
HP DCE for OpenVMS Alpha and
OpenVMSI64
ProductGuide
Order Number: BA361-90002

January 2005

This guide provides an overview of the HP Distributed Computing
Environment (DCE) for OpenVMS Alpha and OpenVMS Industry
Standard 64 (I64) Version 3.2 and describes value-added features
provided with HP DCE.

Revision/Update Information: This guide supersedes the Compaq
DCE for OpenVMS VAX and OpenVMS
Alpha Product Guide Version 3.0.

Operating System: OpenVMS Alpha Version 7.3-2 or
higher
OpenVMS I64 Version 8.2

Software Version: HP DCE for OpenVMS Version 3.2

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

All Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the U.S. and other countries.

Oracle is a US registered trademark of Oracle Corporation, Redwood City, California.

OSF and Motif are trademarks of The Open Group in the US and other countries.

UNIX is a registered trademark of The Open Group.

Microsoft, Windows, Windows NT, and MS Windows are US registered trademarks of Microsoft
Corporation.

X/Open is a registered trademark, and the X device is a trademark of X/Open Company Ltd. in the
UK and other countries

Printed in the US

ZK6532

The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface . ix

1 Overview of HP DCE

1.1 Kit Contents . 1–1
1.2 Contents of Each Kit . 1–1
1.2.1 Runtime Services Kit . 1–2
1.2.2 Application Developer’s Kit . 1–2
1.2.3 CDS Server Kit . 1–3
1.2.4 Security Server Kit . 1–3
1.3 Platforms and Network Transports Supported by HP DCE 1–3
1.4 Online Help and Online Manual Pages . 1–3
1.5 Restrictions When Using HP DCE . 1–4
1.6 Threads . 1–4
1.7 Using RPC Without CDS or Security . 1–4
1.8 Unsupported Network Interfaces . 1–5
1.9 Supported Network Addresses . 1–5
1.10 Impersonating a Client . 1–5
1.11 Features of HP DCE Not Included with the OSF DCE 1–6
1.11.1 CDS Enhanced Browser . 1–6
1.11.2 IDL Compiler Enhancements . 1–6
1.11.3 The RPC Event Logger Utility . 1–6
1.11.4 Name Service Interface Daemon (nsid) for Microsoft RPC 1–6
1.11.5 DCL Interfaces to DCE Tools . 1–7
1.11.6 Integrated Login . 1–7
1.11.7 Object-Oriented RPC . 1–7

2 DCE System Configuration

2.1 Starting and Stopping the RPC Daemon . 2–1
2.2 Limiting RPC Transports . 2–2
2.3 Using the DCE System Configuration Utility . 2–2
2.4 Kerberos . 2–5

3 Interoperability and Compatibility

3.1 Interoperability with Other DCE Systems . 3–1
3.2 Interoperability with Microsoft RPC . 3–2
3.3 Understanding and Using OSF DCE and VMScluster Technologies 3–3
3.3.1 Similarities Between VMScluster Environments and DCE Cells 3–3
3.3.2 Differences Between VMScluster Environments and DCE Cells 3–3
3.3.3 Limitations on Using DCE in a VMScluster System 3–4
3.3.4 DCE and VMScluster Configuration Issues . 3–5

iii

4 Using HP DCE with DECnet

4.1 DECnet and DCE Startup and Shutdown Sequences 4–1
4.2 Running DCE Server Applications Using DECnet 4–2
4.2.1 Server Account Requirements . 4–2
4.2.2 DECnet Endpoint Naming . 4–3
4.3 DECnet String Binding Formats Supported in This Release 4–3

5 Using HP DCE with Microsoft’s NT LAN Manager (NTLM)

5.1 Using WINNT Authentication with RPC Server Applications 5–1
5.2 RPC APIs Created or Enhanced to Support WINNT Authentication 5–2
5.3 Using the NTA$LOGON Utility . 5–3

6 Directory Names, Filenames, and Locations Across DCE Platforms

6.1 DCE Directories . 6–1
6.2 Setup Utilities . 6–1
6.3 Executable Images . 6–2
6.4 Library Images . 6–3
6.5 Message Files . 6–4
6.6 Development Files . 6–4
6.7 Sample Applications . 6–5

7 Application Development Considerations and Differences

7.1 Building Applications . 7–1
7.1.1 Linking DCE Applications . 7–1
7.1.2 Considerations for Structure Alignment with C Compilers 7–2
7.1.3 Considerations for Building DCE Applications Using OpenVMS Object

Libraries . 7–2
7.2 Running Applications . 7–2
7.3 Translating OSF DCE Documentation Examples to OpenVMS 7–3
7.4 Mapping MSRPC Calls to DCE RPC Calls . 7–4

8 Integrated Login

8.1 Overview . 8–1
8.2 Integrated Login Components . 8–2
8.3 Integrated Login Procedure . 8–2
8.4 Changing Your DCE Password . 8–4
8.5 Enabling/Disabling Integrated Login on Your OpenVMS System 8–5
8.5.1 Disabling a System Account for Integrated Login 8–6
8.5.2 Password Expiration Dates on User Accounts 8–6
8.5.3 Potential Integrated Login and SYSGEN Problems 8–6
8.6 DCE User Authorization File (DCE$UAF) . 8–7
8.6.1 DCE$UAF File Information . 8–7
8.6.2 Running the DCE$UAF Utility . 8–7
8.7 DCE Registry Import . 8–8
8.7.1 DCE IMPORT File Information . 8–8
8.7.2 Running DCE IMPORT . 8–9
8.8 DCE Registry Export . 8–9
8.8.1 DCE EXPORT File Information . 8–10
8.8.2 Running DCE EXPORT . 8–10
8.9 Frequently Asked Questions for Users . 8–10

iv

8.10 Frequently Asked Questions for System Administrators 8–12
8.11 Potential Integrated Login and OpenVMS External Authentication

Problems . 8–13

9 Intercell Naming

9.1 Intercell Naming with DNS . 9–1
9.1.1 Intercell Naming Example — DNS . 9–1
9.2 Intercell Naming with X.500 . 9–3
9.2.1 Intercell Naming Example — X.500 . 9–4
9.3 Intercell Naming with LDAP . 9–5
9.3.1 Intercell Naming Example — LDAP . 9–5
9.4 Summary . 9–6
9.4.1 DNS Bind . 9–6
9.4.2 X.500 . 9–7
9.4.3 LDAP . 9–7

10 Enhanced Browser

10.1 Displaying the Namespace . 10–1
10.2 Filtering the Namespace Display . 10–1

11 IDL Compiler Enhancements

11.1 The -standard Build Option . 11–1
11.2 Stub Auxiliary Files . 11–1
11.3 HP Language-Sensitive Editor (LSE) Templates on OpenVMS 11–2
11.4 Binding Handle Callout . 11–2
11.4.1 Attribute Configuration File . 11–3
11.4.2 Generated Header File . 11–3
11.4.3 Generated Client Stub . 11–3
11.4.4 Binding Callout Routine . 11–3
11.4.4.1 Error Handling . 11–4
11.4.5 Predefined Binding Callout Routine . 11–4

12 Application Debugging with the RPC Event Logger

12.1 Introduction to the RPC Event Logging Facility . 12–1
12.2 Generating RPC Event Logs . 12–3
12.2.1 Enabling Event Logging . 12–3
12.2.1.1 Universal IDL Compiler Interface . 12–3
12.2.1.2 Digital Command Language Interface for the Event Logger 12–4
12.2.2 Using the -trace Option . 12–5
12.2.3 Combining Event Logs . 12–6
12.2.4 Disabling Event Logging . 12–7
12.3 Using Symbols and the Log Manager to Control Logging Information 12–7
12.3.1 Controlling Logged Events with a Symbol . 12–8
12.3.2 Controlling Logged Events with the RPC Log Manager 12–8
12.4 Using the -trace Option, Symbols, and the Log Manager Together 12–11
12.5 Using Event Logs to Debug Applications . 12–14
12.6 Event Names and Descriptions . 12–15

v

13 Development of Distributed Applications with FORTRAN

13.1 Interoperability and Portability . 13–1
13.2 Remote Procedure Calls Using FORTRAN — Example 13–1
13.2.1 Where to Obtain the Example Application Files 13–2
13.2.2 The Interface File and Data File (PAYROLL.IDL and

PAYROLL.DAT) . 13–3
13.2.3 Compiling the Interface with the IDL Compiler 13–4
13.2.4 The Client Application Code for the Interface (PRINT_PAY.FOR) 13–5
13.2.5 The Server Initialization File (SERVER.C) . 13–6
13.2.6 The Server Application Code for the Interface (MANAGER.FOR) 13–8
13.2.7 Client and Server Bindings . 13–9
13.2.8 Building and Running the Example (PAYROLL.COM) 13–9
13.2.9 Example Output . 13–11
13.3 Remote Procedure Calls Using FORTRAN — Reference 13–11
13.3.1 The FORTRAN Compiler Option . 13–11
13.3.2 Restrictions on the Use of FORTRAN . 13–12
13.3.3 IDL Constant Declarations . 13–13
13.3.4 Type Mapping . 13–13
13.3.5 Operations . 13–15
13.3.5.1 Parameter Passing by Reference . 13–15
13.3.5.2 Function Results . 13–15
13.3.6 Include Files . 13–16
13.3.7 The NBASE.FOR File . 13–16
13.3.8 IDL Attributes . 13–17
13.3.8.1 The transmit_as Attribute . 13–17
13.3.8.2 The string Attribute . 13–17
13.3.8.3 The context_handle Attribute . 13–18
13.3.8.4 The Array Attributes on [ref] Pointer Parameters 13–18
13.3.9 ACF Attributes . 13–18
13.3.9.1 The implicit_handle ACF Attribute . 13–18
13.3.9.2 The represent_as ACF Attribute . 13–18

14 Troubleshooting

14.1 General Troubleshooting Steps . 14–1
14.2 Time Problems During Configuration . 14–2
14.2.1 Time Zone Configuration . 14–2
14.2.2 Time Synchronization Problems . 14–3
14.2.3 Time OPCOM Messages . 14–3
14.3 Client/Server Problems . 14–4
14.3.1 OpenVMS Client System . 14–4
14.3.2 Server System . 14–5
14.4 Configuration and CDS . 14–6
14.5 Configuration and Naming . 14–6
14.6 Modifications to HP TCP/IP Services (UCX) . 14–6
14.7 Principal Quota Exhausted . 14–6
14.8 Linking RPC Stub Modules into Shareable Images 14–7
14.8.1 Errors Creating a Shareable Image . 14–7
14.8.2 Errors Linking Against a Shareable Image . 14–8
14.8.3 Errors Activating Shareable Images . 14–8
14.9 Integrated Login Problems . 14–9
14.9.1 No Logical Name Match Error When Integrated Login Is Enabled . . . 14–10
14.9.2 Potential Integrated Login and SYSGEN Problems 14–10

vi

15 Example Programs

A Using NSedit

A.1 Starting NSedit . A–1
A.2 NSedit Functionality . A–1
A.2.1 Tree Browser Window . A–2
A.2.2 Entry Attributes Window . A–2
A.2.3 ACL Window . A–2
A.3 Common Uses of NSedit . A–3
A.3.1 Expanding and Collapsing Tree Nodes . A–3
A.3.2 Creating an Object or a Directory . A–3
A.3.3 Creating and Viewing a Soft Link . A–3
A.3.4 Deleting an Entry . A–3
A.3.5 Viewing Attributes and Values . A–4
A.3.6 Creating a Group and Adding Members . A–4
A.4 NSedit Menus and Dialog Box . A–4
A.4.1 File Menu . A–4
A.4.2 Display Menu . A–4
A.4.3 Edit Menu . A–5
A.4.4 Create Entry Pop-up Dialog . A–5

Index

Figures

10–1 Enhanced Browser Icons . 10–1

Tables

1–1 APIs Used to Impersonate a Server . 1–5
2–1 System Configuration Commands . 2–4
6–1 DCE Directories for OpenVMS and Tru64 UNIX 6–1
6–2 DCE Setup Utilities for OpenVMS and Tru64 UNIX 6–2
6–3 Executable Images for OpenVMS and Tru64 UNIX 6–2
6–4 DCE Library Images for OpenVMS and Tru64 UNIX 6–4
6–5 Message Files for OpenVMS and Tru64 UNIX 6–4
12–1 Event Log Fields . 12–2
12–2 Event Values and Types . 12–4
12–3 Universal Interface with DCL Equivalents . 12–5
12–4 Command Interface to rpclm . 12–9
12–5 RPC Events . 12–15
13–1 Example Files Created by the Programmer . 13–2
13–2 Example Files Created by IDL . 13–4
13–3 Mappings for IDL Types . 13–13
13–4 Standard Declarations . 13–16
15–1 Example Program Features . 15–1

vii

Preface

The HP DCE for OpenVMS Alpha and OpenVMS I64 Product Guide provides
users of the HP Distributed Computing Environment (DCE) with the following
information:

• An overview of DCE and the contents of the HP DCE product.

• The differences between using DCE of OSF/1 and on OpenVMS systems.

• The value-added features provided with HP DCE for OpenVMS product.

Intended Audience
This guide is intended for:

• Experienced programmers who want to write client/server applications.

• Experienced programmers who want to port existing applications to DCE.

• System managers who manage the distributed computing environment.

• Users who want to run distributed applications.

Document Structure
This guide is organized as follows:

• Chapter 1 provides an overview of the HP DCE OpenVMS product and
describes its contents, restrictions, and additional features.

• Chapter 2 describes the DCE system configuration utility.

• Chapter 3 describes interoperability and compatibility issues.

• Chapter 4 discusses using the kit with DECnet networks.

• Chapter 5 discusses authenticating RPC using Microsoft’s NT LAN Manager.

• Chapter 6 provides information about the names of DCE files and directories.

• Chapter 7 provides information about developing applications on OpenVMS
Alpha and OpenVMS I64 systems.

• Chapter 8 provides information about Integrated Login.

• Chapter 9 provides tips on intercell naming.

• Chapter 10 describes the Enhanced Browser for viewing the CDS namespace.

• Chapter 11 describes general enhancements to the IDL compiler.

• Chapter 12 describes debugging support for RPC applications.

• Chapter 13 contains information for developing distributed FORTRAN
programs on OpenVMS systems.

• Chapter 14 provides checklists and troubleshooting hints.

ix

• Chapter 15 describes the example programs supplied with the Application
Developer’s Kit.

• The appendix describes the namespace editor (NSedit), a system management
tool.

Related Documents
For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms/

For DCE specific documentation, visit the following World Wide Web address:

http://h71000.www7.hp.com/DOC/dce32.html

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order/

Conventions
VMScluster systems are now referred to as OpenVMS Cluster systems. Unless
otherwise specified, references in this document to OpenVMS Clusters or clusters
are synonymous with VMSclusters.

The following conventions are also used in this guide:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where device-name contains up to five alphanumeric
characters).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

x

Monospace type Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

Case-sensitivity OpenVMS operating system commands do not differentiate
between uppercase and lowercase. However, many DCE
commands do make this distinction. In particular, the system
configuration utility interprets names in a case-sensitive
manner.

xi

1
Overview of HP DCE

Distributed computing services, as implemented in the HP Distributed Computing
Environment (DCE), provide an important enabling software technology for the
development of distributed applications. DCE makes the underlying network
architecture transparent to application developers. It consists of a software layer
between the operating system/network interface and the distributed application
program. It provides a variety of common services needed for development of
distributed applications, such as name and time services, and a standard remote
procedure call interface.

HP DCE for OpenVMS Alpha and OpenVMS I64 provides a means for application
developers to design, develop, and deploy distributed applications. This release
supports both the OpenVMS Alpha and OpenVMS I64 systems.

1.1 Kit Contents
HP DCE for OpenVMS Alpha and OpenVMS I64 consists of the following
distributed computing technologies:

• DCE Remote Procedure Call (RPC) — Allows you to create and run client
/server applications.

• DCE Cell Directory Service (CDS) — Provides location-independent naming
for servers.

• DCE Distributed Time Service (DTS) — Provides synchronization of time in
distributed network environments.

• DCE Security Service — Provides secure communications and controlled
access to resources.

• Threads — Provides user control and synchronization of multiple operations.

• Interface Definition Language (IDL) Compiler — Provides the compiler
required for developing distributed DCE applications.

1.2 Contents of Each Kit
HP DCE for OpenVMS has four kits available:

• Runtime Services Kit

• Application Developer’s Kit

• CDS Server Kit

• Security Server Kit

Note that the right to use the Runtime Services Kit is included as part of the
OpenVMS license. The other kits each require a separate license. You must
install a kit on each system that will use DCE services.

Overview of HP DCE 1–1

Overview of HP DCE
1.2 Contents of Each Kit

The following sections list the contents of each of these kits.

1.2.1 Runtime Services Kit
The Runtime Services provide the basic services required for DCE applications to
function. The Runtime Services Kit contains the following:

• Authenticated CDS Advertiser and Client Support

• CDS Browser

• CDS Control Program (cdscp)

• Authenticated DCE RPC runtime support (supports DECnet, TCP/IP, and
UDP)

• RTI (Remote Task Invocation) RPC for HP’s ACMSxp TP product on
OpenVMS Alpha

• Security Client Support

• Integrated Login

• A DCE_LOGIN tool for obtaining credentials

• A RGY_EDIT tool for registry maintenance functions

• KINIT, KLIST, and KDESTROY Kerberos tools

• An ACL_EDIT tool for access control lists (ACLs) for DCE objects

• RPC Control Program (rpccp)

• Native Kerberos

• XDS Directory Services

• XDS Object Management

• NTLM Security support

• New APIs which support impersonation

• DCE Control Program (dcecp)

• Authenticated RPC runtime support (supports DECnet, TCP/IP, and UDP
using NTLM security protocol on OpenVMS Alpha Version 7.2-1 and higher.)

• LDAP client support for nsid and gda

1.2.2 Application Developer’s Kit
The Application Developer’s Kit is used by developers to build DCE applications.
The Application Developer’s Kit contains the following:

• The above contents of the Runtime Services Kit

• Required DCE application development header files

• Interface Definition Language (IDL) compiler

• Object-Oriented RPC

• Generic Security Service (GSSAPI)

• LSE Templates for IDL

• Include (.H) files and .IDL files for application development

• Sample DCE applications

1–2 Overview of HP DCE

Overview of HP DCE
1.2 Contents of Each Kit

• An aid for porting MS RPC applications to DCE RPC applications

1.2.3 CDS Server Kit
The CDS Server kit provides the naming services necessary for DCE clients to
locate DCE server applications. The CDS Server kit includes the following:

• CDS server (cdsd)

• Global Directory Agent (GDA)

The Global Directory Agent (GDA) lets you link multiple CDS namespaces
using the Internet Domain Name System (DNS), X.500, or LDAP.

• Name Services Interface Daemon (nsid); also known as the PC Nameserver
Proxy

1.2.4 Security Server Kit
The Security Server kit provides the security services necessary for authenticated
RPC calls between DCE client and server applications to function. The kit
includes the following:

• Security server (secd)

• Tool used to create the security database (sec_create_db)

• Security server administrative tool (sec_admin)

• Auditing support

1.3 Platforms and Network Transports Supported by HP DCE
HP DCE is supported on OpenVMS Alpha Version 7.3-2 or higher and on
OpenVMS I64 Version 8.2.

This version of HP DCE provides RPC communications over the following
network protocols:

• UDP/IP

• TCP/IP

• DECnet Phase IV or DECnet/OSI

DCE on OpenVMS allows the user to select specific network protocols rather than
defaulting to any on the supported list. You may restrict DCE to one or more
specific protocols by setting the systemwide logical name RPC_SUPPORTED_
PROTSEQS to a list of network protocols, delimited by colons. The following
example restricts DCE to only TCP/IP and UDP/IP protocols (disabling DECnet):

$ define/system/exec RPC_SUPPROTED_PROTSEQS "ncacn_ip_tcp:ncadg_ip_udp"

1.4 Online Help and Online Manual Pages
HP DCE provides online help for both the management of DCE services and the
development of distributed applications. This DCL help is organized to maintain
the reference page categories established in the OSF DCE documentation and
online reference pages. These categories are user commands (1), application
development support (3), driver and networking support (7), and administrative
support (8).

Overview of HP DCE 1–3

Overview of HP DCE
1.4 Online Help and Online Manual Pages

To access the DCE reference information, use the HELP command. You can get
extensive help on the following DCE top-level topics:

DCE_CDS DCE_DTS DCE_IDL DCE_INTRO
DCE_RPC DCE_SECURITY DCE_THREADS

For example, to get help on DTS, enter the following command:

$ HELP DCE DCE_DTS

1.5 Restrictions When Using HP DCE
HP DCE Version 3.2 for OpenVMS Alpha and OpenVMS I64 does not provide all
the functions of the full OSF DCE. The following components are not included in
this DCE product; however, the full OSF documentation is included.

• DCE Distributed File Service (DFS)

• DCE Diskless Services

1.6 Threads
The threads interface is an important part of the architecture for DCE, and
the DCE services rely on it. POSIX Threads Library (formerly DECthreads) is
provided as part of the OpenVMS Alpha and OpenVMS I64 operating systems.

Refer to the Guide to DECthreads in the HP OpenVMS operating system’s
documentation set for information about threads.

1.7 Using RPC Without CDS or Security
To use RPC only, you begin a configuration as follows:

$ @SYS$MANAGER:DCE$SETUP.COM CONFIGURE or
$ @SYS$MANAGER:DCE$RPC_STARTUP

The DCE Configuration Menu is displayed. From this menu, choose the RPC_
Only option. This option lets you use DCE RPC without a DCE cell. This option
requires applications to use string bindings instead of the name service to find
servers.

To communicate with an RPC server, an RPC client needs the server binding
information. The server binding information includes the protocol sequences that
the RPC server supports and the location (node name or node address) of the RPC
server. When the RPC server is started, it registers its endpoints with the RPC
daemon. It also exports the binding information to the name server if the name
server exists. The RPC client then gets the binding information from the name
server. When the name server is not available, the binding information must be
provided to the RPC client through other mechanisms.

Users can incorporate in their RPC server code a mechanism for broadcasting the
binding information on the network. However, this may not be a desired short-
term solution. An easy workaround is for the users to pass the string binding to
the RPC client and have the RPC client call the RPC routine to convert the string
binding. In this case, the users who are running the RPC client need to know two
things:

• Protocol sequences that the RPC server supports. For example: ncacn_ip_tcp,
ncadg_ip_udp, and ncacn_dnet_nsp.

Note that the RPC client may encounter a communication error if it picks a
transport that is not supported by the server.

1–4 Overview of HP DCE

Overview of HP DCE
1.7 Using RPC Without CDS or Security

• Location of the RPC server (the node on which the RPC server runs). For
example: DECnet node name, DECnet address, Internet address, and so on.

You can get this information by executing the following commands on the
server system after the RPC server is started.

$ RUN SYS$SYSTEM:DCE$RPCCP
RPCCP> SHOW MAPPING

See the Test1 example program for an example of using RPC without CDS and
DCE Security servers.

1.8 Unsupported Network Interfaces
DCE on OpenVMS supports the user deselection of network interfaces on each
system in a DCE cell. Use the logical RPC_UNSUPPORTED_NETIFS, which
points to a list of network interfaces delimited by a colon (:) that you do not want
to use.

RPC at initialization parses the list of network interfaces defined with the logical
RPC_UNSUPPORTED_NETIFS, and builds a global list of network interfaces for
deselection by RPC. The global list of network interfaces is parsed to ignore the
deselected interfaces.

1.9 Supported Network Addresses
DCE on OpenVMS supports the user selection of network addresses on each
system in a DCE cell. Use the logical RPC_SUPPORTED_NETADDRS to point to
a list of network addresses delimited by a colon (:) that you want to use.

At initialization, RPC parses the list of network addresses defined with the logical
RPC_SUPPORTED_NETADDRS, and builds a global list of network addresses for
selection by RPC. The global list of network addresses is parsed to use only the
selected addresses.

1.10 Impersonating a Client
DCE Version 3.2 allows a server to impersonate a client. This means that the
server may run with the security credentials of the client. The capabilities of
the client belong to the server. Table 1–1 lists the APIs that have been added to
support this functionality.

Table 1–1 APIs Used to Impersonate a Server

API Description

rpc_impersonate_client(binding_handle, *status) Called by the server to act as a client
application with the appropriate
rights granted to the server.

rpc_revert_to_self(*status) Called by the server to revert back
to its original security context after
impersonating a client.

rpc_revert_to_self_ex(binding_handle, *status) Called by the server to revert back
to its original security context after
impersonating the client.

Overview of HP DCE 1–5

Overview of HP DCE
1.11 Features of HP DCE Not Included with the OSF DCE

1.11 Features of HP DCE Not Included with the OSF DCE
HP DCE for OpenVMS Alpha and OpenVMS I64 provides the following value-
added features to help users develop and deploy DCE applications:

• CDS Enhanced Browser

• IDL compiler enhancements

• RPC Event Logger utility

• Name service interface daemon (PC Nameserver Proxy Agent)

• DCL interfaces to DCE tools

• Integrated Login

• Object-Oriented RPC

• NTLM Security

• Impersonation

1.11.1 CDS Enhanced Browser
The CDS Enhanced Browser contains additional functions beyond those
contained in the OSF DCE Browser. See the Enhanced Browser chapter for
more information.

1.11.2 IDL Compiler Enhancements
The HP DCE IDL compiler includes the following features beyond those
documented in the OSF DCE documentation:

• By default, the IDL compiler does not generate stub auxiliary (AUX) files,
thus saving space.

• DCE IDL implements an extended array syntax.

• DCE IDL generates runtime routine templates.

• DCE IDL supports the use of HP Fortran.

See Chapters 12 to 15 for more information about IDL.

1.11.3 The RPC Event Logger Utility
HP provides the RPC Event Logger, which records information about operations
relating to the execution of an application interface. See the chapter titled
Application Debugging with the RPC Event Logger for details.

1.11.4 Name Service Interface Daemon (nsid) for Microsoft RPC
HP provides the name service interface daemon (nsid), also known as the PC
Nameserver Proxy Agent, to allow RPC communication with personal computers
running the DCE-compatible Microsoft RPC. The nsid enables an RPC application
on MS–DOS, MS–DOS Windows, and Windows NT to perform name-service
operations that are available through RPC, as if the RPC applications on the PC
are directly involved in the full CDS namespace.

For more information on using PCs with DCE, refer to Distributing Applications
Across DCE and Windows NT by Teague and Rosenberry.

1–6 Overview of HP DCE

Overview of HP DCE
1.11 Features of HP DCE Not Included with the OSF DCE

Beginning with HP DCE for OpenVMS Version 3.0, you can use LDAP to access
the name service interface daemon in addition to the previous communication
methods. To use nsid with LDAP, you must configure the proper DCE
environment using the DCE$SETUP.COM configuration program. Refer to the
HP DCE for OpenVMS Alpha and OpenVMS I64 Installation and Configuration
Guide for information on configuring DCE.

1.11.5 DCL Interfaces to DCE Tools
DCE is multiplatform software designed to be used and managed on many
different operating systems. For that reason, HP has worked to keep as much
of the standard OSF DCE interface available as possible within the OpenVMS
environment. For example, you can define foreign commands to execute DCE
tools and utilities as you do on a UNIX system.

Note that the OpenVMS operating system does not differentiate between
commands using lowercase and uppercase characters, but operating systems
based on UNIX are case-sensitive. Many of the standard DCE commands
differentiate between lowercase and uppercase characters. Many literal strings
that appear in text, examples, syntax descriptions, and function descriptions
must be typed exactly as shown.

To assist users more accustomed to OpenVMS syntax and conventions, HP also
provides DCL interfaces for the following DCE tools:

• IDL compiler

• Universal unique identifier generator (uuidgen) utility

Note that you can use these interfaces only on OpenVMS DCE systems; OSF
DCE documentation includes no DCL interface information. For information
about the available DCL interfaces, refer to the chapter on DCL command
interfaces to DCE tools in the HP DCE for OpenVMS Alpha and OpenVMS I64
Reference Guide. Some of these interfaces can be enabled during installation and
configuration.

1.11.6 Integrated Login
HP provides Integrated Login, which combines the DCE and OpenVMS login
procedures. See Chapter 8 for more information.

1.11.7 Object-Oriented RPC
IDL has been extended to support a number of C++ language syntax features that
provide a distributed object framework. The DCE RPC runtime environment now
supports C++ bindings to remote objects. The combination of these new features
creates an Object-Oriented RPC. (See Chapter 12 for more information.)

Overview of HP DCE 1–7

2
DCE System Configuration

HP DCE for OpenVMS Alpha and OpenVMS I64 includes a system configuration
utility, SYS$MANAGER:DCE$SETUP.COM, that is used after the kit installation
to configure and start the DCE services. The HP DCE for OpenVMS Alpha
and OpenVMS I64 Installation and Configuration Guide provides important
information about setting up your initial DCE environment. This chapter
provides general information about the DCE configuration utility options and
provides details about the clobber option.

HP recommends that you use only DCE$SETUP.COM, the DCE system
configuration utility, to reconfigure and restart the HP DCE services. This
utility ensures that the proper configuration and sequencing of DCE operations
occur. For example, instead of starting the RPC daemon (dced) directly, use
DCE$SETUP.COM to start and stop daemons.

The DCE system configuration utility invokes a number of other utilities
while it is configuring and starting the DCE services and creates a log file
called SYS$MANAGER:DCE$SETUP.LOG. This error log file can be helpful
in diagnosing problems that may occur during the product installation or
subsequent reconfiguration.

Note

In a VMScluster environment, you must configure each VMScluster
node separately. Although a DCE kit can be installed clusterwide, DCE
services need specific DECnet and/or TCP/IP addresses and endpoints for
each host. You must configure each VMScluster node that will be part of
a DCE cell. Configure the VMScluster nodes exactly as single nodes are
configured.

2.1 Starting and Stopping the RPC Daemon
Starting from DCE Version 3.0 following enhancements have been made to the
DCE System management command procedure DCE$SETUP.COM.

• dced, the RPC daemon, can be started with the new startup command
procedure, DCE$RPC_STARTUP.COM.

• DCE$SETUP calls DCE$RPC_STARTUP to start dced instead of starting it
directly.

• DCE$RPC_STARTUP does UCX parameter checking instead of DCE$SETUP.

• DCE$RPC_SHUTDOWN checks to see if any DCE components are running
before it stops the dced.

DCE System Configuration 2–1

DCE System Configuration
2.1 Starting and Stopping the RPC Daemon

• Invoking DCE$SETUP with the CLEAN or CLOBBER option no longer
deletes the RPC endpoint database. However, the endpoints for any DCE
components will be removed. To delete the entire RPC endpoint database, you
must invoke DCE$RPC_SHUTDOWN with the CLEAN option.

• Modifications to informational messages have been made to remind the user
of the above changes.

The RPC daemon can be started or stopped with the two new command files
DCE$RPC_STARTUP.COM and DCE$RPC_SHUTDOWN.COM, which are located
in SYS$COMMON:[SYSMGR].

To start the Remote Procedure Call daemon, complete the following:

1. Run DCE$RPC_STARTUP.COM.

2. Specify [NO]CONFIRM to turn user prompting on or off. CONFIRM is the
default.

To stop the Remote Procedure Call daemon, complete the following:

1. Run DCE$RPC_SHUTDOWN.COM.

2. Specify the following options in any order:

• [NO]CONFIRM to turn user prompting on or off. CONFIRM is the
default.

