is in this, if anything edit nvram 10 set srm_boot on 20 e init If your nvram has other contents, you will need to change the line numbers (10 and 20) to reflect the contents of your configuration. To obtain documentation on the commands of the console editor, enter the ? command within the editor. The above sequence was reportedly tested on the DIGITAL Server 3300 series, a relative of the AlphaServer 800 series. The DIGITAL Server 3300 is not supported by OpenVMS, though the AlphaServer 800 series is a supported platform. The sequence may or may not work on other platforms, and may or may not work on the DIGITAL Server 3300 platform. Also see Section 5.32. 14-20 Hardware Information _____________________________ 14.4.4.2 OpenVMS and Personal Workstation ATA (IDE) bootstrap? OpenVMS will boot and is supported on the Personal Workstation -au series platforms, though OpenVMS will require a SCSI CD-ROM if the Intel Saturn I/O (SIO) IDE chip is present in the configuration- only the Cypress IDE controller chip is supported by OpenVMS for IDE bootstraps. If you have an -au series system, you can determine which IDE chip you have using the SRM console command: SHOW CONFIGURATION If you see "Cypress PCI Peripheral Controller", you can bootstrap OpenVMS from IDE storage. If you see "Intel SIO 82378", you will need to use and bootstrap from SCSI. (A procedure to load DQDRIVER on the Intel SIO- once the system has bootstrapped from a SCSI device-is expected to be included as part of the contents of the DQDRIVER directory on Freeware V5.0 and later.) Many of the -a series systems will include the Intel SIO, and thus cannot bootstrap from IDE. _____________________________ 14.4.5 On the Intel Itanium IA-64 platform? OpenVMS is being ported to the Intel IA-64 architecture; to HP systems based on the Intel Itanium Processor Family. The first release of OpenVMS I64 is V8.0, with the first general release of OpenVMS I64 expected to be V8.2. Some Intel and HP terminology: Itanium Processor Family is the name of the current implementation; of the current Intel microprocessor family implementing the IA-64 architecture. IA-64 is the name of the Intel and HP architecture implementing the VLIW (Very Long Instruction Word) design known as EPIC (Explicitly Parallel Instruction Computing). I64 is the name of a family of HP computer systems using Intel Itanium processors. 14-21 Hardware Information _____________________________ 14.4.5.1 Where can I get Intel Itanium information? Intel Itanium Processor Family and IA-64 Architecture, Hardware, Software, and related docoumentation materials are available at: o ftp://download.intel.com/design/IA-64/manuals/ o ftp://download.intel.com/design/IA-64/Downloads/ o ftp://download.intel.com/design/IA- 64/Downloads/archSysSoftware.pdf o ftp://download.intel.com/design/IA- 64/Downloads/24870101.pdf The Intel Extensible Firmware Interface (EFI) console documentation: http://www.pentium.de/technology/efi/index.htm __________________________________________________________ 14.5 What is the least expensive system that will run OpenVMS? The cheapest systems that are or have been recently offered by HP that will run OpenVMS Alpha are the AlphaServer DS10 server, the AlphaStation XP900 workstation, the AlphaStation VS10 workstation, and the AlphaStation XP1000 workstation. Other companies sell Alpha-powered systems and Alpha motherboards, some of which will run (and can be purchased with) OpenVMS- see the OpenVMS Software Product Description (SPD) for details on the supported systems and configurations. There are also many used AlphaStation, AlphaServer, and DEC 3000 models available which are quite suitable. For more experienced OpenVMS system managers, the (unsupported) Multia can bootstrap OpenVMS-see Section 14.4.1 for details. Depending on the OpenVMS version and configuration, the OpenVMS Software Product Description (SPD) is available at: o http://www.openvms.compaq.com:8000/ o http://www.openvms.compaq.com/doc/ 14-22 Hardware Information o http://www.openvms.compaq.com/commercial/ When purchasing a system, ensure that the system itself is supported, that the system