

RMSconnect/VBRMS(V1.0

 Programmer’s Guide

 March 1995

		This manual describes VBRMS, a software

		product designed to provide PC <--> VAX connectivity.

		Revision/Update Information: � TIME \@ "MMMM d, yyyy" �May 8, 1995� � TIME * MERGEFORMAT �3:32 PM�

		Software Version: Shareware version 1.0

		As You Like It...

		J. Wren Hunt

		wrenh@mindspring.com

		(404) 943-3804

Legal Stuff

March 1995

The information in this document is subject to change without notice and should not be construed as a commitment by the author. As You Like It...Software assumes no responsibility for any errors that might appear in this manual.

Copyright (J. Wren Hunt. All rights reserved. Microsoft and Visual Basic are registered trademarks and Windows and Windows NT are trademarks of Microsoft Corporation. Digital, DECnet, VAXcluster, Pathworks, VAX C, VAX COBOL, VAX FORTRAN, VAX MACRO and VMS are trademarks of Digital Equipment Corporation. MultiNet is a registered trademark of TGV, Inc. All other names are trademarks or registered trademarks of their respective companies.�
Table of Contents

� TOC \f �Introduction	� GOTOBUTTON _Toc324577549 � PAGEREF _Toc324577549 �5��

Intended Audience	� GOTOBUTTON _Toc324577550 � PAGEREF _Toc324577550 �5��

Prerequisites	� GOTOBUTTON _Toc324577551 � PAGEREF _Toc324577551 �5��

Installation	� GOTOBUTTON _Toc324577552 � PAGEREF _Toc324577552 �7��

Windows Installation	� GOTOBUTTON _Toc324577553 � PAGEREF _Toc324577553 �7��

VAX/VMS Installation	� GOTOBUTTON _Toc324577554 � PAGEREF _Toc324577554 �7��

Installation Procedure	� GOTOBUTTON _Toc324577555 � PAGEREF _Toc324577555 �7��

Configuration	� GOTOBUTTON _Toc324577556 � PAGEREF _Toc324577556 �10��

VAX/VMS Installation	� GOTOBUTTON _Toc324577557 � PAGEREF _Toc324577557 �10��

Tutorial	� GOTOBUTTON _Toc324577558 � PAGEREF _Toc324577558 �11��

Example 1:	� GOTOBUTTON _Toc324577559 � PAGEREF _Toc324577559 �11��

TESTRMS	� GOTOBUTTON _Toc324577560 � PAGEREF _Toc324577560 �12��

Properties	� GOTOBUTTON _Toc324577561 � PAGEREF _Toc324577561 �14��

About	� GOTOBUTTON _Toc324577562 � PAGEREF _Toc324577562 �15��

Connected	� GOTOBUTTON _Toc324577563 � PAGEREF _Toc324577563 �16��

DataToSend	� GOTOBUTTON _Toc324577564 � PAGEREF _Toc324577564 �17��

Device	� GOTOBUTTON _Toc324577565 � PAGEREF _Toc324577565 �19��

Directory	� GOTOBUTTON _Toc324577566 � PAGEREF _Toc324577566 �20��

EOL	� GOTOBUTTON _Toc324577567 � PAGEREF _Toc324577567 �21��

Filename	� GOTOBUTTON _Toc324577568 � PAGEREF _Toc324577568 �22��

HostAddress	� GOTOBUTTON _Toc324577569 � PAGEREF _Toc324577569 �23��

HostName	� GOTOBUTTON _Toc324577570 � PAGEREF _Toc324577570 �24��

InBufSize	� GOTOBUTTON _Toc324577571 � PAGEREF _Toc324577571 �25��

Operation	� GOTOBUTTON _Toc324577572 � PAGEREF _Toc324577572 �26��

VBRMS_CREATE_DIRECT	� GOTOBUTTON _Toc324577573 � PAGEREF _Toc324577573 �26��

VBRMS_CREATE_INDXD	� GOTOBUTTON _Toc324577574 � PAGEREF _Toc324577574 �26��

VBRMS_CREATE_SEQ	� GOTOBUTTON _Toc324577575 � PAGEREF _Toc324577575 �26��

VBRMS_DELETE_FILE	� GOTOBUTTON _Toc324577576 � PAGEREF _Toc324577576 �26��

VBRMS_DIRECTORY	� GOTOBUTTON _Toc324577577 � PAGEREF _Toc324577577 �26��

VBRMS_READ_KEYEQ	� GOTOBUTTON _Toc324577578 � PAGEREF _Toc324577578 �27��

VBRMS_READ_KEYGT	� GOTOBUTTON _Toc324577579 � PAGEREF _Toc324577579 �27��

VBRMS_READ_SEQ	� GOTOBUTTON _Toc324577580 � PAGEREF _Toc324577580 �27��

VBRMS_TYPE_FILE	� GOTOBUTTON _Toc324577581 � PAGEREF _Toc324577581 �27��

VBRMS_WRITE_RECORD	� GOTOBUTTON _Toc324577582 � PAGEREF _Toc324577582 �27��

OutBufSize	� GOTOBUTTON _Toc324577583 � PAGEREF _Toc324577583 �28��

Port	� GOTOBUTTON _Toc324577584 � PAGEREF _Toc324577584 �29��

Protection	� GOTOBUTTON _Toc324577585 � PAGEREF _Toc324577585 �30��

RMSstatus	� GOTOBUTTON _Toc324577586 � PAGEREF _Toc324577586 �31��

Transport	� GOTOBUTTON _Toc324577587 � PAGEREF _Toc324577587 �32��

UIC	� GOTOBUTTON _Toc324577588 � PAGEREF _Toc324577588 �33��

Events	� GOTOBUTTON _Toc324577589 � PAGEREF _Toc324577589 �34��

Connected	� GOTOBUTTON _Toc324577590 � PAGEREF _Toc324577590 �35��

DataIn	� GOTOBUTTON _Toc324577591 � PAGEREF _Toc324577591 �36��

ReadyToSend	� GOTOBUTTON _Toc324577592 � PAGEREF _Toc324577592 �37��

DataSent	� GOTOBUTTON _Toc324577593 � PAGEREF _Toc324577593 �37��

Disconnected	� GOTOBUTTON _Toc324577594 � PAGEREF _Toc324577594 �38��

ReadyToSend	� GOTOBUTTON _Toc324577595 � PAGEREF _Toc324577595 �39��

Example Code	� GOTOBUTTON _Toc324577596 � PAGEREF _Toc324577596 �40��

Error Messages	� GOTOBUTTON _Toc324577597 � PAGEREF _Toc324577597 �42��

Stuff to Do	� GOTOBUTTON _Toc324577598 � PAGEREF _Toc324577598 �43��

�

�
			

Introduction� TC "Introduction" \f C \l "1" �

	VBRMS(is designed to allow easy access to VAX/VMS RMS records from within the Microsoft Visual Basic environment. It consists of a VMS Server process which handles RMS functions on behalf of the user and a VBX file which is used by Visual Basic to allow access to RMS with an easy-to-use point & click interface.

	Reasons for using VBRMS include:

Quicker development times using Visual Basic rather than traditional VMS programming methods.

Give users a familiar, intuitive WYSIWYG Windows interface. Provide end-users and management easy access to charts, graphs etc., instead of traditional VMS reports.

Rapid prototyping of applications means projects are finished sooner and users are happier quicker.

Reduce display processing on the VAX thus ensuring better performance.

	Since RMS operations are carried out on the VAX by the RMS server, any RMS operation (whether at the file level or the recod level) can be executed by the PC. Full VMS and RMS security is enforced automatically. Additional security may be specified by the system/security manager to further grant or restrict VBRMS actions.

Intended Audience� TC "Intended Audience" \f C \l "2" �

	This document describes VBRMS installation and configuration on both the VMS and Microsoft Windows platforms for System Managers. In addition it covers Visual Basic programming usage for programmers.

	

Prerequisites� TC "Prerequisites" \f C \l "2" �

	OpenVMS version 5.5-2 or greater is required to run the VBRMS RMS server process and associated utilities.