• CLEAN to delete all entries from the RPC endpoint database.

Note

The RPC daemon must not be stopped if any DCE components or RPC
applications are running on the system.

2.2 Limiting RPC Transports
The RPC daemon can limit which protocols will be used by RPC applications. To
restrict the protocols that can be used, set a logical name RPC_SUPPORTED_
PROTSEQS that contains the valid protocols separated by a colon. Valid protocols
are ncadg_ip_udp, ncacn_ip_tcp, ncacn_dnet_nsp.

To prevent RPC applications from registering endpoints that use UDP/IP, use the
following command:

$ Define RPC_SUPPORTED_PROTSEQS "ncacn_ip_tcp:ncacn_dnet_nsp"

2.3 Using the DCE System Configuration Utility
To access the DCE system configuration utility menu, log in to the SYSTEM
account and enter the following command:

$ @SYS$MANAGER:DCE$SETUP.COM

2–2 DCE System Configuration

DCE System Configuration
2.3 Using the DCE System Configuration Utility

The system configuration utility displays the following menu:

1) Config Configure DCE services on this system
2) Show Show DCE configuration and active daemons
3) Stop Terminate all active DCE daemons
4) Start Start all DCE daemons
5) Restart Terminate and restart all DCE daemons
6) Clean Terminate all active DCE daemons and remove

all temporary local DCE databases
7) Clobber Terminate all active DCE daemons and remove

all permanent local DCE databases
8) Test Run Configuration Verification Program
0) Exit Exit this procedure
?) Help Display helpful information

Please enter your selection number:

To enter a system configuration menu command directly from the command line,
type the following command:

$ @DCE$SETUP.COM command

where command is one of the system configuration commands described in
Table 2–1.

DCE System Configuration 2–3

DCE System Configuration
2.3 Using the DCE System Configuration Utility

Table 2–1 System Configuration Commands

Command Description

config The config command modifies the DCE configuration. To
use this utility you must be logged in to either the SYSTEM
account or an account with the same privileges as the SYSTEM
account. The utility displays the current system configuration
and then prompts for changes to the configuration. The default
answers to the prompts depend on the existing configuration.
To choose the default answer, press Return. You can also type
a question mark (?) in response to any of the prompts to have
help text displayed. A third choice is to enter new input at the
prompt.

After you select all the services, the utility displays the new
configuration and asks whether the permanent configuration
database should be updated. The utility optionally starts
all of the daemons for the configured services and runs the
Configuration Verification Program (CVP).

show The show command displays the current DCE system
configuration in read-only mode. You need WORLD privileges
to execute this command. The HP DCE for OpenVMS Alpha
and OpenVMS I64 Installation and Configuration Guide also
provides information on this command.

stop The stop command terminates all active DCE daemons. You
must have the SYSPRV privilege to use this command.

start The start command starts all DCE daemons based on the
current DCE system configuration. You must have the
SYSPRV privilege to use this command.

restart The restart command terminates all active DCE daemons
and restarts the daemons based on the current DCE system
configuration. You must have the SYSPRV privilege to use this
command.

clean The clean command terminates all active DCE daemons.
It deletes temporary local databases associated with DCE
services on this system. You must have the SYSPRV privilege
to execute this command. After you execute this command, you
must restart the DCE services and applications. To restart the
daemons after executing the clean command, use DCE$SETUP
start.

clobber The clobber command terminates all active DCE daemons. It
deletes temporary and permanent local databases associated
with DCE services on this system, including the DCE system
configuration files and any portion of the RPC name service
database for the cell that is maintained on this system. You
must have the SYSPRV privilege to execute this command.

After you execute this command, you must reconfigure the
services on this system because clobber returns the system to
the state it was in during the kit installation before the initial
DCE system configuration was performed. To reconfigure the
services and restart the daemons after executing the clobber
command, use DCE$SETUP config.

test The test command begins the Configuration Verification
Program.

exit The exit command allows you to exit from the DCE System
Configuration menu without executing an option.

2–4 DCE System Configuration

DCE System Configuration
2.3 Using the DCE System Configuration Utility

Implications of Using the clobber Command
Caution

The clobber command destroys a DCE cell. If you use it, you must
reconfigure major portions of the cell. Using this command causes the
following events:

• All temporary and permanent DCE databases and files are deleted,
including:

– Configuration databases:

DCE$LOCAL:[000000]DCE_CF.DB (permanent database)

DCE$LOCAL:[000000]DCE_SERVICES.DB (permanent database)

Loss of these databases means you must reconfigure the host by
entering @SYS$MANAGER:DCE$SETUP CONFIG.

• If the host on which the clobber command has been executed is the
name service server for the cell, the namespace and all files are
deleted.

All name service entries and directories must be recreated. To
recreate the DCE entries and directories by reconfiguring DCE on this
host, you can enter the command @SYS$MANAGER:DCE$SETUP
CONFIG. Users can create all user namespace entries and directories.
You must restart the daemons either by responding YES at the
configuration procedure’s prompt, or by entering the command
@SYS$MANAGER:DCE$SETUP START at a later time.

2.4 Kerberos
The DCE security server makes UDP port 88 (service name "kerberos5") available
for use by native Kerberos clients for authentication.

Note

Kerberos realm names must match the cell name of the DCE security
server.

Native kerberos5 clients have undergone minimal testing, and are
currently unsupported. However, there are no known problems in this
area. If this interoperability is important to your site, you may want to
try it.

DCE System Configuration 2–5

3
Interoperability and Compatibility

This chapter describes interoperability and compatibility issues for HP DCE for
OpenVMS Alpha and OpenVMS I64. Information is provided on the following
topics:

• Interoperability with other DCE systems

• Use with Microsoft RPC

HP DCE for OpenVMS Alpha and OpenVMS I64 also interoperates with
non-DCE systems that are running the Microsoft DCE-compatible RPC.
This chapter briefly describes how to run the name service interface daemon
(nsid), also known as the PC Nameserver Proxy Agent, which allows systems
running the Microsoft RPC software to access a DCE name service.

• Use in VMScluster environments

DCE and VMScluster environments are distributed computing systems. This
chapter includes information to consider when using the two technologies
together.

3.1 Interoperability with Other DCE Systems
HP DCE for OpenVMS Alpha and OpenVMS I64 provides RPC interoperability
with HP’s other DCE offerings, with several restrictions. HP DCE systems must
have at least one network transport in common with a HP DCE client or server
in order to communicate. For example, a HP DCE client system that supports
only the DECnet transport cannot communicate with a DCE server that supports
only the Internet transports (TCP/IP and UDP/IP).

This release provides RPC interoperability with other vendors’ DCE offerings,
with similar restrictions to those listed for other HP DCE offerings.

The Interface Definition Language provides a data type, (error_status_t), for
communicating error status values in remote procedure calls. Data of the error_
status_t type is subject to translation to a corresponding native error code. For
example, a "memory fault" error status value returned from a HP OSF/1 system
to an OpenVMS system will be translated into the OpenVMS error status value
"access violation".

In some cases, information is lost in this translation process. For example, an
OpenVMS success or informational message is mapped to a generic success status
value on other systems, because most non OpenVMS systems do not use the same
mechanism for successful status values and would interpret the value as an error
code.

Interoperability and Compatibility 3–1

Interoperability and Compatibility
3.2 Interoperability with Microsoft RPC

3.2 Interoperability with Microsoft RPC
DCE systems can interoperate with non-DCE systems that are running Microsoft
RPC. Microsoft supplies a DCE-compatible version of remote procedure call
software for use on systems running MS–DOS, Windows, or Windows NT.
Microsoft RPC systems can also use a DCE name service. The DCE name service
can include the Cell Directory Service (CDS). Microsoft RPC servers can export
and import binding information, and Microsoft RPC clients can import binding
information. Thus, DCE servers can be located and used by Microsoft RPC clients
and, similarly, Microsoft RPC servers can be located and used by DCE clients.

HP DCE for OpenVMS Alpha and OpenVMS I64 includes a name service
interface daemon (nsid), also known as the PC Nameserver Proxy Agent, that
performs DCE name service clerk functions on behalf of Microsoft RPC clients
and servers. Microsoft RPC does not include a DCE name service. Microsoft
RPC clients and servers locate an nsid using locally maintained nsid binding
information. The binding information consists of the transport over which the
nsid is available, the nsid’s host network address, and, optionally, the endpoint on
which the nsid waits for incoming calls from Microsoft RPC clients and servers.
You must provide the nsid’s transport and host network address (and, optionally,
the nsid’s endpoint) to Microsoft RPC clients and servers that want to use the
DCE Directory Service with Microsoft RPC applications.

Note

Although your DCE cell may have several NSI daemons running,
Microsoft RPC users need the binding for only one nsid. The nsid you
choose must be running on a system that belongs to the same DCE cell as
the DCE systems with which Microsoft RPC systems will communicate.

You can obtain the nsid binding information by running the rpccp show mapping
command on the system where the nsid is running. The following example shows
how to enter this command on an OpenVMS Alpha system where this release is
installed. The nsid bindings are those with the annotation NSID: PC Nameserver
Proxy Agent V1.0. Select the appropriate endpoint from among these bindings.
In the following example, the nsid binding for the TCP/IP network transport is
ncacn_ip_tcp:16.20.16.141[4685].

$ rpccp
rpccp> show mapping

mappings:
.
.
.
<OBJECT> nil
<INTERFACE ID> D3FBB514-0E3B-11CB-8FAD-08002B1D29C3,1.0
<STRING BINDING> ncacn_ip_tcp:16.20.16.141[4685]
<ANNOTATION> NSID: PC Nameserver Proxy Agent V1.0

<OBJECT> nil
<INTERFACE ID> D3FBB514-0E3B-11CB-8FAD-08002B1D29C3,1.0
<STRING BINDING> ncacn_dnet_nsp:2.711[RPC03AB0001]
<ANNOTATION> NSID: PC Nameserver Proxy Agent V1.0
.
.
.

3–2 Interoperability and Compatibility

Interoperability and Compatibility
3.2 Interoperability with Microsoft RPC

For more information on using PCs with DCE, see Distributing Applications
Across DCE and Windows NT.

3.3 Understanding and Using OSF DCE and VMScluster
Technologies

This section describes the following:

• Similarities between VMScluster environments and DCE environments (cells)

• Differences between VMScluster environments and DCE environments (cells)

• Limitations on using DCE in a VMScluster environment

• Configuration issues when using DCE in a VMScluster environment

3.3.1 Similarities Between VMScluster Environments and DCE Cells
VMScluster technology as implemented by OpenVMS systems provides some of
the same features of distributed computing that OSF DCE provides. Many of
the VMScluster concepts apply to DCE, and it is easy to think of a VMScluster
system as being a type of DCE cell.

The following attributes are shared by DCE and VMScluster environments:

• Both technologies create a multiple-system environment that you can view
as an extended system. Multiple resources are pulled together to extend
computing power beyond that of a single system and beyond that of systems
with simple network connections.

• Both technologies use a common name to identify participants. In a
VMScluster environment, you can identify all VMScluster members by
the VMScluster alias name; in a DCE cell, you can identify all participants by
a cell name.

• Both technologies use a common namespace to register name translations
for resources that are shared across the extended system. Systems in a
VMScluster environment use the OpenVMS logical name mechanism; a DCE
cell uses the distributed directory service.

• Both technologies use a single account and password registry that is shared
across the extended system. You can log in to a VMScluster alias name and
gain access to VMScluster members and resources; you can log in to a DCE
cell and gain access to DCE cell resources.

• Both technologies use a shared file system. When you log in to a VMScluster,
you have access to all disks, directories, and files associated with the
VMScluster environment. A full DCE implementation includes the
Distributed File Service (DFS), which allows access to disks, directories,
and files associated with the DCE cell. However, HP DCE for OpenVMS
Alpha and OpenVMS I64 does not include DFS.

3.3.2 Differences Between VMScluster Environments and DCE Cells
VMScluster environments differ from DCE cells in two significant ways:

• The VMScluster alias implementation allows two network addresses for each
VMScluster node.

Interoperability and Compatibility 3–3

Interoperability and Compatibility
3.3 Understanding and Using OSF DCE and VMScluster Technologies

• A VMScluster environment includes a connection-forwarding mechanism that
allows an extended VMScluster environment to appear as a single entity on a
network.

VMScluster environments support the concept of individual systems as nodes
in the extended system. In DCE, individual systems are called hosts. In a
VMScluster environment, each node effectively has two addresses: a network
node address and the VMScluster alias address. These two addresses are used
differently, as follows:

• You can use the VMScluster alias address to access shared resources, which
are resources accessible from every node. Because each VMScluster node
can access the resource, the VMScluster router simply forwards the connect
request to a VMScluster node. Because it does not matter which node
is used to access the resource, the connection is made automatically and
transparently to the requester.

• Alternatively, you can access shared or non-shared resources by using the
node address of a specific VMScluster node.

In DCE there is no such dual identity. All network addressing is done directly to
a specified host. The DCE cell does not have a separate network address, and it
does not perform any forwarding functions. To share resources across hosts, DCE
applications can use replication (resource copies) or store the resources in the
shared file system, DFS, if it is available.

The VMScluster environment connection-forwarding mechanism permits the
entire extended system to appear on the network as a single addressable
entity (the VMScluster alias address). Although DCE does not support a
connection-forwarding mechanism, DCE can use the Remote Procedure Call
(RPC) grouping mechanism to access shared resources in a distributed file
system. This mechanism selects, from an available set, one host/server pair that
provides access to the shared resource.

3.3.3 Limitations on Using DCE in a VMScluster System
DCE does not support VMScluster connection forwarding. DCE requires, instead,
that all connection requests be made directly to a specific node in the VMScluster
instead of to a VMScluster alias.

For example, if you start a DCE application server named whammy on
VMScluster node HENDRX in a VMScluster named GUITAR (VMScluster
alias name), binding information includes node HENDRX addressing information;
it does not include VMScluster alias GUITAR addressing information. In turn,
when a client wants to communicate with server whammy, it must retrieve
binding information about the server. This binding information must contain
address information for physical node HENDRX, not for the VMScluster alias
GUITAR.

DCE makes use of VMScluster technology in the following ways:

• You can install DCE from a single kit installation for all nodes in the
VMScluster environment. You can store all of the executables, libraries,
message files, and other resources in the common VMScluster file system.

• You can use a single, shared account to execute the DCE daemon processes.

3–4 Interoperability and Compatibility

Interoperability and Compatibility
3.3 Understanding and Using OSF DCE and VMScluster Technologies

Although DCE installation and daemon processes are handled in a standard
VMScluster manner, you must configure each VMScluster node individually to
run DCE services. Some DCE services require node-specific information to be
stored in the non-shared file system.

3.3.4 DCE and VMScluster Configuration Issues
Although DCE cells and VMScluster environments include exclusive lists of hosts
(nodes), the boundaries of the two environments do not need to match each other.
In a VMScluster environment, each node can be a member of only one extended
cluster system. The same applies to DCE: each host is a member of only one cell.
However, when you configure DCE and use it with VMScluster environments, the
boundaries of a cell and the boundaries of a VMScluster do not need to be the
same.

For security reasons, you should not have some members of a VMScluster belong
to one cell and other members of a VMScluster belong to another cell. However,
members of multiple VMScluster environments can be members of one DCE cell.

Interoperability and Compatibility 3–5

4
Using HP DCE with DECnet

The following sections describe information you need to know when using HP
DCE for OpenVMS Alpha and OpenVMS I64 with DECnet software.

HP DCE for OpenVMS Alpha and OpenVMS I64 supports DECnet Phase IV
networking. It also supports DECnet/OSI (DECnet Phase V).

4.1 DECnet and DCE Startup and Shutdown Sequences
Before you start or stop DECnet, you should first stop the DCE services. Then,
after you start DECnet, restart the DCE services. Follow these steps to shut
down DECnet and DCE on a system running DCE applications:

1. Stop any DCE applications that are running.

2. Stop the DCE services.

If you are performing a system shutdown, DCE services are stopped
with the following command, placed before the network transport
shutdown commands in the site-specific shutdown procedure
SYS$MANAGER:SYSHUTDOWN.COM:

$ @SYS$STARTUP:DCE$SHUTDOWN

This ensures that both DCE services and DECnet shut down in the correct
order.

If, however, you must shut down DECnet but are not performing a system
shutdown, first stop the DCE services with this command:

$ @SYS$MANAGER:DCE$SETUP clean

3. Then, if you are not performing a system shutdown, you can also stop DECnet
interactively with one of the following commands:

To shut down DECnet Phase IV, use the following command:

$ MCR NCP SET EXECUTOR STATE SHUT

To shut down DECnet/OSI, use the following command:

$ @SYS$MANAGER:NET$SHUTDOWN

Here is the sequence to follow when you start DECnet on a system that is also
running DCE applications:

1. Start DECnet Phase IV with the following command (usually executed from
system startup procedures):

$ @SYS$MANAGER:STARTNET.COM

Start DECnet/OSI with the following command:

$ @SYS$STARTUP:NET$STARTUP.COM

2. Make sure the DCE services are started.

Using HP DCE with DECnet 4–1

Using HP DCE with DECnet
4.1 DECnet and DCE Startup and Shutdown Sequences

Check to see that the DCE startup command procedure is invoked by the
site-specific startup procedure. In SYS$MANAGER:SYSTARTUP_VMS.COM,
make sure the following line was placed after the network transport startup
commands:

$ @SYS$STARTUP:DCE$STARTUP.COM

DCE startup can occur only after successful completion of the DECnet startup
procedure.

If you need to start the DCE services, but are not performing a system reboot,
you can start DCE with this command:

$ @SYS$MANAGER:DCE$SETUP start

3. After the DCE services are started, you can restart your DCE applications.

4.2 Running DCE Server Applications Using DECnet
Users running server applications that support DECnet need to consider the
following:

• The requirements needed on accounts running servers

• The restrictions on naming DECnet endpoints

4.2.1 Server Account Requirements
A DCE server application listening for client requests using the ncacn_dnet_nsp
protocol sequence must be able to create a DECnet server endpoint (known as a
named object in DECnet). To create the endpoint, the server application must run
from an account that has either the rights identifier NET$DECLAREOBJECT or
the privilege SYSNAM enabled.

If the NET$DECLAREOBJECT rights identifier does not already exist on your
system, installation of HP DCE for OpenVMS Alpha and OpenVMS I64 creates it
for you.

Use the OpenVMS Authorize utility (AUTHORIZE) to display the rights
identifier, as follows:

$ RUN SYS$SYSTEM:AUTHORIZE

UAF> SHOW /IDENTIFIER NET$DECLAREOBJECT

Name Value Attributes
NET$DECLAREOBJECT %X91F50005 DYNAMIC

If a server application must run from an account without the SYSNAM privilege,
and the rights identifier does not exist, you must use AUTHORIZE to grant the
rights identifier to the account. For example:

$ RUN SYS$SYSTEM:AUTHORIZE
UAF> GRANT/IDENTIFIER NET$DECLAREOBJECT uic/account-specification

If the server account does not have the rights identifier NET$DECLAREOBJECT
or the SYSNAM privilege, the RPC use-protocol-sequence API routines such as
rpc_server_use_all_protseqs() and rpc_server_use_protseq() return the status
code rpc_s_cant_listen_socket for the ncacn_dnet_nsp (DECnet) protocol sequence.

4–2 Using HP DCE with DECnet

Using HP DCE with DECnet
4.2 Running DCE Server Applications Using DECnet

4.2.2 DECnet Endpoint Naming
To prevent RPC interoperability problems between DECnet–VAX and DECnet-
UNIX hosts, HP recommends that you specify all well-known server endpoints
completely in uppercase characters, using a maximum of 15 characters.

The following example shows an IDL file using an uppercase endpoint:

[uuid(43D2681B-A000-0000-0D00-00C663000000),
version(1),
endpoint("ncadg_ip_udp:[2001]",

"ncacn_ip_tcp:[2001]",
"ncacn_dnet_nsp:[APP_SERVER]")

]
interface my_app

When a server calls the RPC use-protocol-sequence API routines such as
rpc_server_use_all_protseqs_ep() and rpc_server_use_protseq_if(), DECnet on
OpenVMS creates ncacn_dnet_nsp endpoints in uppercase characters, regardless
of how the endpoint was specified. DECnet on OpenVMS also converts to
uppercase the endpoints in all incoming and outgoing RPC requests.

DECnet-UNIX, however, does no conversions on ncacn_dnet_nsp endpoints.
These differences can prevent client requests from reaching a server.

For example, an UNIX DCE server listening for client requests over the ncacn_
dnet_nsp protocol sequence with the endpoint app_server is not able to receive
requests from an OpenVMS DCE client. Even though the OpenVMS client uses
the endpoint app_server to create a binding handle (by using a string binding or
from an import), DECnet on OpenVMS converts the endpoint in the outgoing RPC
request to uppercase APP_SERVER. Because the UNIX DCE server application is
listening on the lowercase app_server endpoint, the client request is rejected.

4.3 DECnet String Binding Formats Supported in This Release
To support the use of string bindings in this release, HP has added the following
DECnet value to the list of supported protocol sequences:

ncacn_dnet_nsp

Unlike TCP/IP and UDP/IP, DECnet allows a named endpoint. An example of a
DECnet protocol sequence named endpoint is TESTNAME. HP recommends that
you use uppercase names with no more than 15 characters.

An example of an object number is #17. The # (number sign) character must
precede an object number.

At present, there are no DECnet Phase IV options.

Using HP DCE with DECnet 4–3

5
Using HP DCE with Microsoft’s NT LAN

Manager (NTLM)

Beginning with OpenVMS Alpha Version 7.2, RPC provides WINNT as an
additional authentication service. WINNT, which is based on Microsoft’s
NTLM authentication protocol, allows you to build RPC client or server
applications using WINNT authentication. These applications will allow secure
communications in a Microsoft security environment.

5.1 Using WINNT Authentication with RPC Server Applications
To accept requests that use WINNT authentication, the RPC server application
must do the following:

1. The server application must call rpc_server_register_auth_info() to tell the
server RPC runtime that it supports WINNT authentication.

2. When the server application is run, it uses all WINNT security information
from the current address space. If the process that deploys the server
application has not acquired WINNT security information for its address
space, then the RPC server’s call to rpc_server_register_auth_info() will fail.
To obtain WINNT security information, the NTA$LOGON utility must be run.

For an RPC server application to impersonate the requesting client, you must
complete the following:

1. The first input parameter to each RPC server manager routine is a binding
handle that represents the requesting client. If the RPC server application
wants to impersonate the client represented by the binding handle, then
the RPC server manager routine must call rpc_impersonate_client() with
the binding handle as input. This allows the RPC server to use the WINNT
and OpenVMS security information of the client instead of the WINNT and
OpenVMS security information of the server.

2. When the RPC server application wants to run with its original WINNT and
OpenVMS security information, it must call either rpc_revert_to_self() or
rpc_revert_to_self_ex().

Running with WINNT security information means that the RPC application
accesses a resource on the system that has WINNT access control lists. The
operating system checks the RPC application’s WINNT security information
to determine if access is allowed. If the application accesses a resource with
OpenVMS ACLs, it is checked against the OpenVMS security information of
the application.

Using HP DCE with Microsoft’s NT LAN Manager (NTLM) 5–1

Using HP DCE with Microsoft’s NT LAN Manager (NTLM)
5.1 Using WINNT Authentication with RPC Server Applications

For an RPC client application to send requests that will use WINNT
authentication, you must complete the following:

1. The client application must call rpc_binding_set_auth_info() to set WINNT
authentication information on the binding.

2. The client application must pass security credential information to rpc_
binding_set_auth_info(). Use the rpc_binding_set_auth_info() auth_ident
parameter value to pass WINNT security information. The auth_ident
parameter can have one of the following two values:

• The auth_ident parameter supplied to rpc_binding_set_auth_info() is
NULL. If this is the case, then the client application will use all WINNT
security information from the current address space. If the process that
deploys the client RPC application has not acquired WINNT security
information for it’s address space, then the RPC client’s call to rpc_
binding_set_auth_info() will fail. To obtain WINNT security information,
the NTA$LOGON utility must be run.

• Supply a valid rpc_auth_identity_handle_t obtained from a call to rpc_
winnt_set_auth_idenity(). This option allows the client to use WINNT
security information other than that of the current address space.

Note

Be careful when passing in the auth_ident parameter to perform
authentication. If multiple invalid authentications occur, OpenVMS
generates an intrusion record. Any subsequent valid authentications will
fail. If this occurs, contact your system manager to delete the intrusion
record.

5.2 RPC APIs Created or Enhanced to Support WINNT
Authentication

The following routines have been created or enhanced to support the WINNT
authentication service:

rpc_binding_set_auth_info()
rpc_server_register_auth_info()
rpc_binding_inq_auth_info()
rpc_binding_inq_auth_client()
rpc_mgmt_inq_dflt_authn_level()
rpc_mgmt_inq_server_princ_name()
rpc_winnt_set_auth_identity()
rpc_winnt_free_auth_identity()
rpc_impersonate_client()
rpc_revert_to_self()
rpc_revert_to_self_ex()

For more information on the RPC security APIs, see the HP DCE for OpenVMS
Alpha and OpenVMS I64 Reference Guide.

5–2 Using HP DCE with Microsoft’s NT LAN Manager (NTLM)

Using HP DCE with Microsoft’s NT LAN Manager (NTLM)
5.3 Using the NTA$LOGON Utility

5.3 Using the NTA$LOGON Utility
The NTA$LOGON utility allows client and server applications to obtain WINNT
security information. This section provides NTLOGON syntax and usage
examples. For more information on the NTA$LOGON utility, see the HP COM,
Registry, and Events for OpenVMS Developer’s Guide.

NAME

NTLOGON — Invokes the NTA$LOGON utility

SYNOPSIS

ntlogon username password

Note that all character strings will be converted to uppercase unless they are
enclosed in double quotations ("""").

QUALIFIERS

/LOG
Displays the result of a transaction.
/LIST
Lists the NT credentials for the current process. This is the natural persona.
/DELETE
Deletes the NT credentials for the current process.
/DOMAIN = domain
Specifies a different domain.

EXAMPLES

The following example shows how to use the NTA$LOGON utility:

$ ntlogon/list
[Persona #1 NT extension: Account= "TESTACCNT" Domain=
"OPENVMS_ARPC"]

$ ntlogon/delete

$ ntlogon/list
ERROR: NtOpenProcessToken() failure: -1073741700
0xc000007c
%SYSTEM-E-NOSUCHEXT, no such extension found

$ ntlogon TESTSACCNT examplepassword

$ ntlogon/list
[Persona #1 NT extension: Account= "TESTACCNT" Domain=
"OPENVMS_ARPC"]

$ ntlogon/log/domain=openvms_dcom "okelley" "password"
[Deleting existing NT extension]
[Persona #1 NT extension: Account= "okelley" Domain=
"OPENVMS_DCOM"]

For more information on setting up your OpenVMS environment to use WINNT
authentication, see the HP COM, Registry, and Events for OpenVMS Developer’s
Guide.

Using HP DCE with Microsoft’s NT LAN Manager (NTLM) 5–3

6
Directory Names, Filenames, and Locations

Across DCE Platforms

This chapter provides the names and locations of important DCE directories
and files as they are installed and used with HP DCE for OpenVMS Alpha and
OpenVMS I64 systems. Tables show the correlation between HP DCE directories
and files and their counterparts on other DCE kits.

6.1 DCE Directories
DCE installation and configuration creates a number of directories that
are required for proper DCE execution. On HP DCE for OpenVMS Alpha
and OpenVMS I64, you can access the top-level DCE directory by using
the logical name DCE$LOCAL. This is the top-level DCE directory named
DCE$LOCAL:[000000]. On a Tru64 UNIX system, the corresponding DCE
local directory is created in /opt/dcelocal. The DCE services database, named
dce_services.db, and the DCE configuration database, named dce_cf.db, reside in
this top-level DCE local directory.

On HP DCE for OpenVMS Alpha and OpenVMS I64 systems, the DCE databases,
which are created when the dced daemon starts, are located in the directory
DCE$LOCAL:[VAR.DCED]. On a Tru64 UNIX system, these databases are
located in the directory /opt/dcelocal/var/dced.

Table 6–1 lists the names of the DCE directories on HP DCE for OpenVMS Alpha
and OpenVMS I64 and the corresponding directory names on HP DCE for Tru64
UNIX systems.

Table 6–1 DCE Directories for OpenVMS and Tru64 UNIX

OpenVMS DCE Directory Name Tru64 UNIX Equivalent

DCE$LOCAL:[000000] /opt/dcelocal

DCE$LOCAL:[VAR] /opt/dcelocal/var

DCE$LOCAL:[VAR.DIRECTORY] /opt/dcelocal/var/directory

DCE$LOCAL:[VAR.DCED] /opt/dcelocal/var/dced

6.2 Setup Utilities
DCE installation also provides procedures and utilities to help you configure your
DCE environment. On HP DCE for OpenVMS Alpha and OpenVMS I64, these
procedures are placed in the SYS$MANAGER and SYS$STARTUP directories,
with the exception of the DCE$DEFINE_OPTIONAL_COMMANDS.COM
procedure, which is in the SYS$COMMON:[DCE$LIBRARY] directory. On a
Tru64 UNIX system, equivalent utilities reside in /usr/sbin.

Directory Names, Filenames, and Locations Across DCE Platforms 6–1

Directory Names, Filenames, and Locations Across DCE Platforms
6.2 Setup Utilities

Table 6–2 lists the names of the HP DCE for OpenVMS setup command
procedures and their equivalent Tru64 UNIX utilities.

Table 6–2 DCE Setup Utilities for OpenVMS and Tru64 UNIX

OpenVMS Filename Tru64 UNIX Equivalent

DCE$DEFINE_OPTIONAL_COMMANDS.COM NONE

DCE$DEFINE_REQUIRED_COMMANDS.COM NONE

DCE$SETUP.COM dcesetup

DCE$SHUTDOWN.COM NONE

DCE$STARTUP.COM NONE

6.3 Executable Images
Following installation on an OpenVMS Alpha or OpenVMS I64 system, all DCE
executable images reside in the SYS$SYSTEM directory. On a Tru64 UNIX
system, these images reside in /usr/bin.

Table 6–3 lists the names of the executable images on an OpenVMS system and
the names of the equivalent images on a Tru64 UNIX system.