disk drive is supported or closely compatible, that the CD-ROM drive is supported or is closely compatable and that (in the case of SCSI devices) it also specifically supports 512 byte block transfers; no equivalent requirement exists for IDE devices. Also particularly ensure that the video controller is supported. Use of supported HP hardware will generally reduce the level of integration effort involved. A CD-ROM, CD-R or DVD drive is required for OpenVMS Alpha installations. CD-ROM drive compatibility information is available at: o http://sites.inka.de/pcde/dec-cdrom-list.txt __________________________________________________________ 14.6 Where can I get more information on Alpha systems? HP operates an AlphaServer information center at: o http://www.compaq.com/alphaserver/ Alpha Technical information and documentation is available at: o ftp://ftp.compaq.com/pub/products/alphaCPUdocs/ o http://www.support.compaq.com/alpha- tools/documentation/current/chip-docs.html o ftp://ftp.digital.com/pub/DEC/Alpha/systems/ o http://ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc- library.html o Alpha Systems Update: http://www.compaq.com/alphaserver/fb_acu.html Software Product Description (SPD) information, including platform support documentation: o http://www.compaq.com/info/spd/ OpenVMS typically uses SPD 25.01.xx and/or SPD 41.87.xx. 14-23 Hardware Information Information on Multia hardware is available at: o http://www.netbsd.org/Ports/alpha/multiafaq.html Information on current and future Alpha microprocessor designs is also available from AlphaPowered at: o http://www.alphapowered.com/alpha_tomorrow.html o http://www.alphapowered.com/timeline.html o http://www.alphapowered.com/ev7-and-ev8.html The NetBSD folks maintain useful Alpha hardware information at: o http://www.netbsd.org/Ports/alpha/models.html __________________________________________________________ 14.7 Describe Alpha instruction emulation and instruction subsets? The Alpha architecture is upward- and downward- compatible, and newer instructions are emulated on older platforms, for those cases where the compiler is explicitly requested to generate the newer Alpha instructions. In particular, OpenVMS Alpha V7.1 and later include the instruction emulation capabilities necessary for the execution of newer Alpha instructions on older Alpha microprocessors. (Instruction emulation capabilities are available for user-mode application code, and are not available to device drivers or other similar kernel-mode code.) Alpha instructions are available in groups (or subsets). Obviously, there is the base instruction set that is available on all Alpha microprocessors. Then, the following are the current instruction extension groups (or subsets) that are available on some of various recent Alpha microprocessors: o byte/word extension (BWX): LDBU, LDWU, SEXTB, SEXTW, STB, and STW. o floating-point and square root extension (FIX): FTOIS, FTOIT, ITOFF, ITOFS, ITOFT, SQRTF, SQRTG, SQRTS, and SQRTT. 14-24 Hardware Information o count extension (CIX): CTLZ, CTPOP, and CTTZ. o multi-media extension (MVI): MAXSB8, MAXSW4, MAXUB8, MAXUW4, MINSB8, MINSW4, MINUB8, MINUW4, PERR, PKLB, PKWB, UNPKBL, and UNPKBW. The typical instruction subset that provides the biggest win-and of course, your mileage may vary-is typically the instruction set that is provided by the EV56 and later; specifically, the byte-word instruction subset. To select this subset, use the following: /ARCHITECTURE=EV56/OPTIMIZE=TUNE=GENERIC The /ARCHITECTURE controls the maximum instruction subset that the compiler will generally use, while the /OPTIMIZE=TUNE controls both the instruction-level scheduling and also the instructions generated inside loops-any code resulting from /OPTIMIZE=TUNE that is specific to an instruction subset will be generated only inside loops and will also be "protected" by an AMASK-based test that permits the execution of the proper code for the particular current Alpha microprocessor. Typically /OPTIMIZE=TUNE=GENERIC is the appropriate choice for tuning, and the /ARCHITECTURE selects the minimum target architecture for general use throughout the generated code. generated for later architectures and instruction subsets will run on older Alpha systems due to the emulation, but if /ARCHITECTURE is a significant benefit, then the emulation might be a performance penalty. Please see the OpenVMS Ask The Wizard area for the source code of a (non-privileged) tool that looks at the instruction subsets available on the particular Alpha microprocessor that the tool is run on. This tool demonstrates the use of the Alpha AMASK and IMPLVER instructions. 