	Microsoft Windows 3.1 or Microsoft Windows for Workgroups� XE "Windows for Workgroups" � 3.11 is required for VBRMS client operations.

	Microsoft Visual Basic (standard or professional edition) is required to program applications using the VBRMS.VBX control.

	TCP/IP services must be running on both the VAX and the PC. There are a variety of different vendors for each platform. Please see Appendix A for a partial listing.

This product was developed and tested using OpenVMS 6.1 running TGV’s Multinet V3.3 Rev B and Microsoft Windows for Workgroups 3.11 with the Microsoft “Wolverine� XE "Wolverine" �” TCP/IP stack.

�
Installation� XE "Installation" �� TC "Installation" \f C \l "1" �

	Installation of the VBRMS product is accomplished by installing software on both the client (PC) side and the server (VAX) side.

Windows Installation� TC "Windows Installation" \f C \l "2" �

Insert the VBRMS disk into an available floppy drive and start Windows if it is not already running.

Run SETUP.EXE on the VBRMS disk. To do this, select the File option from the Program Manager’s menu and from there select the Run....command. The command line you will need (assuming you are using the A: drive) will be: A:\SETUP

The setup program will prompt for the directory where you would like to install the software. You may specify any directory or, use the default C:\VBRMS directory.

Setup will create a new Windows group (VBRMS) in the Program Manager.

VAX/VMS Installation� TC "VAX/VMS Installation" \f C \l "2" �

	In order to install and use RMSconnect/VBRMS, the system must be running OpenVMS version 5.5 or later. (Prior versions may work but have not been tested by the author). Installation is performed using the standard VMSINSTAL procedure supplied with VMS.

	As with any product installation, it is prudent to make sure that your system disk is safely backed up before you begin. RMSconnect/VBRMS does not modify, delete or add any files to any system directory�.

	Unlike ‘traditional’ VMS product installation, this product is designed to be installed using savesets available from the Internet; not physical media such as 9-track or Tkxx tapes. It is assumed that if you are reading this then you have already acquired the software from an Internet distribution site and thus FTP operations are not covered in this document.

Installation Procedure� TC "Installation Procedure" \f C \l "2" �

	Follow the steps below to install VBRMS:

1). Log into the SYSTEM (or otherwise suitably privileged account; you will need privileges� XE "privileges" � necessary to create a directory on the device of your choosing, plus DETACH, etc privilege).

2). Ensure that you have sufficient disk space. VBRMS requires less than 1000 blocks.

3). Invoke the system installation procedure with the command:

	$ @SYS$UPDATE:VMSINSTAL� XE "VMSINSTAL" � VBRMS011 media

The first parameter “VBRMS011” is the name of the product BACKUP saveset.

The second parameter, “media” , indicates where the distribution media is mounted. For Internet downloaded files this will typically have the form device:[directory]savesetname. (e.g., 4DUA0:[SCRATCH]VBRMS011.A)

4). Answer the following questions as indicated:

	If DECnet is up and running or if there are interactive users logged on the system the following question will be asked:

	* Do you want to continue anyway [NO]? YES

VBRMS can be installed while users are on the system and while DECnet is running. Respond “YES” to this question.

To ensure that you have a good, current backup VMSINSTAL asks whether you are satisfied with the backup of your system disk:

	* Are you satisfied with the backup of your system disk [YES]? YES

If you are satisfied with the state of your backup, enter “YES”, otherwise enter “NO” to abort the installation process.

5). At this point the installation will notify you of the version of VBRMS being installed and you should receive messages similar to the following:

	The following products will be processed:

			VBRMS V1.0

	%VMSINSTAL-I-RESTORE, Restoring product saveset A

6). Enter the name of the disk device onto which VBRMS is to be installed or enter <return> to accept the default.

	* Enter the disk device on which to install VBRMS 					 		(SYS$SYSDEVICE:[VBRMS]): <return>

7). Installation will now continue automatically and messages similar to the following will appear. Wait for the installation procedure to complete.