Table 6–3 Executable Images for OpenVMS and Tru64 UNIX

OpenVMS Filename Tru64 UNIX Equivalent

DCE$ACL_EDIT.EXE acl_edit

DCE$ADD_ID.EXE NONE

DCE$AUDITD.EXE auditd

DCE$CADUMP.EXE cadump

DCE$CDSADVER.EXE cdsadv

DCE$CDSBROWSER.EXE cdsbrowser

DCE$CDSCLERK.EXE cdsclerk

DCE$CDSCP.EXE cdscp

DCE$CDSD.EXE cdsd

DCE$CHPASS.EXE NONE

DCE$CSRC csrc

DCE$DCECP.EXE dcecp

DCE$DCED.EXE dced

DCE$DCE_LOGIN.EXE dce_login

DCE$DCESX.EXE dcesx

DCE$DTSCP.EXE dtscp

DCE$DTSD.EXE dtsd

DCE$DTS_NTP_PROVIDER dts_ntp_provider

DCE$DTS_NULL_PROVIDER dts_null_provider

DCE$EXPORT.EXE NONE

(continued on next page)

6–2 Directory Names, Filenames, and Locations Across DCE Platforms

Directory Names, Filenames, and Locations Across DCE Platforms
6.3 Executable Images

Table 6–3 (Cont.) Executable Images for OpenVMS and Tru64 UNIX

OpenVMS Filename Tru64 UNIX Equivalent

DCE$GDAD.EXE gdad

DCE$GETCELLS.EXE getcells

DCE$IDL.EXE idl

DCE$IMPORT.EXE NONE

DCE$KCFG.EXE kcfg

DCE$KDESTROY.EXE kdestroy

DCE$KINIT.EXE kinit

DCE$KLIST.EXE klist

DCE$LDAP_ADDCELL.EXE ldap_addcell

DCE$LDAPDELETE.EXE NONE

DCE$LDAPMODIFY.EXE NONE

DCE$LDAPMODRDN.EXE NONE

DCE$LDAPSEARCH.EXE NONE

DCE$NSEDIT.EXE NONE

DCE$NSID.EXE nsid

DCE$RGY_EDIT.EXE rgy_edit

DCE$RPCCP.EXE rpccp

DCE$RPCLM.EXE rpclm

DCE$SEC_ADMIN.EXE sec_admin

DCE$SEC_CREATE_DB.EXE sec_create_db

DCE$SECD.EXE secd

DCE$SEC_SALVAGE_DB.EXE sec_salvage_db

DCE$SEC_SETUP.EXE NONE

DCE$SVCDUMPLOG.EXE svcdumplog

DCE$TCL.EXE NONE

DCE$UAF.EXE NONE

DCE$UUIDGEN.EXE uuidgen

DCE$X500_ADDCELL.EXE x500_addcell

6.4 Library Images
Following installation on an OpenVMS Alpha or OpenVMS I64 system, all DCE
library images reside in the SYS$LIBRARY directory. On a Tru64 UNIX system,
these images reside in /usr/lib.

Table 6–4 lists the names of the library images on OpenVMS Alpha and
OpenVMS I64 systems and the names of equivalent library images on an Tru64
UNIX system.

Directory Names, Filenames, and Locations Across DCE Platforms 6–3

Directory Names, Filenames, and Locations Across DCE Platforms
6.4 Library Images

Table 6–4 DCE Library Images for OpenVMS and Tru64 UNIX

OpenVMS Filename Tru64 UNIX Equivalent

DCE$IDL_CXX_SHR.EXE NONE

DCE$KERNEL.EXE NONE

DCE$LGI_CALLOUTS.EXE NONE

DCE$LIB_SHR.EXE libdce.a

DCE$SOCKSHR_IP.EXE NONE

DCE$SOCKSHR_DNET_IV.EXE NONE

DTSS$SHR.EXE NONE

DTSS$RUNDOWN.EXE NONE

DXD$CDS_SHR.EXE NONE

DCE$NSEDIT_SHR.EXE NONE

DCE$SOCKSHR_DNET_OSI.EXE NONE

DCE$SOCKSHR_TPS.EXE NONE

DCE$UAF_SHR.EXE NONE

DCE$MSRPC_MAPPING_SHR.EXE NONE

6.5 Message Files
After you install HP DCE for OpenVMS Alpha or OpenVMS I64, all DCE
message files reside in the SYS$MESSAGE directory. On a Tru64 UNIX system,
the message files reside in /usr/lib/nls/msg/en_US.88591.

Table 6–5 lists the names of the message files on an OpenVMS system and the
names of equivalent files on a Tru64 UNIX system.

Table 6–5 Message Files for OpenVMS and Tru64 UNIX

OpenVMS Filename Tru64 UNIX Equivalent

DCE$IDL_MSG.EXE idl.cat

DCE$RPC_MSG.EXE dcerpc.cat

DCE$UUIDGEN_MSG.EXE uuidgen.cat

DCE$SEC_MSG.EXE dcesec.cat

DCE$IL_MSG.EXE NONE

6.6 Development Files
On an OpenVMS system, all DCE.h and .idl application development files reside
in the SYS$COMMON:[DCE$LIBRARY] directory. You can also access this
directory through the logical name DCE. On a Tru64 UNIX system, these files
reside in the directory /usr/include/dce. Except for case-sensitivity differences
between systems, all .h and .idl files have the same names on both OpenVMS and
Tru64 UNIX systems.

6–4 Directory Names, Filenames, and Locations Across DCE Platforms

Directory Names, Filenames, and Locations Across DCE Platforms
6.7 Sample Applications

6.7 Sample Applications
Both HP DCE for OpenVMS Alpha and OpenVMS I64 and HP DCE for Tru64
UNIX provide RPC and DCE sample applications. On OpenVMS, all example
source and build files are located in the following separate subdirectories:

• SYS$COMMON:[SYSHLP.EXAMPLES.DCE]

• SYS$COMMON:[SYSHLP.EXAMPLES.DCE.RPC].

On Tru64 UNIX systems, the sample applications reside in subdirectories of
/usr/examples/dce and /usr/examples/dce/rpc.

On both OpenVMS and Tru64 UNIX systems, example application
files reside in subdirectories named for the sample applications. For
example, on OpenVMS systems, all Distributed Calendar Program
(book) example source and build files are located in the directory
SYS$COMMON:[SYSHLP.EXAMPLES.DCE.RPC.BOOK].

On Tru64 UNIX systems, the equivalent files for the calendar program reside in
the directory /usr/examples/dce/rpc/book.

Directory Names, Filenames, and Locations Across DCE Platforms 6–5

7
Application Development Considerations and

Differences

HP DCE for OpenVMS Alpha and OpenVMS I64 provides universal command
interfaces, as well as directory structures, filenames, and application development
environments that resemble those on UNIX systems. In general, this allows
users to read any standard DCE documentation, such as that provided with this
release, and create DCE applications on OpenVMS systems.

Although HP DCE for OpenVMS Alpha and OpenVMS I64 is designed to
minimize differences from DCE as it is installed on UNIX systems, there are
reasons to conform to OpenVMS standards and conventions first.

Primarily, users encounter the differences between the OpenVMS and UNIX
platforms when they compile and link programs, but running compiled programs
can require setup procedures specific to OpenVMS or this DCE kit.

This chapter describes application development formats and rules on OpenVMS
systems that may differ from those described in the OSF DCE Application
Development Guide. The following topics are discussed:

• Building applications

• Considering structure alignment with C compilers

• Building applications using OpenVMS object libraries

• Running applications

• Translating OSF DCE documentation examples to OpenVMS

7.1 Building Applications
This section describes command formats for compiling and linking applications
on HP DCE for OpenVMS Alpha and OpenVMS I64. For general information
about compiling and linking applications, refer to the OSF DCE Application
Development Guide.

7.1.1 Linking DCE Applications
HP DCE uses the HP C Runtime library (HP - CRTL) to provide C runtime
library functions for DCE software and DCE applications. DCE supports only the
HP CRTL. HP DCE for OpenVMS Alpha and OpenVMS I64 has an options file,
DCE:DCE.OPT which you should use for linking your DCE applications. This
DCE.OPT options file includes SYS$SHARE:DCE$LIB_SHR and other libraries
needed by DCE applications.

Application Development Considerations and Differences 7–1

Application Development Considerations and Differences
7.1 Building Applications

7.1.2 Considerations for Structure Alignment with C Compilers
On OpenVMS Alpha and I64 systems, DCE stub and library code assumes native,
aligned form for structures. Do not use the C preprocessor pragma to prevent
member alignment.

7.1.3 Considerations for Building DCE Applications Using OpenVMS Object
Libraries

When moving programs from one operating system to another, you must consider
the operations of different linkers. The following OpenVMS Linker operations are
relevant to programmers developing DCE applications:

• The OpenVMS Linker does not load an object module from an object library
unless the module is needed to resolve a reference in another component of
the program.

• The OpenVMS Linker does not load an object module from an object library
to resolve a reference to an external variable if that object module contains
only a compile-time initialization of the variable. In this case, the Linker
creates an uninitialized PSECT for the variable. References to this variable
at program runtime will yield incorrect results.

These Linker operations are important to DCE application developers because the
stub code produced by the IDL compiler contains only compile-time initialization
for some external variables that will be referenced by DCE applications. To
ensure that these variables are initialized properly, you must explicitly include
the stub modules when you link your DCE application.

Suppose you are building the client portion of your DCE application, MYAPP. The
MYAPP application contains two client stub modules, MYAPP_1_CSTUB.OBJ
and MYAPP_2_CSTUB.OBJ, that are stored in an object library called MYLIB. To
create the MYAPP executable code, enter the following link command:

$ LINK/EXE=MYAPP,MYLIB.OLB/LIB/INCLUDE=(MYAPP_1_CSTUB,MYAPP_2_CSTUB)

Use a similar linking method to create executable server code.

7.2 Running Applications
After you compile and link an application, the result is an executable image. For
example, you may create an executable image named APPD.EXE.

If your application is a simple executable file, you can run it as you do any
OpenVMS executable. However, if your application accepts command line
switches or input that is unacceptable from DCL (such as -d), you must define a
foreign command that can invoke the executable. For example, assign a symbol
with a command such as the following:

$ APPD:== $WORK1:[CARL.MYDCETEST]APPD.EXE

This assignment allows you to run the application with a command such as the
following:

$ appd -d

7–2 Application Development Considerations and Differences

Application Development Considerations and Differences
7.3 Translating OSF DCE Documentation Examples to OpenVMS

7.3 Translating OSF DCE Documentation Examples to OpenVMS
The OSF DCE Application Development Guide refers to files that do not exist
on OpenVMS systems and illustrates commands and command syntax that do
not work in an OpenVMS environment. The example in Section 7.1 includes a
command line that illustrates many of the differences you see when you compile
DCE code on OpenVMS. Note the following differences for writing applications on
OpenVMS systems:

• The name for libdce is DCE$LIB_SHR.EXE.

• Object format files created by the IDL and C compilers have the file extension
.OBJ instead of .o.

• On the HP Tru64 UNIX operating system, users typically define the
environment variable NLSPATH to reference DCE message catalog files.
On OpenVMS systems, there is no need for users to establish a symbolic
reference to message catalog files.

• Using the UNIX command setenv is equivalent to defining an OpenVMS
logical name. Note that many important logical names are defined during
DCE configuration. See the installation and configuration guide for more
information.

• OpenVMS does not have a program called MAKE or the makefiles that use
it. On OpenVMS systems, you can convert these files to command procedures
or use source-control software such as the HP/Module Management System
(MMS) for OpenVMS.

• DECnet endpoints in IDL files must be uppercase and no longer than
15 characters. See the chapter on using HP DCE with DECnet for more
information.

• The UNIX feature fork is generally analogous to spawning a subprocess in
OpenVMS.

• Programs that accept arguments require foreign command assignment on
OpenVMS. Unless you define a foreign command first, examples such as the
following do not work:

$ bookd -v
$ test1 -d

• Any examples or descriptions that use specific UNIX commands or syntax do
not work on OpenVMS systems. A command such as the following, which
redirects output to a file called binop.idl, does not work on OpenVMS:

$ uuidgen -i > binop.idl

For this particular command, uuidgen, you can direct output to a file by using
the command option -o as follows:

$ uuidgen -i -o binop.idl

You can substitute the OpenVMS equivalent SYS$DISK[] for the ./ syntax.
However, to make an example such as this work on OpenVMS, you must
first define a foreign command that points to the executable using standard
OpenVMS directory syntax.

In addition, the various UNIX commands for TYPE (cat), DIRECTORY (ls),
SHOW PROCESS (ps), and STOP/ID=process-id (kill) do not work directly on
OpenVMS systems.

Application Development Considerations and Differences 7–3

Application Development Considerations and Differences
7.3 Translating OSF DCE Documentation Examples to OpenVMS

• DCE filenames and locations are similar but different on OpenVMS. See the
Directory Names, Filenames, and Locations Across DCE Platforms chapter
for more information about the differences and similarities.

The PIPE command can be used to simulate some UNIX style redirection.
Type HELP PIPE for more information. The PIPE command is only available on
OpenVMS Version 7.0 or greater.

7.4 Mapping MSRPC Calls to DCE RPC Calls
The Microsoft RPC mapping file acts as a porting aid in mapping Microsoft RPC
calls to DCE RPC calls. This mechanism is provided for OpenVMS Alpha Version
7.2 and higher and I64 Version 8.2 with the Application Developer’s Kit.

To aid in porting Microsoft RPC applications to the DCE format, a new shareable
image SYS$LIBRARY:MSRPC_MAPPING_SHR.EXE can be used to link with
the RPC application. This new image provides entry points that map a subset
of MSRPC calls to their DCE equivalents. To identify which APIs have been
mapped, see the MSRPC_MAPPING.H file. This file needs to be included in the
RPC application.

7–4 Application Development Considerations and Differences

8
Integrated Login

This chapter discusses Integrated Login, a component of HP DCE for OpenVMS
Alpha and OpenVMS I64 that combines the DCE and OpenVMS login procedures.

Integrated Login users should read the following sections:

• Section 8.1 — Overview

• Section 8.3 — Integrated Login Procedure

• Section 8.4 — Changing Your DCE Password

• Section 8.9 — Frequently Asked Questions for Users

System administrators should read the entire chapter (especially Section 8.5 and
Section 8.10).

8.1 Overview
Integrated Login allows you to do the following:

• Obtain DCE credentials when you interactively log in to OpenVMS. There is
no need for a separate DCE login.

• Enter either the DCE principal name and password or the OpenVMS
username and password at the OpenVMS username and password prompt.
(Using the DCE principal name and password is recommended.)

• Automatically synchronize DCE and OpenVMS passwords on every system
throughout the cell that supports Integrated Login.

• Use local login if the DCE Security Service is unavailable.

Integrated login is different from single login. Integrated login means that
the OpenVMS and DCE login processes are combined. When you log in to
the OpenVMS system specifying a single username and password, you are
automatically logged in to DCE as well. Single login means that once you have
been authenticated on one system (that is, integrated login has occurred), you are
automatically authenticated on any other system within the cell. (For example,
with single login it would be possible for telnet not to prompt for a username
and password.) DCE for OpenVMS Alpha and OpenVMS I64 provides integrated
login, not single login.

Integrated Login occurs when you log in to a standard interactive session, start a
remote interactive session, or create a terminal window. Integrated Login is not
supported for network jobs, batch jobs, or detached processes.

Integrated Login 8–1

Integrated Login
8.2 Integrated Login Components

8.2 Integrated Login Components
The components of Integrated Login include the following:

• Integrated Login procedure

• DCE User Authorization File (DCE$UAF)

• DCE$UAF Command Line Interface

• DCE IMPORT utility

• DCE EXPORT utility

8.3 Integrated Login Procedure
To log in to an OpenVMS system where DCE Integrated Login is enabled, perform
the following steps:

1. At the OpenVMS username prompt, enter your DCE principal name or
OpenVMS username.

Note

HP recommends that you specify your DCE principal name and password
when logging in to a system on which Integrated Login is enabled.

The DCE principal name you specify can contain no more than 32
characters. If your principal name and cell name combination contains
more than 32 characters, specify the OpenVMS username that is
associated with your DCE account instead. (This username is entered in
the DCE$UAF file.) You should still enter your DCE password to obtain
DCE credentials even if you specify your OpenVMS username.

If the DCE principal name or cell name contains lowercase characters or
OpenVMS special characters (for example, "/" and ","), enclose the entire
entry in quotation marks.

If a cell name is entered with a principal name, separate the two with an
at sign (@). If you do not specify a cell name, the current DCE cell name is
assumed. For example:

Username: "JaneSmith@paper_cell.widget.com"

2. At the password prompt, enter your DCE password (recommended) or
OpenVMS password. If you enter your DCE password and your OpenVMS
password is not currently synchronized, Integrated Login attempts to reset
your OpenVMS password to match your DCE password.

When you specify your principal name, Integrated Login maps the principal name
to your OpenVMS username by performing a lookup in the DCE$UAF. Similarly,
if you specify your OpenVMS username, Integrated Login maps the username
to your principal name by performing a case-blind lookup in the DCE$UAF. (If
the principal name or username you specify is not found in DCE$UAF, a regular
OpenVMS login is attempted.)

When the lookup is complete, Integrated Login has obtained both your username
and principal name. With that information, Integrated Login first attempts
an OpenVMS login, then a DCE login. (The same password is used for both
login attempts.) Depending on the principal name, username, and password you
specify, four possible outcomes can occur, as follows:

8–2 Integrated Login

Integrated Login
8.3 Integrated Login Procedure

• DCE Login: Success OpenVMS Login: Success

If the password provided results in a valid OpenVMS login and a valid DCE
login, the OpenVMS login succeeds and you have DCE credentials. Following
is an example of a successful login:

Welcome to OpenVMS (TM) Alpha Operating System, Version V7.2

Username: smith
Password:

Welcome to OpenVMS Alpha (TM) Operating System, Version V6.1 on node NODE
Last interactive login on Tuesday, 10-JAN-1995 08:25:33.67
Last non-interactive login on Tuesday, 10-JAN-1995 08:18:52.81

%DCE-S-IL_DCECERT, Certified DCE login for SMITH as principal "/.../dce_cell.
widget.com/Smith"
$

• DCE Login: Failure OpenVMS Login: Success

If the password provided results in a valid OpenVMS login but a failed DCE
login, the OpenVMS login succeeds but you do not have DCE credentials.
Integrated Login displays a message stating that the DCE login failed. For
example:

Welcome to OpenVMS (TM) Alpha Operating System, Version V7.2

Username: smith
Password:

Welcome to OpenVMS Alpha (TM) Operating System, Version V6.1 on node NODE
Last interactive login on Tuesday, 10-JAN-1995 08:26:49.50
Last non-interactive login on Tuesday, 10-JAN-1995 08:18:52.81

%DCE-I-IL_VMSONLY, DCE login as principal "/.../dce_cell.widget.com/Smith"
failed, OpenVMS login to SMITH successful
$

If the "DCE login required" feature is enabled, this outcome will fail and
you will receive the user authorization failure message. See Section 8.5 for
information on the DCE login required feature.

• DCE Login: Success OpenVMS Login: Failure

If the password provided results in a valid DCE login but a failed OpenVMS
login, you are given DCE credentials and you are logged in to OpenVMS.
Integrated Login then attempts to set the OpenVMS password to match the
DCE password. In the following example, the password was successfully
synchronized:

Welcome to OpenVMS (TM) Alpha Operating System, Version V7.2

Username: smith
Password:

Welcome to OpenVMS Alpha (TM) Operating System, Version V6.1 on node NODE
Last interactive login on Tuesday, 10-JAN-1995 08:13:00.47
Last non-interactive login on Tuesday, 10-JAN-1995 08:18:52.81

%DCE-S-IL_DCECERT, Certified DCE login for SMITH as principal
"/.../dce_cell.widget.com/Smith"
%DCE-S-IL_VMSPWDSYNC, OpenVMS password synchronized with DCE password
$

In this example, the password was not successfully synchronized:

Integrated Login 8–3

Integrated Login
8.3 Integrated Login Procedure

Welcome to OpenVMS (TM) Alpha Operating System, Version V7.2

Username: smith
Password:

Welcome to OpenVMS Alpha (TM) Operating System, Version V6.1 on node NODE
Last interactive login on Tuesday, 10-JAN-1995 06:44:16.15
Last non-interactive login on Tuesday, 10-JAN-1995 07:02:58.95

%DCE-S-IL_DCECERT, Certified DCE login for SMITH as principal
"/.../dce_cell.widget.com/Smith"
%DCE-I-IL_ERRVMSPWD, Error synchronizing OpenVMS password with DCE password
-DCE-F-IL_INVPWDLEN, password length must be between 15 and 32 characters
$

• DCE Login: Failure OpenVMS Login: Failure

If the password provided results in a failed DCE login and a failed OpenVMS
login, you are not given DCE credentials and the OpenVMS login does not
succeed. For example:

Welcome to OpenVMS (TM) Alpha Operating System, Version V7.2

Username: smith
Password:
User authorization failure

When a login fails, you do not receive a message stating the reason for the
login failure. If you are a system administrator, you can enable auditing to
see the reasons for login failures. To enable auditing, enter the following
command:

$ SET AUDIT/ALARM/ENABLE=LOGFAIL=ALL

8.4 Changing Your DCE Password
HP recommends that you change only your DCE password. After changing your
DCE password, the next time you log in to the OpenVMS system specifying your
new DCE password at the OpenVMS password prompt, your OpenVMS password
is changed to match your DCE password. There is no need to separately change
your OpenVMS password.

To change your DCE password, invoke the CHPASS utility with an optional DCE
principal name. For example, entering any of the following invokes the CHPASS
utility:

$ chpass
$ chpass smith
$ mcr dce$chpass
$ mcr dce$chpass smith

If you do not specify a DCE principal name on the command line, the CHPASS
utility obtains the DCE principal name from the current credentials. For
example:

$ chpass
Old password:
New password:
Verification:

If the process does not have a default login context, you are prompted for your
principal name. For example:

8–4 Integrated Login

Integrated Login
8.4 Changing Your DCE Password

$ kdestroy
$ chpass
Please enter the principal name: smith
Old password:
New password:
Verification:

As you enter the old and new passwords, the terminal does not echo the input.
Because echoing is turned off, the user is asked to enter the new password twice
to verify the input.

SYS$COMMON:[SYSMGR]DCE$DEFINE_REQUIRED_COMMANDS.COM
defines the DCE symbol CHPASS, which is used to invoke DCE$CHPASS. If this
symbol is not defined in your environment, you can define the symbol as follows:

$ CHPASS :== SYSSYSTEM:DCE$CHPASS.EXE

8.5 Enabling/Disabling Integrated Login on Your OpenVMS System
By default, Integrated Login is not enabled on your system. To enable Integrated
Login, go to the Configuration Modify menu, and select the following:

8) Enable DCE Integrated Login

If Integrated Login is already enabled, the menu will display the following:

8) Disable DCE Integrated Login

Select this option to turn off Integrated Login capabilities on your system.

Note

By enabling Integrated Login, you accept DCE password policies. This
means that you may be reducing security on your OpenVMS system
because the following OpenVMS password features are not available with
Integrated Login enabled:

• Password history file

• Password dictionary

• Local site-specific password policies (for example, password expiration
dates)

Each user on the OpenVMS system who wants to use Integrated Login must
have an entry in the DCE$UAF file. DCE$UAF entries are created by using
the DCE UAF utility (see Section 8.6) or by using the DCE IMPORT utility (see
Section 8.7).

The DCE login required feature allows you to disable a user’s account on all
systems in the cell by simply removing that user’s name from the DCE registry.

To enable the DCE login required flag, define the logical name DCE$IL_DCE_
LOGIN_REQUIRED as follows:

$ DEFINE/SYSTEM/EXEC DCE$IL_DCE_LOGIN_REQUIRED TRUE

To disable the flag, enter the following command:

$ DEASSIGN/SYSTEM/EXEC DCE$IL_DCE_LOGIN_REQUIRED

Integrated Login 8–5

Integrated Login
8.5 Enabling/Disabling Integrated Login on Your OpenVMS System

8.5.1 Disabling a System Account for Integrated Login
When DCE is unavailable and Integrated Login is enabled with the DCE login
required flag set, you are also prevented from logging in to OpenVMS. HP
recommends that you do not include an entry for at least one system account in
DCE$UAF. This disables that system account for Integrated Login, which ensures
that you can log in to OpenVMS from that account even if DCE is unavailable.

8.5.2 Password Expiration Dates on User Accounts
This section contains information for system administrators who set up users’
DCE and OpenVMS accounts.

If you use the password expiration date feature on accounts on your OpenVMS
system, set the password expiration for the users’ DCE and OpenVMS accounts
to the same date (or set the OpenVMS expiration date to a slightly later date). In
this case, if a user changes his DCE password when it expires, the next time the
user logs in to OpenVMS, his OpenVMS password is updated.

If the DCE expiration date occurs first, or if the user does not update his
DCE password when it expires, the user receives a message when he logs in
stating that his OpenVMS password has expired. The user is forced to enter
a new OpenVMS password if the DISFORCE_PWD_CHANGE flag is not set
on the user’s OpenVMS account. (By default, this flag is not set.) This is
inconvenient and confusing for the user because the new OpenVMS password is
not propagated back into the DCE registry. The next time the user logs in with
the new OpenVMS password, he will be logged in to OpenVMS only, without DCE
credentials.

8.5.3 Potential Integrated Login and SYSGEN Problems
The Integrated Login component of DCE uses the SYSGEN parameter LGI_
CALLOUTS. LGI_CALLOUTS must be set to 1 only in the ACTIVE SYSGEN
parameter set when DCE is running with Integrated Login enabled. LGI_
CALLOUTS must never be set to 1 in the CURRENT SYSGEN parameter set
— this would prevent all logins from occurring on a subsequent reboot of the
system. The following paragraphs discuss the reasons for this restriction. See the
Troubleshooting chapter for information on how to solve this problem if it occurs.

If Integrated Login is enabled on your system, the DCE startup and configuration
procedure, DCE$SETUP.COM, sets the SYSGEN parameter LGI_CALLOUTS to
1 in the ACTIVE SYSGEN parameter set when DCE is started and resets the
parameter when DCE is shut down. LGI_CALLOUTS must never be set to 1 in
the CURRENT SYSGEN parameter set because, in that case, the next time the
system is booted the LGI_CALLOUTS parameter is set in the ACTIVE SYSGEN
parameter set before DCE is started. This prevents logins from occurring.

If the ACTIVE value of LGI_CALLOUTS is set to 1 when DCE and Integrated
Login are not running, the following error is displayed when LOGINOUT
attempts to run (for example, for interactive or batch logins):

No logical name match

Consequently, all users are prevented from logging in to the system.

This problem can occur if, for example, a SYSGEN parameter is modified in the
following way while Integrated Login is enabled. This prevents logins because it
causes LGI_CALLOUTS to be set to 1 the next time the system is booted.

8–6 Integrated Login

Integrated Login
8.5 Enabling/Disabling Integrated Login on Your OpenVMS System

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> SET param value
SYSGEN> WRITE CURRENT
SYSGEN> EXIT
$

The correct way to modify a SYSGEN parameter is to make the change in
MODPARAMS.DAT and then run AUTOGEN. If it is essential to modify a
SYSGEN parameter without using MODPARAMS.DAT and AUTOGEN, you must
ensure that if you use ACTIVE, you write the parameters into ACTIVE only; and
if you use CURRENT, you write the parameters into CURRENT only. Do not copy
the ACTIVE parameters into CURRENT.

Following are two examples of acceptable ways to modify a SYSGEN parameter:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> USE CURRENT
SYSGEN> SET param value
SYSGEN> WRITE CURRENT
SYSGEN> EXIT
$
$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> USE ACTIVE ! optional, default is ACTIVE
SYSGEN> SET param value
SYSGEN> WRITE ACTIVE
SYSGEN> EXIT
$

8.6 DCE User Authorization File (DCE$UAF)
The DCE User Authorization File (DCE$UAF) contains DCE account information
about users who have an OpenVMS account on the local system and who want
to use Integrated Login. DCE$UAF maps an OpenVMS account name to a
DCE principal name, and is a logical extension to the OpenVMS System User
Authorization File (SYSUAF).

8.6.1 DCE$UAF File Information
The DCE UAF utility is shipped as an OpenVMS executable image named
DCE$UAF.EXE. The image resides in the SYS$SYSTEM directory.

The DCE$UAF database is an OpenVMS file that by default is named
DCE$UAF.DAT and resides in SYS$SYSTEM. You can change the name or
location, or both, of this file by defining the logical name DCE$UAF to point to
the new filename and location.

8.6.2 Running the DCE$UAF Utility
Integrated Login includes a command line interface to the DCE$UAF utility that
allows system administrators to create, edit, and display DCE$UAF records. See
the HP DCE for OpenVMS Alpha and OpenVMS I64 Reference Guide for detailed
descriptions of the DCE$UAF commands.

Integrated Login provides two methods of running the DCE$UAF utility, as
follows:

• By invoking the DCE$UAF utility using a predefined symbol.

$ DCE$UAF
DCEUAF>

Integrated Login 8–7

Integrated Login
8.6 DCE User Authorization File (DCE$UAF)

You can also specify a single DCE$UAF command on the command line.
Control returns to DCL after the command is executed.

$ DCE$UAF command
$

SYS$COMMON:[SYSMGR]DCE$DEFINE_REQUIRED_COMMANDS.COM
defines the DCE symbol DCE$UAF, which is used to invoke the DCE$UAF
utility. If this symbol is not defined in your environment, you can define the
symbol as follows:

$ DCE$UAF :== SYSSYSTEM:DCE$UAF

• By issuing the RUN command.

$ RUN SYS$SYSTEM:DCE$UAF
DCEUAF>

8.7 DCE Registry Import
The DCE IMPORT utility allows you to create principal and account entries in a
DCE registry based on accounts in an existing OpenVMS authorization file. It is
used for the following purposes:

• To populate the DCE registry when a new DCE cell is first established

• To add entries to an existing DCE registry when a new OpenVMS system
joins an existing DCE cell

• To add entries to an existing DCE registry when new users have joined an
OpenVMS system that is already part of an existing DCE cell

The DCE IMPORT utility also creates and maintains an exclude list. The
exclude list contains the OpenVMS usernames of users who do not have, and do
not require, a DCE account. This feature allows DCE IMPORT to skip over these
users during import operations.

Note

The DCE IMPORT utility described in this section cannot be satisfied
by the import function shipped with OSF DCE because of substantial
differences between OpenVMS and UNIX user registry data.

Passwords cannot be imported. Instead, the automatic synchronization feature
that occurs during integrated login is used to import user passwords.

8.7.1 DCE IMPORT File Information
The DCE IMPORT utility is shipped as an OpenVMS executable image named
DCE$IMPORT.EXE. The image resides in the SYS$SYSTEM directory.

The DCE IMPORT exclude file is named by default DCE$IMPORT_
EXCLUDE.DAT and also resides in SYS$SYSTEM. You can change the name
or location, or both, of this file by defining the logical name DCE$IMPORT_
EXCLUDE to point to the new filename and location.

8–8 Integrated Login

Integrated Login
8.7 DCE Registry Import

8.7.2 Running DCE IMPORT
The DCE IMPORT utility allows system administrators to create principal and
account entries in a DCE registry based on accounts in SYSUAF.

Integrated Login provides two methods of running the DCE IMPORT utility, as
follows:

• By invoking the DCE IMPORT utility using a predefined symbol.

$ DCE$IMPORT
IMPORT>

You can also specify a single DCE IMPORT command on the command line.
Control returns to DCL after the command is executed.

$ DCE IMPORT command
$

SYS$COMMON:[SYSMGR]DCE$DEFINE_REQUIRED_COMMANDS.COM
defines the DCE symbol DCE$IMPORT, which is used to invoke the DCE
IMPORT utility. If this symbol is not defined in your environment, you can
define the symbol as follows:

$ DCE$IMPORT :== SYSSYSTEM:DCE$IMPORT

• By issuing the RUN command.

$ RUN SYS$SYSTEM:DCE$IMPORT
IMPORT>

See the HP DCE for OpenVMS Alpha and OpenVMS I64 Reference Guide for
detailed descriptions of the DCE IMPORT commands.

8.8 DCE Registry Export
The DCE EXPORT utility allows you to create entries in an OpenVMS
authorization file from an existing DCE registry.

Using the DCE EXPORT utility, you convert DCE registry entries (or a subset
of the registry entries) into records in the OpenVMS SYSUAF file and rights
database. Conversions are essentially a reversal of those made with the DCE
IMPORT function.

Passwords cannot be exported. Instead, the automatic synchronization feature
that occurs during integrated login is used to export user passwords.