14-25 Hardware Information Please see Section 10.24 and Section 14.10 for additional details and related considerations. __________________________________________________________ 14.8 What is the Accuracy of the Alpha Time of Year (BB_WATCH) Clock? The specification for maximum clock drift in the Alpha hardware clock is 50 parts per million (ppm), that is less than ±0.000050 seconds of drift per second, less than ±0.000050 days of drift per day, or less than ±0.000050 years of drift per year, etc. (eg: An error of one second over a day-long interval is roughly 11ppm, or 1000000/(24*60*60).) Put another way, this is .005%, which is around 130 seconds per month or 26 minutes per year. The software-maintained system time can drift more than this, primarily due to other system activity. Typical causes of drift include extensive high-IPL code (soft memory errors, heavy activity at device IPLs, etc) that are causing the processing of the clock interrupts to be blocked. Also see Section 14.15, Section 4.3. __________________________________________________________ 14.9 So how do I open up the DEC 3000 chassis? After removing those two little screws, tilt the back end of the top shell upwards-then you can remove the lid. __________________________________________________________ 14.10 What is byte swizzling? "Swizzling" is the term used to describe the operation needed to do partial longword (i.e. byte or word) accesses to I/O space on those systems that don't support it directly. It involved shifting the offset into an address space by 5 (or 7 for one older system), and ORing this into the base address. It then required the size of the operation to be ORed into the low order bits. 14-26 Hardware Information That is, because the EV4 and EV5 CPUs did not bring bits 0 and 1 off the chip, to do programmed I/O for bytes/words, the information on the size/offset of the transfer was encoded into the address data. The data itself then had to be shifted into the correct "byte lane" (i.e. its actual position within a longword). The EV56 CPU supports the byte/word instructions however only some EV56 systems support byte/word accesses to I/O space. Even on an EV56 system that supports byte/word accesses to I/O space, the relevant OpenVMS routines do not support byte/word access to I/O space. EV6 systems (with the exception of the AlphaServer GS60 and AlphaServer GS140 series, for reasons of platform compatability) support a flat, byte addressable I/O space. If a device driver uses CRAM or IOC$WRITE_IO/IOC$READ_ IO, then OpenVMS will do the right thing without changing the driver - OpenVMS will swizzle and unswizzle as needed. To use byte/word operations on MEMORY, you need to tell the compiler to use the EV56 or EV6 architecture (/ARCHITECTURE=EV56). Memory operations did not swizzle, but the compiler would do long/quad access, and extract/insert bytes as needed. Using /ARCHITECTURE=EV56 allows smaller, more efficient byte/word access logic to memory. If the application is directly doing I/O space access across a range of Alpha systems (like the graphics servers), then the driver will need to know how to do swizzling for old platforms, and byte access for new platforms. Please see Section 10.24 and Section 14.7 for additional details and related considerations. 