	%VMSINSTAL-I-MOVEFILE, Files will now be moved to their target 		directories...

	Installation of VBRMS V1.0 completed at 16:30

	VMSINSTAL procedure done at 16:30

8). Edit your system startup file to automatically startup VBRMS. On version 5 systems, edit the SYS$MANAGER:SYSTARTUP_V5.COM. On version 6 systems, edit the file SYS$MANAGER:SYSTARTUP_VMS.COM. Insert the following line anywhere after your TCP/IP product has been started:

	$ @SYS$SYSDEVICE:VBRMS_STARTUP� XE "VBRMS_STARTUP" �

�
Configuration� TC "Configuration" \f C \l "1" �

	To configure the MULTINET_SERVER� XE "MULTINET_SERVER" � process to automatically create a process running the VBRMS image when a connection arrives:

$ MULTINET CONFIGURE/SERVER

Multinet Server Configuration Utility 2.2(19)

[Reading in symbols from SERVER image MULTINET:SERVER.EXE]

[Reading in configuration from MULTINET:SERVICES.MASTER_SERVER]

SERVER_CONFIG> ADD VBRMS

[Adding new configuration entry for service “VBRMS”]

Protocol: [TCP] TCP

TCP Port number: 501		; this may be any unused port of your chosing.

Program to run: VBRMS_DIR:VBRMS

[Added service VBRMS to configuration]

[Selected service is now VBRMS]

SERVER-CONFIG> RESTART

� TC "VAX/VMS Installation" \f C \l "2" �

�
Tutorial� XE "Tutorial" �� TC "Tutorial" \f C \l "1" �

	Creating your first Visual Basic application to access your VMS RMS files is easy! Let’s first build one from ‘scratch’ and then we’ll take a look at a few example projects.

Example 1:� TC "Example 1:" \f C \l "2" �

We are going to design a simple file directory application: a text input box will prompt for a VMS directory location, a command button will initiate the operation and a listbox will provide the output.

�

Ensure that the VBRMS custom control is loaded and appears with the other Visual Basic controls. It’s icon should look like this:

If it is not loaded, go to the VB File menu and select the Add file option. This will bring up a standard file open dialogue box where you should point to the location of the VBRMS.VBX file. (By default it resides in C:\VBRMS\VBRMS.VBX)

Load the VBRMS symbol constants. Make sure the file VBRMS.BAS is loaded in the project’s MAK file.

Begin by placing the text entry box, the command button and the listbox on the form in any aesthetically pleasing way. A suggested screen layout might look like this:

�

Now place the VBRMS control somewhere on the form. This control is visible only at design time and will not be seen at runtime so its exact placement does not really matter.

Now for the fun part! Let’s write some code! Begin by double-clicking on the form and let’s provide some code in the FORM_LOAD procedure.

	Form_Load

	RMS1.PORT = 501			‘ whichever TCP/IP port you’ve configured

	RMS1.OPERATION = VBRMS_DIRECTORY

	RMS1.CONNECTED = TRUE	‘ Talk to the VAX!

	Command1_Click

	LIST1.CLEAR			‘Wipe-out any prior contents

	RMS1.FILENAME = TEXT1.TEXT

	‘

	‘ Now send it to the VAX. We have to ‘get its attention’ so do this by sending

	‘ a string; it doesn’t matter what the value is, just send it...

	RMS1.DATATOSEND = “Heregoes!”

	End

	RMS1_Datain (Datain as String)

	‘ This event procedure will be called everytime the VAX sends us data.

	LIST1.ADDITEM datain

	End

�
TESTRMS� XE "TESTRMS" �� TC "TESTRMS" \f C \l "2" �

Let’s take a look at a little more advanced example, TESTRMS. This application serves to demonstrate most of the operations supported by the VBRMS server.

�

�
Properties

	The following properties may be set by the Visual Basic Programmer either at design time or at runtime. Following is a complete description of each available property:� TC "Properties" \f C \l "1" �

�
About� TC "About" \f C \l "2" �

	Provides the obligatory ‘about’ function describing who wrote the control but more practically, the version number and other pertinent information required for obtaining customer support� XE "customer support" �. This is a design-time only property and is not available at runtime.