The DCE EXPORT utility also creates and maintains an exclude list. The
exclude list contains the DCE names of users who do not have, and do not
require, an OpenVMS account. This feature allows DCE EXPORT to skip over
these users during export operations.

Note

The DCE EXPORT utility described in this section cannot be satisfied
by the export function shipped with OSF DCE because of substantial
differences between OpenVMS and UNIX user registry data.

Integrated Login 8–9

Integrated Login
8.8 DCE Registry Export

8.8.1 DCE EXPORT File Information
The DCE EXPORT utility is shipped as an OpenVMS executable image named
DCE$EXPORT.EXE. The image resides in the SYS$SYSTEM directory.

The DCE EXPORT exclude file is named by default DCE$EXPORT_
EXCLUDE.DAT and also resides in SYS$SYSTEM. You can change the name
or location, or both, of this file by defining the logical name DCE$EXPORT_
EXCLUDE to point to the new filename and location.

8.8.2 Running DCE EXPORT
The DCE EXPORT utility allows system administrators to create an OpenVMS
authorization file from an existing DCE registry.

Integrated Login provides two methods of running the DCE EXPORT utility, as
follows:

• By invoking the DCE EXPORT utility using a predefined symbol.

$ DCE$EXPORT
EXPORT>

You can also specify a single DCE EXPORT command on the command line.
Control returns to DCL after the command is executed.

$ DCE EXPORT command
$

SYS$COMMON:[SYSMGR]DCE$DEFINE_REQUIRED_COMMANDS.COM
defines the DCE symbol DCE$EXPORT, which is used to invoke the DCE
EXPORT utility. If this symbol is not defined in your environment, you can
define the symbol as follows:

$ DCE$EXPORT :== SYSSYSTEM:DCE$EXPORT

• By issuing the RUN command.

$ RUN SYS$SYSTEM:DCE$EXPORT
EXPORT>

See the HP DCE for OpenVMS Alpha and OpenVMS I64 Reference Guide for
detailed descriptions of the DCE EXPORT commands.

8.9 Frequently Asked Questions for Users
Q: What exactly does Integrated Login do for me?
A: It performs a DCE_LOGIN on your behalf when you interactively log in to an
OpenVMS system. (You will see an informational message stating that the login
was successful if the DCE_LOGIN occurs.)

Q: Are there any other benefits to using Integrated Login?
A: Yes. It allows you to use a single username and password across multiple
systems and/or OpenVMS clusters. With Integrated Login, you can use the same
account information to log in to your OpenVMS systems as you do to log in to
your non OpenVMS systems.

Q: At the OpenVMS username prompt, do I enter my OpenVMS username or my
DCE account (principal) name?
A: Either the username or principal name is valid.

8–10 Integrated Login

Integrated Login
8.9 Frequently Asked Questions for Users

Q: Which password should I use to log in to the OpenVMS system (my DCE
password or my OpenVMS password)?
A: Your OpenVMS and DCE passwords are normally the same because OpenVMS
attempts to synchronize your passwords. If your passwords are not the same, you
should log in using your DCE password. This will cause your OpenVMS password
to be set to the same value as your DCE password. You can log in with your
OpenVMS password, but if you do so, your passwords will not be synchronized
and you will not obtain DCE credentials.

Q: If I enter my OpenVMS username, can I then enter my DCE password (and
vice versa)?
A: Yes. But remember that you will only get DCE credentials if you enter your
DCE password.

Q: Is the input at the OpenVMS username case-sensitive?
A: Yes. And since this input is parsed by the standard DCL parsing routines, all
text not enclosed in quotation marks is converted to uppercase. Therefore, if you
want to enter a principal name of "Smith" you must enclose the text in quotation
marks.

Q: My DCE password contains lowercase characters. Do I need to enclose my
password in quotes?
A: No. The password is not parsed by the DCE parsing routines, so quotes are
not needed.

Q: How do I keep my DCE and OpenVMS passwords in sync?
A: OpenVMS does this for you. Your password is automatically propagated from
the DCE registry to the OpenVMS System User Authorization file (SYSUAF)
when you log in to the OpenVMS system using your valid DCE password.

Q: Do OpenVMS passwords get copied to the DCE registry?
A: No. This is why Integrated Login users should always use their DCE
password when logging in to an OpenVMS system. This way DCE and OpenVMS
passwords will stay synchronized.

Q: How should I change my password?
A: You should use the CHPASS utility on any node in the cell. This will
change your password in the DCE registry, and the next time you log in to an
OpenVMS system (using the new password) your local OpenVMS password will
be automatically updated.

Q: What if I update my password using the OpenVMS command SET
PASSWORD?
A: Your password will only be changed on that OpenVMS system; it will not be
updated in the DCE registry. The next time you log in to that system, if you
use the new OpenVMS password you will receive an "OpenVMS only" login.
If you use your old DCE password you will receive an Integrated Login and
your password on the OpenVMS system will be resynchronized to your old DCE
password.

Q: Will account passwords on the OpenVMS system stay synchronized through
the password synchronization mechanism when the password is changed on a
UNIX system?
A: Yes. A password is automatically propagated from the DCE registry to the
OpenVMS System User Authorization file (SYSUAF) when a user logs in to the
OpenVMS system. Note that this assumes that the UNIX system updates the
user’s password in the DCE registry, and not just on the local UNIX system.

Integrated Login 8–11

Integrated Login
8.9 Frequently Asked Questions for Users

Q: Can I use Integrated Login when I start a DECwindows session?
A: Yes.

Q: Which password do I enter to unpause my workstation?
A: You must always enter your current OpenVMS password to resume a paused
DECwindows session (this is usually your DCE password since OpenVMS
attempts to keep them synchronized).

8.10 Frequently Asked Questions for System Administrators
Q: How do I enable Integrated Login on my system?
A: Use the DCE setup utility. (See the HP DCE for OpenVMS Alpha and
OpenVMS I64 Installation and Configuration Guide for more information.)

Q: Is Integrated Login enabled by default?
A: No. After you install HP DCE for OpenVMS Alpha and OpenVMS I64 Version
3.2, Integrated Login is initially disabled.

Q: I’ve enabled Integrated Login on my system by using the DCE setup utility,
but it still does not work. Why not?
A: Integrated Login is only available to users who have an entry in the
DCE Integrated Login authorization file (DCE$UAF). You must populate the
DCE$UAF file before Integrated Login can be used. If a user does not have an
entry in the DCE$UAF file, then he or she cannot use Integrated Login.

Q: What is the purpose of the DCE$UAF file?
A: Entries in this file associate OpenVMS account names with DCE account
names.

Q: How do I populate the DCE$UAF file?
A: The HP DCE for OpenVMS Alpha and OpenVMS I64 Reference Guide provides
full details. Essentially, you issue ADD commands similar to the following to get
entries into the DCE$UAF file:

$ dce$uaf
DCEUAF> ADD SMITH "john"

This creates an entry for the OpenVMS account name "SMITH" and associates it
with the DCE account name "john".

Q: All of my users have DCE account names that are similar to their OpenVMS
account names (for example, "SMITH" on OpenVMS and "smith" on DCE). Do I
need to enter the principal name in this case?
A: No. To make adding these entries easier, the ADD command defaults the
principal name to the lowercase equivalent of the OpenVMS username if you do
not specify the principal name. If your OpenVMS account name is "JONES" and
your DCE account name is "jones" you can simply enter:

DCEUAF> ADD JONES

Q: Is there an easier way to populate the DCE$UAF file without typing each
name?
A: If all or most of your account names are the same on DCE as they are on
OpenVMS (except for the case), you can use the ADD/ALL command. This will
create an entry in the DCE$UAF file for every record in the SYSUAF file, as
follows:

DCEUAF> ADD/ALL

8–12 Integrated Login

Integrated Login
8.10 Frequently Asked Questions for System Administrators

Q: Should every account be set up for Integrated Login?
A: HP does not recommend that you enable the SYSTEM account for Integrated
Login. If you have problems with your DCE configuration, you should have
an account that you can log in to where an integrated login is not attempted.
Operator and field service accounts are other accounts that you might want to
omit from Integrated Login.

Q: Will existing users who already have DCE accounts, but do not have OpenVMS
accounts, be able to log in to the OpenVMS system?
A: No. For a user to be able to log in to an OpenVMS system, he must have an
OpenVMS account in the SYSUAF file.

Q: What happens when a user who doesn’t have an entry in the DCE$UAF file
tries to log in to the OpenVMS system?
A: If the user specifies a valid OpenVMS username and password, then he will
be logged in as usual (as if Integrated Login was not installed or enabled). If the
user specifies a DCE account name, the login will fail.

Q: How can I create accounts in the DCE registry based on the contents of my
existing system user authorization file (SYSUAF)?
A: The DCE IMPORT utility performs this task. See the HP DCE for OpenVMS
Alpha and OpenVMS I64 Reference Guide for more information.

Q: How can I create accounts in the OpenVMS authorization file (SYSUAF) based
on the contents of the existing DCE registry?
A: The DCE EXPORT utility performs this task. See the HP DCE for OpenVMS
Alpha and OpenVMS I64 Reference Guide for more information.

8.11 Potential Integrated Login and OpenVMS External
Authentication Problems

DCE Integrated Login is currently incompatible with OpenVMS External
Authentication. Only one of the two methods for authenticating users with
external (to OpenVMS) mechanisms can be used at any one time.

Although the DCE configuration program checks to see if the local system is
set up to use External Authentication, the system may experience a conflict due
to operator error. If this occurs, the DCE LGI_CALLOUTS will override the
OpenVMS External Authentication, disabling the External Authentication and
allowing Integrated Login to function normally. Any applications that depend on
External Authentication may be adversely affected.

For more information on OpenVMS External Authentication, see the OpenVMS
Operating System documentation.

Integrated Login 8–13

9
Intercell Naming

This chapter provides tips for choosing a cell name and for managing cell names
in the Domain Name System (DNS), LDAP, and in X.500. Additional details can
be found in the chapter about global and cell considerations in the OSF DCE
Administration Guide — Introduction.

The following are simple guidelines for naming cells:

• Do not configure a cell with the same name as another cell on the same
network.

• Choose your cell name carefully.

The last item is especially important, because the naming formats for DNS and
LDAP/X.500 are incompatible, and DCE does not currently support changing the
name of a cell. Therefore, you must understand which method you are using for
intercell communications before you name the cell.

9.1 Intercell Naming with DNS
Names in DNS are associated with one or more data structures called resource
records. The resource records define cells and are stored in a data file, called
/etc/namedb/hosts.db. The data file is used by the BIND name daemon (named).
To create a cell entry, you must edit the data file and create two or more (if
replicas) resource records for each CDS server that maintains a replica of the cell
namespace root. Do not configure a cell with the same name as another cell on
the same network.

9.1.1 Intercell Naming Example — DNS
The following examples show the steps you should take to set up intercell naming
between two cells called laser-cell.zko.dec.com and ruby-cell.zko.dec.com.
(A summary of this process is provided at the end of this chapter.) The two cells
belong to the same BIND domain zko.dec.com. Host laser.zko.dec.com is the
master CDS server for the laser-cell.zko.dec.com cell. Host ruby.zko.dec.com
is the master CDS server for the ruby-cell.zko.dec.com cell.

The BIND server must be authoritative for the domains of both the cell name
and the hostnames. The BIND master server requires the following entries in its
/etc/namedb/hosts.db file:

laser.zko.dec.com. IN A 25.0.0.127

Intercell Naming 9–1

Intercell Naming
9.1 Intercell Naming with DNS

laser-cell.zko.dec.com. IN MX 1 laser.zko.dec.com.
laser-cell.zko.dec.com. IN TXT "1
130f1c81-4876-11cc-931d-08002b33f531
Master /.../laser-cell.zko.dec.com/laser_ch
124ded80-4876-11cc-931d-08002b33f531
laser.zko.dec.com"
ruby.zko.dec.com. IN A 25.0.0.149
ruby-cell.zko.dec.com. IN MX 1 ruby.zko.dec.com.
ruby-cell.zko.dec.com. IN TXT "1
c8f5f807-487c-11cc-b499-08002b32b0ee
Master /.../ruby-cell.zko.dec.com/ruby_ch

c84946a6-487c-11cc-b499-08002b32b0ee
ruby.zko.dec.com"

Note

The TXT records must span only one line. You need to do whatever is
required with your text editor of choice to ensure this. Widening your
window helps. You should also ensure that the quotes are placed correctly,
and that the hostname is at the end of the record.

The information to the right of the TXT column in the Hesiod Text Entry (that is,
1 130f1c81-48...) comes directly from the cdscp show cell /.:/ as dns command.
For example, to obtain the information that goes in the laser.zko.dec.com
text record (TXT), you would go to a host in the laser cell, and enter the cdscp
show cell /.:/ as dns command. Then, when the system displays the requested
information, you would cut and paste this information into the record. This
method ensures that you do not have any typing errors. If the cell contains one
or more replicas, add the additional text record(s) in the same manner. Make
sure cell names and hostname text in the record are identical for Master and
Read-Only TXT record(s). Only the clearinghouse (x-cell/x_ch) and UUID values
change.

On UNIX master bind server systems, ensure that the records that you
have entered are valid by issuing a kill -1 named-process-id command.
For OpenVMS systems, see the TCP/IP product-specific implementation
documentation for equivalent functionality. This causes the named daemon to
read in the new hosts.db file.

Your host must access the bind server for the intercell information. To accomplish
this, set name service parameters for your particular TCP/IP. This causes cell
names to be sent to and resolved by the bind server and not your "localhost".
Check the TCP/IP product specific documentation for instructions on setting
the name service as well as invoking the nslookup command to obtain the host
address:

laser.zko.dec.com> nslookup

Default Server: localhost
Address: 127.0.0.1, 25.0.0.32

Next, enter the names of the cells, as shown:

9–2 Intercell Naming

Intercell Naming
9.1 Intercell Naming with DNS

> set type=any

> ruby-cell.zko.dec.com

Server: localhost
Address: 127.0.0.1

ruby-cell.zko.dec.com text = "1 c8f5f807-487c-11cc-b499-08002b32b0ee
Master /.../ruby-cell.zko.dec.com/ruby-cell.zko.dec.com/ruby_ch
c84946a6-487c-11cc-b499-08002b32b0ee
ruby.zko.dec.com"
ruby-cell.zko.dec.com preference = 1, mail exchanger = ruby.zko.dec.com

ruby.zko.dec.com inet address = 25.00.127

View the information and ensure that it is complete and correct.

Now that you have set up BIND, you must use the Security Service rgy-edit
cell command to create a cross-cell authentication account in the local and
foreign cells. This account allows local principals to access objects in the foreign
cell as authenticated users and vice versa.

In the laser-cell.zko.dec.com cell, you must use the rgy-edit cell command
to create an account for /.../ruby-cell.zko.dec.com. Refer to the Security
Service commands in the OSF DCE Administration Reference for details on the
cell command. After adding the account for /.../ruby-cell.zko.dec.com in the
laser-cell.zko.dec.com cell, you should have an account entry that looks like
the following:

krbtgt/ruby.zko.dec.com [none none]:*:101:12::/::

Note that the cell name is stripped of the path qualifier and is prefixed with
krbtgt. The resulting name is used as the primary name for the cross-cell
authentication account. You should now also have a principal entry that looks
like the following:

krbtgt/ruby.zko.dec.com 101

If a cell is reconfigured, changing its namespace and clearinghouse UUIDs, the
krbtgt principal created by the cell command must be deleted using rgy_edit
in the foreign cell. Note that for HP DCE for OpenVMS Alpha and OpenVMS
I64 Version 3.2, the krbtgt principal must be deleted on both cells before the
cell command is reexecuted between two cells. To test for proper configuration,
show the cell information for the foreign cell. For example, in the laser-
cell.zko.dec.com cell, use the cdscp show cell command to show information
about the ruby-cell.zko.dec.com cell. To do this at a laser cell host, execute
the following command:

cdscp> show cell /.../ruby-cell.zko.dec.com

To perform a similar operation from a ruby-cell cell host, execute the following
command:

cdscp> show cell /.../laser-cell.zko.dec.com

9.2 Intercell Naming with X.500
The DCE configuration program automatically creates an entry in the X.500
namespace for the cell when it is configured if the following conditions are true:

• The parent entry already exists.

• The cell name entry is not in use.

Intercell Naming 9–3

Intercell Naming
9.2 Intercell Naming with X.500

9.2.1 Intercell Naming Example — X.500
The following examples show the steps you should take to set up intercell naming
between two cells called /c=us/o=hp/ou=lasercell and /c=us/o=hp/ou=rubycell.
(A summary of this process is provided at the end of this chapter.) The two cells
belong to the same X.500 namespace /c=us/o=hp. Host laser is the CDS master
server for the /c=us/o=hp/ou=lasercell cell. Host ruby is the CDS master
server for the /c=us/o=hp/ou=rubycell cell.

Note

X.500 cell names can contain spaces or hyphens if they are enclosed
in double quotes, but underscores are never allowed, even if they are
enclosed in double quotes. For example, the X.500 cell names /c=us/o=hp
/ou="excess cell" and /c=us/o=hp/ou="excess-cell are allowed, but
/c=us/o=hp/ou=excess_cell and /c=us/o=hp/ou="excess_cell are not
allowed.

Answer "Yes" to the question "Do you want to register the DCE cell in X.500"
during configuration of the cell. This puts the required DCE CDS information
into the X.500 namespace for later use by GDA. This operation requires an X.500
DUA on the host system. Refer to HP X.500 Directory Service — Management for
more information about installing and configuring X.500.

Execute an intercell command similar to the following command to show the root
of the new cell and to see if everything works:

cdscp> show cell /.../c=us/o=hp/ou=rubycell

Enter the preceding command from an unauthenticated, nonprivileged account.

Now that you have configured and set up X.500, you must use the Security
Service rgy_edit cell command to create a cross-cell authentication account in
the local and foreign cells. This account allows local principals to access objects
in the foreign cell as authenticated users and vice versa.

In the /c=us/o=hp/ou=lasercell cell, you must use the rgy_edit cell command
to create an account for /.../c=us/o=hp/ou=rubycell. (Refer to the Security
Service commands in the OSF DCE Administration Reference for details about
the cell command.) After adding the account for /.../c=us/o=hp/ou=rubycell in
the /c=us/o=hp/ou=lasercell cell, you should have an account entry that looks
similar to the following:

krbtgt/c=us/o=hp/ou=rubycell [none none]:*:101:12::::

Note that the cell name is stripped of the path qualifier and is prefixed with
krbtgt. The resulting name is used as the primary name for the cross-cell
authentication account. You should now also have a principal entry that looks
like the following:

krbtgt/c=us/o=hp/ou=rubycell 101

If a cell is reconfigured, changing its namespace and clearinghouse UUIDs, the
krbtgt principal created by the cell command must be deleted using rgy_edit
in the foreign cell. Note that for HP DCE for OpenVMS Alpha and OpenVMS
I64 Version 3.2, the krbtgt principal must be deleted on both cells before the
cell command is reexecuted between two cells. To test for proper configuration,
show the cell information for the foreign cell. For example, in the /c=us/o=hp
/ou=lasercell cell, use the cdscp show cell command to show information about

9–4 Intercell Naming

Intercell Naming
9.2 Intercell Naming with X.500

the /c=us/o=hp/ou=rubycell cell. To do this at a laser cell host, execute the
following command:

cdscp> show cell /.../c=us/o=hp/ou=rubycell

To perform a similar operation from a /c=us/o=hp/ou=rubycell cell host, execute
the following command:

cdscp> show cell /.../c=us/o=hp/ou=lasercell

9.3 Intercell Naming with LDAP
The DCE configuration program automatically creates an entry in the LDAP
namespace for the cell when the following conditions are true:

• The parent entry already exists.

• The cell name entry is not in use.

9.3.1 Intercell Naming Example — LDAP
The following examples show the steps you should take to set up intercell naming
between two cells called /c=us/o=hp/ou=lasercell and /c=us/o=hp/ou=rubycell.
(A summary of this process is provided at the end of this chapter.) The two cells
belong to the same LDAP namespace /c=us/o=hp. Host laser is the CDS master
server for the /c=us/o=hp/ou=lasercell cell. Host ruby is the CDS master
server for the /c=us/o=hp/ou=rubycell cell.

Note

LDAP cell names can contain spaces or hyphens if they are enclosed
in double quotes, but underscores are never allowed, even if they are
enclosed in double quotes. For example, the LDAP cell names /c=us/o=hp
/ou="excess cell" and /c=us/o=hp/ou="excess-cell" are allowed, but
/c=us/o=hp/ou=excess_cell and /c=us/o=hp/ou="excess_cell" are not
allowed.

Answer "Yes" to the question "Do you want to register the DCE cell in LDAP"
during configuration of the cell. This puts the required DCE CDS information
into the LDAP namespace for later use by GDA. No special LDAP client code is
required on the host system—everything necessary was installed as part of the
DCE installation. Refer to the documentation from your LDAP server vendor for
more information about installing and configuring an LDAP server.

Execute an intercell command similar to the following command to show the root
of the new cell and to see if everything works:

cdscp> show cell /.../c=us/o=hp/ou=rubycell

Enter the preceding command from an unauthenticated, nonprivileged account.

Now that you have configured and set up LDAP, you must use the Security
Service rgy_edit cell command to create a cross-cell authentication account in
the local and foreign cells. This account allows local principals to access objects
in the foreign cell as authenticated users and vice versa.

In the /c=us/o=hp/ou=lasercell cell, you must use the rgy_edit cell command
to create an account for /.../c=us/o=hp/ou=rubycell. (Refer to the Security
Service commands in the OSF DCE Administration Reference for details about
the cell command.) After adding the account for /.../c=us/o=hp/ou=rubycell in

Intercell Naming 9–5

Intercell Naming
9.3 Intercell Naming with LDAP

the /c=us/o=hp/ou=lasercell cell, you should have an account entry that looks
similar to the following:

krbtgt/c=us/o=hp/ou=rubycell [none none]:*:101:12::::

Note that the cell name is stripped of the path qualifier and is prefixed with
krbtgt. The resulting name is used as the primary name for the cross-cell
authentication account. You should now also have a principal entry that looks
like the following:

krbtgt/c=us/o=hp/ou=rubycell 101

If a cell is reconfigured, changing its namespace and clearinghouse UUIDs, the
krbtgt principal created by the cell command must be deleted using rgy_edit
in the foreign cell. Note that for HP DCE for OpenVMS Alpha and OpenVMS
I64 Version 3.2, the krbtgt principal must be deleted on both cells before the
cell command is reexecuted between two cells. To test for proper configuration,
show the cell information for the foreign cell. For example, in the /c=us/o=hp
/ou=lasercell cell, use the cdscp show cell command to show information about
the /c=us/o=hp/ou=rubycell cell. To do this at a laser cell host, execute the
following command:

cdscp> show cell /.../c=us/o=hp/ou=rubycell

To perform a similar operation from a /c=us/o=hp/ou=rubycell cell host, execute
the following command:

cdscp> show cell /.../c=us/o=hp/ou=lasercell

9.4 Summary
The following steps summarize the intercell naming process. Refer to the chapter
on managing intercell naming in the OSF DCE Administration Guide — Core
Components for more information.

9.4.1 DNS Bind
For DNS bind:

1. Execute a cdscp show cell /.:/ as dns command.

2. Edit the hosts.db file and add the cell name.

3. Execute the kill -1 named-process-id command on UNIX systems to
instruct the server to reread the database records. On an OpenVMS system
acting as the DNS Master Bind Server, see the TCP/IP specific information
for database update and nslookup instructions.

4. Perform an nslookup operation to verify that the cell information can be read.
All three records (A, MX, and TXT) are returned.

5. Execute an intercell command similar to the following command to show the
root of the new cell and to see if everything works:

cdscp> show cell /.../ruby-cell.zko.dec.com

Enter the preceding command from an unauthenticated, nonprivileged
account.

6. Run dce_login, and log in as cell_admin.

9–6 Intercell Naming

Intercell Naming
9.4 Summary

7. Run rgy_edit, and execute a cell command similar to the following:

rgy_edit> cell /.../laser-cell.zko.dec.com

Enter group name of the local account for the foreign cell: none
Enter group name of the foreign account for the local cell: none
Enter org name of the local account for the foreign cell: none
Enter org name of the foreign account for the local cell: none
Enter your password:
Enter account id to log into foreign cell with: cell_admin
Enter password for foreign account:
Enter expiration date [yy/mm/dd or ’none’]: (none) none

9.4.2 X.500
For X.500:

1. Answer "Yes" to the configuration question "Do you want to register the DCE
cell in X.500".

2. Execute an intercell command similar to the following command to show the
root of the new cell and to see if everything works:

cdscp> show cell /.../c=us/o=hp/ou=rubycell

Enter the preceding command from an unauthenticated, nonprivileged
account.

3. Run dce_login, and log in as cell_admin.

4. Run rgy_edit, and execute a cell command similar to the following:

rgy_edit> cell /.../c=us/o=hp/ou=lasercell
Enter group name of the local account for the foreign cell: none
Enter group name of the foreign account for the local cell: none
Enter org name of the local account for the foreign cell: none
Enter org name of the foreign account for the local cell: none
Enter your password:
Enter account id to log into foreign cell with: cell_admin
Enter password for foreign account:
Enter expiration date [yy/mm/dd or ’none’]: (none) none

9.4.3 LDAP
For LDAP:

1. Answer "Yes" to the configuration question "Do you want to register the DCE
cell in LDAP".

2. Execute an intercell command similar to the following command to show the
root of the new cell and to see if everything works:

cdscp> show cell /.../c=us/o=hp/ou=rubycell

Enter the preceding command from an unauthenticated, nonprivileged
account.

3. Run dce_login, and log in as cell_admin.

4. Run rgy_edit, and execute a cell command similar to the following:

Intercell Naming 9–7

Intercell Naming
9.4 Summary

rgy_edit> cell /.../c=us/o=hp/ou=lasercell
Enter group name of the local account for the foreign cell: none
Enter group name of the foreign account for the local cell: none
Enter org name of the local account for the foreign cell: none
Enter org name of the foreign account for the local cell: none
Enter your password:
Enter account id to log into foreign cell with: cell_admin
Enter password for foreign account:
Enter expiration date [yy/mm/dd or ’none’]: (none) none

9–8 Intercell Naming

10
Enhanced Browser

The Browser is a Motif-based tool for viewing the CDS namespace. The Browser
can display an overall directory structure as well as show the contents of
directories, enabling you to monitor growth in the size and number of directories
in your namespace. You can customize the Browser so that it displays only a
specific class of object names. The HP DCE Enhanced Browser contains some
additional functions beyond those documented in the OSF DCE documentation.

10.1 Displaying the Namespace
When you start the Browser, an icon representing the root directory is the first
item to appear in the window. Directories, soft links, and object entries all have
distinct icons associated with them. Most object entries have unique icons based
on their class; the class indicates the type of resource that the entry represents
(for example, clearinghouse object entries). When the Browser does not recognize
the class of an entry, it displays a generic icon. Figure 10–1 shows the Enhanced
Browser icons and what they represent.

Figure 10–1 Enhanced Browser Icons

Directory

Clearinghouse object entry

Group

Object entry (generic)

Soft Link

ZK−6001A−GE

Icon Entry Type

10.2 Filtering the Namespace Display
Using the Filters menu, you can selectively display object entries of a particular
class. With the Enhanced Browser, you can choose from either the RPC_Class or
CDS_Clearinghouse object classes. For example, if you are interested in seeing
the entries for clearinghouse objects only, choose the class CDS_Clearinghouse
from the Filters menu. If you are interested in seeing object entries used in the

Enhanced Browser 10–1

Enhanced Browser
10.2 Filtering the Namespace Display

name service interface (NSI), choose RPC_Class. You can filter only one object
class at a time.

Setting a filter does not affect the current display, but when you next expand a
directory, you see only object entries whose class matches the filter. Note that soft
links and directories still appear because only object entries can be filtered out.
To reset the filter to view all object entries, choose the asterisk(*) from the Filters
menu.

For a full description of the Browser, see the CDS section in the OSF DCE
Administration Guide — Core Components.

10–2 Enhanced Browser

11
IDL Compiler Enhancements

This chapter and the next two chapters describe enhancements to the IDL
compiler supported by HP DCE for OpenVMS Alpha and OpenVMS I64.

This chapter describes the following enhancements:

• The -standard application build options

• Treatment of stub auxiliary files

• Use of HP Language-Sensitive Editor (LSE) Templates

• The binding handle callout feature

11.1 The -standard Build Option
The -standard IDL compiler command option allows you to specify portable or
extended features of the OSF DCE.

The standard_type argument specifies what IDL features to enable. If you do not
specify this argument, the compiler generates warning messages for all features
that are not available in the previous version of OSF DCE.

You can specify one of the following values for the standard_type argument:

portable Allows only the language features available in OSF
DCE Version 1.0.2.

dce_v10, dce_v103, dec_v1.0 Synonymous with the portable argument.

dec_v13, dce_v11 Allows all language features supported by the -
standard dce_v10 argument, plus a set of HP
extensions to its products based on OSF DCE Version
1.0.3.

extended Allows all language features supported in the current
version of the compiler. This is the default.

dce_v20 Synonymous with the extended argument.

The following example command line compiles the IDL interface test.idl and
enables extended features of the OSF DCE:

% idl test.idl -standard extended

11.2 Stub Auxiliary Files
By default, the OpenVMS DCE IDL compiler does not generate stub auxiliary
(AUX) files.

For applications that use certain data types or certain features of RPC, the
current OSF DCE IDL compiler generates stub auxiliary files that contain
support routines that are called by the stubs. The HP DCE implementation of
the IDL compiler does not need those support routines, and, by default, does not
generate stub auxiliary files.

IDL Compiler Enhancements 11–1

IDL Compiler Enhancements
11.2 Stub Auxiliary Files

However, if you are porting an RPC application from a platform on which the
IDL compiler generates stub auxiliary files, and you do not want to modify your
build procedures, you can set the IDL compiler to generate stub auxiliary files.
To tell the IDL compiler to generate empty auxiliary files, define the symbol
IDL_GEN_AUX_FILES with the following command:

$ IDL_GEN_AUX_FILES:== 1

11.3 HP Language-Sensitive Editor (LSE) Templates on OpenVMS
The IDL compiler supports the use of HP Language-Sensitive Editor (LSE)
templates on OpenVMS to help you develop your interfaces more efficiently. LSE
is a multilanguage, advanced text editor that enhances program development.

LSE provides the following features:

• Error Correction and Review

This feature allows you to compile, review, and correct compilation errors
within a single editing session. LSE provides an interface to the IDL compiler
so that you can perform compilations without leaving LSE. The compiler
provides LSE with compilation diagnostics in a way that allows you to review
compilation errors in one editing window while displaying the related source
in another window.

• Language-Specific Templates

LSE accesses a collection of formatted language constructs, called templates,
that provides keywords, punctuation, and placeholders for IDL.

While writing your program, you can use the COMPILE and REVIEW commands
to compile your code and review compilation errors without leaving the editing
session. The IDL compiler generates a file of compile-time diagnostic information
that LSE uses to review compilation errors.

The LSE COMPILE command issues the appropriate command in a subprocess to
invoke the IDL compiler and appends the /DIAGNOSTIC qualifier to the compile
command.

The LSE REVIEW command displays any diagnostic messages that result from
a compilation. LSE displays the compilation errors in one window, with the
corresponding source code displayed in a second window. This multiwindow
capability allows you to review your errors while examining the associated source
code. This eliminates tedious steps in the error-correction process and helps
ensure that you fix all errors before running the compilation process again.