14-27 Hardware Information __________________________________________________________ 14.11 What is the layout of the VAX floating point format? The VAX floating point format is derived from one of the PDP-11 FP formats, which helps explain its strange layout. There are four formats defined: F 32- bit single-precision, D and G 64-bit double-precision and H 128-bit quadruple precision. For all formats, the lowest addressed 16-bit "word" contains the sign and exponent (and for other than H, some of the most significant fraction bits). Each successive higher- addressed word contains the next 16 lesser-significant fraction bits. Bit 15 of the first word is the sign, 1 for negative, 0 for positive. Zero is represented by a biased exponent value of zero and a sign of zero; the fraction bits are ignored (but on Alpha, non- zero fraction bits in a zero value cause an error.) A value with biased exponent zero and sign bit 1 is a "reserved operand" - touching it causes an error - fraction bits are ignored. There are no minus zero, infinity, denormalized or NaN values. For all formats, the fraction is normalized and the radix point assumed to be to the left of the MSB, hence the following range: 0.5 less than or equal to f and less than 1.0. The MSB, always being 1, is not stored. The binary exponent is stored with a bias varying with type in bits 14:n of the lowest-addressed word. FP Exponent Exponent Mantissa (Fraction) bits, Type Bits Bias including hidden bit ========================================================== F 8 128 24 D 8 128 56 G 11 1024 53 H 15 16384 113 The layout for D is identical to that for F except for 32 additional fraction bits. Example: +1.5 in F float is hex 000040C0 (fraction of .11[base 2], biased exponent of 129) 14-28 Hardware Information __________________________________________________________ 14.12 Where can I find more info about VAX systems? o HP runs a VAX "InfoCenter" at: http://www.compaq.com/alphaserver/vax/ o Jim Agnew maintains a MicroVAX/VAXstation FAQ at: http://anacin.nsc.vcu.edu/~jim/mvax/mvax_faq.html o The VAXstation 3100 Owner's Guide: http://www.whiteice.com/~williamwebb/intro/DOC- i.html o A field guide to PDP-11 (and VAX) Q-bus and UNIBUS modules can be found at: http://metalab.unc.edu//pub/academic/computer- science/history/pdp-11/hardware/field-guide.txt o Various VAX historical information (also see Section 2.1) can be found at: http://telnet.hu/hamster/vax/e_index.html __________________________________________________________ 14.13 Where can I find information on NetBSD for VAX systems? Gunnar Helliesen maintains a NetBSD VAX FAQ at http://vaxine.bitcon.no/._________________________________ 14.14 What system disk size limit on the MicroVAX and VAXstation 3100? System disks larger than 1.073 gigabytes (GB)-1fffff hexidecimal blocks - are not supported on any member of the VAXstation 3100 series and on certain older members of the MicroVAX 3100 series, and are not reliable on these affected systems. (See below to identify the affected systems-the more recent members of the MicroVAX 3100 series systems are NOT affected.) Various of the SCSI commands used by the boot drivers imbedded in the console PROM on all members of the VAXstation 3100 series use "Group 0" commands, which allow a 21 bit block number field, which allows access to the first 1fffff hexidecimal blocks of a disk. Any disk references past 1fffff will wrap-this wrapping behaviour can be of particular interest when writing a system crashdump file, as this can potentially lead 14-29 Hardware Information to system disk corruptions should any part of the crashdump file be located beyond 1.073 GB. More recent systems and console PROMs use "Group 1" SCSI commands, which allow a 32 bit block number field. There was a similar limitation among the oldest of the MicroVAX 3100 series, but a console boot PROM was phased into production and was made available for field retrofits-this PROM upgrade allows the use of the "Group 1" SCSI commands, and thus larger system disks. There was no similar PROM upgrade for the VAXstation 3100 series. Systems that are affected by this limit: o VAXstation 3100 series, all members. No PROM upgrade is available. o MicroVAX 3100 models 10 and 20. No PROM upgrade is available. o MicroVAX 3100 models 10e and 20e. Only systems with console VMB versions prior to V6.4 are affected. A PROM upgrade for these specific systems is (or was once) available. Also see http://www.whiteice.com/~williamwebb/intro/DOC-i.html