�
Connected� XE "Connected" �� TC "Connected" \f C \l "2" �

	Controls whether the PC is ‘connected’ to the VAX via TCP/IP or DEC Pathworks. The default is FALSE. When set to TRUE an attempt is made to establish a connection.

Note: DEC Pathworks support is currently not implemented.

Example:

	rms1.device = “dua0:”			‘ Setup initial properties

	rms1.transport = VBRMS_TCPIP

	rms1.operation = VBRMS_TYPE_FILE	‘ Display a file

	rms1.filename = “LOGIN.COM”

	rms1.connected = TRUE			‘ Establish the connection

�
DataToSend� XE "DataToSend" �� TC "DataToSend" \f C \l "2" �

	This property serves two purposes: The first indicates the data being sent from the PC to the VAX server where applicable. This would include actual records in the case of a WRITE request, or key contents in the case of an UPDATE or DELETE request

The DataToSend property’s second function is to serve as a trigger to the VAX server to initiate an action. In this mode it is not important what the contents or value of the DataToSend property is, only that it is present. An example would be a directory (VBRMS_DIRECTORY� XE "VBRMS_DIRECTORY" �) request. The actual directory name requested would be placed in the DIRECTORY� XE "DIRECTORY" � property; the DataToSend field would be provided to tell the VAX to go ahead and process the request.

Example:.

	rms1.directory = “[WREN]”

	rms1.datatosend = “x”		‘ Don’t care what it is, only that we send

						‘ it to get the VAX to process the request.

�
Debug� XE "Debug" �

	This option strangely enough is used to debug your application (in the unlikely event that it’s not working the way you told it to!). The default value is FALSE. Setting this property to TRUE will enable both Windows & VMS debugging aids. This is a not-officially-supported-can-go-away-at-anytime-feature.

�
Device� XE "Device" �� TC "Device" \f C \l "2" �

	This indicates the VMS device the operation is to be performed on. This is typically a disk drive name (or host system logical name) but may also be a tape drive, mailbox, pseudo terminal, etc. It must conform to standard VMS naming rules and syntax.

Example:

	rms1.device = “SCRATCH$DISK”

	or

	rms1.device = “1DUA0:”

�
Directory� XE "Directory" �� TC "Directory" \f C \l "2" �

	Retrieve a directory listing given the specified value of the Directory property. Any supported VMS specification (including wildcards) is supported.

Example:

	rms1.device = “DUA3:”

	rms1.directory = “[HUNT...]*.EXE”

	rms1.datatosend = “junk”

�
EOL� XE "EOL" �� TC "EOL" \f C \l "2" �

	End-of-line marker. Typically the decimal value of 10 is used to indicate an ASCII linefeed (LF).

Example:

	rms1.eol = chr$(10)		‘ ASCII Linefeed

�
Filename� XE "Filename" �� TC "Filename" \f C \l "2" �

	Filename(s) required for applicable corresponding VBRMS operations.

Example:

	rms1.filename = “BOGUS.DAT;1”

	rms1.operation = VBRMS_DELETE_FILE

	or

	rms1.filename = “FILE1.DAT,FILE2.DAT,FILE3.DAT”

	rms1.operation = VBRMS_TYPE_FILE

�
HostAddress� XE "HostAddress" �� TC "HostAddress" \f C \l "2" �

		Host address in standard internet form (a.b.c.d). This will be assigned by your network/system manager. (Note: If you’re the network/system manager, you can make it anything you want to!). If both HOSTADDRESS and HOSTNAME are specified then HOSTADDRESS takes precedence. If HOSTADDRESS is not valid, no attempt is made to use HOSTNAME.