See the LSE documentation for complete information on using LSE.

11.4 Binding Handle Callout
The binding handle callout feature lets you specify a routine that is automatically
called from an IDL-generated client stub routine, in order to modify the binding
handle.

You can typically use this feature to augment the binding handle with security
context, for example, so that authenticated RPC calls are used between client and
server.

11–2 IDL Compiler Enhancements

IDL Compiler Enhancements
11.4 Binding Handle Callout

This feature is particularly targeted at clients that use automatic binding via
the auto_handle ACF attribute. For automatic binding, it is the client stub
rather than the client application code that obtains a server binding handle. The
binding handle q~callout feature lets you modify binding handles obtained by the
client stub. Without this feature, you cannot modify the binding handles before
the client stub attempts to initiate a remote procedure call to the selected server.

11.4.1 Attribute Configuration File
To select the binding handle callout feature, create an attribute configuration file
(ACF) for the interface (if necessary) and place the binding_callout attribute on
the interface. An example follows:

[auto_handle, binding_callout(my_bh_callout)] interface bindcall
{
}

The binding_callout attribute has the following general form:

[binding_callout(<IDENTIFIER>)]

You can specify the binding_callout attribute only once per interface; it applies
to all operations in that interface.

11.4.2 Generated Header File
The IDL-generated header file for the interface contains a function prototype
for the binding callout routine. In the previous example, bindcall.h contains a
declaration similar to the following declaration:

void my_bh_callout(
rpc_binding_handle_t *p_binding,
rpc_if_handle_t interface_handle,
error_status_t *p_st

);

11.4.3 Generated Client Stub
Each client stub routine in the IDL-generated client stub module calls the binding
callout routine just before initiating the remote procedure call to the server. In
the previous example, each client stub routine contains a call to my_bh_callout
and passes the three arguments that are described in the following section.

11.4.4 Binding Callout Routine
The arguments to the binding callout routine are:

Input/Output:
rpc_binding_handle_t *p_binding

A pointer to a server binding handle for the remote procedure call. Generally,
the binding callout routine augments this binding handle with additional context,
such as for security.

Input:
rpc_if_handle_t interface_handle

The interface handle used to resolve a partial binding or for the binding callout
routine to distinguish interfaces.

IDL Compiler Enhancements 11–3

IDL Compiler Enhancements
11.4 Binding Handle Callout

Output:
error_status_t *p_st

An error status code returned by the binding callout routine.

11.4.4.1 Error Handling
A binding callout routine returns error_status_ok when it successfully modifies
the binding handle or decides that no action is necessary. This causes the client
stub to initiate the remote procedure call.

When the binding callout routine returns an error status, the client stub does not
initiate a remote procedure call. If auto_handle is being used, the client stub will
attempt to locate another server of the interface and once again call the binding
callout routine. Otherwise, the client stub executes its normal error handling
logic.

A binding callout routine for a client using auto_handle can return rpc_s_no_
more_bindings to prevent the client stub from trying to locate another server.
The client stub will then execute its normal error handling logic.

By default, a client stub handles an error condition by raising an exception. If a
binding callout routine returns an rpc_s_ status code, the client stub raises the
matching rpc_x_ exception. If a binding callout routine returns any other error
status, it is usually raised as an unknown status exception.

For an operation containing a comm_status parameter, the client stub handles
an error condition by returning the error status value in the comm_status
parameter. A binding callout routine can return any error status value to the
client application code if the IDL operations are specified with comm_status
parameters.

A binding callout routine can raise a user-defined exception rather than return a
status code if it prefers to report application-specific error conditions back to the
client application code via exceptions.

11.4.5 Predefined Binding Callout Routine
There is one predefined binding callout routine in the DCE library that
may be suitable for some applications. To select this routine, specify a
binding_callout(rpc_ss_bind_authn_client) ACF attribute.

rpc_ss_bind_authn_client matches the function prototype in the previous
section, Generated Header File. It authenticates the client identity to the server,
thereby allowing for one-way authentication. In other words, the client does not
care which server principal receives the remote procedure call request, but the
server verifies that the client is who the client claims to be.

rpc_ss_bind_authn_client does the following:

• Calls rpc_ep_resolve_binding() to resolve the binding handle if it is not
fully bound (for example, for auto_handle).

• Calls rpc_mgmt_inq_server_princ_name() to obtain the server identity
(principal name).

• Calls rpc_binding_set_auth_info() with all default values except the server
principal name obtained in the previous call.

• If any of these calls returns an error status, places the error status in the
*p_st argument and rpc_ss_bind_authn_client returns.

11–4 IDL Compiler Enhancements

12
Application Debugging with the RPC Event

Logger

The Remote Procedure Call (RPC) Interface Definition Language (IDL) compiler
in HP DCE for OpenVMS Alpha and OpenVMS I64 includes enhanced application
debugging support beyond the support provided with OSF DCE. The OpenVMS
IDL compiler includes the RPC Event Logger, a software utility that records
information about operations relating to the execution of an application.
Operational information about the program state at a specific point during
processing, called an event, is recorded in a file, called an event log. You have the
option of directing event logging information to the terminal screen, rather than
to a file. In this chapter, the terms event log and log are used interchangeably to
refer to the stream of logging output captured in the event log file or displayed on
the screen.

Event logging provides a detailed, low-level view of the execution of your RPC
application. If development of your RPC application is proceeding well, this level
of detail may not be necessary. However, when you are in the debugging phase
of application development, the continuous execution information provided by
the Event Logger and the ability to change the type and timing of logging can be
valuable.

12.1 Introduction to the RPC Event Logging Facility
When event logging is enabled, the Event Logger creates one log for each client
and server process. To enable the RPC Event Logger, you specify an IDL compiler
option that traces events (described in Section 12.2.1).

Enabling event logging when compiling allows you the option of generating logs
at runtime without rebuilding the application. Once logging is enabled, you can
use OpenVMS symbols and the RPC Log Manager (rpclm) to control logging
operations. The Log Manager provides a command interface for changing logging
operations during application execution.

The RPC Event Logger records events about application calls, context handles,
errors, miscellaneous events, and logging operations. These are called event
types. Typical RPC events include the following:

• call_start — A client application made a call to a server.

• call_failure — A client stub terminated abnormally either through an
exception or failing status.

• exception — An exception was detected in the server stub, and the exception
caused the call to terminate.

• context_rundown — A context handle on a server was freed by the context
rundown procedure.

Application Debugging with the RPC Event Logger 12–1

Application Debugging with the RPC Event Logger
12.1 Introduction to the RPC Event Logging Facility

For application calls, the Event Logger generates events that signal call
activation, the call start and end, attempts to rebind to a server, and termination
of a server thread.

For context handles, the Event Logger generates events that signal context
handle creation and deletion by the client and server, and context handle
modification, removal, and rundown.

For errors, the Event Logger generates events that signal call and receive failure
from the client, exceptions, server failure, and call transmission failure from the
server.

The miscellaneous events provide information about the application manager
routine, and input and output argument processing events.

The logging operation itself generates events that display the logging output
device, and that signal modification of logging parameters, and event log start
and stop.

As a result of using the -trace option in the IDL compile command, idl, RPC
events are generated by code in the client and server stub modules created by
the compiler. Note that some events are generated at selected points in the RPC
runtime library. For this reason, certain events, such as those relating to the
logging operation, are always generated into the application code in addition to
the event types you specify.

The events generated in each of these areas are shown in detail in Section 12.6.

In the event log, each event is described on a single line divided into five fields.
The five fields are defined in Table 12–1.

Table 12–1 Event Log Fields

Field Field Description

Event Time The system clock at the time of the event. Events are
listed chronologically in the log.

Thread Identity The hostname, process ID, and thread ID.

Operation Name The interface and operation name (if available).

Event Name Name of the event.

Event Data Data related to the event. This field contains either
specific information about logging operations or a
string binding that uniquely identifies the client
process, server process, or Log Manager process.

The following is an example of an event log generated for an RPC client. The
log contains five columns. To improve readability, columns four and five are
shown below the first three columns. In addition, the field names have been
added to identify the events; the names do not appear in an actual event log. (In
subsequent event log examples, the field names are occasionally used instead of
actual data to improve readability where necessary.)

EVENT TIME THREAD IDENTITY OPERATION NAME

1999-02-07:11:48:18.31.160-5:00I0.121 ifdef:8710/1 binopwk.binopwk_add
1999-02-07:11:48:18.32.170-5:00I0.121 ifdef:8710/1 binopwk.binopwk_add
1999-02-07:11:48:18.65.180-5:00I0.121 ifdef:8710/1 binopwk.binopwk_add

EVENT NAME EVENT DATA

12–2 Application Debugging with the RPC Event Logger

Application Debugging with the RPC Event Logger
12.1 Introduction to the RPC Event Logging Facility

log_start all
call_start ncacn_ip_tcp:16.31.48.109[1821]
call_end

This small event log indicates that the following events occurred:

1. The log_start event indicates that logging started on February 7, 1999,
at 11:48 a.m. on the host named ifdef, in process number 8710, and in
thread number 1. Event logging was enabled when the binopwk interface
was compiled with the IDL -trace option. The RPC call to the binopwk_add
operation in the binopwk interface caused logging to begin and is the first
event logged. The Event Data field indicates that all events are being logged.

2. The call_start event indicates an attempt to execute a call to a server. The
string binding in the Event Data field shows that the call was made over
the TCP/IP transport to host 16.31.48.109 with endpoint 1821. This string
binding identifies the server being contacted.

3. The call_end event indicates that the RPC call is completed, and control has
returned to the caller of binopwk_add.

This log indicates that the RPC call to the binopwk_add interface was successful
because no error events occurred.

12.2 Generating RPC Event Logs
In general, to create an event log, you must follow these four basic steps:

1. Specify the -trace option in your idl command line to enable event logging.

2. Compile and link the application.

3. Assign the event log to a filename or to the screen.

4. Run the application.

The next sections describe how to use the -trace option.

12.2.1 Enabling Event Logging
To enable event logging, you use a command line interface to the IDL compiler.
The IDL compiler supports two interfaces:

• A universal interface that can be used on any operating system

• A Digital Command Language (DCL) interface that can be used only on the
OpenVMS operating system

Your system manager determines which interface is available on your system.
The following sections describe each interface. The examples use the universal
interface to demonstrate event logging capabilities.

12.2.1.1 Universal IDL Compiler Interface
To enable event logging with the universal interface, specify the -trace option
when you use the idl command to compile an interface. The syntax of the idl
command with the -trace option is as follows:

$ idl filename -trace value

Event types are specified as a value of -trace. Valid values and the event types
they denote are listed in Table 12–2.

Application Debugging with the RPC Event Logger 12–3

Application Debugging with the RPC Event Logger
12.2 Generating RPC Event Logs

Table 12–2 Event Values and Types

Value Event Type

all Log all events.

none Disable all previously specified trace options.

calls Log events relating to start and end of all RPC calls.

context Log events relating to context handle creation, deletion, and
rundown.

errors Log errors.

misc Log all miscellaneous events.

log_manager Enable command interface support which allows modification
at runtime of event logging options.

For more information about the -trace option, see Section 12.2.2.

12.2.1.2 Digital Command Language Interface for the Event Logger
This section defines the Digital Command Language (DCL) for the Event Logger.

NAME

IDL /TRACE — Invokes the Interface Definition Language (IDL) Compiler with
event logging enabled.

SYNOPSIS

IDL filename /TRACE

QUALIFIER

/TRACE=option[,...])

Controls whether event logging is enabled. If you do not specify this qualifier,
the compiler does not enable event tracing. To disable event logging, specify
/NOTRACE.

Specify one or more of the following options:

LOG_MANAGER Controls whether the Log Manager command line
interface is enabled. The command line interface to
the Log Manager allows you to modify event logging
options at runtime. If you do not specify the LOG_
MANAGER option, the command line interface will
not be enabled. To disable the Log Manager, specify
NOLOG_MANAGER.

EVENTS=value,... Specifies the values for which event logging will
be enabled. Specify one or more of the values
shown in the following table, except for the value
log_manager. (This function is provided by the DCL
LOG_MANAGER qualifier.) If you specify only one
option, you can omit the parentheses.

Table 12–3 lists some commonly used event logging options in the universal
interface with DCL equivalents.

12–4 Application Debugging with the RPC Event Logger

Application Debugging with the RPC Event Logger
12.2 Generating RPC Event Logs

Table 12–3 Universal Interface with DCL Equivalents

Universal Interface DCL Command

-trace all /TRACE=EVENTS=ALL

-trace log_manager /TRACE=LOG_MANAGER

-trace all -trace log_manager /TRACE=(LOG_MANAGER,EVENTS=ALL)

-trace errors -trace calls /TRACE=EVENTS=(ERRORS,CALLS)

12.2.2 Using the -trace Option
Once you have used the Event Logger, you will find that it generates a large
volume of information to be analyzed. Discard any unneeded log files, since the
Event Logger will continue to record information in the files, enlarging them until
the disk is full.

To help reduce the generation of unwanted information, you can use the -trace
options to enable event logging on only a subset of events. That is, rather than
specifying the all option, specify only calls or only context_handles. The
subset you specify will depend on the part of your application you are debugging.
Because the -trace option provides logging control on a per-compilation basis,
the interface must be rebuilt to enable or disable logging of different event types.
The -trace options offer the ability to select different event types for the various
IDL interfaces that may make up a single application.

You can use the -trace option to request logging of a single type of event, such as
errors, with a command similar to the following:

$ idl binopwk.idl -trace errors

You can also use the -trace option to request logging of multiple event types,
such as errors and calls as shown below:

$ idl binopwk.idl -trace errors -trace calls

This command enables the Event Logger, specifying error and call event logging.

To enable event logging to trace the execution of RPC calls within a process,
perform the following steps:

1. Enable event logging by specifying the -trace option in the idl command you
use to compile each interface definition. This example specifies the -trace
all option:

$ idl binopwk.idl -trace all

2. Build and link the client and server portions of the application.

3. Use the symbol RPC_LOG_FILE to direct the log output for both the server
and client processes. To store Event Logger output in a file, assign the symbol
to a filename. To direct Event Logger output to the standard terminal output
for the process (stdout), assign the symbol to double quotation marks (" ").
This guide refers to standard terminal output as the screen.

In the window from which the server portion of the application will be
executed, direct logging for the server to a file with the following syntax:

$ RPC_LOG_FILE == "server.log"

Or, to direct logging for the server to the screen, use the following syntax:

$ RPC_LOG_FILE == ""

Application Debugging with the RPC Event Logger 12–5

Application Debugging with the RPC Event Logger
12.2 Generating RPC Event Logs

4. In the window from which the client portion of the application will be
executed, direct logging for the client to a file with the following syntax:

$ RPC_LOG_FILE == "client.log"

Or, to direct logging for the client to the screen, use the following syntax:

$ RPC_LOG_FILE == ""

Now you can invoke the client and server processes. The event log will be
recorded in the specified file or displayed on your screen when you execute the
application.

12.2.3 Combining Event Logs
Although event logs are generated locally for each process, you can combine event
log files to provide a broader view of application execution.

Note that this section does not give examples of each step in the application
development process.

The syntax of a merge command is as follows:

$ merge server-filename.log, client-filename.
log client_and_server-filename.log

If two events have the same timestamp, you receive a warning message after the
merge is completed.

The following example illustrates how to merge logs from two different systems:

1. The server process command sequence is as follows:

$ idl fpe_server.idl -trace calls -trace errors
$ RPC_LOG_FILE == "server.log"
$ server

2. The client process command sequence is as follows:

$ idl fpe_client.idl -trace calls -trace errors
$ RPC_LOG_FILE == "client.log"
$ client

These command sequences result in two log files: server.log and
client.log, shown below. (Note that, in the following example log files,
the Event Data field is replaced by the word <DATA> to improve readability of
the log.)

This is file server.log:

1999-03-03:20:37.170-5:00I0.121 murp:17924/15 fpe.setup log_start <DATA>
1999-03-03:20:37.170-5:00I0.121 murp:17924/15 RPC LogMgrlistening <DATA>
1999-03-03:20:37.180-5:00I0.121 murp:17924/15 fpe.setup activate <DATA>
1999-03-03:20:37.180-5:00I0.121 murp:17924/15 fpe.setup terminate <DATA>
1999-03-03:20:37.200-5:00I0.121 murp:17924/15 fpe.float <DATA>
1999-03-03:20:37.200-5:00I0.121 murp:17924/15 transmit_fault <DATA>
1999-03-03:20:37.200-5:00I0.121 murp:17924/15 fpe.float terminate <DATA>

This is file client.log:

1999-03-03:20:37.850-5:00I0.121 ifdef:28168/1 fpe.stup log_start <DATA>
1999-03-03:20:37.880-5:00I0.121 ifdef:28168/1 fpe.stup call_start <DATA>
1999-03-03:20:37.190-5:00I0.121 ifdef:28168/1 fpe.stup call_end <DATA>
1999-03-03:20:37.190-5:00I0.121 ifdef:28168/1 fpe.flt call_start <DATA>
1999-03-03:20:37.210-5:00I0.121 ifdef:28168/1 receive_fault <DATA>
1999-03-03:20:37.210-5:00I0.121 ifdef:28168/1 call_failure <DATA>

12–6 Application Debugging with the RPC Event Logger

Application Debugging with the RPC Event Logger
12.2 Generating RPC Event Logs

3. Next, the two log files are merged with the merge command:

$ merge server.log,client.log client_and_server.log

The resulting file client_and_server.log is as follows:

1999-03-03:20:37.850-5:00I0.121 ifdef:28168/1 fpe.setup log_start <DATA>
1999-03-03:20:37.880-5:00I0.121 ifdef:28168/1 fpe.setup call_start<DATA>
1999-03-03:20:37.170-5:00I0.121 murp:17924/15 fpe.setup log_start <DATA>
1999-03-03:20:37.170-5:00I0.121 murp:17924/15 RPC LogMgrlistening <DATA>

1999-03-03:20:37.180-5:00I0.121 murp:17924/15 fpe.setup terminate <DATA>
1999-03-03:20:37.190-5:00I0.121 ifdef:28168/1 fpe.setup call_end <DATA>

1999-03-03:20:37.190-5:00I0.121 ifdef:28168/1 fpe.float call_start<DATA>
1999-03-03:20:37.200-5:00I0.121 murp:17924/15 fpe.float activate <DATA>
1999-03-03:20:37.200-5:00I0.121 murp:17924/15 fpe.float exception <DATA>
1999-03-03:20:37.200-5:00I0.121 murp:17924/15 transmit_fault <DATA>
1999-03-03:20:37.200-5:00I0.121 murp:17924/15 fpe.float terminate <DATA>
1999-03-03:20:37.210-5:00I0.121 ifdef:28168/1 receive_fault <DATA>
1999-03-03:20:37.210-5:00I0.121 ifdef:28168/1 call_failure <DATA>

For the merged output to be accurate, the system clocks on all hosts on which
event logs are generated must be closely synchronized. The Distributed Time
Service (DTS) component of HP’s DCE provides such a service. Once the clocks
are synchronized, the ordering of events in a merged log file is valid only if the
difference between timestamps made on different machines is greater than the
inaccuracy field in those timestamps. (See the DTS documentation for more
information about timestamps.)

In the preceding client_and_server.log file example, consider the event with
the timestamp 1999-03-03:20:37:03.180-5:00I0.121 and the event that follows it
(these two event lines are separated from the rest of the log by a blank line before
and after). Note that the timestamps indicate that the terminate event precedes
the call_end event.

However, you cannot determine this sequence of events by comparing timestamps
because the inaccuracy value at the end of the timestamp is greater than the
difference between the timestamps. That is, the difference in time between
these events is only 10 milliseconds (the difference between 180 and 190
milliseconds). However, the inaccuracy in the timestamps is 121 milliseconds
(I0.121). Therefore, the log is not a definitive indicator of which event occurred
first. Because of the simplicity of the example and the single thread of control,
you can assume that the terminate event preceded the call_end event.

12.2.4 Disabling Event Logging
To disable event logging, compile your interface without specifying the -trace
option. For example:

$ idl binopwk.idl

12.3 Using Symbols and the Log Manager to Control Logging
Information

In addition to the -trace options, the Event Logger offers two other methods for
controlling information in the event log. Each facility is advantageous in different
circumstances, depending on the type of processes with which you are working
and the type of events you need to log. The two methods are as follows:

• Controlling Logged Events with a Symbol: Select a subset of event types
specified previously with the -trace option by creating the symbol RPC_

Application Debugging with the RPC Event Logger 12–7

Application Debugging with the RPC Event Logger
12.3 Using Symbols and the Log Manager to Control Logging Information

EVENTS. You assign the symbol to the required event types before executing
the process. This method allows you to use event logging without rebuilding
the interface; however, you must first stop the process or assign the symbol
before starting it. This method is also useful in cases where you specified
all-inclusive event logging (such as with the -trace all option) but you
determine that you need only a subset of events while the application is
executing.

• Controlling Logged Events with the RPC Log Manager: Select a subset of
event types specified previously with the -trace option by using the RPC Log
Manager command interface. This method allows you to modify event logging
parameters for an executing image; there is no need to rebuild the interface
or to stop and restart the process. In addition, you can use the Log Manager
to modify event types specified with the symbol RPC_EVENTS.

The following sections provide detailed descriptions of how to use each of these
methods to control the type of events logged.

12.3.1 Controlling Logged Events with a Symbol
One way to control the type of events logged is by assigning the symbol RPC_
EVENTS. This method is ideal for an application that contains a single RPC
interface because a symbol provides control at the process level, rather than at
the interface-by-interface level. However, to enable the symbol, you must first
stop the client or server process.

To use symbols to control event logging, first use the IDL -trace option in your
idl compile command and then assign the log file with RPC_LOG_FILE. You
can then use the symbol RPC_EVENTS to reduce the number of events currently
being logged. That is, if you used the -trace errors option to request error event
logging, you can subsequently use only the symbol to request logging of errors
or none. You cannot use the symbol to increase the number of event types to be
logged. To do this, you must recompile the interface with the required -trace
options.

The value of RPC_EVENTS is a list of event types separated by commas. The
list identifies the event types to be monitored. Valid values are the same as those
for -trace (except log_manager). These values are all, none, calls, context,
errors, and misc.

An example command line follows:

$ RPC_EVENTS == "calls,errors"

If the symbol RPC_EVENTS was not assigned, then by default all of the events
specified with the -trace option are written into the event log.

12.3.2 Controlling Logged Events with the RPC Log Manager
During application development, certain problems occur only after a server has
executed some number of calls. Other problems may require more information
than anticipated to debug. These problems can be addressed by enabling the RPC
Log Manager in your application image. The Log Manager offers a command
line interface (rpclm) for manipulating logging operations during application
execution. When you use the rpclm command line interface, you need not rebuild
your interface or stop and restart your server or client process to manipulate
logging operations.

12–8 Application Debugging with the RPC Event Logger

Application Debugging with the RPC Event Logger
12.3 Using Symbols and the Log Manager to Control Logging Information

The rpclm command interface commands are shown in Table 12–4.

Table 12–4 Command Interface to rpclm

Command Description

inquire Inquire about the currently logged events and determine the
name of the active log file.

log Specify additional events to log. Valid values are all, none,
calls, context, errors, and misc.

unlog Disable logging of the specified event types. Valid values are
all, none, calls, context, errors, and misc.

file Change the output device or file to which events are logged.

quit Terminate the rpclm session.

help Display a description of rpclm commands.

Follow these steps to enable the RPC Log Manager to control event logging:

1. Use the -trace log_manager option in your idl compile command.

2. Create the RPC_LOG_FILE symbol and assign it to a filename or to screen
output.

3. Execute the client or server process, or both.

4. When the first call is made to an interface compiled with the -trace option,
a listening event will be generated into the event log. Invoke the rpclm
command interface (as described in step 4 which follows) by specifying the
string binding from the listening event.

Note

Only string bindings from a listening event can be used to invoke rpclm.

The rpclm command interface allows you to control event logging parameters
from your keyboard. You can use the command interface to reduce the events
currently being logged as well as to manipulate logging operations. You can
enable or disable logging of different event types (within the set selected with the
-trace option), store event logging in a file or display it on the screen, inquire
about the current event types being logged, and display the name of the current
log file.

The following procedure illustrates how to use the Log Manager:

1. When you compile your interface with the idl compile option, include the
-trace log_manager option. For example:

$ idl binopwk.idl -trace all -trace log_manager

2. Assign the RPC_LOG_FILE symbol to a filename. For example:

$ RPC_LOG_FILE == "client.log"

3. Execute the client or server process, or both.

4. Upon the first remote procedure call to an interface compiled with the -
trace log_manager option, a listening event will be generated into the log.
Examine the Event Data field of the listening event in the log to determine
the Log Manager string binding. (The RPC Event Logger is itself a client

Application Debugging with the RPC Event Logger 12–9

Application Debugging with the RPC Event Logger
12.3 Using Symbols and the Log Manager to Control Logging Information

/server application: the Log Manager is a server process, and rpclm is its
client. The rpclm client uses the string binding of the listening event to
communicate with the Log Manager server.) Invoke rpclm and specify the
Log Manager string binding. For example, consider the following event:

<TIME> murp:17868/15 RPC LogMgr listening ncacn_ip_tcp:16.31.48.144[3820]

The listening event indicates that the RPC Log Manager is waiting for
commands from rpclm. (Note that, in the example, the Time field is replaced
by the word <TIME> to improve readability of the log.) To invoke rpclm, enter
the listening event string binding for this server process from the Event
Data field as follows:

$ rpclm "ncacn_ip_tcp:16.31.48.144[3820]"

Note that you must enclose the string binding in double quotation marks (" ").

5. As you execute rpclm commands, the Log Manager displays current logging
parameters that indicate the changes made to event logging for this process.
For example:

rpclm> unlog all
Event types:
Events logged to terminal
rpclm> log calls
Event types: call

Events logged to terminal

The log for this server process will have corresponding events logged as
follows:

<TIME> murp:17868/15 RPC Log Mgr log_events none
<TIME> murp:17868/15 RPC Log Mgr log_events calls

The following example illustrates a command dialog between the user and rpclm.
The dialog begins when the user specifies a string binding from a listening event
to rpclm.

$ rpclm "ncacn_ip_tcp:cltdce[1821]"
rpclm> help
rpclm Commands:
inquire - Display logged events and log filename
log - Specify additional events to log
unlog - Specify events that should no longer be logged
file - Change file into which events are logged
quit - Exit log manager
rpclm> inquire
Event Types: calls
Events logged to terminal
rpclm> log errors
Event Types: calls errors
Events logged to terminal
rpclm> file server.log
Event Types: calls errors
Events logged to file ’server.log’
rpclm> quit

In this dialog, the user enters the help command to display the rpclm commands
and command descriptions.

The user then enters the inquire command to display the types of events being
logged and the log filename. In this example, errors are being logged to the
screen.

12–10 Application Debugging with the RPC Event Logger

Application Debugging with the RPC Event Logger
12.3 Using Symbols and the Log Manager to Control Logging Information

The user enters the log calls command to specify that the Log Manager should
start logging all events relating to calls, in addition to error events.

The user then enters the file command and specifies a filename. This command
requests that rpclm change its output device from the terminal screen to a file
named server.log.

The user then enters the quit command to terminate the rpclm session.

12.4 Using the -trace Option, Symbols, and the Log Manager
Together

This section describes a few different ways to use the -trace options, symbols,
and the Log Manager together. When you are learning to use the Event Logger,
one possible approach is to specify all-inclusive event logging with the -trace all
IDL compilation option, and then examine the event log to get an understanding
of typical output. You can then use the symbol RPC_EVENTS to log only those
events needed, such as calls or errors.

In the case of a running process that you do not want to terminate, use a
different method. First enable the Event Logger specifying logging of all events,
and enable the Log Manager also, as follows:

$ idl filename -trace all -trace log_manager

Set the event log to display on the screen, as follows:

$ RPC_LOG_FILE == ""

Then, assign the RPC_EVENTS symbol so it will not log any event types, as
follows:

$ RPC_EVENTS == "none"

With these parameters set, the only event that will be displayed is the listening
event once the first call is made to a server interface compiled with the -trace
log_manager option. You can then obtain the string binding for the process and
use it later, if needed. Once you start the process, if an error occurs, use the
string binding to invoke the rpclm command interface and log the needed events.
Any rpclm commands issued at this point will modify the RPC_EVENTS symbol
assignment. For example, if you assign the symbol RPC_EVENTS to calls and
then issue a command to rpclm to log errors, errors as well as calls will be
logged.

Once you are familiar with Event Logger output, consider regularly using the
command interface to enable or disable subsets of event types as needed.

This section provides an example of common tasks you may need to perform
during event logging. In this particular example, a distributed server process
provides a mathematical calculation service. The client process passes data to be
calculated to the server process. This type of processing often generates exception
events such as those in the example event log. That is, some operations are
interrupted by floating point overflow and integer division by zero exceptions, as
well as others. This example uses rpclm to control logging of a server process;
however, rpclm can also be used to control event logging for a client process.

The following processes are shown in three windows: a server process window, a
client process window, and an rpclm window.

1. Server Window — The user first enables the RPC Event Logger by specifying
the -trace all and -trace log_manager options in the idl command line:

Application Debugging with the RPC Event Logger 12–11

Application Debugging with the RPC Event Logger
12.4 Using the -trace Option, Symbols, and the Log Manager Together

$ idl server_calc -trace all -trace log_manager

2. Server Window — The user starts the server process. The server receives a
client call and initializes the RPC Log Manager. The symbols were assigned
to enable event logging with no event types selected, so only Log Manager
events are output, as shown. (Note that the end point displayed for the
listening event is the end point of the Log Manager.)

$ RPC_LOG_FILE == ""
$ RPC_EVENTS == "none"
$ server ncacn_ip_tcp

<TIME> murp:17868/15 fpe.setup log_start none
<TIME> murp:17868/15 RPC LogMgr listening ncacn_ip_tcp:16.31.48.144[3820]

3. Client Window — The user invokes the client process by using a foreign
command that was previously defined. The specified string binding is used
to find the server. The client process displays the output PASS 1 upon
completion.

$ client ncacn_ip_tcp 16.31.48.144 3820
PASS 1

4. rpclm Window — The user invokes rpclm and specifies the string binding
displayed in the listening event output by the server process, shown in step
2. The string binding must be enclosed in double quotation marks (" "). The
user issues the inquire command, and the event logging parameters for the
server process are displayed. The Log Manager reply indicates that no event
types are enabled and that the event log is being displayed on the screen
from which the server process was started. The user issues the log errors
command to enable logging of error events for the server process.

$ rpclm "ncacn_ip_tcp:16.31.48.144[3820]"
rpclm> inquire
Event types:
Events logged to terminal
rpclm> log errors
Event types: errors
Events logged to terminal

5. Client Window — The user invokes the client process a second time. The
error events that occur during server execution are logged to the server
window. The client process displays the output PASS 2 upon completion.

$ client ncacn_ip_tcp 16.31.48.144 3820
PASS 2

6. Server Window — The server process receives the command from rpclm to
start logging errors. Any errors that occur in the server process are logged.