Also see Section 9.5. __________________________________________________________ 14.15 What is the Accuracy of VAX the Time of Year (TOY) Clock? The VAX Time-Of-Year (TOY) clock (used to save the time over a reboot or power failure) is specified as having an accuracy of 0.0025%. This is a drift of roughly 65 seconds per month. The VAX Interval Time is used to keep the running time, and this has a specified accuracy of .01%. This is a drift of approximately 8.64 seconds per day. Any high-IPL activity can interfere with the IPL 22 or IPL 24 (this depends on the VAX implementation) clock interrupts-activities such as extensive device driver interrupts or memory errors are known to slow the clock. 14-30 Hardware Information Also see Section 14.8, Section 4.3. __________________________________________________________ 14.16 What are the VAX processor (CPU) codes? CPU: Platform: ----- --------- KA41-A : MicroVAX 3100 Model 10 and 20 KA41-B : VAXserver 3100 Model 10 and 20 KA41-C : InfoServer KA41-D : MicroVAX 3100 Model 10e and 20e KA41-E : VAXserver 3100 Model 10e and 20e KA42-A : VAXstation 3100 Model 30 and 40 KA42-B : VAXstation 3100 Model 38 and 48 KA43-A : VAXstation 3100 Model 76 KA45 : MicroVAX 3100 Model 30 and 40 KA46 : VAXstation 4000 Model 60 KA47 : MicroVAX 3100 Model 80 KA48 : VAXstation 4000 VLC KA49-A : VAXstation 4000 Model 90/90A KA49-B : VAXstation 4000 Model 95 KA49-C : VAXstation 4000 Model 96 KA50 : MicroVAX 3100 Model 90 KA51 : MicroVAX 3100 Model 95 KA52 : VAX 4000 Model 100 KA53 : VAX 4000 Model 105 KA54 : VAX 4000 Model 106 KA55 : MicroVAX 3100 Model 85 KA56 : MicroVAX 3100 Model 96 KA57 : VAX 4000 Model 108 KA58 : MicroVAX 3100 Model 88 KA59 : MicroVAX 3100 Model 98 KA85 : VAX 8500 KA86 : VAX 8600 KA88 : VAX 8800 KA600 : VAX 4000-50 (aka VAXbrick) KA610 : MicroVAX I, VAXstation I (aka KD32) KA620 : rtVAX (VAXeln) KA62A : VAX 6000-200 KA62B : VAX 6000-300 KA630 : MicroVAX II, VAXstation II KA640 : MicroVAX 3300, MicroVAX 3400 KA650 : VAXstation 3200, MicroVAX 3500, MicroVAX 3600, MicroVAX III KA64A : VAX 6000-400 14-31 Hardware Information KA655 : MicroVAX 3800, MicroVAX 3900, MicroVAX III+ KA65A : VAX 6000-500 KA660 : VAX 4000-200, VAX 4 upgrade KA66A : VAX 6000-600 KA670 : VAX 4000-300 KA675 : VAX 4000-400 KA680 : VAX 4000-500 KA681 : VAX 4000-500A KA690 : VAX 4000-600 KA691 : VAX 4000-605A KA692 : VAX 4000-700A KA693 : VAX 4000-605A KA694 : VAX 4000-705A KA730 : VAX-11/730 KA750 : VAX-11/750 KA780 : VAX-11/780, VAX-11/782 KA785 : VAX-11/785 KA7AA : VAX 7000-600 KA7AB : VAX 7000-700 KA7AC : VAX 7000-800 KA800 : VAXrta KA820 : VAX 8200, VAX 8300 KA825 : VAX 8250, VAX 8350 KA865 : VAX 8650 __________________________________________________________ 14.17 Where can I get software and hardware support information? Please contact the HP Customer Support Center. Services and information, manuals, guides, downloads, and various other information is available via the support link at: o http://www.hp.com/products/openvms/ Various hardware and system documentation is available at: o http://www.compaq.com/support/techpubs/user_ reference_guides/ o http://www.adenzel.demon.nl/vaxes/microvax3100/ o http://www.adenzel.demon.nl/vaxes/infoserver150/ 14-32 Hardware Information TSM (Terminal Server Manager), DEChub, DECserver, etc. information: o http://www.compaq.com/support/digital_networks_ archive/ The owner and maintainer of current DECserver and related hardware is DIGITAL Network Products Group (DNPG): o http://www.dnpg.com/ __________________________________________________________ 14.18 Where can I get hardware self-maintenance support assistance? The HP Assisted Services (CAS) program (a direct descendent of the program once known as DECmailer) is available to customers that wish to maintain their own system(s) (self-maintenance), but that wish some level of assistance in acquiring hardware diagnostics and hardware manuals for the system(s), and that wish to have access to spares and module-level repairs for customer-performed hardware module swaps: o http://www.compaq.com/CAS-Catalog/ __________________________________________________________ 14.19 