Example:

	rms1.hostaddress = “10.1.0.55”	‘ TCP/IP host address

�
HostName� XE "HostName" �� TC "HostName" \f C \l "2" �

	Specifies the TCP/IP hostname (ASCII representation of hostaddress). This name is generally defined in a HOSTS� XE "HOSTS" � file (some systems may use LMHOSTS or HOSTS.LOCAL; check your network documentation for precise details). Either HOSTNAME or HOSTADDRESS is required for connection but not both. If both are supplied, HOSTADDRESS is used. If HOSTADDRESS is supplied and is invalid, no attempt is made to use HOSTNAME.

Example:

	rms1.hostname = “eastern.com”

�
InBufSize� XE "InBufSize" �� TC "InBufSize" \f C \l "2" �

	Default input buffer size. Defaults to 2048 bytes. Currently not implemented and has no effect.

Example:

	rms1.inbufsize = 5000	‘ hold really big records

�
Operation� XE "Operation" �� TC "Operation" \f C \l "2" �

	Specifies the PC <--> VAX action to be performed. These operations must be one of the symbolic constants listed in VBRMS.H (for C programmers) or VBRMS.BAS for Visual Basic programmers. Different properties are required/affected depending upon the operation type. The following table lists all available VBRMS operations:

Symbolic constant�
Function�
�
VBRMS_READ_SEQ�
Read sequentially through a file.�
�
VBRMS_READ_DIRECT�
Read via relative record number.�
�
VBRMS_READ_RFA�
Read by record-file-address�
�
VBRMS_READ_KEYEQ�
Read indexed file by key equal to value�
�
VBRMS_READ_KEYGT�
Read indexed file by key greater than value�
�
VBRMS_READ_KEYGE�
Read indexed file by key greater/equal to.�
�
VBRMS_DELETE_FILE�
Delete a specified file(s)�
�
VBRMS_RENAME_FILE�
Rename old filename to new filename�
�
VBRMS_CREATE_SEQ�
Create a sequential file.�
�
VBRMS_CREATE_DIRECT�
Create a random/relative file.�
�
VBRMS_CREATE_INDXD�
Create an indexed file�
�
VBRMS_TYPE_FILE�
PerformVMS TYPE command on file.�
�
VBRMS_DIRECTORY�
Perform VMS Directory lookup�
�
VBRMS_WRITE_RECORD�
Write new record to file.�
�
VBRMS_UPDATE_RECORD�
Update an existing record with new data.�
�
�
�
�

VBRMS_CREATE_DIRECT� XE "VBRMS_CREATE_DIRECT" �� TC "VBRMS_CREATE_DIRECT" \f C \l "3" �

	

VBRMS_CREATE_INDXD� XE "VBRMS_CREATE_INDXD" �� TC "VBRMS_CREATE_INDXD" \f C \l "3" �

VBRMS_CREATE_SEQ� TC "VBRMS_CREATE_SEQ" \f C \l "3" �

VBRMS_DELETE_FILE� XE "VBRMS_DELETE_FILE" �� TC "VBRMS_DELETE_FILE" \f C \l "3" �

	Specifies the file(s) to delete. Note that you must specify an exact version number and that wildcards� XE "wildcards" � are not currently supported. <sigh!>

VBRMS_DIRECTORY� XE "VBRMS_DIRECTORY" �� TC "VBRMS_DIRECTORY" \f C \l "3" �

VBRMS_READ_KEYEQ� XE "VBRMS_READ_KEYEQ" �� TC "VBRMS_READ_KEYEQ" \f C \l "3" �

VBRMS_READ_KEYGT� XE "VBRMS_READ_KEYGT" �� TC "VBRMS_READ_KEYGT" \f C \l "3" �

VBRMS_READ_SEQ� XE "VBRMS_READ_SEQ" �� TC "VBRMS_READ_SEQ" \f C \l "3" �

VBRMS_TYPE_FILE� XE "VBRMS_TYPE_FILE" �� TC "VBRMS_TYPE_FILE" \f C \l "3" �

VBRMS_WRITE_RECORD� XE "VBRMS_WRITE_RECORD" �� TC "VBRMS_WRITE_RECORD" \f C \l "3" �

�
OutBufSize� XE "OutBufSize" �� TC "OutBufSize" \f C \l "2" �

	Default output buffer size. Defaults to 2048 bytes. Currently not implemented and has no effect.