12–12 Application Debugging with the RPC Event Logger

Application Debugging with the RPC Event Logger
12.4 Using the -trace Option, Symbols, and the Log Manager Together

<TIME> murp:17868/15 RPC Log Mgr log_events errors
<TIME> murp:17868/15 fpe.flt_overflw exception Floating point

overflow (dce/thd)
<TIME> murp:17868/15 transmit_fault rpc_s_fault_fp_overflow
<TIME> murp:17868/15 fpe.flt_underflw exception Floating point

underflow (dce/thd)
<TIME> murp:17868/15 transmit_fault rpc_s_fault_fp_underflow
<TIME> murp:17868/15 fpe.flt_divbyzer exception Floating point/decimal

divide by zero (dce/thd)
<TIME> murp:17868/15 transmit_fault rpc_s_fault_fp_div_by_zero
<TIME> murp:17868/15 fpe.dble_overflw exception Floating point

overflow (dce/thd)
<TIME> murp:17868/15 transmit_fault rpc_s_fault_fp_overflow
<TIME> murp:17868/15 fpe.dble_underflw exception Floating point

underflow (dce/thd)
<TIME> murp:17868/15 transmit_fault rpc_s_fault_fp_underflow
<TIME> murp:17868/15 fpe.dble_divbyzer exception Floating point/decimal

divide by zero (dce/thd)
<TIME> murp:17868/15 transmit_fault rpc_s_fault_fp_div_by_zero

7. rpclm Window — The user issues the unlog all command to disable logging
of all previously specified event types.

rpclm> unlog all
Event types:
Events logged to terminal

8. Server Window — The event log now contains an entry that indicates the
Event Logger will stop logging previously specified events.

<TIME> murp:17868/15 RPC Log Mgr log_events none

9. rpclm Window — The user issues a log calls command to enable logging of
call events.

rpclm> log calls
Event types: calls
Events logged to terminal

10. Server Window — The newest event log entry indicates that the Event Logger
will start logging call events.

<TIME> murp:17868/15 RPC Log Mgr log_events calls

11. rpclm Window — Because logging output will increase now that call events
are being logged, the user issues an rpclm command to redirect logging
output to a file named server_calc.log. When the application terminates
and logging is complete, the user can use a text editor to view and search for
entries in the log. This log file will contain only those call events from the
server process.

rpclm> file server_calc.log
Event types: calls
Events logged to file ’server_calc.log’

12. Server Window — The newest event log entry indicates that the logger will
start redirecting logging information to file server_calc.log.

<TIME> murp:17868/15 RPC Log Mgr log_file server_calc.log

13. Client Window — The user invokes the client process a third time. The call
events that occur during server execution are logged to file server_calc.log.
The client process displays the output PASS 3 upon completion.

$ client ncacn_ip_tcp 16.31.48.144 3820
PASS 3

Application Debugging with the RPC Event Logger 12–13

Application Debugging with the RPC Event Logger
12.4 Using the -trace Option, Symbols, and the Log Manager Together

14. Server Log — This is log file server_calc.log:

$ TYPE server_calc.log

<TIME> murp:17868/15 RPC Log Mgr log_start server_calc.log
<TIME> murp:17868/15 fpe.setup activate ncacn_ip_tcp:16.31.48.144[2905]
<TIME> murp:17868/15 fpe.setup terminate ncacn_ip_tcp:16.31.48.144[2905]
<TIME> murp:17868/15 fpe.flt_overflw activate ncacn_ip_tcp:16.31.48.144[2905]
<TIME> murp:17868/15 fpe.flt_overflw terminate
<TIME> murp:17868/15 fpe.flt_underflw activate ncacn_ip_tcp:16.31.48.144[2905]
<TIME> murp:17868/15 fpe.flt_underflw terminate
<TIME> murp:17868/15 fpe.flt_divbyzer activate ncacn_ip_tcp:16.31.48.144[2905]
<TIME> murp:17868/15 fpe.flt_divbyzer terminate
<TIME> murp:17868/15 fpe.dble_overflw activate ncacn_ip_tcp:16.31.48.144[2905]
<TIME> murp:17868/15 fpe.dble_overflw terminate
<TIME> murp:17868/15 fpe.dble_underflw activate ncacn_ip_tcp:16.31.48.144[2905]
<TIME> murp:17868/15 fpe.dble_underflw terminate
<TIME> murp:17868/15 fpe.dble_divbyzer activate ncacn_ip_tcp:16.31.48.144[2905]
<TIME> murp:17868/15 fpe.dble_divbyzer terminate

15. rpclm Window — The user issues a file command to redirect event logging
output from server_calc.log to the terminal screen. To do this, press the
Return key without specifying a filename when the Log Manager prompts for
one.

rpclm> file
New File Name: <RETURN>
Event types: calls
Events logged to terminal
rpclm>

16. Server Window — The final event in the server_calc.log file is a log_file
event, which indicates that event logging output is being redirected, in this
case to the terminal screen. Therefore, no filename is displayed to the right of
the event name.

<TIME> murp:17868/15 RPC Log Mgr log_file

12.5 Using Event Logs to Debug Applications
The RPC Event Logger is designed to help you debug your distributed application
and is an enhancement over the basic diagnostics in the RPC product. The
diagnostics alone provide minimal information. For example, the sample program
called test2, which is provided with the HP DCE software kit, generates the
rpc_x_no_more_bindings exception when the client fails to contact the server.
Without the aid of RPC event logging, this is the only diagnostic information
available.

The following example shows the basic RPC diagnostic information that an
application displays when an error occurs:

$ run test2
%CMA-F-EXCCOPLOS, exception raised; some information lost
-DCERPC-E-NOMOREBINDINGS, no more bindings (dce / rpc)
*** Unable to obtain server binding information
$

If you enable RPC event logging by defining the symbol RPC_LOG_FILE, then
the details of client execution can be captured in a file. From the event log,
you can determine which servers the client tried to contact and the reason each
attempt failed.

12–14 Application Debugging with the RPC Event Logger

Application Debugging with the RPC Event Logger
12.5 Using Event Logs to Debug Applications

In the following event log example, the Event Data field on the rebind events
indicates that the interface is not registered in the end point map and that a
communications failure occurred. This information indicates that the server
either is not running or it failed to register properly with the end point mapper.

The final event, call_failure, indicates that the call was terminated with the
no more bindings status. This event indicates that the client tried all available
servers but failed to communicate with any of them. (Note that in the first
column the word <TIME> represents the actual value for time.)

$ run test2
<TIME> ko:11436/1 test2.test2_add log_start all
<TIME> ko:11436/1 test2.test2_add call_start ncacn_ip_tcp:16.20.16.27[]
<TIME> ko:11436/1 test2.test2_add rebind not registered in endpoint

map(dce/rpc)
<TIME> ko:11436/1 test2.test2_add call_start ncacn_dnet_nsp:4.262[]
<TIME> ko:11436/1 test2.test2_add rebind not registered in endpoint

map(dce/rpc)
<TIME> ko:11436/1 test2.test2_add call_start ncadg_ip_udp:16.20.16.27[]
<TIME> ko:11436/1 test2.test2_add rebind communic failure (dce/rpc)
<TIME> ko:11436/1 call_failure no more bindings (dce/rpc)
%CMA-F-EXCCOPLOS, exception raised; some information lost
-DCERPC-E-NOMOREBINDINGS, no more bindings (dce / rpc)
*** Unable to obtain server binding information
$

12.6 Event Names and Descriptions
Table 12–5 lists and describes RPC events.

Table 12–5 RPC Events

Event Name Description

activate A thread was assigned to process an RPC call on a
server, and the server stub has started processing
input arguments. The Event Data field of the event
log contains the string binding of the client application
making the call.

await_reply The transmission of input arguments in a call from a
client application to a server is completed. The event
is generated by the client stub. The client application
is waiting for output arguments from the server.

call_end A call from a client application is complete and the
client stub is returning to the caller.

call_failure A client stub terminated abnormally because either an
exception occurred or a failing status was returned.
The Event Data field of the event log contains the
error text associated with the exception or RPC status
code.

call_start A client application attempted to make a call to a
server. The event is generated by the stub within the
client application. The Event Data field of the event
log displays the string binding of the server being
contacted.

(continued on next page)

Application Debugging with the RPC Event Logger 12–15

Application Debugging with the RPC Event Logger
12.6 Event Names and Descriptions

Table 12–5 (Cont.) RPC Events

Event Name Description

client_ctx_created A client application has allocated a context handle
on a particular server. The Event Data field of the
event log contains the following information about this
event:

• The address representing the context handle in
the client address space (an opaque pointer)

• The UUID that can be used to identify the
corresponding context handle on the server

• The string binding of the server on which the
actual context resided

client_ctx_deleted The client application representation of a context
handle is being deleted to reflect the deletion of the
context handle on the server. The Event Data field of
the event log contains the following information about
this event:

• The address representing the context handle in
the client address space (an opaque pointer)

• The UUID that can be used to identify the
corresponding context handle on the server

• The string binding of the server on which the
actual context resided

client_ctx_destroyed A client application has destroyed the client
representation of a context handle through the
rpc_ss_destroy_client_context() routine. The
Event Data field of the event log contains the following
information about this event:

• The address representing the context handle in
the client address space (an opaque pointer)

• The UUID that can be used to identify the
corresponding context handle on the server

• The string binding of the server on which the
actual context resided

context_created A new context handle was created on a server and
returned from the application manager routine. The
Event Data field of the event log contains both the
application value of the context handle and the UUID
assigned to represent this context handle.

context_deleted A context handle on a server has been deleted by the
application manager routine. The Event Data field of
the event log contains both the application value of the
context handle and the UUID assigned to represent
this context handle.

(continued on next page)

12–16 Application Debugging with the RPC Event Logger

Application Debugging with the RPC Event Logger
12.6 Event Names and Descriptions

Table 12–5 (Cont.) RPC Events

Event Name Description

context_modified A context handle on a server was returned from the
application manager routine with a value that is
different from its previous value. The Event Data
field of the event log contains both the application
value of the context handle and the UUID assigned to
represent this context handle.

context_rundown A context handle on a server was freed by the context
rundown procedure. The Event Data field of the event
log contains both the application value of the context
handle and the UUID assigned to represent this
context handle.

exception An exception was detected in the server stub, and the
exception caused the call to terminate. The Event
Data field of the event log contains a text description
of the exception.

internal_error A failure occurred in the support routines that manage
the Event Logger. Check the Event Data field of the
event log for a description of the cause of the event. If
the error does not seem to indicate a transient network
problem or an environmental failure, report the failure
in a Software Performance Report (SPR).

listening The RPC Log Manager has started to listen for rpclm
commands. The listening event is generated by
the portion of the RPC Log Manager built into your
application by the RPC runtime when you specify the
-trace log_manager option on your IDL compilation.
The RPC Log Manager services the requests generated
by the rpclm command. You use one of the string
bindings from a listening event to invoke the rpclm
command interface.

log_events Event logging was modified through the Log Manager
command interface rpclm. The Event Data field of the
event log contains the new set of events being logged.

log_file Event logging was modified through the Log Manager
command interface rpclm. The Event Data field of the
event log contains the new filename for the event log.
If no filename is displayed, events are being logged to
the screen.

log_start A new event log was created or event logging was
resumed after being suspended by a user command
to the Log Manager command interface rpclm. The
Event Data field in the event log contains a list of
event types being logged.

log_stop Event logging was stopped through the Log Manager
command interface rpclm.

manager_call The server stub is about to call the application
manager routine.

manager_return Control has just returned from the application
manager routine to the server stub.

(continued on next page)

Application Debugging with the RPC Event Logger 12–17

Application Debugging with the RPC Event Logger
12.6 Event Names and Descriptions

Table 12–5 (Cont.) RPC Events

Event Name Description

rebind A call from a client application to a server failed. The
Event Data field in the event log shows the reason
for the failure to contact the server. The event is
generated by the stub within the client application.
The call failed on an auto_handle operation and the
client is attempting to rebind to the next server.

receive Following the transmission of input arguments from a
client application call to a server, the client received a
reply and has started processing output arguments.

receive_fault The client received a fault indicating a failure on
the server. The Event Data field of the event log
contains the RPC status that identifies the failure. All
failures have fault codes that you can find in the file
ncastat.idl. If the fault code in the ncastat.idl
file is too general (such as unspecified fault),
examine the server event log for precise failure
information.

status_fail A failure status was encountered in the server stub.
The Event Data field of the event log describes the
failure.

terminate The server thread has completed processing the call
and has terminated.

transmit_fault The server runtime is sending fault information to
the client application. The Event Data field of the
event log indicates the name of the fault being sent.
The fault information in this field is listed in the
ncastat.idl file. The fault information in this
field may be less descriptive than the information
logged about the actual error. (See the exception or
status_fail events in the event log to obtain precise
failure information.)

12–18 Application Debugging with the RPC Event Logger

13
Development of Distributed Applications with

FORTRAN

This chapter explains how to use FORTRAN in the development of distributed
applications that make remote procedure calls.

This chapter provides the following information:

• Interoperability and portability issues as they relate to applications written
in FORTRAN

• A comprehensive example that introduces and illustrates several concepts

• General reference information about FORTRAN and remote procedure calls,
including a discussion about restrictions

13.1 Interoperability and Portability
In general, an application you create in the HP DCE RPC environment will
interoperate with other DCE RPC applications and will port to other DCE
platforms if it complies with the appropriate programming language standards.
More specifically:

• Any client that you have correctly created in a HP DCE RPC environment to
use a DCE interface expressed in an IDL file will interoperate with any DCE
RPC server that supports the interface.

• Any server that you have correctly created in a HP DCE RPC environment to
use a DCE interface expressed in an IDL file will interoperate with any DCE
RPC client that makes calls on the interface.

Typically, applications created in the DCE RPC environment are written in the
C programming language. However, if you use the FORTRAN support in the HP
DCE for OpenVMS Alpha and OpenVMS I64 software, the application will be
subject to the following portability constraint:

• HP DCE RPC applications that contain code written in FORTRAN in an
OpenVMS environment and that use a DCE interface expressed in an IDL file
will interoperate with any corresponding DCE server or DCE client. However,
you can port these applications only to other HP DCE environments.

13.2 Remote Procedure Calls Using FORTRAN — Example
The OpenVMS DCE IDL compiler provides similar support for applications
written in FORTRAN as that provided for applications written in C. That is, you
can write an RPC client in FORTRAN or you can write one or more manager
routines in the server side of the application in FORTRAN. If you are unfamiliar
with the tasks involved in developing an RPC application, see the chapter about
application building in the OSF DCE Application Development Guide.

Development of Distributed Applications with FORTRAN 13–1

Development of Distributed Applications with FORTRAN
13.2 Remote Procedure Calls Using FORTRAN — Example

The FORTRAN support consists of stubs that use FORTRAN linkage conventions
and a file that contains FORTRAN definitions of the constants and types declared
in an interface definition. (These conventions and definitions are explained in
Section 13.3)

The following sections present a comprehensive example that demonstrates how
you can create the various parts of a simple, distributed payroll application using
FORTRAN. The important features of this example are as follows:

• The example client application reads time-card information, passes it to a
server that calculates wages, and prints the results.

• Both the client and the portion of the server that calculates gross pay (the
manager routine) are written in FORTRAN.

• The initialization portion of the server application is written in C.

13.2.1 Where to Obtain the Example Application Files
All of the example application files referenced in this chapter are located in the
following directory in your kit:

SYS$COMMON:[SYSHLP.EXAMPLES.DCE.RPC.PAYROLL]

Table 13–1 lists application files that normally would be created by the
programmer for an application. To demonstrate application building, these
application files are provided for you in the software kit. Table 13–2 in
Section 13.2.3 lists the files generated by the IDL compiler for the example
application.

Before you execute any of the example compilations, builds, or run commands
in this chapter, copy all of the files listed in Table 13–1 to an empty directory.
HP recommends that you read the file named PAYROLL.README in the same
subdirectory. Then build and run the examples.

Table 13–1 Example Files Created by the Programmer

Filename File Description

PAYROLL.IDL The interface definition file that contains the
application programming interface (API) to the remote
procedure call calculate_pay().

PRINT_PAY.FOR The FORTRAN source file for the client side of the
application.

SERVER.C The FORTRAN source file that contains the
initialization code for the server side of the application.

MANAGER.FOR The FORTRAN source file for the server side of the
application.

PAYROLL.COM The command file that builds and runs the example
application.

PAYROLL.DAT The data input file for the example application.

The programs, procedures, and data files in the payroll example should be the
same in this chapter and in the specified subdirectory that came with your
HP DCE for OpenVMS Alpha or OpenVMS I64 software. For example, file
PAYROLL.IDL as it appears in Section 13.2.2 should be identical to the following
file:

SYS$COMMON:[SYSHLP.EXAMPLES.DCE.RPC.PAYROLL]PAYROLL.IDL

13–2 Development of Distributed Applications with FORTRAN

Development of Distributed Applications with FORTRAN
13.2 Remote Procedure Calls Using FORTRAN — Example

For all of the example files, if there is a difference between the file as shown
in this chapter and the file in the subdirectory, assume that the file in the
subdirectory is the correct one.

13.2.2 The Interface File and Data File (PAYROLL.IDL and PAYROLL.DAT)
The following interface, named PAYROLL.IDL, is part of the example application.
The name of the remote procedure in the interface is calculate_pay(). The
interface does not indicate that this procedure is written in FORTRAN.

/*
** Copyright (c) 2004 by
** Hewlett-Packard Development Company, Palo Alto, California.
**
*/

[
uuid(d1b14181-6543-11ca-ba11-08002b17908e),
version(1.0)
]
interface payroll
{

const long string_data_len = 7;

typedef struct {
[string] char grade[string_data_len + 1];

/* Storage for a string must include space for a null terminator */
short regular_hours;
short overtime_hours;

} timecard;

void calculate_pay(
[in] timecard cards[1..7],
[out] long *pay

);
}

The next part of the example is the data file PAYROLL.DAT, which the client
side of the application reads. The facts about each employee appear in eight
records. The first record contains the employee’s name (40 characters) and grade
(7 characters). Records two to eight contain the number of regular hours and
overtime hours worked on Monday to Sunday. Note that the time card structure
defined in PAYROLL.IDL does not specify the employee’s name in the data going
to the remote procedure.

Development of Distributed Applications with FORTRAN 13–3

Development of Distributed Applications with FORTRAN
13.2 Remote Procedure Calls Using FORTRAN — Example

Jerry Harrison FOREMAN
8 1
8 1
8 2
8 2
8 1
0 4
0 0

Tony Hardiman WORKER
8 0
8 0
8 0
8 2
8 0
0 4
0 0

Mary Flynn WORKER
8 1
8 1
8 2
8 0
8 1
0 4
0 0

13.2.3 Compiling the Interface with the IDL Compiler
To compile an RPC interface, you must invoke the IDL compiler. To compile an
RPC interface for a FORTRAN application, you must select the following IDL
options:

• Option -lang fortran (universal syntax) or the qualifier
/LANGUAGE=FORTRAN (OpenVMS DCL syntax). This option specifies
FORTRAN as the source code language.

• Option -standard extended (universal syntax) or the qualifier
/STANDARD=EXTENDED (OpenVMS DCL syntax). This option enables
features beyond those available in OSF DCE Version 1.0.3.

The following example commands illustrate how to invoke the IDL compiler using
the universal and DCL interfaces, respectively, to compile the sample FORTRAN
application interface:

$ idl payroll.idl -lang fortran -standard extended
$ IDL/LANGUAGE=FORTRAN/STANDARD=EXTENDED
PAYROLL.IDL

As a result of this command, the IDL compiler generates the files listed in
Table 13–2.

Table 13–2 Example Files Created by IDL

Filename File Description

PAYROLL_CSTUB.OBJ The stub file generated by the IDL compiler for the
client side of the application.

PAYROLL_SSTUB.OBJ The stub file generated by the IDL compiler for the
server side of the application.

(continued on next page)

13–4 Development of Distributed Applications with FORTRAN

Development of Distributed Applications with FORTRAN
13.2 Remote Procedure Calls Using FORTRAN — Example

Table 13–2 (Cont.) Example Files Created by IDL

Filename File Description

PAYROLL.FOR An include file that emulates the C language header
file (.H) and that documents the valid syntax for
subroutine calls that are used in the FORTRAN source
files. This file will be called out by PAYROLL.COM
and linked with the other application files because it
refers to constants and types defined in the interface
definition.

PAYROLL.FOR_H A file generated by the IDL compiler that is used to
build the stub files.

File PAYROLL.FOR, as generated by the IDL compiler, is next.

C Generated by IDL compiler version HP DCE Vn.n.n-n
C
C The following statements must appear in application code
C INCLUDE ’NBASE.FOR’

INTEGER*4 STRING_DATA_LEN
PARAMETER (STRING_DATA_LEN=7)

STRUCTURE /TIMECARD/
CHARACTER*8 GRADE
INTEGER*2 REGULAR_HOURS
INTEGER*2 OVERTIME_HOURS

END STRUCTURE

C SUBROUTINE CALCULATE_PAY(CARDS, PAY)
C RECORD /TIMECARD/ CARDS(7)
C INTEGER*4 PAY

As you read this chapter, it is important to remember that the interface defined
in file PAYROLL.IDL appears as FORTRAN statements in file PAYROLL.FOR.
As a specific instance, consider the overtime hours field. Its definition appears in
PAYROLL.IDL as the statement short overtime_hours, and in PAYROLL.FOR
as the statement INTEGER*2 OVERTIME_HOURS. The overtime hours data in file
PAYROLL.DAT is read into a data item of this type.

13.2.4 The Client Application Code for the Interface (PRINT_PAY.FOR)
Suppose that the directory in which the interface was compiled also contains
file PRINT_PAY.FOR. This is the source file for the client side of the distributed
application. Its contents follow.

C This is the client side of a payroll application that
C uses remote procedure calls.
C

PROGRAM PRINT_PAY
INCLUDE ’PAYROLL.FOR’ ! Created by the IDL compiler from

! file PAYROLL.IDL.

C COPYRIGHT (C) 2004 BY HEWLETT-PACKARD DEVELOPMENT COMPANY. PALO ALTO, CALIFORNIA

Development of Distributed Applications with FORTRAN 13–5

Development of Distributed Applications with FORTRAN
13.2 Remote Procedure Calls Using FORTRAN — Example

C The structure of a time card is described in the included file.
RECORD /TIMECARD/ CARDS(7)
CHARACTER*40 NAME
CHARACTER*8 GRADE
INTEGER*4 PAY
INTEGER*4 I

C
C Read eight records for the current employee.

10 READ (4, 9000, END=100) NAME, GRADE ! First record
9000 FORMAT (A40, A8)

DO 20 I = 1, 7 ! Second through eighth records
READ (4,9010) CARDS(I).REGULAR_HOURS, CARDS(I).OVERTIME_HOURS

9010 FORMAT (I2, I2)
CARDS(I).GRADE = GRADE

20 CONTINUE
C
C Call remote procedure CALCULATE_PAY to calculate the gross pay.

CALL CALCULATE_PAY (CARDS, PAY)
C Display the current employee’s name and gross pay.

WRITE (6, 9020) NAME, PAY
9020 FORMAT (1X, A40, 1X, I4)

GO TO 10
C
100 STOP

C
END

To compile and link the client program PRINT_PAY.FOR, which at runtime makes
remote procedure calls to a server that supports the payroll interface, use the
following DCL commands. After you enter the LINK command, press <CTRL/Z>.

$ FORTRAN PRINT_PAY.FOR
$ LINK PRINT_PAY, PAYROLL_CSTUB, DCE:DCE/OPT

Instead of using these two commands directly to build the client part of the
application, you can invoke procedure PAYROLL.COM to build the entire
application. See Section 13.2.8 for information about building and running
this example.

This program reads its data from FORTRAN logical unit 4. A DCL command in
procedure PAYROLL.COM defines the logical unit.

13.2.5 The Server Initialization File (SERVER.C)
Because all programming interfaces to the RPC runtime are specified in C, you
must write the code that sets up the server in C. In this example, the server
setup code (also called the initialization code) is in file SERVER.C.

This file is shown next. Both SERVER.C and PAYROLL.COM (shown
in this section and in Section 13.2.8, respectively) contain the literal
FORTRAN_payroll_mynode. Do not substitute a node name for mynode. The code
in SERVER.C always exports its bindings using the entry name ".:/FORTRAN_
payroll_mynode".

/* This is program SERVER.C that sets up the server for the application
code whose origin is FORTRAN subroutine CALCULATE.PAY. */

/*
** Copyright (c) 2004 by
** Hewlett-Packard Development Company, Palo Alto, California.
**
*/

13–6 Development of Distributed Applications with FORTRAN

Development of Distributed Applications with FORTRAN
13.2 Remote Procedure Calls Using FORTRAN — Example

#include <STDIO.H>
#include <FILE.H>
#include <DCE/DCE_ERROR.H>
#include "payroll.for_h" /* The IDL compiler created this file from

file PAYROLL.IDL. */

static char error_buf[dce_c_error_string_len+1];
static char *error_text(st)

error_status_t st;
{

error_status_t rst;
dce_error_inq_text(st, error_buf, &rst);
return error_buf;

}

main()
{

error_status_t st;
rpc_binding_vector_p_t bvec;

/* Register all supported protocol sequences with the runtime. */
rpc_server_use_all_protseqs(

rpc_c_protseq_max_calls_default,
&st

);
if (st != error_status_ok)
{
fprintf(stderr, "Can’t use protocol sequence - %s\\n", error_text(st));

exit(1);
}

/* Register the server interface with the runtime. */
rpc_server_register_if(

payroll_v1_0_s_ifspec, /* From the IDL compiler; */
/* "v1_0" comes from the statement */
/* "version(1.0)" in file PAYROLL.IDL. */

NULL,
NULL,
&st

);
if (st != error_status_ok)
{

printf("Can’t register interface - %s\\n", error_text(st));
exit(1);

}

/* Get the address of a vector of server binding handles. The
call to routine rpc_server_use_all_protseqs() directed the
runtime to create the binding handles. */

rpc_server_inq_bindings(&bvec, &st);
if (st != error_status_ok)
{

printf("Can’t inquire bindings - %s\\n", error_text(st));
exit(1);

}

Development of Distributed Applications with FORTRAN 13–7

Development of Distributed Applications with FORTRAN
13.2 Remote Procedure Calls Using FORTRAN — Example

/* Place server address information into the local endpoint map. */
rpc_ep_register(

payroll_v1_0_s_ifspec,
bvec,
NULL,
(idl_char*)"FORTRAN Payroll Test Server",
&st

);
if (st != error_status_ok)
{

printf("Can’t register ep - %s\\n", error_text(st));
}

/* Place server address information into the name service database. */
rpc_ns_binding_export(

rpc_c_ns_syntax_default,
(idl_char*)".:/FORTRAN_payroll_mynode",
payroll_v1_0_s_ifspec,
bvec,
NULL,
&st

);
if (st != error_status_ok)
{

printf("Can’t export to name service - %s\\n", error_text(st));
}

/* Tell the runtime to listen for remote procedure calls.
Also, FORTRAN cannot support multiple threads of execution. */

rpc_server_listen((int)1, &st);
if (st != error_status_ok)

fprintf(stderr, "Error listening: %s\\n", error_text(st));

}

13.2.6 The Server Application Code for the Interface (MANAGER.FOR)
The server application code, written in FORTRAN, is declared in file
PAYROLL.IDL as calculate_pay(). The file MANAGER.FOR provides
some additional application code for the server and it contains subroutine
CALCULATE_PAY as follows:

SUBROUTINE CALCULATE_PAY(CARDS, PAY)
INCLUDE ’PAYROLL.FOR’ ! Created by the IDL compiler from

! file PAYROLL.IDL.

C
C COPYRIGHT (C) 2004 HEWLETT-PACKARD DEVELOPMENT COMPANY. PALO ALTO, CALIFORNIA.

C The structure of a time card is described in included file PAYROLL.FOR.
RECORD /TIMECARD/ CARDS(7)
INTEGER*4 PAY
INTEGER*4 I

PAY = 0
DO 10 I = 1, 7

C The basic hourly wage is $6.00.
PAY = PAY + 6 * CARDS(I).REGULAR_HOURS

C The following comparison does not include last character of GRADE,
C because it arrives as a null terminator.

IF (CARDS(I).GRADE(1:STRING_DATA_LEN) .EQ. ’FOREMAN’) THEN
C The overtime hourly wage for a foreman is $12.00.

PAY = PAY + 12 * CARDS(I).OVERTIME_HOURS
ELSE

C The overtime hourly wage for a worker is $9.00.
PAY = PAY + 9 * CARDS(I).OVERTIME_HOURS

END IF
10 CONTINUE

13–8 Development of Distributed Applications with FORTRAN

Development of Distributed Applications with FORTRAN
13.2 Remote Procedure Calls Using FORTRAN — Example

RETURN
END

To create the file SERVER.EXE, which at runtime responds to remote procedure
calls from a client that supports the payroll interface, use the following DCL
commands. After you enter the LINK command, press <CTRL/Z>.

$ CC SERVER
$ FORTRAN MANAGER
$ LINK SERVER, MANAGER, PAYROLL_SSTUB, DCE:DCE/OPT

Instead of using these commands directly to build the server part of the
application, you can invoke procedure PAYROLL.COM to build the entire
application (see Section 13.2.8).

13.2.7 Client and Server Bindings
To make remote procedure calls, client applications must be bound to server
applications. This is illustrated in the client program PRINT_PAY.FOR shown
in Section 13.2.4. The source code in the client program uses the default
[auto_handle] binding, which is enabled by the following source code:

C Call remote procedure CALCULATE_PAY to calculate the gross pay.
CALL CALCULATE_PAY (CARDS, PAY)

When you invoke procedure PAYROLL.COM (shown in Section 13.2.8), it displays
a message about assuming [auto_handle].

For more information about client and server bindings, see the chapter on basic
DCE RPC runtime operations in the OSF DCE Application Development Guide.

13.2.8 Building and Running the Example (PAYROLL.COM)
You can build, run, or both build and run the payroll example by using command
file PAYROLL.COM. Its contents follow.

$!
$! This is file PAYROLL.COM to build, run, or both build and run
$! the distributed payroll application.
$!

$! COPYRIGHT (C) 2004 BY
$! HEWLETT-PACKARD DEVELOPMENT COMPANY. PALO ALTO, CALIFORNIA.
$! ALL RIGHTS RESERVED.

$!
$! THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
$! ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION
$! OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER COPIES
$! THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER
$! PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.
$!
$! THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE AND

$! SHOULD NOT BE CONSTRUED AS A COMMITMENT BY HEWLETT-PACKARD COMPANY.

Development of Distributed Applications with FORTRAN 13–9

Development of Distributed Applications with FORTRAN
13.2 Remote Procedure Calls Using FORTRAN — Example

$!
$! HP ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
$! SOFTWARE ON EQUIPMENT THAT IS NOT SUPPLIED BY HP.
$!
$!
$! @PAYROLL is the default -- to build and run.
$! @PAYROLL BUILD does only the build.
$! @PAYROLL RUN does only a sample run.
$!
$ SAY := WRITE SYS$OUTPUT
$ IF P1 .eqs. "RUN" then goto DO_RUN
$!
$! Build the application.
$ SAY "Building..."
$
$! Enable the universal IDL command interface
$ idl := syssystem:dce$idl.exe
$
$! Compile the interface definition
$! -keep all is used to keep the IDL output for training purposes
$ idl PAYROLL.IDL -keep all -trace all -trace log_manager -lang fortran -

-standard extended
$
$! Compile the client application files
$ FORTRAN PRINT_PAY
$
$! Link the client application
$ LINK PRINT_PAY,PAYROLL_CSTUB, DCE:DCE/OPT
$
$! Compile the server application files
$ CC SERVER
$ FORTRAN MANAGER
$
$! Link the server application
$ LINK SERVER,MANAGER,PAYROLL_SSTUB,DCE:DCE/OPT
$ IF P1 .eqs. "BUILD" then exit
$
$DO_RUN:
$! Run the application.
$ SAY "Activating server image..."
$ DEFINE/NOLOG RPC_DEFAULT_ENTRY ".:/FORTRAN_payroll_mynode"
$ SPAWN/NOWAIT/INPUT=NL:/OUTPUT=SERVER.LOG/PROCESS=FORTRAN_SERVER -

RUN SERVER
$ WAIT 00:00:10 ! Allow 10 seconds for the server to start.
$ DEFINE/NOLOG FOR004 PAYROLL.DAT
$ SAY "Activating client image..."
$ RUN PRINT_PAY
$ SAY "Deleting server process..."
$ STOP FORTRAN_SERVER
$ SAY "End of sample application"

If you prefer to use OpenVMS DCL syntax for the command to the IDL compiler,
then one way to modify file PAYROLL.COM follows.