Why does my system halt when I power-cycle the console terminal? Various VAX and Alpha consoles are designed to process the BREAK signal, treating it as a HALT request. A BREAK is a deliberately-generated serial line framing error. When a serial line device such as a terminal powers up (or sometimes when powering down) it can generate framing errors. These framing errors are indistingushable from a BREAK signal. When a BREAK is received on a serial line console for various VAX systems-including most VAXstation, MicroVAX, and VAX 4000 series-it is typically interpreted as a HALT. Alpha systems will also often 14-33 Hardware Information process a BREAK in a similar fashion, halting the system. There is no uniform or generally-available way to disable this behaviour on every VAX or Alpha system. On some systems, BREAK processing can be disabled in favor of [CTRL/P], or [CTRL/P] is the only way to halt the processor. The most common way to avoid these halts is to disable the serial line console or to simply not power-cycle the console terminal. There is certain important system state information that is displayed only on the console, OpenVMS expects to always have access to the system console. Also see Section 5.5. __________________________________________________________ 14.20 Can I reuse old keyboards, mice and monitors with a PC? Older HP keyboards (those with the DIGITAL logo and the RJ modular jacks), older HP mice (those with the DIGITAL logo and with the RJ modular jacks, or with a DIN connector with pins in a configuration other than the PC-standard DIN connector pin orientation), and older video monitors (with RGB synch-on-green video signaling) all use signaling formats and/or communications protocols that differ from the PC standards, and are not (easily) interchangable nor (easily) compatible with typical PC peripheral device controllers. The LK201 and LK401 keyboards, the VSXXX series mice, the VR260 and VR290 monitors, etc., are incompatible with most PC systems and with most KVM switches. Newer HP (and Compaq) keyboards (those with with PC- style DIN plugs, and the HP, Compaq or DIGITAL logo), newer HP mice (with PC-pin DIN plugs, and the HP, Compaq or DIGITAL logo), and newer video monitors (multi-synch) are often interchangeable with "industry standard" PC systems, and can often be used with most PC peripheral device controllers. LK461, LK463, LK46W, LK471, PC7XS-CA, VRC16, VRC21, TFT-series LCD flat-panel displays, etc., are typically reasonably compatible with most PC systems, and will usually 14-34 Hardware Information perform as expected within the limits of the hardware. (For details of CRT and LCD display compatibility, please see Section 14.21.) Rule of thumb: if the peripheral device component was sold for use with the DEC 2000 (DECpc 150 AXP), an AlphaServer series, an AlphaStation series, or a more recent Alpha system, it will probably work with a PC peripheral controller or with a PC-compatible KVM switch. If the peripheral device component was sold for use with an VT420 or older terminal, most VAX, most VAXstation, and most Alpha systems with names in the format DEC [four-digit-number], it probably won't work on a PC system or with a PC-compatible KVM. Note that the above is a general guideline, and should not be read to indicate that any particular peripheral device will or will not work in any particular configuration, save for those specific configurations the device is explicitly supported in. Software Integrators sells a video adapter card called Gemini P1 which will drive many of the older HP (DIGITAL-logo) fixed-frequency monitors on a PC system: o http://www.si87.com/ The DIGITAL part number 29-32540-01 converts the output from the RGB cable (3 BNC, synch-on-green) that comes with the VAXstation 3100 and VAXstation 4000 series to a female SVGA D connector. This adapter will allow PC multisync monitors with the needed frequency specifications to be used with the VAXstation series synch-on-green video connection. It may well also work with a VAXstation 2000 series systems, but specifics and performance of that combination are not immediately known at this writing. The protocol definition for the old DIGITAL keyboard and mouse interfaces is buried at the back of the QDSS section in the old VAXstation II manual, specifically, in the back of the VCB02 Video Subsystem Technical Manual (EK-104AA-TM). The keyboard wiring and protocol 14-35 Hardware Information is in appendix B, and occupies circa 44 pages. The mouse is in appendix C, circa 12 pages. Also see Section 14.21. __________________________________________________________ 14.21 Which video monitor works with which graphics controller? To determine the answer to the "will this video monitor or this LCD panel work with this graphics controller?" question, please first locate the resolution(s) and the frequencies that are possible/supported at both ends of the video cable (on the display and on the graphics controller, in other words), and then determine if there are any matching settings available. If there are multiple matches, you will need to determine which one is most appropriate for your needs. You will also need to determine if the video monitor or graphics controller requires the 3 BNC signaling with the synchronization signals on the green wire, or the 5 BNC signalling common on many PCs, or other connections such as the DB15 video connector or USB connector used on various systems. If there are no matches, you will likely need to change the hardware at one or both ends of the video cable. The refresh frequencies for many devices have been posted to comp.os.vms and/or other newsgroups. Search the archives for details. Also see: o http://www.repairfaq.org/ o http://www.mirage-mmc.com/faq/ o http://www.geocities.com/SiliconValley/Foothills/4467/fixedsync.html o http://saturn.tlug.org/sunstuff/ffmonitor.html o http://hawks.ha.md.us/hardware/monitor.html LCD-based and plasma-based flat-panel displays are generally compatible with all recent OpenVMS Alpha systems and supported graphics controllers. For best results, you should generally set the graphics controller to match the native LCD or plasma display resolution and (for LCD displays) also set the 14-36 Hardware Information controller refresh rate to 60Hz. Check your graphics controller and your display documentation for any device-specific requirements and/or configuration recommendations. Also see Section 14.20. __________________________________________________________ 14.22 Where can I get information on storage hardware? Information on various HP (Compaq, DIGITAL) OpenVMS and other disk storage hardware and controllers, and related technical information on SCSI, device jumpers, etc., is available at: o http://theref.aquascape.com/ __________________________________________________________ 14.23 Why does my LK401 keyboard unexpectedly autorepeat? There are several modes of failure: o Pressing 2 and 3 keys at the same time causes one key to autorepeat when released. Check the hardware revision level printed on the bottom of the keyboard. If the revision level is C01, the keyboard firmware is broken. Call field service to replace the keyboard with any revision level other than C01. o Pressing certain keys is always broken. Typical symptoms are: delete always causes a autorepeat, return needs to be pressed twice, etc. This is frequently caused by having keys depressed while the keyboard is being initialized. Pressing ^F2 several times or unplugging and replugging the keyboard frequently fix this problem. (Ensure you have current ECO kits applied; there is a patch available to fix this problem.) o A key that was working spontaneously stops working correctly. This may be either of the two previous cases, or it may be bad console firmware. Ensure that you have the most recent firmware installed on your Alpha system. In particular, an old version of the DEC 3000 SRM firmware is known to have a bug that can cause this keyboard misbehaviour. 14-37 ---------------------------- #include ----------------------------- For additional, please see the OpenVMS FAQ -- www.hp.com/go/openvms/faq --------------------------- pure personal opinion --------------------------- Hoff (Stephen) Hoffman OpenVMS Engineering hoff[at]hp.com