Example:

	rms1.outbufsize = 5000	‘ hold really big records

�
Port� XE "Port" �� TC "Port" \f C \l "2" �

	TCP/IP Port number to use for socket communication between PC and VAX. This should be a ‘well-known’ port (i.e., let your users know the value and then don’t ever change it) and should not conflict with other ‘well-known’ ports (e.g., TELNET port 21, FTP port 23, etc.,)

	To see available ports in TGV’s MultiNet, issue the following command:

$ MULTINET CONFIGURE/SERVER

SHOW

Refer to section xxxxx for more information on configuring VBRMS to use MultiNet.

Example:

	rms1.port = 501

	rms1.connected = TRUE	‘ We should now be connected to TCP/IP port 501

�
Protection� XE "Protection" �� TC "Protection" \f C \l "2" �

	VMS UIC protection mask describing the ownership of file creation operations. This must conform to VMS syntax as documented in the VMS DCL guide.

Example:

	rms1.operation = VBRMS_CREATE_SEQ

	rms1.protection = “(S:RWED,O:RWE,G:R,W)”

	rms1.datatosend = “makeitso”		‘ tell server to create file

�
RMSstatus� XE "RMSstatus" �� TC "RMSstatus" \f C \l "2" �

	Return status of VMS RMS operations from the RMSconnect server. These conform to standard OpenVMS message numbering conventions (e.g., odd values are successful in nature; even values are warning or error in nature). This is a read-only field and attempts to modify this value will result in a Visual Basic runtime error. For a complete list of RMS error codes refer to Appendix X or examine the contents of SYS$LIBRARY:RMS.H on your OpenVMS system.

Example:

	if rms1.rmsstatus = 12 then error.text = “Non-existent file. Please re-enter”

	�
Transport� XE "Transport" �� TC "Transport" \f C \l "2" �

	Indicates the network protocol used to establish the VBRMS connection. Possible choices are TCP/IP or DEC Pathworks. TCP/IP is the default choice and is currently the only one implemented.

Example:

	rms1.transport = VBRMS_TCPIP

	rms1.port = 501

	rms1.connected = TRUE		‘ Connect via TCP/IP

�
UIC� XE "UIC" �� TC "UIC" \f C \l "2" �

	Standard OpenVMS User Identification Code (UIC) for file creation operations. Must conform to VMS naming and numbering rules. Note that this is an octal value and thus only the digits 0-7 are allowed. Digits 8-9 are invalid and will trigger VBRMS errors at runtime.

Example:

	rms1.operation = VBRMS_CREATE_SEQ

	rms1.filename = “MYFILE.DAT”

	rms1.uic = “[200,1]”

	rms1.datatosend = “createit”

�
Events� XE "Events" �� TC "Events" \f C \l "1" �

	Events are generated by Visual Basic ‘whenever things happen’. For instance, when you issue a connect request (by setting the Connect property to TRUE) the VBRMS.VBX issues a connected event to let you know that the connection did indeed succeed and allow you to perform initialization, etc when that event occurred.

	VBRMS does not have many events but the ones it does have provide a great of power with a minimum of code.

�
Connected� XE "Connected" �� TC "Connected" \f C \l "2" �

	This event is generated when the PC and the VAX are ‘connected’ over a TCP/IP socket. In the RMS1 Connected procedure of Visual Basic you may put any initialization code required for your application knowing that the connection was successful.

	

Example:

	

�
DataIn� XE "DataIn" � (DataIn as String)

Called whenever data arrives from the VAX. Data is passed in as the first (DataIn) string parameter.

Example:

	LIST1.ADDITEM DATAIN	 	‘Display the data to the listbox.

� TC "DataIn" \f C \l "2" �

�
DataSent

	Not implemented.

� TC "ReadyToSend" \f C \l "2" �� TC "DataSent" \f C \l "2" �

�
Disconnected� XE "Disconnected" �� TC "Disconnected" \f C \l "2" �

	Generated when the Connected property is set to FALSE. Indicates that the socket is closed and the connection between PC and VAX is broken.