Consider these seven lines:

$! Enable the universal IDL command interface
$ idl := syssystem:dce$idl.exe
$
$! Compile the interface definition
$! -keep all is used to keep the IDL output for training purposes
$ idl PAYROLL.IDL -keep all -trace all -trace log_manager -lang fortran -

-standard extended

13–10 Development of Distributed Applications with FORTRAN

Development of Distributed Applications with FORTRAN
13.2 Remote Procedure Calls Using FORTRAN — Example

Change the second, third, sixth, and seventh lines to comments by adding a "$!"
at the beginning of each line (or delete all seven lines). Then, add the following
three lines before the two lines:

$
$! Compile the client application files

$! Use OpenVMS DCL syntax for the command to the IDL compiler.
$ IDL/KEEP=ALL/TRACE=(EVENTS=ALL,LOG_MANAGER)/LANGUAGE=FORTRAN -

/STANDARD=EXTENDED PAYROLL.IDL

This modification works only if you do not otherwise have the symbol IDL defined.

13.2.9 Example Output
The output from building and running the sample application looks like this:

Building...
Operation calculate_pay has no binding handle parameter; [auto_handle] assumed
Activating server image...
%DCL-S-SPAWNED, process FORTRAN_SERVER spawned
Activating client image...
Jerry Harrison 372
Tony Hardiman 294
Mary Flynn 321
FORTRAN STOP
Deleting server process...
End of sample application

The next time you need to run this application, enter this command:

$ @PAYROLL RUN

The output from building this application includes files PRINT_PAY.EXE (client)
and SERVER.EXE (server). You can use these executable programs in separate
client and server processes.

13.3 Remote Procedure Calls Using FORTRAN — Reference
Section 13.2 contains a comprehensive example that introduces creating
distributed applications with FORTRAN program units. This section goes
beyond the example to provide reference information and explain general
concepts about creating these distributed applications.

13.3.1 The FORTRAN Compiler Option
If you are generating stubs and include files for application code written in
FORTRAN, you must specify it as the language of choice when you compile the
application’s IDL file. To specify the FORTRAN language using the universal
syntax, specify -lang fortran; the default value is -lang c. To specify the
FORTRAN language using DCL syntax, specify /LANGUAGE=FORTRAN; the
default value is /LANGUAGE=CC.

In the remainder of this chapter, the phrase "FORTRAN option" refers to the
IDL command that specifies FORTRAN. Examples of the IDL command and
specification are presented in Section 13.2.3.

Any client or server stub files that the FORTRAN option generates use the
FORTRAN linkage conventions. This means that all parameters are passed by
reference (see Section 13.3.5.1 for more information). In addition, all identifiers
are converted to uppercase.

Development of Distributed Applications with FORTRAN 13–11

Development of Distributed Applications with FORTRAN
13.3 Remote Procedure Calls Using FORTRAN — Reference

The FORTRAN option generates the file filename.FOR, which includes FORTRAN
declarations of the constants and types declared in the IDL file. The .FOR file
also includes, for each operation declared in the IDL file, a set of comments that
describes the signature of the operation in FORTRAN terms.

In addition, the FORTRAN option generates the file filename.FOR_H. This file is
used for generating the client and server stubs. It is also needed for generating
FORTRAN stubs for any interface that imports this interface.

Consider the header option whose syntax is -header (universal) or /HEADER=
(OpenVMS DCL). If you specify both the FORTRAN option and the header option
to the IDL compiler, the following rules govern the compiler’s placement of the
files filename.FOR and filename.FOR_H.

• If you specify a directory name in the header option, the compiler places the
files in that directory. Otherwise, it places the files in the current default
directory.

• If you specify a filename without an extension in the header option, the
compiler uses that filename with the extensions .FOR and .FOR_H.

• If you specify a filename with an extension in the header option, the compiler
uses that file extension instead of .FOR_H; however, the compiler does not
change the extension of the .FOR file.

13.3.2 Restrictions on the Use of FORTRAN
This section discusses restrictions on distributed applications written in
FORTRAN that make remote procedure calls. These restrictions are on interfaces
and stubs, and on runtime operations.

• If an interface contains any arrays that have more than seven dimensions,
the IDL compiler cannot produce output that is compatible with FORTRAN.

• If an interface contains two identifiers that differ only in the case of their
characters, the IDL compiler may not be able to build stubs.

• The stubs generated for FORTRAN cannot call operations that use pipes.

• If the transmit_as or represent_as attributes have been applied to a
character array type used to define the parameters of an operation, then
FORTRAN cannot call that operation.

• If the transmit_as or represent_as attributes have been applied to an
array type that, in turn, is the base type of an array type used to define the
parameters of an operation, then FORTRAN cannot call that operation.

• If the v1_array attribute has been applied to any parameter of an operation,
then FORTRAN cannot call that operation.

• FORTRAN does not allow the concurrent execution of two or more threads.
In particular, if a server implements remote operations in FORTRAN,
it must restrict the number of threads of server execution to 1. The
following statement in file SERVER.C (shown in Section 13.2.5) specifies
this restriction:

rpc_server_listen((int)1, &st);

13–12 Development of Distributed Applications with FORTRAN

Development of Distributed Applications with FORTRAN
13.3 Remote Procedure Calls Using FORTRAN — Reference

13.3.3 IDL Constant Declarations
A constant declaration either gives a name to an integer or string constant or
gives a second name to a constant that has already been given a name. Examples
of these declarations follow:

const long array_size = 100;
const char jsb = "Johann \\"Sebastian’ Bach";
const long a_size = array_size;
const boolean untruth = FALSE;

For all IDL constant declarations, equivalent PARAMETER statements are
generated in the corresponding file filename.FOR. For example:

INTEGER*4 ARRAY_SIZE
PARAMETER (ARRAY_SIZE=100)

CHARACTER*(*) JSB
PARAMETER (JSB=’Johann "Sebastian’’ Bach’)

INTEGER*4 A_SIZE
PARAMETER (A_SIZE=ARRAY_SIZE)

LOGICAL*1 UNTRUTH
PARAMETER (UNTRUTH=.FALSE.)

All integer constants are declared as INTEGER*4.

All void * constants are ignored.

A nonprinting character that appears within a character or string constant is
replaced by a question mark (?).

13.3.4 Type Mapping
An IDL type that is a synonym for another type is presented to FORTRAN as the
type for which the synonym is defined. For example, suppose that the IDL file
contains the following statement:

typedef foo bar;

Then, all instances of IDL type *Cbar) are presented to FORTRAN as of type
foo.

Table 13–3 describes the mappings from IDL types to FORTRAN types:

Table 13–3 Mappings for IDL Types

IDL Data Type
FORTRAN Data
Type Comments

arrays See notes 8 and 9

boolean LOGICAL*1

byte BYTE

char CHARACTER

context handle INTEGER*4

double REAL*8 See note 3

enum INTEGER*4

error_status_t INTEGER*4 See note 4

(continued on next page)

Development of Distributed Applications with FORTRAN 13–13

Development of Distributed Applications with FORTRAN
13.3 Remote Procedure Calls Using FORTRAN — Reference

Table 13–3 (Cont.) Mappings for IDL Types

IDL Data Type
FORTRAN Data
Type Comments

float REAL*4

handle_t HANDLE_T See description of NBASE.FOR in this chapter

hyper IDL_HYPER_
INT

See description of NBASE.FOR

ISO_MULTI_
LINGUAL

ISO_MULTI_
LINGUAL

See description of NBASE.FOR

ISO_UCS ISO_UCS See description of NBASE.FOR

long INTEGER*4

pipe No mapping

pointer INTEGER*4 See note 10

short INTEGER*2

small INTEGER*2 See note 1

struct STRUCTURE See notes 5 and 6

union UNION See note 7

unsigned hyper IDL_UHYPER_
INT

See description of NBASE.FOR

unsigned long INTEGER*4 See note 2

unsigned short INTEGER*4 See note 1

unsigned small INTEGER*2 See note 1

Notes

1. For these IDL data types, the FORTRAN data type is chosen because it can
represent all possible values of the IDL type. Note that, in each case, there
are values of the FORTRAN type which cannot be represented in the IDL
type. You must not attempt to pass such values in parameters. The RPC
runtime code does not perform range checking.

2. Because some values that can be represented in an IDL data type cannot be
represented correctly in the FORTRAN data type, the IDL compiler issues a
warning.

3. You must compile FORTRAN code that uses this data type and specify the
/G_FLOAT compiler option.

4. Status code mapping will occur where necessary.

5. For any structure type in the IDL file that is not defined through a typedef
statement, the IDL compiler generates the name of the FORTRAN structure.
To determine what name was generated, look at filename .FOR.

6. The semantics of conformant structures cannot be represented in FORTRAN.
In the definition of such a structure in filename.FOR, a placeholder for the
conformant array field is specified as a one-dimensional array with one
element. If the first lower bound of the conformant array is fixed, this value
is used as the lower and upper bounds of the placeholder. If the first lower
bound of the array is not fixed and if the first upper bound of the conformant
array is fixed, the upper bound is used as the lower and upper bounds of the

13–14 Development of Distributed Applications with FORTRAN

Development of Distributed Applications with FORTRAN
13.3 Remote Procedure Calls Using FORTRAN — Reference

placeholder. Otherwise, the lower and upper bounds of the placeholder are
zero.

7. Note that IDL encapsulated union types and nonencapsulated union types are
represented as FORTRAN structures containing unions.

8. IDL array types are converted to arrays of a nonarray base type.

9. Arrays that do not have a specified lower bound have a lower bound of zero.
Consider the following two statements in an IDL file:

double d[10][20];
short e[2..4][3..6];

The statements map into the following FORTRAN constructs:

REAL*8 D(0:9,0:19)
INTEGER*2 E(2:4,3:6)

10. The size of the pointer depends on the platform. It is INTEGER*4 for
OpenVMS systems and INTEGER*8 for HP Tru64 UNIX Alpha systems.

13.3.5 Operations
Operations can pass parameters and return function results. This section
explains these topics.

13.3.5.1 Parameter Passing by Reference
The following rules explain the mapping between IDL parameters and FORTRAN
parameters:

• If the IDL parameter contains an asterisk (*) and does not have a [ptr] or
[unique] attribute, this signifies a parameter of the indicated type passed by
reference. The FORTRAN parameter is of the same type.

• If the IDL parameter contains an asterisk and does have a [ptr] or [unique]
attribute, the FORTRAN parameter is a pointer.

• If the IDL parameter is an array and has the [ptr] or [unique] attribute,
the FORTRAN parameter is a pointer.

• If none of the preceding cases is true, then the FORTRAN parameter is of the
same type as the IDL parameter.

13.3.5.2 Function Results
The only possible function result types in FORTRAN are scalars and
CHARACTER*n. The mappings from IDL to FORTRAN never produce
CHARACTER*n, where n is greater than 1.

IDL hyper integers are not scalars in terms of function results, but IDL pointers
are treated as scalars because they are mapped to INTEGER*4.

For an operation that has a result type that is not allowed by FORTRAN, the
stubs treat the operation result as an extra [out] parameter added to the end of
the parameter list.

If the type of an operation is not void, you must state the type of the function
result in FORTRAN.

Development of Distributed Applications with FORTRAN 13–15

Development of Distributed Applications with FORTRAN
13.3 Remote Procedure Calls Using FORTRAN — Reference

13.3.6 Include Files
Usually, a FORTRAN routine that is part of an RPC client or manager for the
interface defined in filename.IDL must include the following files:

• filename.FOR

• NBASE.FOR

• The .FOR files for any imported interfaces

Program units PRINT_PAY.FOR and MANAGER.FOR (containing subroutine
subprogram CALCULATE_PAY) in the example of a distributed payroll
application do not include NBASE.FOR because the units contain none of the
IDL data types in Table 13–2. Otherwise, the program units would include
NBASE.FOR. Furthermore, these units could safely include NBASE.FOR even
though it is unnecessary in the example.

13.3.7 The NBASE.FOR File
DCE:NBASE.FOR declares standard data types used in mapping IDL to
FORTRAN. The declarations include those listed in Table 13–4.

Table 13–4 Standard Declarations

IDL Data Type
FORTRAN
Declaration Comments

hyper STRUCTURE
/IDL_HYPER_
INT/

INTEGER*4
LOW

INTEGER*4
HIGH

END
STRUCTURE

unsigned hyper STRUCTURE
/IDL_UHYPER_
INT/

INTEGER*4
LOW

INTEGER*4
HIGH

END
STRUCTURE

handle_t STRUCTURE
/HANDLE_T/
INTEGER*4
OPAQUE_
HANDLE
END
STRUCTURE

Size of pointer is platform specific: INTEGER*4 on
OpenVMS systems INTEGER*8 on HP Tru64 UNIX
Alpha systems

ISO_MULTI_
LINGUAL

STRUCTURE
/ISO_MULTI_
LINGUAL/

(continued on next page)

13–16 Development of Distributed Applications with FORTRAN

Development of Distributed Applications with FORTRAN
13.3 Remote Procedure Calls Using FORTRAN — Reference

Table 13–4 (Cont.) Standard Declarations

IDL Data Type
FORTRAN
Declaration Comments

BYTE ROW

BYTE
COLUMN

END
STRUCTURE

ISO_UCS STRUCTURE
/ISO_UCS/

BYTE GROUP

BYTE PLANE

BYTE ROW

BYTE_
COLUMN

END
STRUCTURE

13.3.8 IDL Attributes
This section describes IDL attributes that apply to RPC applications containing
FORTRAN modules.

13.3.8.1 The transmit_as Attribute
The presented type must be expressible in FORTRAN. Because addresses
are involved, the routines used for data conversion cannot be written in VAX
FORTRAN.

13.3.8.2 The string Attribute
A FORTRAN data item corresponding to an IDL string contains the number
of characters specified for the IDL string. Because IDL strings are usually
terminated with a null byte, the following transmission rules apply:

• If a FORTRAN routine contains data for transmission, and a null byte
appears before the last character of the FORTRAN data item, then the
characters up to and including the null byte are transmitted.

• If a FORTRAN routine contains data for transmission, and a null byte does
not appear before the last character of the FORTRAN data item, then all the
characters of the data item except the last are transmitted, followed by a null
character.

• If data is transmitted to a FORTRAN routine, then the FORTRAN data item
receives a null terminated string. If the FORTRAN data item contains more
characters than the string, then the additional characters are not affected.

An IDL operation can have a conformant string parameter. Such a parameter is
presented to FORTRAN as type CHARACTER*(*). If the base type of the string
consists of w bytes and the string consists of n characters, then the parameter
size is n*w. The maximum parameter size supported is 65535.

A conformant string field of a structure will have type CHARACTER*w, where w
is the number of bytes in the base type of the string.

Development of Distributed Applications with FORTRAN 13–17

Development of Distributed Applications with FORTRAN
13.3 Remote Procedure Calls Using FORTRAN — Reference

In all other cases where a string is not the target of a pointer, the IDL file
specifies the string. Such a string is presented to FORTRAN as CHARACTER*s,
where s is the product of the string length and the number of bytes in the base
type of the string. Furthermore, s must be between 1 and 65535 inclusive.

13.3.8.3 The context_handle Attribute
A context handle rundown routine cannot be written in FORTRAN because the
routine must handle address information.

13.3.8.4 The Array Attributes on [ref] Pointer Parameters
A [ref] pointer parameter that has array attributes attached to it is presented to
FORTRAN as the equivalent array.

13.3.9 ACF Attributes
The following items can occur in an Attribute Configuration File (ACF). They
require special consideration when you are using FORTRAN.

13.3.9.1 The implicit_handle ACF Attribute
You must supply a COMMON block whose name is the name given in the implicit
handle clause. This COMMON block must contain the binding handle as its only
data item.

For example, suppose an ACF contains the following interface attribute:

[implicit_handle(handle_t i_h)]

Then, any FORTRAN routine that calls an operation which uses the implicit
binding must include statements with the following form:

RECORD /HANDLE_T/ BINDING_HANDLE
COMMON /I_H/ BINDING_HANDLE

13.3.9.2 The represent_as ACF Attribute
The local type must be expressible in FORTRAN. Because addresses are involved,
you cannot write the data conversion routines in FORTRAN.

A type name in a represent_as attribute that does not occur in the interface
definition and is not an IDL base type is assumed to be a STRUCTURE type.

Suppose that the represent_as type is not an IDL base type or a type defined
in your IDL source. Then, you must supply a .h file whose unextended name is
given in an include statement in the ACF. (An unextended name is a filename
without the file extension that follows the dot (.) in the name. For example, the
unextended filename for file EXAMPLE.H is EXAMPLE.) This file must include
a definition of the local type in C syntax. You will need a filename.FOR file
containing a FORTRAN definition of the local type. HP recommends that you
assign this file the same unextended name.

13–18 Development of Distributed Applications with FORTRAN

14
Troubleshooting

This chapter provides help for tracking down problems you may have with HP
DCE for OpenVMS Alpha and OpenVMS I64.

14.1 General Troubleshooting Steps
If you are experiencing problems with DCE on your system, go through the
following steps to help you isolate the problem:

1. Use the DCE$SETUP SHOW option to examine the current state of the DCE
services on your system:

$ @SYS$MANAGER:DCE$SETUP SHOW

This command tells you how DCE is configured on your system, what
daemons should be active, and what daemons are currently active.

2. Make sure that your system has the correct DCE configuration. If not, you
may need to repeat the CONFIGURE operation of DCE$SETUP:

$ @SYS$MANAGER:DCE$SETUP CONFIGURE

3. You should also use the DCL command:

$ SHOW SYSTEM

to ensure that the TCP/IP Internet ACP process (INET_ACP) is running. If it
is not running, you may need to restart TCP/IP services on your system with
the following commands:

$ @SYS$STARTUP:TCPIP$SHUTDOWN
$ @SYS$STARTUP:TCPIP$STARTUP

4. If the DCE$SETUP SHOW command indicates that a configured DCE
daemon is not currently running on your system, check for component-
specific output, error, and log files (*.OUT, *.ERR, *.LOG) in the following
directories:

• Security — DCE$SPECIFIC:[VAR.SECURITY]

• CDS — DCE$SPECIFIC:[VAR.DIRECTORY.CDS]

• NSID — DCE$SPECIFIC:[VAR.DIRECTORY]

• DTS — DCE$SPECIFIC:[VAR.ADM.TIME]

• RPC — DCE$SPECIFIC:[VAR.DCED]

5. It may be possible to start up missing DCE daemons with the START option:

$ @SYS$MANAGER:DCE$SETUP START

6. If DCE daemons will not start properly, try a RESTART operation. This
STOPs all daemons and STARTs them again in an orderly fashion:

$ @SYS$MANAGER:DCE$SETUP RESTART

Troubleshooting 14–1

Troubleshooting
14.1 General Troubleshooting Steps

7. If problems persist, try a CLEAN followed by a START operation. This will
delete the temporary DCE databases and restart the daemons in an orderly
fashion:

$ @SYS$MANAGER:DCE$SETUP CLEAN !This will stop all daemons
$ @SYS$MANAGER:DCE$SETUP START

8. Ensure that all files and directories in the DCE$SPECIFIC: directory tree
have the proper owner and protection:

[VAR.SECURITY]CREDS.DIR [DCE$SERVER] (RWE,RWE,RWED,RWED)
All other directories: [DCE$SERVER] (RWE,RWE,RE,RE)
[ETC.SECURITY]PE_SITE.; [DCE$SERVER] (RWED,RWED,RWED,RE)
[KRB5]V5SRVTAB.; [DCE$SERVER] (RWD,RWD,,)
[VAR.ADM.DIRECTORY.CDS]CDS_CACHE.* [DCE$SERVER] (RWD,RWD,,)
[VAR.ADM.DIRECTORY.CDS]CLERK_MGMT_ACL.DAT
[DCE$SERVER] (RWD,RWD,R,)
[VAR.ADM.TIME]MGT_ACL.DAT;1 [DCE$SERVER] (RWD,RWD,R,)

[VAR.SECURITY]SEC_CLIENTD.BINDING;1 [DCE$SERVER] (RWD,RWD,R,R)
[VAR.SECURITY.CREDS]*.NC [DCE$SERVER] (RWED,RWED,RWED,)
All other [VAR.SECURITY.CREDS] files [DCE$SERVER] (RWD,RWD,,)

9. Ensure that all files and directories in the DCE$COMMON: directory tree
have the proper protection:

All [ETC] files and directories (RWED,RWED,RWED,RE)
All [ETC.DIRECTORY] files and directories (RWED,RWED,RWED,RE)
All [ETC.SECURITY] files and directories (RWED,RWED,RWED,RE)

10. If DCE on the security registry server system for your cell is reconfigured,
you must reconfigure all OpenVMS client systems in the cell.

14.2 Time Problems During Configuration
This section discusses problems with time and time zones that you may encounter
during configuration or startup.

14.2.1 Time Zone Configuration
During DCE configuration or startup, you may encounter the following message:

Error: UTC services and run-time library don’t agree on the local time
%SYSTEM-F-ABORT, abort

This message indicates that your current time zone configuration is invalid.
Verify the definition of the logical names used by UTC services by entering the
DCL command:

$ SHOW LOGICAL SYS$*TIME*

You should see five logical names listed:

• SYS$TIMEZONE_DAYLIGHT_SAVING should be 0 if this current date and
time are not during daylight savings time, or 1 if it is.

• SYS$TIMEZONE_DIFFERENTIAL should be the difference in seconds
between the local time and Greenwich Mean Time (GMT).

• SYS$TIMEZONE_NAME is the name of the current time zone.

• SYS$TIMEZONE_RULE is a complex string representing the possible time
zones for the current location, including the time zone names and the time
zone differentials during daylight savings time and during standard time.

14–2 Troubleshooting

Troubleshooting
14.2 Time Problems During Configuration

• SYS$LOCALTIME should point to the file containing the
time zone information for your local time zone (for example,
SYS$SYSROOT:[SYS$ZONEINFO.SYSTEM.US]EASTERN).

If these logicals appear to be incorrect, reconfigure your time zone information as
follows:

$ DEASSIGN /SYS /EXEC SYS$TIMEZONE_RULE
$ DELETE SYS$SYSTEM:DTSS$TIMEZONE_DIFFERENTIAL.DAT;*
$ DELETE SYS$STARTUP:DTSS$UTC_STARTUP.COM;*
$ @SYS$MANAGER:UTC$TIME_SETUP
$ @SYS$UPDATE:DTSS$INSTALL_TIMEZONE_RULE

The procedure DTSS$INSTALL_TIMEZONE_RULE.COM asks you several
questions regarding your local time zone and then creates a new UTC startup
procedure, DTSS$UTC_STARTUP.COM. Execute the new UTC startup:

$ @SYS$STARTUP:DTSS$UTC_STARTUP

This process clears up the system time conflicts and you should be able to
continue with your DCE configuration or startup operation.

14.2.2 Time Synchronization Problems
If your system clock is not synchronized with the system clock on the security
server, you may receive an error during the HP DCE configuration. An error can
occur even if the clocks are skewed by as little as five minutes.

Following is an example of an error that can occur because of a time
synchronization problem between your system clock and the security server
system clock:

Please enter the principal name to be used [cell_admin]:
Please enter the password for principal "cell_admin":

Establishing security environment for principal "cell_admin" . . .
Error: Cannot bind to the registry
Registry server unavailable (dce / sec) 249791450 (0x052000000)%SYSTEM-F-

ABORT,abort

**************************** ERROR ****************************
*** An error occurred while setting up the security environment
*** using principal name "cell_admin"

Do you want to restart the client configuration (YES/NO/?) [Y]? n

A workaround is to set the time on your system to match the time on the node
running the security server. On OpenVMS systems, use the following command:

$ SET TIME=dd-mmm-yyyy:hh:mm:ss

14.2.3 Time OPCOM Messages
Occasionally, OPCOM messages may appear on your screen. (These messages
also are logged in SYS$MANAGER:OPERATOR.LOG.) You can safely ignore
these messages as long as you have the DTS servers you need. (If you do not
have the DTS servers you need, investigate the status of the DTS servers.)

Following are three messages you may see.

%%%%%%%%%%% OPCOM 27-SEP-1999 10:30:09.50 %%%%%%%%%%%
Message from user SYSTEM on OPNDCE
dtsd.dce: DCE error: Failure in rpc_mgmt_inq_server_princ_name:
/.../dceopnfst/hosts/opnvms/dts-entity communications

failure (dce / rpc)

Troubleshooting 14–3

Troubleshooting
14.2 Time Problems During Configuration

%%%%%%%%%%% OPCOM 27-SEP-1999 10:30:09.65 %%%%%%%%%%%
Message from user SYSTEM on OPNDCE
dtsd.dce: DCE error: Failure in rpc_mgmt_inq_server_princ_name:
/.../dceopnfst/hosts/opnvms/dts-entity not registered in

endpoint map (dce / rpc)

%%%%%%%%%%% OPCOM 27-SEP-1999 13:46:04.70 %%%%%%%%%%%
Message from user SYSTEM on OPNDCE
dtsd.dce: DCE error: Error requesting time

from server : communications failure (dce / rpc)

These messages indicate either the time daemon is not active because the system
is down, you choose to have the time daemon stop running on a node, or the DTS
daemon needs to be restarted because of an unexpected error.

14.3 Client/Server Problems
Successful DCE operation requires components on both the OpenVMS client
system and your server system (for example, HP Tru64 UNIX Alpha) to work
together. There are several things you can check on your client and on your
server if DCE is not operating correctly.

14.3.1 OpenVMS Client System
To check the OpenVMS client system:

1. Run the CDS Control Program:

$ RUN SYS$SYSTEM:DCE$DCECP
dcecp> CELL SHOW /.:

If DCE is working correctly, this will obtain cell information from the server
and display it for you:

{secservers
/.../opndce-cell/subsys/dce/sec/master}
{cdsservers
/.../opndce-cell/hosts/opndce}
{dtsservers
/.../opndce-cell/hosts/opndce/dts-entity}
{hosts
/.../opndce-cell/hosts/opndce}

If you get a socket error, a problem with communications within the local
client system exists. Verify that HP TCP/IP Services for OpenVMS (UCX)
is started on your system and ensure that it is configured for proper DCE
operation.

2. Verify that the server system is reachable from your client system:

$ UCX PING server_node

If you get the following error:

%UCX-E-GETHST, Error in getting host name
%RMS-E-RNF, record not found

then the server system host name is not defined in the UCX hosts database.
You can define it in the database with the command:

$ UCX SET HOST* hostname /ADDRESS=nn.nn.nn.nn

Note that it is not required that your server hostname be defined in the local
UCX hosts database for proper DCE operation. If your server host is not
defined in the UCX hosts database, however, you will be asked to provide the
Internet address of the server host during the DCE configuration process.

14–4 Troubleshooting

Troubleshooting
14.3 Client/Server Problems

If the UCX PING command returns the message:

%UCX-I-LOOPACT, <SERVER_NODE> is alive

then basic communication with your server node is working.

3. Next, ensure that the CDS library service is defined in the UCX services
database:

$ UCX SHOW SERVICE

You should see a service definition for the service cdsLib in the
listing, indicating the port number to be used for CDS client and clerk
communication. Note that the service state should be Disabled. See the
release notes for more information about the cdsLib service.

4. Examine the security PE_SITE file used to locate the security registry for the
cell:

$ TYPE DCE$SPECIFIC:[ETC.SECURITY]PE_SITE.;

You will see text such as:

/.../opndce-cell 535ace40-a138-11cc-ba08-08002b30910e@ncadg_ip_udp:16.32[]
/.../opndce-cell 535ace40-a138-11cc-ba08-08002b30910e@ncacn_ip_tcp:16.32[]

Compare this information with the output from the rpccp show mapping
command on the server, as described in Section 14.3.2.

14.3.2 Server System
Note that the following examples assume a HP Tru64 UNIX DCE server system.

1. Use the DCESETUP SHOW option to ensure that the server daemons are
active:

/etc/dcesetup show

The following DCE daemons are active on this system:

RPC daemon (rpcd) pid: 756
Security Server daemon (secd) pid: 762
Security Client daemon (sec_clientd) pid: 768
CDS Advertiser daemon (cdsadv) pid: 774

2. Ensure that CDS is functioning properly:

cdscp show dir /.:

If this command fails or hangs, you may need to restart DCE on your server:

/etc/dcesetup restart

If the cdscp command still fails, try a CLEAN operation followed by a START
operation on the server:

/etc/dcesetup clean
/etc/dcesetup start

3. Ensure that the security registry is known to RPC:

rpccp show mapping

You should see an object listed such as:

<OBJECT> 2eef26c0-668f-11cc-8640-08002b35b39a
<INTERFACE ID> 4c8782805000.0d.00.02.87.14.00.00.00,1.0
<STRING BINDING> ncacn_ip_tcp:25.0.0.145[1322]
<ANNOTATION> DCE user registry

Troubleshooting 14–5

Troubleshooting
14.3 Client/Server Problems

Verify that the object UUID and the string binding protocol name and
Internet address match the definitions in the PE_SITE file located on the
OpenVMS DCE client system as described in Section 14.3.1. If they do not
match, you must reconfigure the OpenVMS DCE client system.

14.4 Configuration and CDS
When DCE$SETUP starts, it may occasionally fail to contact the CDS master
server. This may happen for one of the following reasons:

• Communication with the CDS server host fails or the CDS server process is
not active on the server host.

To correct this problem, make sure that DCE services are properly configured
and started on the server system.

• The CDS advertiser on the local system has not seen a clearinghouse
advertisement from the server. This problem may be caused because the CDS
Server is not on the same LAN.

To correct this problem, you need to configure the OpenVMS system and
answer NO to the configuration question:

Is the CDS Master Server within broadcast range (YES/NO/?) [Y]? NO

You will then be asked to supply the hostname where the CDS master server
is running. This causes CDS startup to use a CDSCP DEFINE CACHED
SERVER command. If the server is available, this will force the server to
send a clearinghouse advertisement to the client system Advertiser.

14.5 Configuration and Naming
When configuring a cell, you may receive an error similar to the following from
rpc_binding_set_auth_info():

336760839 (decimal), 14129007 (hex):
Server not found in Kerberos database (dce / krb)

To solve this problem, be sure that you do not configure a cell with the same
name as another cell on the same network.

If you run system and functional tests that configure cells, make sure that the
tests generate a unique name each time the test is run. You can also use the
hostname of the server machine as part of the cell name.

14.6 Modifications to HP TCP/IP Services (UCX)
HP DCE for OpenVMS Alpha and OpenVMS I64 requires modification of several
UCX parameters for proper operation. Make sure you read the current HP DCE
for OpenVMS release notes for the most recent recommendations.

14.7 Principal Quota Exhausted
If you try to use DCE$RGY_EDIT to add a principal name, you may receive the
following error message:

?(rgy_edit) Unable to add principal "Xyzzy" - Principal quota
exhausted (dce / sec)

The message means that your process does not have sufficient DCE credentials to
complete the task. Therefore, you must login as cell_admin or another privileged
DCE account before retrying the command.

14–6 Troubleshooting

Troubleshooting
14.8 Linking RPC Stub Modules into Shareable Images

14.8 Linking RPC Stub Modules into Shareable Images
If you build shareable images that contain RPC generated stub modules, you
should use a linker options file. PSECT statements in the linker options file are
used to resolve differences in the PSECT attributes between the RPC generated
object file and the new shareable image. The following sections discuss how
to solve problems that can arise when you create, link against, or activate a
shareable image that contains RPC generated stub modules. This section can be
summarized as follows:

• Program sections (PSECTs) in shareable images should be SHR,NOWRT or
NOSHR,W RT unless the image is installed with privileges.

• Program sections in modules linked against shareable images must match
exactly or conflicting PSECT errors will occur.

• Until the program runs, you may have to correct PSECT attributes as far
back as the shareable image.

The PSECT attributes of the RPC generated interface specifications (IFspecs)
should be set to the following:

(GBL,SHR,NOWRT)

RPC interface specifications usually do not change, so it is rarely required that
they be set to a writable PSECT attribute. RPC interface specifications are
frequently shared. If your shareable image contains more than one cluster
and the same interface specification is defined in multiple object modules,
these interface specifications can be effectively collected into the same global
cluster with the GBL PSECT attribute. Note that, in this case, the first module
encountered by the linker that defines the IFspec will be used to initialize the
value of the IFspec in the shareable image. A map file can help you identify and
correct problems with PSECTs and their contents. The contents of any PSECT
should be nonzero.

If you find a zero byte PSECT, you may need to explicitly specify the module
name in the options file. The module name can be specified directly on its own
or as part of the /library/include=() statement associated with an object
library. PSECTs should not be zero unless they are initialized at runtime, and
this presumes that the PSECT is writable (WRT).

14.8.1 Errors Creating a Shareable Image
The following examples show some of the errors that might occur when you try to
create a shareable image with RPC stub object modules:

$ link/share/exe=myshr.exe/map=myshr.map -
$- test1_mgr,test1_sstub,dce:dce.opt/opt
$ %LINK-I-BASDUERRS, basing image due to errors in relocatable
references
$ %LINK-W-ADRWRTDAT, address data in shareable writeable section
$ in psect TEST1_V0_0_S_IFSPEC offset %X00000000
$ in module TEST1_SSTUB file USER:[MY.CODE.DCE]TEST1_SSTUB.OBJ;
$

The PSECT name is causing the linker problem. To correct this problem, create
an option file including the following line, and place it on your link command line
as follows:

Troubleshooting 14–7

Troubleshooting
14.8 Linking RPC Stub Modules into Shareable Images

$ create myopt.opt
$ PSECT= TEST1_V0_0_S_IFSPEC, shr,nowrt,gbl
$ ctrl-z
$
$ link/share/exe=myshr.exe/map=myshr.map -
$- test1_mgr,test1_sstub,dce:dce.opt/opt,myopt.opt/opt

This will remove the link problems so that you can create a shareable image.
There are still errors in this shareable image whose solutions are shown in the
following examples.

14.8.2 Errors Linking Against a Shareable Image
Once you have a shareable image, you may still see linker problems related to
the PSECT attributes between the shareable image and new object files. In the
following example, a main routine is linked against the same shareable image
from the previous example. The new object module references some of the same
variables defined by the RPC stub module.

$ link/exec=test1d/map=test1d.map test1_main,sys$input/opt
$ myshr.exe/share
$ ctrl-z
$
$ %LINK-W-MULPSC, conflicting attributes for psect TEST1_V0_0_S_IFSPEC
$ in module TEST1_MAIN file USER:[MY.CODE.DCE]TEST1_MAIN.OBJ;
$

If you search the map files of both myshr.map and test1d.map for the PSECT
TEST1_V0_0_S_IFSPEC, you will see that the PSECT attributes for this PSECT
match; however, the map files are incorrect. The solution to this link problem is
to include the PSECT directive in a linker options file for the offending PSECT
name. The previous example simply typed in the options from the command line,
but you should place these linker statements in a linker option file. The options
are typed in from SYS$INPUT in the following example:

$ link/exec=test1d/map=test1d.map test1_main,sys$input/opt
$ PSECT= TEST1_V0_0_S_IFSPEC, shr,nowrt,gbl
$ myshr.exe/share
$ ctrl-z
$

14.8.3 Errors Activating Shareable Images
When you run this program, the following results occur:

$ run test1d
$ %DCL-W-ACTIMAGE, error activating image MYSHR
$ -CLI-E-IMAGEFNF, image file not found SYS$LIBRARY:MYSHR.EXE
$

To allow the image activator to check a directory other than SYS$LIBRARY for
your new shareable image, you must define a logical name or you must copy your
new shareable image into SYS$LIBRARY. In the following example, a logical
name is defined and the program is run again with the following results:

$ define MYSHR sys$disk:[]myshr.exe;
$
$ run test1d
$ %DCL-W-ACTIMAGE, error activating image MYSHR
$ -CLI-E-IMGNAME, image file USER:[MY.CODE.DCE]MYSHR.EXE;
$ -SYSTEM-F-NOTINSTALL, writable shareable images must be installed
$

14–8 Troubleshooting

Troubleshooting
14.8 Linking RPC Stub Modules into Shareable Images

The problem is in the myshr.exe image: myshr.exe has PSECTs whose PSECT
attributes specify both SHR and WRT. The solution is to add the correct PSECT
attributes to the offending PSECTs in the myshr.exe shareable image to
myshr.opt. This can be done on the command line, as follows:

$ link/share/exe=myshr.exe/map=myshr.map -
test1_mgr,test1_sstub,dce:dce.opt/opt,sys$input/opt
psect= TEST1_V0_0_S_IFSPEC, shr,nowrt,gbl
psect= RPC_SS_ALLOCATE_IS_SET_UP, noshr,wrt,gbl
psect= RPC_SS_CONTEXT_IS_SET_UP, noshr,wrt,gbl
psect= RPC_SS_SERVER_IS_SET_UP, noshr,wrt,gbl
psect= RPC_SS_THREAD_SUPP_KEY, noshr,wrt,gbl
psect= RPC_SS_CONTEXT_TABLE_MUTEX,noshr,wrt,gbl
psect= TEST1_V0_0_C_IFSPEC, shr,nowrt,gbl
ctrl-z

$

All of the PSECTs that existed in the myshr.map mapfile that had SHR and
WRT attributes were changed so that the PSECT was either SHR,NOWRT or
NOSHR,WRT. The choice depends upon your use of the data item. IFspecs are
usually shared and non-writable. The RPC_SS PSECTs are written and not
generally shared among program images linked against the shareable image.

The following example tries to relink the main program again, but another
problem occurs:

$ link/exec=test1d/map=test1d.map test1_main,sys$input/opt
$ PSECT= TEST1_V0_0_S_IFSPEC, shr,nowrt,gbl
$ myshr.exe/share
$ ctrl-z

$ %LINK-W-MULPSC, conflicting attributes for psect TEST1_V0_0_C_IFSPEC
in module TEST1_MAIN file USERE:[MY.CODE.DCE]TEST1_MAIN.OBJ

Because the PSECT attributes of the TEST1_V0_0_S_IFSPEC PSECT was
changed in the shareable image, its reference in test1_main.obj is not correct.
To solve this problem, add the correct PSECT attribute. For example:

$ link/exec=test1d/map=test1d.map test1_main,sys$input/opt
$ PSECT= TEST1_V0_0_S_IFSPEC, shr,nowrt,gbl
$ PSECT= TEST1_V0_0_C_IFSPEC, shr,nowrt,gbl
myshr.exe/share
ctrl-z

$

In the final example, the test1d program is run and the desired results occur:

$ run test1d
ncacn_ip_tcp 16.32.0.87 3314\bold)
ncacn_dnet_nsp 63.503 RPC270002590001\bold)
ncadg_ip_udp 16.32.0.87 1485

14.9 Integrated Login Problems
The following sections describe problems that may occur when Integrated Login
is enabled on your system, and solutions to those problems.

Troubleshooting 14–9

Troubleshooting
14.9 Integrated Login Problems

14.9.1 No Logical Name Match Error When Integrated Login Is Enabled
If you receive the error:

*C%SYSTEM-F-NOLOGNAM, no logical name match)

when you try to set host to another system, the problem may be occurring because
the SYSGEN parameter LGI_CALLOUTS has been set nonzero, but the logical
name LGI$LOGINOUT_CALLOUTS has not been defined.

This situation can only occur as a result of one of the following:

• An incomplete startup or shutdown of DCE

• A privileged user altered the SYSGEN parameter LGI_CALLOUTS or the
logical name LGI$LOGINOUT_CALLOUTS

To solve this problem, enter one of the following commands to reenable Integrated
Login by running DCE$SETUP or DCE$STARTUP, as follows:

$ @sys$startup:dce$setup start
$ @sys$startup:dce$startup

14.9.2 Potential Integrated Login and SYSGEN Problems
The Integrated Login component of DCE uses the SYSGEN parameter LGI_
CALLOUTS. LGI_CALLOUTS must be set to 1 only in the ACTIVE SYSGEN
parameter set when DCE is running with Integrated Login enabled. LGI_
CALLOUTS must never be set to 1 in the CURRENT SYSGEN parameter set —
this would prevent all logins from occurring on a subsequent reboot of the system.
See the chapter on Integrated Login for more information.

The following paragraphs explain how to solve this problem if it occurs.

If you cannot log in because LGI_CALLOUTS is set to 1 and DCE is not running,
there are two solutions, as follows:

• If you are already logged in to the system, use SYSGEN to correct the
problem.

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> SET LGI_CALLOUTS 0
SYSGEN> WRITE ACTIVE
SYSGEN> EXIT
$

• Reboot the system with a conversational boot and ensure that the LGI_
CALLOUTS parameter is zero.

SYSBOOT> SET LGI_CALLOUTS 0
SYSBOOT> C

14–10 Troubleshooting

15
Example Programs

The Application Developer’s Kit of HP DCE for OpenVMS Alpha and OpenVMS
I64 contains 17 example programs. These programs are located in subdirectories
of the following directory:

SYS$COMMON:[SYSHLP.EXAMPLES.DCE]

The examples demonstrate some of the basic capabilities of DCE as well as the
steps required when writing DCE distributed applications. All of the example
programs are written in HP C or HP C++ except the Payroll example, which is
written in HP Fortran.

Each example is in a separate directory and contains the following files needed to
build and run the example:

• Source files for the example

• <example>.readme file, which explains the steps required to build and run
the program

• <example>.com file, which compiles and links the program

The example programs vary in complexity. The RPC Test Programs and Hello_svc
programs are elementary; the Generic_app and Timop_svc programs are more
complex. The example programs illustrate some of the DCE interfaces and
services.

Table 15–1 briefly describes each example program located in subdirectories of
SYS$COMMON:[SYSHLP.EXAMPLES.DCE]:

Table 15–1 Example Program Features

Example Program Description

[.GENERIC_APP] This sample application illustrates the recommended
procedures for writing DCE distributed applications.
The code is as generic as possible, and demonstrates
what most servers need to do. The application is
mostly initialization and cleanup code, with extensive
examples of ACL management, serviceability code,
security setup, and signal handling.

[.GSSAPI] The ECHO application demonstrates how a distributed
application secures itself using the GSSAPI security
interface.

[.PWD_MGMT] This example provides a sample application for the
password management server, a cell-wide service for
enforcing the password selection policy users must
follow when updating their passwords.

(continued on next page)

Example Programs 15–1

Example Programs

Table 15–1 (Cont.) Example Program Features

Example Program Description

[.RPC.BOOK] The Distributed Calendar (BOOK) program is a
fairly sophisticated client/server application that
uses several DCE services. The client sets up a search
context that imports a binding handle for a book server
from the directory service.

[.CONTEXT_APP] The context_app server maintains a storage area that
the client will write to and read from. The client
accesses the storage area using a context handle
obtained from the server.

[.RPC.DATA_TEST_APP] This example demonstrates the use of various RPC
data types.

[.RPC.PAYROLL] The payroll software is a simple client/server
application that makes minimal use of the DCE
services. Its purpose is to show a complete example
application with FORTRAN.

[.RPC.PHONEBOOK] RPC PHNBK is an application that distributes a phone
number directory. The server registers transport
endpoints with the RPC endpoint mapper, and binding
information is exported to the directory service.

[.RPC.TEST1] RPC Test Program #1 (TEST1) is a very simple client
/server program that makes minimal use of the DCE
services. It is useful for acquiring the basics of client
/server programming. The server does not register
transport endpoints with the RPC daemon, and
no binding information is exported to the directory
service. The user has to manually transfer the server
binding information to the client.

[.RPC.TEST2] RPC Test Program #2 is a simple client/server program
that makes slightly more use of the DCE services than
does the RPC Test Program #1. In this program,
the server registers transport endpoints with the
RPC daemon, and exports binding information to the
directory service. The client uses the auto-handle
mechanism to import server binding information.

[.RPC.TEST3] RPC Test Program #3 is a simple client/server program
that makes minimal use of the DCE services. The
server does not register transport endpoints with the
RPC daemon, and no binding information is exported
to the directory service. The user has to manually
transfer the server binding information to the client.

[.RPC.IDLCXX.ACCOUNT] This C++ example tests inheritance, binding to an
object using another interface, binding to an object
with an unsupported interface, and the reflexive,
symmetric, and transitive relation properties of the
bind() API.

[.RPC.IDLCXX.ACCOUNTC] This C++ example tests the same properties as the
account example, but uses the C interfaces for all the
APIs.

[.RPC.IDLCXX.CARD] This C++ example tests the passing of C++ objects as
parameters using the [cxx_delegate] attribute and
the polymorphism property of the base class.

(continued on next page)

15–2 Example Programs

Example Programs

Table 15–1 (Cont.) Example Program Features

Example Program Description

[.RPC.IDLCXX.STACK] This C++ example tests the passing of C++ objects as
parameters using the [cxx_delegate] attribute and
a user-defined stack class.

[.SVC.HELLO_SVC] This is the Hello World example program for the DCE
Serviceability API, a simple illustration of the new
serviceability functionality.

[.SVC.TIMOP_SVC] The timop program is a tutorial DCE application
example. It exercises the basic DCE technologies:
threads, RPC, security, directory, time and
serviceability.

Please see the HP DCE for OpenVMS Alpha and OpenVMS I64 release notes for
current restrictions on using the example programs.

Example Programs 15–3

A
Using NSedit

This appendix provides information on using the Namespace Editor (NSedit).
Note that at this time NSedit is only a prototype of a system management tool.
Note also that this release of NSedit does not yet have complete functionality.

NSedit is a graphical user interface to the namespace. A namespace is a
collection of names that one or more CDS servers know about, look up, modify,
and share. Usually only one namespace is associated with a particular cell.

A.1 Starting NSedit
To start NSedit, you must first log in to DCE as cell_admin. Then, enter the
following command:

$ MCR DCE$NSEDIT

A.2 NSedit Functionality
NSedit is a graphical user interface for CDS. Although it does not provide the
complete functionality of the CDS clerk interface, it does provide a user-friendly
environment for creating, viewing, and modifying entries in a namespace.

NSedit provides an additional level of namespace data caching. The NSedit cache
is used to store data read from the clerk’s local cache or from the CDS server.
This allows for faster retrieval of data at the expense of accuracy. (Changes may
have occurred in the namespace that are not reflected in the NSedit cache.) The
tradeoff between speed and accuracy can be controlled by setting the appropriate
mode in the Display menu of the tree browser.

NSedit consists of three windows:

• Tree Browser Window

The entire left window of the NSedit screen is a tree browser that allows
users to view the hierarchical structure of the namespace and to create and
delete entries.

• Entry Attributes Window

The top right window is a list management utility that allows users to view,
modify, and delete attributes and values of namespace entries.

Note that most of the features in this window are Read Only for this release.

• ACL Window

The bottom right window is a second tree browser that allows users to view,
modify, and delete ACLs of namespace entries.

Using NSedit A–1

Using NSedit
A.2 NSedit Functionality

A.2.1 Tree Browser Window
The tree browser lets you view the namespace and create and delete namespace
entries. Each CDS entry is represented in the tree browser by a rectangle
containing the name of the entry and an icon indicating the entry type. A CDS
entry can be one of the following:

• Directory: A directory contains objects, soft links, or other directories (child
pointers) as its children. The icon is a filled square.

• Object: An object represents a physical resource in the network. Its icon is an
empty square.

• Group: A group is a set of names in the network. The icon is a set of seven
small squares.

• Soft link: A soft link is a pointer to a CDS entry. The icon is a right arrow.

The tree browser provides the user with the ability to expand a node and view
all its children (objects, subdirectories, or soft links) by clicking Mouse Button
3 (MB3) on a tree node or by specifying the appropriate maximum tree level to
display, as described in Section A.3.1.

A.2.2 Entry Attributes Window
The Entry Attributes window is the part of NSedit that lets you create, view,
modify, and delete attributes and values from an existing object, directory or soft
link. When you select a CDS entry with the tree browser, the attributes and
values of this entry are shown on the Entry Attributes window. You can then
add, modify, or delete attributes from this entry, as described in this appendix.

A.2.3 ACL Window
This window lets you perform the following functions.

• List the ACL entries.

• Add an ACL entry.

• Modify an ACL entry.

• Delete an ACL entry.

• Substitute all ACL entries with a new ACL entry. This function is not yet
implemented.

• Load an ACL from a file. This function is not yet implemented.

• Save an ACL to a file. This function is not yet implemented.

• Copy an ACL entry to another. This function is not yet implemented.

• Copy an ACL to another (for example, an Object ACL can be copied onto an
Initial Container Creation ACL for the selected object). This function is not
yet implemented.

• Delete all ACL entries except the user_obj entry (kill the ACL). This function
is not yet implemented.

• List the available permission tokens.

A–2 Using NSedit

Using NSedit
A.3 Common Uses of NSedit

A.3 Common Uses of NSedit
The following sections describe what you can do with NSedit.

A.3.1 Expanding and Collapsing Tree Nodes
To expand a tree node and view its children, click MB3 on the node. This works
only for directory and soft link nodes. For example, by successively expanding
nodes, you can see all of the host’s children as well as their children.

To collapse a tree node whose children are at a higher level than the maximum
tree level specified by the user (with the Set Level selection of the Display menu),
click MB3 on the node. The node will not collapse if the level of its children is
lower than the maximum tree level. The default maximum tree level is 1, which
means that only the children of the root node are displayed.

A.3.2 Creating an Object or a Directory
To create an object or directory:

1. Type in the name of the new object or directory in the top left selection area
and press RETURN. The create_entry_dialogue_popup appears.

2. Select Object, Directory, Group, or Soft Link and press OK.

If the object or directory has been successfully created, a new rectangle with the
name of the new object or directory appears as a child of the specified parent
directory. If CDS cannot create the object or directory, an error message appears.

A.3.3 Creating and Viewing a Soft Link
Note that the following functionality is not yet supported.

1. Click the left mouse button on a rectangle, to define the target of the soft link
to be created. This target entry appears highlighted.

2. Type in the name of the new soft link in the prompt window and press
RETURN.

If the soft link has been successfully created, a new rectangle with the name of
the new soft link is displayed as a child of the specified parent directory. To verify
the creation of the soft link, you can click the right mouse button on the soft link
rectangle. If CDS could not create the soft link, an error message appears.

A.3.4 Deleting an Entry
To delete an entry:

1. Click the left mouse button on a rectangle, to define the target to be deleted.
This target entry is displayed highlighted.

2. Select Delete from the Edit menu.

If the entry has been successfully deleted, the rectangle will also disappear
from the tree structure. If CDS could not delete the entry, an error message is
displayed.

Using NSedit A–3

Using NSedit
A.3 Common Uses of NSedit

A.3.5 Viewing Attributes and Values
To view the attributes and values of a CDS entry, click the left mouse button on
this entry in the Tree Browser window. The attributes and values of this entry
are displayed in the Entry Attributes window. An alternative way to view an
entry is to type its full name in the top left selection area. Then the attributes
and values of this entry are displayed in the Entry Attributes window (or an
empty list will appear if the entry does not exist).

A.3.6 Creating a Group and Adding Members
To create a group, follow the steps described in Section A.3.2. Select Create
Group from the create_entry_dialog_popup.

A.4 NSedit Menus and Dialog Box
There are three pull-down menus in NSedit and one popup dialog box:

• File Menu

• Display Menu

• Edit Menu

• Create Entry Pop-up Dialog Box

A.4.1 File Menu
The File menu has the following choice:

• Exit: This selection exits NSedit.

A.4.2 Display Menu
The Display menu has the following choices:

• Set Root: This selection allows the user to specify the root of the tree
structure to display. After a root is specified, only entries that are children of
the root will be displayed by the tree browser.

• Set Depth: This selection allows the user to specify a maximum tree depth
to display. Nodes deeper than the specified depth are not displayed, unless
explicitly selected for expansion (by clicking the right mouse button).

• Show Entry: This selection toggles between enabling and disabling the Entry
Attributes window. When the Entry Attributes window is disabled, no text
can be typed in its text input areas and these areas as well as the area where
attributes and values appear grayed.

• Show ACLs: This selection toggles between enabling and disabling the ACL
window. When the ACL window is disabled, no text can be typed into its text
input area. These areas, as well as the area where ACLs appear, are grayed.
The ACLs menu selections also are grayed to indicate that no operations are
possible at that time.

• Caching: This menu sets the level of caching for NSedit operations:

• Internal: This selection tells the program to read the children of a directory
from the program’s own cache and not from the namespace. Every time a
directory’s children are read from the namespace, they are placed in a local
cache (data structure) by NSedit. In Internal mode, every time a node is
collapsed and reexpanded, its children are read from this cache. You want
to use this mode most of the time, unless you suspect that new entries

A–4 Using NSedit

Using NSedit
A.4 NSedit Menus and Dialog Box

have been created in the namespace. In that case you have to collapse the
directory entry, select either Local mode or Server mode, and click the right
mouse button on the directory to reexpand the directory and see the new
information.

• Local: This selection tells the program to read the children of a directory
from the CDS local cache (as opposed to reading them from the program’s
own cache or querying the CDS server) when you click the right mouse button
on a directory entry. This selection is useful when new information is stored
in the CDS local cache but NSedit is not aware of it (because it has already
stored some old information in its own cache).

• Server: This selection tells the program to query the CDS server when
reading children of a directory (as opposed to reading them from the
program’s own cache or from the CDS local cache) when you click the
right mouse button on a directory entry. This selection is useful when new
information has been stored in the namespace (and the server is aware of
it), but is not yet propagated to the CDS local cache (as, for example, when
another user creates a new object on a different machine).

A.4.3 Edit Menu
The Edit menu has the following choices:

• Delete Entry: Deletes a selected entry. Select an entry in the Tree Browser
window, pull down the Edit menu, and choose Delete Entry to delete the
selected entry.

• Delete Attribute: This selection sets the delete mode for attribute names.

• Delete Value: This selection sets the delete mode for attribute values.

• Delete: Deletes an ACL entry or a complete ACL.

• Substitute ACL: (Not supported in this release.) Substitutes all ACL entries
with a new ACL entry.

• Kill ACL: (Not supported in this release.) Removes all ACL entries other than
type user_obj from a given ACL.

• Show Tokens: (Not supported in this release.) Shows the tokens allowed by
the ACL manager for permission strings.

A.4.4 Create Entry Pop-up Dialog
The Create Entry Pop-up Dialog box has the following choices:

• Create Object: This selection sets the create object mode. Select OK in the
dialog box to create a new object as a child of the directory node.

• Create Directory: This selection sets the create directory mode. Select OK
in the dialog box to create the new (sub)directory as a child of the directory
node.

• Create Soft Link: (Not supported in this release.) This selection sets the
create soft link mode. To create a soft link, you click the left mouse button
on the target node and type in the full name of the soft link in the prompt
window.

• Create Group: This selection sets the create group mode. Select OK in the
dialog box to create a new group as a child of the directory node.

Using NSedit A–5

Index

-lang fortran flag for IDL compiler, 13–11

A
ACF attributes, 13–18
Application development

differences on OpenVMS, 7–1
Applications

and VMS Object Libraries, 7–2
Applications (distributed) with FORTRAN, 13–1,

13–18
Attributes

ACF, 13–18
IDL, 13–17

Authentication
using NTLM, 5–1

Auto_handle binding, 13–9

B
BIND

setting up, 9–2
Browser, 10–1

icons, 10–1
using the Filters menu, 10–2

Building applications, 7–1
Building command formats for, 7–1
Building FORTRAN distributed application, 13–9

C
Case-sensitive command syntax, 1–7
CDS Browser, 10–1
Cell

naming with DNS in an intercell environment,
9–1

naming with X.500 in an intercell environment,
9–3

CHPASS utility, 8–4
Client application code for FORTRAN distributed

application, 13–5
Client problems, 14–4
Client/Server problems, 14–4
Commands

case-sensitive syntax, 1–7
Compiling and linking

differences on OpenVMS, 7–1
structure member alignment, 7–2

D
Daemons

restarting, 2–1, 2–2
stopping, 2–2
terminating, 2–2

Data file for FORTRAN distributed application,
13–3

Data type mapping, 13–13
DCE directories

name equivalent, 6–1
DCE RPC calls

mapping to MSRPC calls, 7–4
DCE$SETUP command procedure, 2–3
Debugging, 12–1, 12–14
DECnet

example IDL file for server endpoint, 4–3
interoperability between platforms, 4–3
interoperability with, 4–1
rights identifier for server accounts using, 4–2
running server applications that support, 4–2
stopping and starting, 4–1

Development files
name equivalent, 6–4

Directory and file
mapping, 6–1
name equivalent, 6–1

Diskless Services, 1–4
Distributed applications with FORTRAN, 13–1,

13–18
Distributed File Service (DFS), 1–4
DTS

problems during configuration, 14–2

E
Enabling event logging, 12–3
Endpoints

for DECnet server, 4–2
maximum length and case, 4–3
restrictions for specifying, 4–3

Enhanced Browser, 1–6, 10–1
Event descriptions, 12–15
Event logging, 12–1

combining logs, 12–6
event names, 12–15
event types, 12–4

Index–1

Event logging (cont’d)
generating log, 12–3
log fields, 12–2
Log Manager, 12–7, 12–8, 12–11
rpclm command interface, 12–1, 12–8
symbols, 12–7, 12–8, 12–11
trace option, 12–3

Examples
FORTRAN, 13–1, 13–11
Payroll, 13–2

Executable images
name equivalent, 6–2
running as foreign commands, 7–2

F
Features

using the HP DCE Kit, 1–6
Filters menu

using, 10–2
Foreign commands

passing parameters to, 7–2
FORTRAN

developing applications with, 13–1
portability constraint, 13–1

FORTRAN and IDL parameters, 13–15
FORTRAN mapping from IDL types, 13–13
FORTRAN option, 13–11
FORTRAN structures from IDL mapping, 13–16
FORTRAN with distributed applications, 13–1,

13–18

H
Help, online

accessing reference pages, 1–4

I
IDL and FORTRAN parameters, 13–15
IDL attributes, 13–17
IDL command options, 11–1

-standard, 11–1
IDL compiler

-lang fortran flag, 13–11
and the /DIAGNOSTIC qualifier, 11–2
/LANGUAGE=FORTRAN qualifier, 13–11

IDL compiler command for FORTRAN distributed
application, 13–4

IDL constant declarations, 13–13
IDL file for FORTRAN distributed application,

13–3
IDL mapping to FORTRAN structures, 13–16
IDL mapping to FORTRAN types, 13–13
IDL options, 12–3
IDL stub compiler, 1–6, 11–1

Images
running as foreign commands, 7–2

Integrated Login, 8–1
Intercell

creating a cross-cell authentication account,
9–3

DNS naming example, 9–1
LDAP naming example, 9–5
naming with DNS, 9–1
naming with LDAP, 9–5
naming with X.500, 9–3
X.500 naming example, 9–4

Interoperability
with other DCE systems, 3–1

Interoperability of distributed applications with
FORTRAN, 13–1

L
LANGUAGE=FORTRAN qualifier for IDL

compiler, 13–11
LDAP

example, 9–5
intercell naming with, 9–5

Library images
name equivalent, 6–3

Login
Integrated, 8–1

LSE templates, 11–2

M
Mapping

IDL type to FORTRAN type, 13–13
structure, 13–16
type, 13–13

Message files
name equivalent, 6–4

Microsoft RPC
interoperability with, 3–2

MSRPC calls
mapping to DCE RPC, 7–4

MSRPC_MAPPING.H, 7–4
Multithreaded applications, 13–12

N
Name service interface daemon

nsid, 3–2
PC Nameserver Proxy Agent, 3–2

Name service interface daemon (nsid)
using with Microsoft DCE-compatible RPC, 3–1

Named object, 4–2
NBASE.FOR file, 13–16
NLSPATH environment variable, 7–3
NSedit, A–1

Index–2

NTLM
with RPC, 5–1

O
Online help

accessing reference pages, 1–4
provided with kit, 1–3

P
Parameters

passing to foreign commands, 7–2
Payroll example program, 13–2
PAYROLL.COM file, 13–9
Pipes restriction, 13–12
Portability of distributed applications with

FORTRAN, 13–1

R
Reference pages

accessing, 1–4
relationship to help

manual pages, 1–3
Remote procedure calls

in distributed applications, 13–1, 13–18
using FORTRAN - example, 13–1, 13–11
using FORTRAN - reference, 13–11
using FORTRAN reference, 13–18

Represent_as attribute, 13–12, 13–18
Restrictions

using HP DCE Version 1.5, 1–4
RPC

example programs, 15–1
using without CDS or Security, 1–4

RPC daemon
using, 2–1

Rpclm command interface, 12–1, 12–8
Running

applications with command line switches, 7–2
Running FORTRAN distributed application, 13–9,

13–11

S
Sample application files

name equivalent, 6–5
Server application code for FORTRAN distributed

application, 13–8
Server code for FORTRAN distributed application,

13–6
Server Problems, 14–5
Setup utilities

name equivalent, 6–1
Structure alignment, 7–2

Structure mapping, 13–16
SYS$LIBRARY:MSRPC_MAPPING_shr.exe_, 7–4
System configuration

displaying, 2–4
location of, 2–1
menu, 2–3
reconfiguring, 2–1
restarting daemons, 2–1
utility for, 2–1

System configuration commands
clean, 2–4
clobber, 2–4
config, 2–4
exit, 2–4
restart, 2–4
show, 2–4
start, 2–4
stop, 2–4
test, 2–4

T
Threads, 1–4
Time

OPCOM messages, 14–3
problems during configuration, 14–2

Time zone configuration, 14–2
Trace option, 12–3
Transmit_as attribute, 13–12, 13–17
Troubleshooting steps, 14–1
Type mapping, 13–13

V
V1_array attribute, 13–12
VMScluster

compliance with, 3–4
VMScluster environments, 3–3

W
Windows NT LAN Manager, 5–1

Index–3