Example:

�
ReadyToSend

� TC "ReadyToSend" \f C \l "2" �

Not implemented.

�
Example Code� TC "Example Code" \f C \l "1" �

�
Error Messages

�
Internals� XE "Internals" �� TC "Internals" \f C \l "1" �

	The following is a brief, “behind-the-scenes” look at the events which transpire inside the VBRMS VBX. The reader should be comfortable with C, DLL’s, and the TCP/IP protocol to some extent. This overview is no substitute for a careful reading of the C source code.

RMS1.C - This module contains the entry point to the VBRMS.DLL/VBX. Of primary interest are the following user-defined Windows messages:

WM_DATA_ARRIVED - Indicates arriving data from the VAX --> PC. This event is setup via WSAAsynchSelect� XE "WSAAsynchSelect" � which is fired up immediately after going through the LOGONVAX.C when the host is connected. This code fires the IEVENT_RMS_DATAIN� XE "IEVENT_RMS_DATAIN" � event which allows the Visual Basic code to know that data ‘has arrived’.

IPROP_RMS_DATATOSEND� XE "IPROP_RMS_DATATOSEND" � - Fired whenever the VB application assigns a value to the DATASEND property. This in turn causes the BLASTIT� XE "BLASTIT" �.C module to be invoked.

IPROP_RMS_CONNECTED� XE "IPROP_RMS_CONNECTED" � - This message is sent whenever there is an explicit change to the CONNECTED property (e.g., CONNECTED = TRUE). The LOGONVAX� XE "LOGONVAX" �.C and LOGOFFVAX� XE "LOGOFFVAX" �.C routines are called from here.

LOGONVAX.C - Handles logging into the VAX via TCP/IP (DEC Pathworks is currently unsupported). This module invokes the WSAAsyncSelect� XE "WSAAsyncSelect" � Winsock routine to express an interest when data arrives from the VAX --> PC. When this happens it generates a WM_DATA_ARRIVED� XE "WM_DATA_ARRIVED" � user-defined Windows message. After the connection is established the IEVENT_RMS_CONNECTED� XE "IEVENT_RMS_CONNECTED" � event is fired to allow the Visual Basic application to learn of the connection.

LOGOFFVAX.C - Breaks the socket connection between VAX and PC. This routine fires the IEVENT_RMS_DISCONNECTED� XE "IEVENT_RMS_DISCONNECTED" � event to allow the Visual Basic application to learn of the dis-connection.

BLASTIT.C - Transfers data from the PC side (as filled in by the user of the VBRMS.VBX) to the VAX VBRMS server. � XE "Error Messages" �� TC "Error Messages" \f C \l "1" �

�
Stuff to Do� TC "Stuff to Do" \f C \l "1" �

Work on numeric transfers!

Add Username/Password properties

Implement $CHECK_ACCESS to server

Return RMSstatus back to client

Conversion routines (e.g., VMS date)

Handle synchronization of same process reading next record.

�
�
Index

� INDEX \h "A" \c "2" ��
C

Connected, 16, 35

customer support, 15

D

DataIn, 36

DataToSend, 17

Debug, 18

Device, 19

DIRECTORY, 17, 20

Disconnected, 38

E

EOL, 21

Events, 34

F

Filename, 22

H

HostAddress, 23

HostName, 24

HOSTS, 24

I

InBufSize, 25

Installation, 7

M

MULTINET_SERVER, 10

O

Operation, 26

OutBufSize, 27

P

Port, 28

privileges, 7

Protection, 29

R

RMSstatus, 30

T

Transport, 31

Tutorial, 11

U

UIC, 32

V

VBRMS_DELETE_FILE, 26

VBRMS_DIRECTORY, 17

VBRMS_STARTUP, 9

VMSINSTAL, 8

W

Windows for Workgroups, 5

Wolverine, 6

�
�

� It does add the product’s release notes (VBRMS_010.RELEASE_NOTES) to SYS$HELP and the product startup (VBRMS_STARTUP.COM) to SYS$STARTUP.

�PAGE �

�PAGE �37�

