
Migrating to an OpenVMS AXP
System: Planning for Migration
Order Number: AA–PV62A–TE

March 1994

This manual provides an overview of the process of migrating a VAX
application to an AXP system and information to help you plan your
migration effort.

Revision/Update Information: This manual supersedes Migrating to
an OpenVMS AXP System: Planning
for Migration, Version 1.5.

Software Version: OpenVMS AXP Version 6.1

Digital Equipment Corporation
Maynard, Massachusetts

March 1994

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1994. All rights reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: ALL–IN–1, Alpha AXP, AXP,
Bookreader, CDA, CDD/Plus, CDD/Repository, CI, DEC, DEC 4000, DEC C, DECchip, DECforms,
DEC Fortran, DECmigrate, DECnet, DECset, DECTPU, DECwindows, Digital, LAT, OpenVMS,
PATHWORKS, PDP–11, RA, Rdb/VMS, SPM, TURBOchannel, ULTRIX, VAX, VAXcluster, VAX
DOCUMENT, VAXft, VAX MACRO, VMS, VMScluster, and the DIGITAL logo.

The following are third-party trademarks:

BASIC is a registered trademark of the Trustees of Dartmouth College, D.B.A. Dartmouth College.

Futurebus+ is a registered trademark of Force Computers GmBH, Federal Republic of Germany.

Ingres is a registered trademark of Whitmoore Group, Inc.

Internet is a registered trademark of Internet, Inc.

Motif and OSF/1are registered trademarks of the Open Software Foundation, Inc.

ORACLE is a registered trademark of the Oracle Corporation.

PostScript is a registered trademark of Adobe Systems, Incorporated.

Windows NT is a registered trademark of the Microsoft Corporation.

All other trademarks and registered trademarks are the property of their respective holders.

ZK5779

This document is available on CD–ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Send Us Your Comments
We welcome your comments on this or any other OpenVMS manual. If you have suggestions for
improving a particular section or find any errors, please indicate the title, order number, chapter,
section, and page number (if available). We also welcome more general comments. Your input is
valuable in improving future releases of our documentation.

You can send comments to us in the following ways:

• Internet electronic mail: OPENVMSDOC@ZKO.MTS.DEC.COM

• Fax: 603-881-0120 Attn: OpenVMS Documentation, ZKO3-4/U08

• A completed Reader’s Comments form (postage paid, if mailed in the United States), or a
letter, via the postal service. Two Reader’s Comments forms are located at the back of each
printed OpenVMS manual. Please send letters and forms to:

Digital Equipment Corporation
Information Design and Consulting
OpenVMS Documentation
110 Spit Brook Road, ZKO3-4/U08
Nashua, NH 03062-2698
USA

You may also use an online questionnaire to give us feedback. Print or edit the online file
SYS$HELP:OPENVMSDOC_SURVEY.TXT. Send the completed online file by electronic mail to our
Internet address, or send the completed hardcopy survey by fax or through the postal service.

Thank you.

Contents

Preface . ix

1 VAX, Alpha AXP, and OpenVMS

1.1 Compatibility of VAX and AXP Systems . 1–1
1.2 Differences Between the VAX and Alpha AXP Architectures 1–3

2 Overview of the Migration Process

2.1 Migration Paths . 2–1
2.2 Support from Digital in Migrating Your Application 2–3
2.2.1 Orientation Service . 2–3
2.2.2 Detailed Analysis Service . 2–3
2.2.3 Migration Support Service . 2–3
2.2.4 Project Planning Service . 2–3
2.2.5 Custom Project Service . 2–4
2.2.6 Business Partner Development Assistance Centers 2–4
2.3 Migration Training . 2–4

3 Evaluating Your Application: Taking Inventory

4 Selecting a Migration Method

4.1 Which Migration Methods are Possible? . 4–2
4.2 Coding Practices That Affect Recompilation . 4–4
4.2.1 VAX MACRO Assembly Language . 4–4
4.2.2 Privileged Code . 4–5
4.2.3 Features Specific to the VAX Architecture . 4–5
4.2.3.1 Performance Issues . 4–5
4.2.3.1.1 Data Alignment . 4–6
4.2.3.1.2 Data Types . 4–7
4.2.3.2 Protection of Shared Data . 4–8
4.2.3.2.1 Modifying Data in Memory . 4–8
4.2.3.2.2 Reading or Writing Data Smaller Than a Quadword 4–9
4.2.3.2.3 Page Size Considerations . 4–10
4.2.3.2.4 Order of Read/Write Operations on Multiprocessor

Systems . 4–11
4.2.3.3 Immediacy of Arithmetic Exception Reporting 4–12
4.2.3.4 Explicit Reliance on the VAX Procedure Calling Standard 4–13
4.2.3.5 Explicit Reliance on VAX Exception-Handling Mechanisms 4–13
4.2.3.5.1 Establishing a Dynamic Condition Handler 4–13
4.2.3.5.2 Accessing Data in the Signal and Mechanism Arrays 4–14
4.2.3.6 Explicit Reliance on the VAX AST Parameter List 4–14

v

4.2.3.7 Explicit Dependency on the Form and Behavior of VAX
Instructions . 4–15

4.2.3.8 Generation of VAX Instructions at Run Time 4–15
4.3 Identifying Incompatibilities Between VAX and AXP Systems 4–15
4.4 Deciding Whether to Recompile or Translate . 4–17
4.4.1 Translating Your Application . 4–20
4.4.2 Combining Native and Translated Images . 4–21

5 Writing a Migration Plan

6 Migrating Your Application

6.1 Setting Up the Migration Environment . 6–1
6.1.1 Hardware . 6–1
6.1.2 Software . 6–2
6.2 Converting Your Application . 6–3
6.2.1 Recompiling and Relinking . 6–4
6.2.1.1 Native AXP Compilers . 6–5
6.2.1.2 Other Development Tools . 6–5
6.2.2 Translating . 6–6
6.2.2.1 VAX Environment Software Translator (VEST) and Translated

Image Environment (TIE) . 6–6
6.3 Debugging and Testing the Migrated Application 6–7
6.3.1 Debugging . 6–7
6.3.1.1 Debugging with the OpenVMS Debugger . 6–8
6.3.1.2 Debugging with the Delta Debugger . 6–8
6.3.2 Testing . 6–9
6.3.2.1 VAX Tests . 6–9
6.3.2.2 AXP Tests . 6–9
6.4 Integrating the Migrated Application into a Software System 6–10

A Application Evaluation Checklist

B Sample Migration Plan

B.1 Executive Summary . B–2
B.2 Technical Analysis . B–2
B.2.1 Application Characteristics . B–3
B.2.2 Software Architecture . B–3
B.2.3 Results of Image Analysis . B–4
B.2.4 Results of Source Analysis . B–5
B.3 Milestones and Deliverables . B–7
B.4 Technical Approach . B–7
B.4.1 Line Mode Prompt . B–7
B.4.2 The Image Bridge . B–7
B.4.3 Floating-Point Format Decision . B–8
B.4.4 Full Omega-1 Exception Handling . B–8
B.4.5 Begin Code Generator Implementation . B–8
B.4.6 Build Applications . B–8
B.4.7 Test Code Generator . B–8
B.4.8 Test Complete Application . B–8
B.4.9 DECwindows Motif User Interface . B–9
B.4.10 Omega Quality Assurance and Field Test . B–9

vi

B.5 Dependencies and Risks . B–9
B.6 Resource Requirements . B–10
B.6.1 Hardware . B–11
B.6.2 On-Site Training . B–11
B.6.3 Telephone Support . B–11
B.6.4 Testing Assistance . B–11
B.6.4.1 Testing the Code Generator . B–11
B.6.4.2 Testing Applications . B–11
B.6.4.3 Omega Quality Assurance . B–11

Glossary

Index

Figures

2–1 Methods for Moving VAX Applications to an AXP System 2–2
4–1 Migrating a Program . 4–3
6–1 Migration Environments and Tools . 6–4
B–1 Layer Structure of Omega-1 . B–3

Tables

1–1 Comparison of Alpha AXP and VAX Architectures 1–4
2–1 Locations of BPDA Centers . 2–4
4–1 Migration Path Comparison . 4–17
4–2 Choice of Migration Method: Dealing with Architectural

Dependencies . 4–18
B–1 Image Analysis Results . B–4
B–2 Milestones and Deliverables . B–7
B–3 Omega Optional Product Dependences . B–10
B–4 Summary of Digital Support . B–10

vii

Preface

Migrating to an OpenVMS AXP System: Planning for Migration is one of a series
of manuals designed to help you migrate existing application programs from a
VAX system to an AXP system. This manual set is intended to help you make
reasonable estimates about the type and amount of work involved in the various
available migration methods, to enable you to select the method best suited to a
given application, and to help you execute the migration.

Intended Audience
This manual is intended for anyone who evaluates an application for migration
from OpenVMS VAX to OpenVMS AXP and produces a plan for the migration.

How to Use This Book
This book provides an overview of the process of migrating an application from
OpenVMS VAX to OpenVMS AXP and information to help you plan a migration
effort. It discusses the decisions you must make in planning your migration and
how to get the information you need to make those decisions. For information
about the technical details of the migration process, see the books listed in the
section in this Preface titled Other Sources of Information About Migration.

Chapter 1 provides a summary of the relationship of OpenVMS and the VAX and
Alpha AXP architectures:

• Areas in which OpenVMS AXP is highly compatible with OpenVMS VAX

• The characteristics of an AXP system, comparing the features of the Alpha
AXP architecture to those of other RISC architectures and to those of the VAX
architecture

Chapter 2 provides an overview of the process of migrating to an AXP system. It
includes information on the following:

• Overview of the stages in the migration process

• The two main migration paths—recompiling source code and translating VAX
images

• Migration support available from Digital

The remaining chapters describe the steps in the migration process and outline
strategies for organizing a migration effort for VAX applications. The chapters
describe how to produce an effective migration plan.

Chapter 3 describes how to analyze your application as a whole to determine
exactly what you are migrating.

ix

Chapter 4 considers the differences between the two main migration paths and
the issues involved in choosing which path to take in migrating your application.
It also describes how to analyze the individual parts of your application to
identify architectural differences that affect migration and how to assess what is
involved in resolving those differences.

Chapter 5 describes how to write a VAX to AXP migration plan.

Chapter 6 describes the steps in the actual migration, from setting up your
migration environment to integrating the migrated application into a new
environment.

Appendix A contains a checklist that you can use to evaluate your application for
migration from OpenVMS VAX to OpenVMS AXP.

Appendix B contains a sample migration plan.

The Glossary contains definitions for terms introduced in this manual.

Other Sources of Information About Migration
Other OpenVMS AXP migration manuals include the following:

• Migrating to an OpenVMS AXP System: Recompiling and Relinking
Applications

This manual describes how to build an AXP version of your VAX application
by recompiling and relinking it. It discusses dependencies your application
may have on features of the VAX architecture (such as assumptions about
page size, synchronization, and condition handling) that you may need to
modify to create a native AXP version. In addition, the manual describes how
you can create applications in which native AXP components interact with
translated VAX components.

• DECmigrate for OpenVMS AXP Systems Translating Images

This manual describes the VAX Environment Software Translator (VEST)
utility. This manual is distributed with the optional layered product,
DECmigrate for OpenVMS Alpha AXP, which supports the migration of VAX
applications to OpenVMS AXP. The manual describes how to use VEST to
convert most user-mode VAX images to translated images that can run on
AXP systems; how to improve the run-time performance of translated images;
how to use VEST to trace AXP incompatibilities in a VAX image back to the
original source files; and how to use VEST to support compatibility among
native and translated run-time libraries. The manual also includes complete
VEST command reference information.

• Migrating to an OpenVMS AXP System: Porting VAX MACRO Code

This manual describes how to port VAX MACRO code to an AXP system using
the VAX MACRO-32 Compiler for OpenVMS AXP. It describes the features of
the compiler, presents a methodology for porting VAX MACRO code, identifies
nonportable coding practices, and recommends alternatives to such practices.
The manual also provides a reference section with detailed descriptions of the
compiler’s qualifiers, directives, and built-ins, and the system macros created
for porting to OpenVMS AXP.

Other books that may help you in the migration process include the following:

• OpenVMS Linker Utility Manual

x

This manual provides detailed information about using the OpenVMS Linker
utility to create AXP images.

• A Comparison of System Management on OpenVMS AXP and OpenVMS VAX

This book contains information about system management aspects of
migrating an entire system.

• OpenVMS Compatibility Between VAX and AXP

This manual provides detailed information about the similarities and
differences between OpenVMS VAX and OpenVMS AXP.

• Alpha Architecture Reference Manual

This manual is the definition of the Alpha AXP architecture. It provides a
complete description of the Alpha AXP central-processor hardware as seen by
machine-language programs.

• VMS for Alpha Platforms: Internals and Data Structures

This book describes the kernel of the OpenVMS AXP operating system.

• OpenVMS Calling Standard

This book specifies the conventions that procedures use when calling one
another and defines the argument-passing mechanisms and structures that
support those conventions.

Conventions
In this manual, every use of OpenVMS AXP means the OpenVMS AXP operating
system, every use of OpenVMS VAX means the OpenVMS VAX operating system,
and every use of OpenVMS means both the OpenVMS AXP operating system and
the OpenVMS VAX operating system.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

. . . Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

xi

() In format descriptions, parentheses indicate that if you
choose more than one option, you must enclose the choices
in parentheses.

[] In format descriptions, brackets indicate optional elements.
You can choose one, none, or all of the options. (Brackets are
not optional, however, in the syntax of a directory name in
an OpenVMS file specification, or in the syntax of a substring
specification in an assignment statement.)

{ } In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason (user action
that triggers a callback).

Boldface text is also used to show user input in Bookreader
versions of the manual.

italic text Italic text emphasizes important information and indicates
variables and complete titles of manuals. Variables include
information that varies in system messages (Internal error
number), in command lines (/PRODUCER=name), and in
command parameters in text (where device-name contains up
to five alphanumeric characters).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen in code examples indicates that additional
arguments to the request are provided on the line that follows.

numbers All numbers in text are assumed to be decimal, unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xii

1
VAX, Alpha AXP, and OpenVMS

For many applications, migrating from OpenVMS VAX to OpenVMS AXP is
straightforward. If your application runs only in user mode and is written in
a standard high-level language, you most likely can recompile it with a native
AXP compiler and relink it to produce a version that runs successfully on an
AXP system. This book is intended to help you evaluate your application and to
handle the relatively few cases that are more complicated.

1.1 Compatibility of VAX and AXP Systems
The OpenVMS AXP operating system is designed to preserve as much
compatibility with the OpenVMS VAX user, system management, and
programming environments as possible. For general users and system managers,
OpenVMS AXP has the same interfaces as OpenVMS VAX. For programmers, the
goal is to come as close as possible to a ‘‘recompile, relink, and run’’ model for
migration.

Many aspects of an application running on an OpenVMS VAX system remain
unchanged on an AXP system:

User Interface

• DIGITAL Command Language (DCL)

The DIGITAL Command Language (DCL), the standard user interface
to OpenVMS, remains essentially unchanged with OpenVMS AXP. All
commands, qualifiers, and lexical functions available on OpenVMS VAX
also work on OpenVMS AXP.

• Command Procedures

Command procedures written for earlier versions of OpenVMS VAX continue
to work on an AXP system without change. However, certain command
procedures, such as build procedures, must be changed to accommodate new
compiler qualifiers and linker switches. Linker options files will also require
modification, especially for shareable images.

• DECwindows

The window interface, DECwindows Motif, is unchanged.

• DECforms

The DECforms interface is unchanged.

• Editors

The two standard OpenVMS editors, EVE and EDT, are unchanged.

1–1

VAX, Alpha AXP, and OpenVMS
1.1 Compatibility of VAX and AXP Systems

System Management Interface

The system management utilities are mostly unchanged. One major
exception is that device configuration functions, which appear in the System
Generation utility (SYSGEN) on VAX systems, are provided in the System
Management utility (SYSMAN) for OpenVMS AXP. For more information, see
A Comparison of System Management on OpenVMS AXP and OpenVMS VAX.

Programming Interface

In general, the system service and run-time library (RTL) calling interfaces
remain unchanged. You do not need to change the definitions of arguments.
The few differences fall into two categories:

• Some system services and RTL routines (such as the memory
management system and exception-handling services) operate somewhat
differently on VAX and AXP systems. See the OpenVMS System Services
Reference Manual and OpenVMS RTL Library (LIB$) Manual for further
information.

• A few RTL routines are so closely tied to the VAX architecture that their
presence on an AXP system would not be meaningful:

Routine Name Restriction

LIB$DECODE_FAULT Decodes VAX instructions.

LIB$DEC_OVER Applies to VAX Processor Status Longword
(PSL) only.

LIB$ESTABLISH Similar functionality supported by compilers
on AXP systems.

LIB$FIXUP_FLT Applies to VAX PSL only.

LIB$FLT_UNDER Applies to VAX PSL only.

LIB$INT_OVER Applies to VAX PSL only.

LIB$REVERT Supported by compilers on AXP systems.

LIB$SIM_TRAP Applies to VAX code.

LIB$TPARSE Requires action routine interface changes.
Replaced by LIB$TABLE_PARSE.

Most VAX images that call these services and routines will work when
translated and run under the Translated Image Environment (TIE) on
OpenVMS AXP. For more information on TIE, see Section 6.2.2.1 and
DECmigrate for OpenVMS AXP Systems Translating Images.

Data

The on-disk format for ODS-2 data files is the same on VAX and AXP systems.
However, ODS-1 files are not supported on OpenVMS AXP.

Record Management Services (RMS) and file management interfaces are
unchanged.

The IEEE little-endian data types S_floating and T_floating have been added.

Most VAX data types are retained in the Alpha AXP architecture; however,
support for H_floating and full-precision D_floating has been eliminated from
hardware to improve overall system performance.

1–2

VAX, Alpha AXP, and OpenVMS
1.1 Compatibility of VAX and AXP Systems

AXP hardware converts D_floating data to G_floating for processing. On
VAX systems, D_floating has 56 fraction bits (D56) and 16 decimal digits
of precision. On AXP systems, D_floating has 53 fraction bits (D53) and 15
decimal digits of precision.

The H_floating and D_floating data types can usually be replaced by G_
floating or one of the IEEE formats. However, if you require H_floating or the
extra precision of D56 (56-bit D_floating), you may have to translate part of
your application.

Databases

Standard Digital databases (such as Rdb/VMS) function the same on VAX and
AXP systems.

Network Interfaces

VAX and AXP systems both support the following interfaces:

• Interconnects

– Ethernet

– X.25

– FDDI

• Protocols

– DECnet (Phase IV in Version 6.1; Phase V later)

– TCP/IP

– OSI

– LAD/LAST

– LAT (Local Area Transport)

• Peripheral connections

– TURBOchannel

– SCSI

– Ethernet

– CI

– DSSI

– XMI

– Futurebus+

– VME

1.2 Differences Between the VAX and Alpha AXP Architectures
The VAX architecture is a robust, flexible, complex instruction set computer
(CISC) architecture used across the entire family of VAX systems. The use
of a single, integrated VAX architecture with the OpenVMS operating system
permits an application to be developed on a VAXstation, prototyped on a small
VAX system, and put into production on a large VAX processor or run on a
fault-tolerant VAXft processor. The advantage of the VAX system approach is
that it enables individual solutions to be tailored and fitted easily into a larger,
enterprisewide solution. The hardware design of VAX processors is particularly

1–3

VAX, Alpha AXP, and OpenVMS
1.2 Differences Between the VAX and Alpha AXP Architectures

suitable for high-availability applications, such as dependable applications for
mission-critical business operations and server applications for a wide variety of
distributed client/server environments.

The Alpha AXP architecture implemented by Digital is a high-performance
reduced instruction set computing (RISC) architecture that can provide 64-bit
processing on a single chip. It processes 64-bit virtual and physical addresses
and 64-bit integers and floating-point numbers. The 64-bit capability is especially
useful for applications that require high-performance and very large addressing
capacity. For example, AXP processors are especially appropriate for graphics
or numeric-intensive software applications such as econometric or weather
forecasting that involve imaging, multimedia, visualization, simulation, and
modeling.

The Alpha AXP architecture is designed to be scalable and open. It can be
implemented on a single chip in a palmtop system or with thousands of chips
in a massively parallel supercomputer. The architecture also supports multiple
operating systems, including OpenVMS AXP.

Table 1–1 summarizes some major differences between the Alpha AXP and VAX
architectures.

Table 1–1 Comparison of Alpha AXP and VAX Architectures

Alpha AXP VAX

• 64-bit addresses

• 64-bit processing

• Multiple operating systems:
OpenVMS, OSF/1, Windows NT

• Instructions

– Simple

– All same length (32 bits)

• Load/store memory access

• Severe penalty for unaligned data

• Many registers

• Out-of-order instruction completion

• Deep pipelines and branch prediction

• Large page size (which varies
from 8 KB to 64 KB, depending
on hardware)

• 32-bit addresses

• 32-bit processing

• One operating system: OpenVMS

• Instructions

– Some complex

– Variable length

• Permits combining operations and
memory access in a single instruction

• Moderate penalty for unaligned data

• Relatively few registers

• Instructions completed in order issued

• Limited use of pipelines

• Smaller page size (512 bytes)

General RISC Characteristics
Some features of the Alpha AXP architecture are typical of newer RISC
architectures in general. The following features are especially important:

• A simplified instruction set

1–4

VAX, Alpha AXP, and OpenVMS
1.2 Differences Between the VAX and Alpha AXP Architectures

The Alpha AXP architecture uses relatively simple instructions, all of which
are 32 bits long. Common instructions require only one clock cycle. Uniformly
sized simple instructions allow a RISC implementation to achieve high
performance goals by adopting techniques such as multiple instruction
issue and optimized instruction scheduling.

• Multi-instruction issue

Most AXP platforms issue two instructions per clock cycle. Future machines
may issue four instructions per clock cycle.

• A load/store operation model

The Alpha AXP architecture defines 32 64-bit integer registers and 32 64-bit
floating-point registers. Most data manipulation occurs between registers.
Before an operation, operands are loaded from memory into registers; after
the operation, the results are stored in memory from a result register.

Restricting operations to register operands allows the use of a simple, uniform
instruction set. Moreover, the separation of memory access from arithmetic
operations results in a large performance gain in a system that can fully
exploit pipelining, instruction scheduling, and parallel operational units.

• Elimination of microcode

Because the Alpha AXP architecture does not use microcode, AXP processors
are saved the time required to fetch microcode instructions from random-
access memory (RAM) in order to execute a machine instruction.

• A processor that allows parallel instruction execution and out-of-order
completion of instructions

The Alpha AXP architecture does not require that instructions always
complete in the order in which they are issued. As a result, an AXP processor
can improve performance by delaying the reporting of an arithmetic or
floating-point exception until the execution stream allows the reporting
without a performance penalty.

Alpha AXP Specific Characteristics
Besides these generic RISC characteristics, the Alpha AXP architecture offers
features that promote running migrated VAX applications on an AXP system.
These features include:

• Hardware support for all VAX data types except H_floating and D_floating.
(For information on what to do if your application uses H_floating or D_
floating data, see Section 4.2.3.1.2.)

• Certain privileged architecture features, such as four processor modes (user,
supervisor, executive, and kernel), 32 interrupt priority levels (IPLs), and
asynchronous system traps (ASTs).

• A privileged architecture library (PAL), part of an environment known as
PALcode, that supports the atomic execution of certain VAX instructions, such
as Change Mode (CHMx), Probe (PROBEx), queue instructions, and REI.

1–5

2
Overview of the Migration Process

The process for converting your VAX programs to run on an AXP system includes
the following stages:

1. Evaluate the code to be migrated:

• Take inventory of the elements of your application and its environment.
Identify any dependencies on other programs.

• Review code in each element to find potential obstacles to migration.

• Decide on the best method for moving each part of the application to the
AXP system.

2. Write a migration plan.

3. Set up the migration environment.

4. Migrate your application.

5. Debug and test the migrated application.

6. Integrate the migrated software into a software system.

There are a number of tools and Digital services available to help you migrate
your applications to OpenVMS AXP. These tools are described in the context of
the process described in this manual. The migration services are summarized in
Section 2.2.

2.1 Migration Paths
There are two ways to convert a program to run on an AXP system:

• Recompiling and relinking, which creates native AXP images

• Translating, which creates native AXP images with some routines emulated
under TIE

These two methods are illustrated in Figure 2–1. Section 4.4 discusses factors to
consider when choosing a migration method.

Recompiling
The most effective way to convert a program from OpenVMS VAX to OpenVMS
AXP is to recompile the source code using a native AXP compiler (such as DEC
C or DEC Fortran) and then to relink the resulting object files and any required
shareable images using the appropriate switches and options files with the
OpenVMS Linker. This method produces a native AXP image that takes full
advantage of the speed of the AXP system.

2–1

Overview of the Migration Process
2.1 Migration Paths

Figure 2–1 Methods for Moving VAX Applications to an AXP System

ZK−4988A−GE

Analyze the
application:
list components,
check for source
availability,
translatability,
and so forth.

Modify
sources if
necessary

Relink
objects
and
images

Debug the
application

Test the
application

Translate
VAX image

Recompile
sources

Translating
Despite differences between VAX and AXP systems, you can run most user-mode
VAX images without error on an AXP system by using the VAX Environment
Software Translator (VEST), which is part of the DECmigrate for OpenVMS
Alpha AXP layered product. For a list of exceptions, see Section 4.4. This process
provides a higher degree of VAX compatibility than recompiling the sources, but
since the translated image does not provide the same high performance as a
recompiled image, translation is used primarily as a safety net when recompiling
is impossible or impractical. For example, translation is used in the following
situations:

• When an appropriate compiler is not yet available for OpenVMS AXP

• When source files are not available

VEST translates the VAX binary image file into a native AXP image that runs
under the Translated Image Environment (TIE) on an AXP system. (TIE is
a shareable image that is bundled with OpenVMS AXP.) Translation does not
involve running a VAX image under emulation or interpretation (with certain
limited exceptions). Instead, the new AXP image contains Alpha AXP instructions
that perform operations identical to those performed by the instructions in the
original VAX image.

A translated image should run as fast on an AXP system as the original image
runs on a VAX system. However, since the translated image does not benefit from
the optimizing compilers that take full advantage of the Alpha AXP architecture,
it will typically run only about 25 to 40 percent as fast as a native AXP image.
Major causes of this reduced performance are unaligned data and extensive use
of complex VAX instructions.

For more information on image translation and VEST, see Section 6.2.2.1 and
DECmigrate for OpenVMS AXP Systems Translating Images.

2–2

Overview of the Migration Process
2.1 Migration Paths

Mixing Native AXP and Translated Images
You can mix migration methods among the individual images that comprise an
application. An application can also be partially translated as one stage in a
migration: this allows the application to run and to be tested on AXP hardware
before being completely recompiled. For more information about interoperability
of native AXP and translated VAX images within an application, see Section 4.4.2.

2.2 Support from Digital in Migrating Your Application
Digital offers a variety of services to help you migrate your applications to
OpenVMS AXP.

Digital customizes the level of service to meet your needs. The migration services
available include the following:

• Orientation Service (Order number: QS-ALPAA-CA)

• Detailed Analysis Service

• Migration Support Service

• Project Planning Service

• Custom Project Service

The Orientation Service is available from DECdirect (1-800-DIGITAL). (The order
number listed for this service is in effect in the United States.) The remaining
services are tailored to the needs of your organization.

To determine which services are appropriate for you, contact your Digital account
representative or authorized reseller, or call 1-800-832-6277 (within the United
States) or 1-603-884-8990 (outside the United States.)

2.2.1 Orientation Service
The Orientation Service helps you understand the issues involved in migrating
an application from OpenVMS VAX to OpenVMS AXP systems. This package is
recommended for all Alpha AXP migration customers.

2.2.2 Detailed Analysis Service
The Detailed Analysis Service provides a customized methodology for planning
the migration of applications from OpenVMS VAX to OpenVMS AXP systems. A
Digital consultant conducts a detailed investigation of your application, highlights
items that may affect the migration effort and schedule, and produces a detailed
migration assessment plan. This service is recommended for all customers who
would like help with their migration.

2.2.3 Migration Support Service
The Migration Support Service is provided by a Digital migration expert who
assists in the migration project. This service includes on-site technical consulting
at the level you require.

2.2.4 Project Planning Service
The Project Planning Service is provided by a Digital consultant. The consultant
provides the following:

• Information that you need to understand the size and scope of a migration
project

2–3

Overview of the Migration Process
2.2 Support from Digital in Migrating Your Application

• Information that you need to develop a detailed migration strategy based on
your requirements

• Detailed migration project plan

2.2.5 Custom Project Service
The Custom Project Service results in a total turnkey migration. It is
recommended for customers who want Digital to port their entire application.

2.2.6 Business Partner Development Assistance Centers
Business Partner Development Assistance (BPDA) centers provide migration
services worldwide, as shown in Table 2–1. Migration experts staff the centers
and assist Digital’s business partners with their porting efforts.

For detailed information on migration services, contact your Digital account
representative or authorized reseller, or call 1-800-832-6277 or 1-603-884-8990.

Table 2–1 Locations of BPDA Centers

Europe United States Asia

Basingstoke Detroit Hong Kong

Munich Marlboro Tokyo

Paris Palo Alto

2.3 Migration Training
Digital Customer Training offers several seminars and courses to provide
migration training to third-party application developers and end users. The first
course in the following list is designed for technical or MIS managers, and the
others are designed for experienced OpenVMS VAX programmers:

• Alpha AXP Planning Seminar– 2 days, EY-L570E-SO

• Migrating HLL Applications to OpenVMS Alpha AXP– 3 days, EY-L577E-LO

• Migrating MACRO–32 Applications to OpenVMS AXP—2 days, EY-L578E-LO

To obtain a schedule and enrollment information in the United States, call
1-800-332-5656. In other locations, contact your Digital account representative or
authorized reseller.

2–4

3
Evaluating Your Application: Taking Inventory

Evaluating your application identifies the work to be done and allows you to plan
the rest of the migration. The evaluation will allow you to produce a migration
plan and to answer the following questions:

• How to migrate your application

• How much effort, time, and cost the migration will require

• Whether to use Digital’s Multivendor Customer Services

The evaluation process has three main stages:

1. General inventory, including identifying dependencies on other software

2. Source analysis to identify coding practices that affect migration

3. Selection of a migration method: rebuilding from source code or translating

When you have completed these steps, you will have the information necessary to
write an effective migration plan.

The first step in evaluating an application for migration is to determine exactly
what has to be migrated. This includes not only the application itself, but
everything that the application requires in order to run properly. To begin
evaluating your application, identify and locate the following items:

• Parts of the application

– Source modules for the main program

– Shareable images

– Object modules

– Libraries (object module, shareable image, text, or macro)

– Data files and databases

– Message files

• Other software on which your application depends, for example:

– Run-time libraries

– Digital layered products

– Third-party products
To help identify dependencies on other code, use VEST with the qualifier
/DEPENDENCY. VEST/DEPENDENCY identifies executable and shareable
images on which your application depends, such as run-time libraries, system
services, and other applications. For details on using VEST/DEPENDENCY,
see DECmigrate for OpenVMS AXP Systems Translating Images.

3–1

Evaluating Your Application: Taking Inventory

• Required operating environment

– System characteristics

What sort of system is required to run and maintain your application; for
example, how much memory is required, how much disk space, and so on?

– Build procedures

This includes Digital tools such as Code Management System (CMS) and
Module Management System (MMS).

– Testing suite

You will need your tests to confirm that the migrated application runs
correctly and to evaluate its performance.

Many of these items have already been migrated to OpenVMS AXP, for example:

• Digital software bundled with OpenVMS

– RTLs

– Other shareable libraries, such as those supplying callable utility routines
and application library routines

• Digital layered products

– Compilers and compiler RTLs

– Database managers

– Networking environment

• Third-party products

Many third-party applications now run on OpenVMS AXP. To determine
whether a particular application has been migrated, contact the application
vendor.

You will be responsible for migrating your application and your development
environment, including build procedures and testing suites.

When you have completed your inventory of your application, continue with a
more detailed evaluation of each module and image, as described in Chapter 4.

3–2

4
Selecting a Migration Method

When you have completed the inventory of your application, you must then decide
how to migrate each part of it: by recompiling and relinking or by translating.
The large majority of applications can be migrated just by recompiling and
relinking them. If your application runs only in user mode and is written in
a standard high-level language, it is probably in this category. For the major
exceptions, see Section 4.2.

The remainder of this chapter discusses how to choose a migration method for
the relatively few applications that require more work to migrate. To make this
decision, you will need to know which methods are possible for each part of the
application, and how much work will be required for each method.

Note

The following process assumes that you will recompile your application if
possible, and use translation only for parts that cannot be recompiled or
as a temporary measure in the course of your migration.

The following sections outline a process for choosing a migration method. This
process includes the following steps:

1. Determine which of the two migration methods is possible.

Under most conditions, you can either recompile and relink your program
or translate the VAX image. Section 4.1 describes cases where only one
migration method is available.

2. Identify architectural dependencies that affect recompilation.

Even if your application is generally suitable to be recompiled, it may contain
code that depends on features of the VAX architecture that are incompatible
with the Alpha AXP architecture.

Section 4.2 discusses these dependencies and provides information that allows
you to identify them and to begin to estimate the type and amount of work
required to accommodate any dependencies you find.

Section 4.3 describes tools and methods you can use to help answer the
questions that come up in evaluating your application.

3. Decide whether to recompile or translate.

After you have evaluated your application, you must decide which migration
method to use. Section 4.4 describes how to make the decision by balancing
the advantages and disadvantages of each method.

4–1

Selecting a Migration Method

If you cannot recompile and relink your program, or if the VAX image
uses features specific to the VAX architecture, you may wish to translate
that image. Section 4.4.1 describes ways to increase the compatibility and
performance of translated images.

As shown in Figure 4–1, the evaluation process consists of a series of questions
and some tasks you can perform to help answer those questions. Digital provides
a number of tools which you can use to help answer the questions; these tools are
described at the relevant points in the process.

4.1 Which Migration Methods are Possible?
In most cases, you can either recompile and relink, or translate, your application.
However, depending on the design of your application, only one of the two
migration paths may be available to you:

• Programs that cannot be recompiled

The following types of images must be translated:

– Software that is written in a programming language for which no AXP
compiler is yet available

Native compilers for Ada, BASIC, C, C++, COBOL, FORTRAN, Pascal,
PL/I, and VAX MACRO are available with OpenVMS AXP Version 6.1;
other languages, including LISP, are planned for later releases.

– Executable and shareable images for which the source code is not
available

– Programs that require H_floating or 56-bit D_floating data

• Images that cannot be translated

The source code must be recompiled and relinked (and possibly revised) for
the following types of images:

– Images produced prior to OpenVMS VAX Version 4.0

– Images that use PDP–11 compatibility mode

– Based images

– Images that contain coding practices that are currently unsupported by
the Alpha AXP architecture. These include code that:

– Runs in inner access modes or elevated IPL (for example, VAX device
drivers)

– Refers directly to addresses in system space

– Refers directly to undocumented system services

– Uses threaded code; for example, code that switches stacks

– Uses VAX vector instructions

– Uses privileged VAX instructions

– Inspects or modifies return addresses or makes other decisions based
on a program counter (PC)

4–2

Selecting a Migration Method
4.1 Which Migration Methods are Possible?

Figure 4–1 Migrating a Program

ZK−4990A−GE

Source
code

available?

Identify
source

modules

Correcting
errors

practical?

Revise
code

Recompile/
relink/run
program

Errors?

Rewrite
program

Errors?

no

no

no

no

no no

yes

yes

yes

yes

yes

yes

yes

no

Identify
sources of

errors

Test program
with rest of
application

Can program
image be

translated?

Compilers
available?

Can program
image be

translated?

You are done

Translate
program

image

Translate
program

image

Translate
program

image

4–3

Selecting a Migration Method
4.1 Which Migration Methods are Possible?

– Depends on exact access-violation behavior due to 512-byte size
memory page dependencies

– Aligns global sections on boundaries other than the native machine
page boundary (for example, depends on a 512-byte memory page size)

– Uses most of the VAX P0 or P1 space or is otherwise sensitive to the
space taken up by the translated-image run-time support routines

Although the translated image’s run-time performance will be degraded
because of the amount of VAX code that TIE will be required to interpret,
VEST can probably translate the following kinds of images:

– Images that include self-modifying or created-on-the-fly VAX code, except
for the code generated at run time by TIE

– Images with code that inspects the instruction stream, except when TIE
interprets such code at run time

For more information on which images can be translated, see DECmigrate for
OpenVMS AXP Systems Translating Images.

4.2 Coding Practices That Affect Recompilation
Many applications, especially those that use only standard coding practices or are
written with portability in mind, will migrate from OpenVMS VAX to OpenVMS
AXP with little or no trouble. However, recompiling an application that depends
on VAX specific features that are incompatible with the Alpha AXP architecture
will require modifying your source code. Typical incompatibilities include use of
the following:

• VAX MACRO assembly language to obtain high performance on a VAX system
or to make use of features specific to the VAX architecture

• Privileged code

• Features specific to the VAX architecture

If none of these incompatibilities is present in your application, the rest of this
chapter does not apply to you.

4.2.1 VAX MACRO Assembly Language
On AXP systems, VAX MACRO is not the assembly language, but just another
compiled language. However, unlike the high-level language AXP compilers, the
VAX MACRO–32 Compiler for OpenVMS AXP does not produce highly optimized
code in all cases. Digital strongly recommends that you use the VAX MACRO–32
Compiler for OpenVMS AXP only as a migration aid, not for writing new code.

Many of the reasons for using assembly language on a VAX system are no longer
relevant on AXP systems, for example:

• There is no inherent performance advantage in using assembly language
on a RISC processor. RISC compilers, such as those in the AXP compiler
set, can generate optimized code that takes advantage of architecture-
and implementation-specific features more easily and efficiently than a
programmer can.

• New system services can perform some functions that previously required
assembly language.

For more information on migrating MACRO code, see Migrating to an OpenVMS
AXP System: Porting VAX MACRO Code.

4–4

Selecting a Migration Method
4.2 Coding Practices That Affect Recompilation

4.2.2 Privileged Code
VAX code that executes in inner access mode (kernel, executive, or supervisor
mode) or that references system space is more likely to use coding practices
dependent on the VAX architecture or to refer to VAX data cells that do not exist
on OpenVMS AXP. Such code will not migrate to an AXP system without change.
These programs will require recoding, recompiling, and relinking.

Code in this category includes:

• User-written system services and other privileged shareable images

For more information, see the OpenVMS Programming Concepts Manual and
the OpenVMS Linker Utility Manual.

• Device drivers and performance monitors not supplied by Digital

• Code that uses special privileges; for example, code that uses $CMEXEC or
$CMKRNL system services, or code that uses the $CRMPSC system service
with the PFNMAP option

For more information, see Migrating to an OpenVMS AXP System:
Recompiling and Relinking Applications.

• Code that uses internal OpenVMS routines or data, such as:

– Code that links against the system symbol table, SYS.STB, to access
locations in system address space

– Code that compiles against SYS$LIBRARY:LIB

For assistance in migrating inner-mode code that refers to the OpenVMS
executive, contact Multivendor Customer Services.

4.2.3 Features Specific to the VAX Architecture
In order to achieve its high performance, the Alpha AXP architecture differs
significantly from the VAX architecture. Software developers who have become
accustomed to writing code that relies on certain aspects of the VAX architecture
must be aware of architectural dependencies in their code in order to transport it
successfully to an AXP system.

Common architectural dependencies, along with ways to identify them and
actions you can take to eliminate them, are described briefly in the following
sections. For a detailed discussion of ways to identify and to eliminate these
dependencies, see Migrating to an OpenVMS AXP System: Recompiling and
Relinking Applications.

4.2.3.1 Performance Issues
Two differences between the VAX and Alpha AXP architectures do not keep
a VAX application from running on OpenVMS AXP, but do have a significant
performance impact:

• Data alignment

• Choice of data types

4–5

Selecting a Migration Method
4.2 Coding Practices That Affect Recompilation

4.2.3.1.1 Data Alignment

Data is naturally aligned when its address is an integral multiple of the size of
the data in bytes. For example, a longword is naturally aligned at any address
that is a multiple of 4, and a quadword is naturally aligned at any address that
is a multiple of 8. A structure is naturally aligned when all its members are
naturally aligned.

Accessing data that is not naturally aligned in memory incurs a significant
performance penalty both on VAX and on AXP systems. On VAX systems, since
most languages align data on the next available byte boundary by default, the
VAX architecture provides hardware support that minimizes the performance
penalty in referencing unaligned data. On AXP systems, however, the default
is to align each data item naturally, so Alpha AXP, like other typical RISC
architectures, does not provide hardware support to minimize the performance
degradation from using unaligned data. As a result, references to naturally
aligned data on AXP systems are 10 to 100 times faster than references to
unaligned data.

AXP compilers automatically correct most potential alignment problems and flag
others.

Finding the Problem
To find instances of unaligned data, you can use the following methods:

• Use a switch provided by most AXP compilers that allows the compiler
to report compile-time references to unaligned data. For example,
for DEC C and DEC Fortran programs, compile with the qualifier
/WARNING=ALIGNMENT.

• To detect unaligned data at run time, use the OpenVMS Debugger or DEC
PCA (Performance and Coverage Analyzer).

Eliminating the Problem
To eliminate unaligned data, you will be able to use one or more of the following
methods:

• Maximize performance by aligning data items on quadword boundaries,
since AXP systems generally provide only quadword granularity (see
Section 4.2.3.2.2).

• Compile with natural alignment, or, when language semantics do not provide
for this, move data to be naturally aligned. Where filler is inserted to ensure
that data remains aligned, there is a penalty in increased memory size.
A useful technique for ensuring naturally aligned data while conserving
memory is to declare longer variables first.

• Use high-level-language instructions that force natural alignment within
data structures. For example, in DEC C, natural alignment is the
default option. To define data structures that must match the VAX C
default alignment—such as on-disk data structures—use the construct
#PRAGMA NO_MEMBER_ALIGNMENT. With DEC Fortran, local variables
are naturally aligned by default. To control alignment of record structures
and common blocks, use the /ALIGN qualifier.

• Use compiler switches that generate VAX compatible unaligned data-structure
mappings. Use of these switches will result in AXP programs that are
functionally correct but potentially slow.

4–6

Selecting a Migration Method
4.2 Coding Practices That Affect Recompilation

Note

Software that is converted to natural alignment may be incompatible with
other software that is running translated, on a VAX system in the same
VMScluster environment, or over a network; for example:

• An existing file format may specify records with unaligned data.

• A translated image may pass unaligned data to, or expect it from, a
native image.

In such cases, you will have to adapt all parts of the application to expect
the same type of data, either aligned or unaligned.

For more information on data alignment, see Migrating to an OpenVMS AXP
System: Recompiling and Relinking Applications.

4.2.3.1.2 Data Types

In order to improve their performance, AXP processors implement the packed
decimal, H_floating, and full-precision D_floating data types by using software, as
follows:

• Packed decimal

Eighteen-digit packed decimal data is converted to 64-bit binary integers
internally, which provides very fast COBOL performance.

• H_floating

AXP compilers do not support H_floating data; however, the Translated
Image Environment (TIE) provides emulated support for H_floating data in
translated images.

• D_floating

D_floating data is implemented on AXP platforms in the following ways:

– Using G_floating hardware (D53). AXP hardware converts D_floating
data (D53) to G_floating for processing. This provides speed and data-
type compatibility with existing binary files that contain D_floating data,
but loses 3 fraction bits compared to D_floating arithmetic on current
VAX systems. D_floating data is thus processed with 15 decimal digits
of precision instead of the 16 decimal digits supplied by D56 on a VAX
system.

– Using software emulation (D56) for translated images. This gives exact
D56 format VAX results, but is slower than D53 or G_floating.

Eliminating the Problem
To eliminate data type problems, you will be able to use one or more of the
following methods:

• Instead of H_floating, use G_floating or IEEE T_floating whenever possible
because both:

– Support data in the range 10
�308 to 10

308

– Have approximately 15 decimal digits of precision

• Instead of decimal data types, use integer data types whenever possible.

For more information on Alpha AXP data types, see Migrating to an OpenVMS
AXP System: Recompiling and Relinking Applications.

4–7

Selecting a Migration Method
4.2 Coding Practices That Affect Recompilation

4.2.3.2 Protection of Shared Data
Several differences between the VAX and Alpha AXP architectures can affect the
integrity of shared data.

4.2.3.2.1 Modifying Data in Memory

An atomic operation is one in which:

• Intermediate or partial results cannot be seen by other processors or devices.

• The operation cannot be interrupted (that is, once started, the operation
continues until completion).

On OpenVMS AXP, any operation that reads, modifies, and stores data in memory
will be broken into several instructions, and can be interrupted between any of
those instructions. As a result, if your application expects to modify data in
shared memory atomically, you must take steps to guarantee the atomicity of the
operation.

An application can depend on the atomicity of operations under any of the
following conditions:

• An AST routine within the process shares data with the mainline code.

• The process shares data in a writable global section with another process
that executes on the same CPU (that is, in a uniprocessor system).

• The process shares data in a writable global section with another process
that may execute concurrently on another CPU (that is, in a multiprocessor
system).

Finding the Problem
To find dependencies on atomicity, reexamine use of shared variables for hidden
or explicit assumptions of atomicity.

Eliminating the Problem
To eliminate general problems of instruction atomicity, you will be able to use one
or more of the following methods:

• Use language constructs, where available, that guarantee atomicity to protect
shared variables: for example, in C, the VOLATILE declaration.

• Use explicit synchronization rather than relying on assumptions of
atomicity.

• Use OpenVMS locking services (such as $ENQ and $DEQ), Parallel
Processing Run-Time Library (PPL$) routines, or LIB$ routines.

• To synchronize with an AST thread, use the $SETAST system service in
the mainline code to block the AST and then reenable delivery after the
instruction has completed.

For more information on synchronization, see Migrating to an OpenVMS AXP
System: Recompiling and Relinking Applications.

4–8

Selecting a Migration Method
4.2 Coding Practices That Affect Recompilation

4.2.3.2.2 Reading or Writing Data Smaller Than a Quadword

Granularity refers to the size of the data that can be read or written to memory
as an atomic operation, without interfering with data in adjacent memory
locations. Machines such as the VAX that provide granularity at the byte level
are said to be byte granular. AXP systems are quadword granular.1

Since OpenVMS AXP is quadword granular, writes to a shared byte, word, or
longword may corrupt other data present in the same quadword as the shared
data. This occurs when:

• A program attempts to modify a byte, word, or longword.

• An unaligned field of any size crosses an aligned quadword boundary, which
creates a byte, word, or longword that must be written independently.

Note

All of the types of data sharing listed in the discussion of atomicity
(Section 4.2.3.2.1) can create granularity problems in the rest of the
quadword containing the intentionally shared data.

In addition, if a process invokes asynchronous system services or
asynchronously completing library functions that write a result back to
process space, then the data written back can create granularity problems
in the quadword that contains it; for example:

– An asynchronous system service that writes to a status block

– An I/O operation that writes to a process buffer

– An I/O operation in which a direct-memory-access (DMA) controller
writes to a process buffer

Finding the Problem
To find uses of byte, word, or longword granularity, you can use the following
methods:

• Look for intentionally shared data (between an AST and main thread or
between processes). Check whether the shared data occupies the same
quadword as other data that might be written.

• Look for data written back by asynchronous system services or library calls
that complete asynchronously. Check whether that data occupies the same
quadword as other data written by another process.

• Look for I/O buffers that contain data written back asynchronously from
a device. Check whether the start and end of the buffers occupy the same
quadword as data written by another process.

1 The Alpha AXP architecture also supports longword granularity, but assuming longword
granularity is not recommended. Digital compilers assume by default that source code
does not depend on granularity finer than quadword.

4–9

Selecting a Migration Method
4.2 Coding Practices That Affect Recompilation

Eliminating the Problem
To eliminate use of granularity at a level smaller than the quadword, you will be
able to use one or more of the following methods:

• Put shared items in private quadwords.

• Align I/O buffer heads on quadword boundaries and move any data after the
buffer into the next quadword.

• If the problem is not caused by data shared with the system, use a higher-
level synchronization mechanism to interlock both intentionally shared data
and background data in the same quadword.

AXP compilers will not provide byte, word, or longword granularity by default,
but to maintain compatibility with your current code, they will allow you to
specify byte, word, unaligned longword, and unaligned quadword granularity. For
more information, see the documentation for the individual compilers.

For more information on read/write granularity, see Migrating to an OpenVMS
AXP System: Recompiling and Relinking Applications.

4.2.3.2.3 Page Size Considerations

Page size governs the amount of virtual memory allocated by memory
management routines and system services. It is also the basis on which
protection is assigned to code and data in memory.

The OpenVMS VAX operating system allocates memory in multiples of 512 bytes.
To improve overall system performance, AXP systems have much larger page
sizes, ranging from 8 KB to 64 KB, depending on the specific hardware platform.

Page size is a factor in the management of system resources, such as working set
quotas. In addition, memory protection on VAX systems can vary for each 512-
byte region of memory; on AXP systems, the granularity of memory protection is
much larger, depending on the system’s page-size implementation.

Note

The change to a larger page size affects only applications that explicitly
rely on a 512-byte page size, for example, applications that:

• Use "512" to:

– Compute memory usage.

– Calculate page table requirements.

• Change protection on a 512-byte granularity.

• Use the system service Create and Map Section ($CRMPSC) to map a
file into a specific location in the process address space (for example,
to reuse memory when available memory is limited).

Finding the Problem
To find uses of the VAX page size, identify code that manipulates virtual memory
in 512-byte chunks or relies on 512-byte memory protection granularity. Search
your code for occurrences of numbers such as the decimal values 511, 512, or 513;
the hexadecimal values 1FF, 200, or 201; and so forth.

4–10

Selecting a Migration Method
4.2 Coding Practices That Affect Recompilation

Eliminating the Problem
To eliminate conflicts between the VAX and AXP page sizes, you will be able to
use one or more of the following methods:

• Change hardcoded page size references to symbolic values (assigned at run
time using a call to $GETSYI).

• Reevaluate code that assumes that page size and disk (file) block size are
equal. On AXP systems, this assumption is not correct.

• Do not depend on being able to use memory-management-related system
services (for example, $CRMPSC, $MGBLSC) to map a file into a fixed, page-
size-dependent range of addresses (global section). Consider instead using the
$EXPREG system service.

For more information on page size, see Migrating to an OpenVMS AXP System:
Recompiling and Relinking Applications.

4.2.3.2.4 Order of Read/Write Operations on Multiprocessor Systems

The VAX architecture specifies that if a processor in a multiprocessing system
writes multiple data items to memory, these items are written to memory in the
order specified. This ordering ensures that the writes become visible to other
CPUs in the order in which they were specified by the program and I/O devices.

The guarantee that writes become visible to other CPUs in the same order in
which they are specified limits the performance optimization that the system can
make. It also makes caches more complex and limits the optimization of cache
performance.

To benefit overall system performance, AXP systems, as well as other RISC
systems, can reorder reads and writes to memory. Therefore, writes to memory
can become visible to other CPUs in the system in an order different from that in
which they were issued.

Note

This section is relevant only to multiprocessor systems. On a uniprocessor
system, all memory accesses are completed in the order in which the
program requested them.

Finding the Problem
To find instances of reliance on read/write ordering for applications that may
execute on multiprocessor systems, identify algorithms that depend upon the
order in which data is written: for example, use of flag-passing protocols for
synchronization.

Eliminating the Problem
To eliminate problems with the ordering of read and write operations, you will be
able to use one or more of the following methods:

• Instead of flag-passing protocols, use system-supplied routines for
synchronization, such as those in the Parallel Processing Run-Time Library
(PPL$) or the OpenVMS locking system services ($ENQ, $DEQ).

4–11

Selecting a Migration Method
4.2 Coding Practices That Affect Recompilation

• The Alpha AXP architecture specifies a memory barrier instruction, which
causes the hardware to complete all previous memory reads and writes
before performing reads and writes following the barrier. Some AXP
languages provide a way of inserting this instruction, but its use will degrade
performance.

For more information on synchronization, see Migrating to an OpenVMS AXP
System: Recompiling and Relinking Applications.

4.2.3.3 Immediacy of Arithmetic Exception Reporting
AXP (and vector VAX) systems treat exceptions differently from scalar VAX
systems. Scalar VAX systems use "precise exception reporting"; that is, they
guarantee that if an instruction causes an exception, the program counter
(PC) that is reported is the address of the instruction that caused the exception.
Because no subsequent instructions have been issued or have affected the context
of the process, a condition handler can remedy the cause of the exception and
resume execution of the program at or after the failing instruction.

To achieve the best possible performance in a pipelined environment, vector VAX
and AXP systems use "imprecise exception reporting"; that is, the PC reported by
the exception handler is not guaranteed to be that of the instruction that caused
the arithmetic exception. Furthermore, subsequent instructions may complete
before the exception is reported.

In practice, very few, if any, programs rely on knowing the specific instruction
that caused an arithmetic exception. Typically, when an arithmetic exception
occurs, a program does one of the following:

• Logs the exception and continues

• Prints an error message and aborts the subroutine or program

• Restarts the entire subroutine and uses a different algorithm that scales the
data to prevent overflow or underflow

If a VAX program performs one of these actions upon encountering an arithmetic
exception, it will not be affected by being migrated to a RISC system that uses
imprecise exception handling.

Note

Imprecise exception reporting applies only to arithmetic exceptions. For
other types of exceptions, such as faults and traps, OpenVMS AXP uses
precise exception reporting, and the specific instruction that caused the
exception is reported.

Finding the Problem
To find instances of reliance on precise exception reporting, check for the presence
of arithmetic exception handlers. Check whether the handler depends on having
the exact program counter (PC) or only needs to know what procedure caused the
exception.

4–12

Selecting a Migration Method
4.2 Coding Practices That Affect Recompilation

Eliminating the Problem
To eliminate the use of precise exception handling, avoid writing arithmetic
condition handlers that depend upon knowing the exact instruction that caused
an arithmetic exception.

For more information on exception handling, see Migrating to an OpenVMS AXP
System: Recompiling and Relinking Applications.

For compatibility, most AXP compilers provide a compiler option that allows a
programmer to specify at compile time whether or not precise exception reporting
is required. Precise exception reporting severely impairs the performance of
an application. If only certain operations in an application require precise
exception reporting, you should use this option to compile only the portions of
the application that contain those operations. For more information, see the
documentation for the individual compilers.

4.2.3.4 Explicit Reliance on the VAX Procedure Calling Standard
The OpenVMS calling standard specifies significantly different calling conventions
for AXP programs than for VAX programs. Application programs that depend
explicitly on certain details of the VAX procedure calling conventions must be
modified to run as native code on an AXP system. Such dependencies include:

• Code that locates the placement of arguments relative to the argument
pointer (AP)

In many cases, however, the VAX MACRO–32 Compiler for OpenVMS AXP
compensates for this.

• Code that modifies its return address on the stack

• Code that interprets the contents of a call frame

Both VAX and AXP compilers provide techniques for accessing procedure
arguments. If your code uses these standard mechanisms, you can simply
recompile it to run correctly on an AXP system. If your code does not use these
mechanisms, you must rewrite it so that it does. For a description of these
standard mechanisms, see Migrating to an OpenVMS AXP System: Recompiling
and Relinking Applications.

Translated code mimics the behavior of VAX procedure calling. Images that
contain the dependencies listed here will execute properly under translation on
an AXP system.

4.2.3.5 Explicit Reliance on VAX Exception-Handling Mechanisms
The mechanics of exception handling differ between VAX and AXP systems.
Migrating to an OpenVMS AXP System: Recompiling and Relinking Applications
discusses the differences in how arithmetic exceptions are dispatched on VAX and
AXP systems. This section focuses on the mechanisms by which code dynamically
establishes a condition handler and by which a condition handler accesses the
exception state.

4.2.3.5.1 Establishing a Dynamic Condition Handler

VAX systems provide a number of ways in which an application can establish
a condition handler dynamically at run time. The OpenVMS calling standard
facilitates this operation for VAX programs by providing a space at the top of a
call frame in which executing code can place the address of a condition handler
that is to service exceptions that occur in the context of that frame. However,
the OpenVMS calling standard provides no such writable area in the procedure
descriptor for AXP procedures.

4–13

Selecting a Migration Method
4.2 Coding Practices That Affect Recompilation

For instance, a VAX MACRO program might utilize the following instruction
sequence to move the address of a condition handler into a call frame:

MOVAB HANDLER,(FP)

The Macro–32 Compiler for OpenVMS Alpha AXP parses this statement
and generates appropriate AXP assembly language code that results in the
establishment of the condition handler. For more information, see Migrating to
an OpenVMS AXP System: Porting VAX MACRO Code.

Note

On VAX systems, the run-time library routine LIB$ESTABLISH and
its counterpart LIB$REVERT allow an application to establish and
disestablish a condition handler for the current frame. These routines do
not exist on an AXP system; however, compilers may handle these calls
properly (such as with FORTRAN intrinsic functions). For more precise
information, see the documentation for the compilers relevant to your
application.

Translated code mimics the VAX mechanism for dynamically establishing a
condition handler.

Certain AXP compilers (and cross-compilers) provide a language-specific
mechanism to establish a dynamic condition handler.

For more information on condition handlers, see Migrating to an OpenVMS AXP
System: Recompiling and Relinking Applications.

4.2.3.5.2 Accessing Data in the Signal and Mechanism Arrays

During exception processing, both VAX and AXP systems push the exception
processor status, an exception PC, a signal array, and a mechanism array onto
the stack.

Both the signal array and mechanism array have different contents and field
lengths on VAX and AXP systems. To work properly in either system, a condition
handler that accesses data in the signal array or the mechanism array must use
the appropriate CHF$ symbols rather than hardcoded offsets. For descriptions
of the appropriate CHF$ symbols, see Migrating to an OpenVMS AXP System:
Recompiling and Relinking Applications.

Note

The condition handler cannot successfully locate information in the
mechanism array by using hardcoded offsets from AP.

4.2.3.6 Explicit Reliance on the VAX AST Parameter List
OpenVMS VAX passes five longword arguments to an AST service routine. AST
service routines written in VAX MACRO access this information by using offsets
from the argument pointer (AP). OpenVMS VAX allows an AST service routine
to modify any of these arguments, including the saved registers and the return
PC. These modifications can then affect the interrupted program once the AST
routine returns.

4–14

Selecting a Migration Method
4.2 Coding Practices That Affect Recompilation

Although the AST parameter list on AXP systems also consists of five parameters,
the only argument directly intended for the AST procedure is the AST parameter.
Although the other arguments are present, they are not used after the AST
procedure exits. Because modifying them has no effect on the thread of operation
to be resumed at AST exit, a program that relies on such an effect must be
changed to use more conventional argument-passing mechanisms to run on an
AXP system. For information on migrating AST service routines, see Migrating
to an OpenVMS AXP System: Recompiling and Relinking Applications.

4.2.3.7 Explicit Dependency on the Form and Behavior of VAX Instructions
Programs that rely specifically on the execution behavior of VAX MACRO
instructions or on binary encoding of VAX instructions must be modified before
being recompiled or relinked to run as native code on an AXP system.

For example, the following coding practices will not work on an AXP system:

• In VAX MACRO, embedding a block of VAX instructions in a program data
area, and modifying a PC to transfer control to this code block

• Examining condition codes or other information in the processor status word
(PSW)

For more information on migrating VAX MACRO code, see Migrating to an
OpenVMS AXP System: Porting VAX MACRO Code.

4.2.3.8 Generation of VAX Instructions at Run Time
Creating and executing conventional VAX instructions will not work in native
AXP mode.

VAX instructions created at run time will execute by emulation in a translated
image.

For more information on code that generates specific VAX instructions at run
time, see Migrating to an OpenVMS AXP System: Porting VAX MACRO Code.

4.3 Identifying Incompatibilities Between VAX and AXP Systems
To identify architectural incompatibilities in a module of your application, start
by doing a test compile of the module using the AXP compiler. For information
on diagnostic compiler switches, see your language processor documentation.

Many modules will compile and run with no errors. If errors occur, you may have
to revise the module.

Note

Even if a module runs without error in isolation, there may be latent
synchronization problems that will turn up only when the module is run
together with other parts of the application.

If a module does not run without error after being recompiled and relinked,
you can use the following methods to assess what must be revised to make the
program run well on an AXP system:

• Examining the source code

4–15

Selecting a Migration Method
4.3 Identifying Incompatibilities Between VAX and AXP Systems

A code review at this point can avoid many difficulties in the migration
process and save a great deal of time and effort in the later stages of
migration. To examine your code, use the checklist in Appendix A, as well
as the guidelines in Migrating to an OpenVMS AXP System: Recompiling
and Relinking Applications. These migration issues are summarized in
Section 4.2.

If a direct code review of your entire application is not practical, an automated
search can still be useful: for example, using a combination of DCL SEARCH
and an editor to locate and tabulate instances of architectural dependencies.

• Using messages generated by the compiler in your initial test run

Compilers will give you information on:

– Differences between VAX and AXP compilers

– Data alignment
Specific compilers may also identify other differences between the VAX and
Alpha AXP architectures.

• Analyzing the image using VEST

Even if you intend to recompile and relink a program, you can use VEST
as an analysis tool. It can provide a great deal of useful information about
changes that will make your program run most efficiently on an AXP system.
For example, VEST can help identify the following problems:

– Static unaligned data (data declarations, including unaligned fields in
data structures) and unaligned stack operations

– Floating-point references (H_ and D_floating)

– Packed decimal references

– Privileged code

– Nonstandard coding practice

– References to OpenVMS data or code other than by using system
services

– Uninitialized variables

– Certain synchronization issues, such as multiprocess use of interlocked
instructions

VEST cannot identify some problems, including:

– Unaligned variables (in data structures created dynamically)

– Most synchronization issues

• Running the image using the PCA (Performance and Coverage Analyzer)

The PCA can point out the following issues:

– Run-time alignment faults

– Which sections of the application are executed most frequently and hence
are critical to performance

Once all the images of the application run without errors on an AXP system, you
must combine the rebuilt images to test for problems of synchronization between
images. For more information on testing, see Section 6.3.2.

4–16

Selecting a Migration Method
4.4 Deciding Whether to Recompile or Translate

4.4 Deciding Whether to Recompile or Translate
If both methods are possible for a given image, you must balance the projected
performance of native and translated versions of the image on an AXP system
against the effort required to translate the image or to convert it to a native AXP
image.

In general, different images that make up an application can be run in different
modes: for example, a native AXP image can call translated shareable images
and vice versa. For more information on mixed-architecture applications, see
Section 4.4.2.

The two migration paths are compared in Table 4–1.

Table 4–1 Migration Path Comparison

Factor Recompile/Relink Translate

Performance Full AXP capability Typically 25-40% of native
AXP potential; equivalent to
performance on VAX

Effort required Varies: easy to difficult Easy

Schedule constraints Based on availability of
native compilers

None: available immediately

Programs supported

–Age Source for VAX VMS
Version 4.0 or earlier
accepted

Only OpenVMS VAX Version 4.0 or
later supported

–Limitations Privileged code
supported

Only user-mode code supported

VAX compatibility High: most code will
recompile and relink
without difficulty

Complete via emulation

Ongoing support and
maintenance

Normal source code
maintenance

No source maintenance

To determine how to proceed with the migration of your application, answer the
following questions:

• Do you build your application entirely from source code, or do you rely on
binary images for some functions?

If you rely on binary images, you will have to translate them.

• Do you have access to the source code for all images that are part of your
application?

If not, you will have to translate those images with missing source code.

4–17

Selecting a Migration Method
4.4 Deciding Whether to Recompile or Translate

• Which images are critical to the performance of your application?

You will want to recompile those images to take full advantage of the speed of
AXP systems.

– Use the Performance and Coverage Analyzer to identify critical images.

– Only images that are produced by native AXP compilers use AXP
processing capabilities efficiently and achieve optimal performance. A
translated VAX image runs at one-third the speed of native AXP code or
slower, depending on the translation options used.

• How much work will be required to convert each image under the two
methods?

– Depending on the complexity of the application, software translation
usually requires less effort and time than recompiling and relinking.

You may choose to translate some part of your application in order to
get it running on OpenVMS AXP while you complete the migration to an
all-native version.

– Code that depends on details of the VAX architecture and the VAX
calling standard cannot be recompiled directly. It must either run under
translation, or it must be rewritten, recompiled, and relinked.

You can remove architectural dependencies in several ways:

• Replace an architecture-dependent code sequence with high-level-language
lexical elements that support the same operation in a platform-independent
manner.

• Use a call to an OpenVMS system service to perform the task in a way that is
appropriate for the processor architecture.

• Use a high-level-language compiler switch to help guarantee correct program
behavior with minimal changes to the source code.

Table 4–2 summarizes how the architectural dependencies of a given program can
affect which method you use to migrate the program to an AXP system. For more
detailed information, see Migrating to an OpenVMS AXP System: Recompiling
and Relinking Applications.

Table 4–2 Choice of Migration Method: Dealing with Architectural
Dependencies

Recompiled, Relinked VAX Source Translated VAX Image

Data alignment 1

By default, most compilers align
data naturally. For information on
qualifiers to retain VAX alignment, see
Migrating to an OpenVMS AXP System:
Recompiling and Relinking Applications.

Unaligned data supported, but the qualifier
/OPTIMIZE=ALIGNMENT can improve
overall execution speed by assuming that
data is longword aligned.

1Unaligned data is primarily a performance issue. Whereas references to unaligned data were
only somewhat detrimental to VAX performance, loading unaligned data from memory and storing
unaligned data to memory in an AXP system can be up to 100 times slower than the corresponding
aligned operations.

(continued on next page)

4–18

Selecting a Migration Method
4.4 Deciding Whether to Recompile or Translate

Table 4–2 (Cont.) Choice of Migration Method: Dealing with Architectural
Dependencies

Recompiled, Relinked VAX Source Translated VAX Image

Data types

Replace H_floating with G_floating or
IEEE T_floating.

For D_floating, if the 15 decimal digits
of precision provided by the D53 format
are sufficient, replace D_floating with
G_floating. If the application requires
16-bit decimal precision (D56 format),
translate it.

COBOL packed decimal is automatically
converted to binary format for operations.

To retain 16-bit decimal precision for D_
floating, use the /FLOAT=D56_FLOAT
qualifier. Performance using this qualifier
will be slower than when using the default,
/FLOAT=D53_FLOAT.

Atomicity of read-modify-write
operations

Support depends on options provided
by the individual compiler. (For more
information, see Migrating to an
OpenVMS AXP System: Recompiling
and Relinking Applications.)

Use the /PRESERVE=INSTRUCTION_
ATOMICITY qualifier. Execution speed may
drop by a factor of 2.

Atomicity and granularity of byte and
word write operations

Supported, using compiler options with
appropriate source code changes. (For
more information, see Migrating to an
OpenVMS AXP System: Recompiling and
Relinking Applications.)

Use the /PRESERVE=MEMORY_ATOMICITY
qualifier. Execution speed may drop by a
factor of 2.

Page size

The OpenVMS Linker produces large,
AXP style pages by default.

Most 512-byte page images are supported.
However, because of the permissive protection
assigned by VEST, images that rely on
restrictive protection to generate access
violations will not execute properly on an
AXP system when translated.

Read/write ordering

Supported by adding appropriate
synchronization instructions (MB) to
source code, but with a performance
penalty.

Use the /PRESERVE=READ_WRITE_
ORDERING qualifier.

Immediacy of exception reporting

(continued on next page)

4–19

Selecting a Migration Method
4.4 Deciding Whether to Recompile or Translate

Table 4–2 (Cont.) Choice of Migration Method: Dealing with Architectural
Dependencies

Recompiled, Relinked VAX Source Translated VAX Image

Immediacy of exception reporting

Partly supported using compiler options.
(For more information, see Migrating to
an OpenVMS AXP System: Recompiling
and Relinking Applications.)

Use the /PRESERVE=FLOAT_EXCEPTIONS
or the /PRESERVE=INTEGER_EXCEPTIONS
qualifier. Execution speed may drop by a
factor of 2.

Explicit reliance on details of the VAX
architecture and calling standard 2

Unsupported; dependencies must be
removed.

Supported.

2Dependencies on details of the VAX architecture and calling standard include explicit reliance on the
VAX calling standard, VAX exception handling, the VAX AST parameter list, the format and behavior
of VAX instructions, and the generation of VAX instructions at run time.

4.4.1 Translating Your Application
If you are unable to recompile your application, or if it uses features specific to
the VAX architecture, you may decide to translate the application. You can choose
to translate only some parts of the application, or you can translate parts of it
temporarily as a means of staging the overall migration.

Many of the differences that affect recompilation discussed in Section 4.2 can
also affect the performance of a translated VAX image. You can use the following
methods to increase the compatibility of images that are dependent on the VAX
architecture. (For more information, see DECmigrate for OpenVMS AXP Systems
Translating Images.)

• Data alignment

Supply the VEST translate-time qualifier /OPTIMIZE=NOALIGNMENT to
make VEST generate extra inline AXP code that avoids generating exceptions
for references to unaligned data. With this qualifier, VEST produces AXP
code that executes about 10 times slower than code that uses only aligned
data references. (If you use the default option /OPTIMIZE=ALIGNMENT,
unaligned data causes an exception, which takes about 100 times longer to
execute than with aligned data.)

• Instruction atomicity

When you invoke the translator, supply the translate-time qualifier
/PRESERVE=INSTRUCTION_ATOMICITY to make VEST generate an
Alpha AXP instruction sequence that is AST atomic for a specified set of
VAX instructions. Although an AST can be delivered in the middle of an
Alpha AXP instruction sequence that performs such an atomic operation,
the instruction sequence will be restarted at the beginning when the AST
routine completes. Execution speed for a particular code sequence may drop
by a factor of 2 if the /PRESERVE=INSTRUCTION_ATOMICITY qualifier is
specified. (For a list of VAX instructions for which the translator generates
AST-atomic code, as well as additional information about the software
translator, see DECmigrate for OpenVMS AXP Systems Translating Images.)

4–20

Selecting a Migration Method
4.4 Deciding Whether to Recompile or Translate

• Read/write granularity

VEST ensures the atomicity of byte or word writes when you use the
translate-time qualifier /PRESERVE=MEMORY_ATOMICITY. This qualifier
allows a mainline routine and an AST routine to update adjacent bytes within
a longword or quadword concurrently without interfering with each other.
The /PRESERVE=MEMORY_ATOMICITY qualifier guarantees atomic access
of longwords that are not naturally aligned and of data that crosses quadword
boundaries. Execution speed may drop by a factor of 2 when these qualifiers
are specified.

• Page size and permissive protection

To enable VAX images to run on an AXP system, VEST, together with the
image activator, maps the VAX image sections into large pages. With an AXP
processor that supports 8 KB pages, up to 16 VAX pages can fit in a single
page. However, because this big page is described by only a single page-table
entry, only one protection and a single backing store can be assigned to
the page. Consequently, VEST assigns the AXP page the most permissive
protection associated with any of the AXP image sections that it maps. Thus,
VAX images that rely on restrictive protection to generate access violations
will not execute properly on an AXP system when translated.

One possible alternative is to relink the program on a VAX using the default
linker option /BPAGE to align the pages on 64KB boundaries.

• Precise arithmetic exceptions

VEST allows you to set precise exception reporting for certain exception types
at translate time by using the /PRESERVE=FLOAT_EXCEPTIONS qualifier
or the /PRESERVE=INTEGER_EXCEPTIONS qualifier. If you specify either
of these qualifiers, execution speed for certain code segments may drop by a
factor of 2.

• Generating VAX instructions at run time

VAX instructions created at run time will execute by emulation under
translation. However, emulated instructions are significantly slower than
translated instructions, which can be important if the code is generated at
run time to speed up the performance of critical sections of your application.

Table 4–2 includes a summary of ways you can allow for various architectural
dependencies in a translated image.

4.4.2 Combining Native and Translated Images
In general, you can combine native AXP images with translated images on an
AXP system. For example, a native AXP image can call translated shareable
images and vice versa.

In order to run together, native and translated images must be able to make calls
between the VAX and Alpha AXP calling standards. No special action is required
if the native and translated images meet the following conditions:

• Routine interface semantics and data alignment conventions for the native
AXP image are identical to those on a VAX image.

• All the entry points are CALLx; that is, there are no external JSB entry
points. This is probably true of any code written in a high-level language.

4–21

Selecting a Migration Method
4.4 Deciding Whether to Recompile or Translate

When a source procedure that uses one calling standard calls a destination
procedure that uses a different calling standard, it does so indirectly through
a jacket routine. The jacket routine interprets the procedure’s call frame and
argument list and builds the equivalent destination call frame and argument
list, then transfers control to the destination procedure. When the destination
procedure returns, it does so through the jacket routine. The jacket routine
propagates the destination routine’s returned register values into the source
routine’s registers and returns control to the source procedure.

The OpenVMS AXP operating system creates jacket routines automatically for
most calls. To make use of automatic jacketing, use the compiler qualifier /TIE
and the linker option /NONATIVE_ONLY to create the native AXP parts of your
application.

In certain cases, the application program must use a specially written jacket
routine. For example, you may have to write jacket routines for nonstandard
calls to libraries such as the following:

• A VAX shareable library that includes external JSB entry points

• A library that includes read/write data in the transfer vector

• A library that contains VAX specific functions

• A library that uses resources that would need to be shared between a native
and a translated version of the library

• A native AXP library that does not provide or export all the symbols that the
VAX image did

(The term exported means that a routine is included in the Global Symbol
Table (GST) for the image.)

For information on how to create a jacket image for one of these situations, see
DECmigrate for OpenVMS AXP Systems Translating Images.

Translated shareable images (such as run-time libraries for languages without
native AXP compilers) that are shipped with the OpenVMS AXP operating system
are accompanied by jacket routines that allow them to be called by native AXP
images.

4–22

5
Writing a Migration Plan

When you have evaluated your application and decided on the migration methods
you will use, you will be ready to write a migration plan. A migration plan details
the results of the technical analysis of the application, including portability issues
and hardware and software dependencies, outlines migration milestones, and
specifies who will perform the different parts of the migration. The information
in the migration plan will help you make technical and business decisions about
the future portability of the application and possibly about optimizing it to
improve its performance.

Outline for a Typical Migration Plan
The remainder of this chapter is an outline of a typical migration plan. For a
sample migration plan, see Appendix B.

I Executive Summary

An overview of the migration. Describe the goals of the migration effort:
address functionality, quality, time to market, and performance goals. List
the major platforms on which the application currently runs, and include the
languages used in the application. Describe how application dependencies
or risks can affect the migration goals and completion. Give overall resource
requirements and estimated completion date.

A. Identity of the application

Name, owner

B. Function of the application

What does the application do?

C. General plan of the migration

Include the relationship to your other release plans.

Use of translation:

• To stage the migration of the application

• To prepare for the eventual availability of native compilers

II Technical Analysis

This section defines the scope of the work to migrate the application to
OpenVMS AXP, based on the results of the image and source analyses.

A. Application Characteristics

A general description of the application, including the number of images,
procedures, and data files it contains; the number of lines of code and
number of modules; the languages used and the percentage and particular
function of each—if VAX MACRO is used, state why; whether the
application is generally portable or dependent on the VAX architecture;

5–1

Writing a Migration Plan

and any special hardware or software that is required to run or modify
the application.

B. Results of Image Analysis

• Images tested

• VEST messages/errors found

C. Results of Source Analysis

A general discussion of what source analysis was done and the prominent
issues found.

Use the questionnaire in Appendix A.

D. Migration Issues

Describe dependency of your application on each of the following, if
relevant:

• Data alignment

• VAX data types

• Read/write granularity

• Page size

• Read/write ordering

• Immediate exception reporting

• VAX procedure calling standard

• VAX exception-handling mechanisms

• VAX AST parameter list

• Form and behavior of VAX instructions

• Generation of VAX instructions at run time

III Milestones and Deliverables

Identify the major intermediate goals of the migration and provide a projected
schedule.

IV Technical Approach

Describe the issues to be addressed for each stage of the migration and
compare with the milestones in the preceding section: order of addressing
the main issues, who will deal with them, and where? Will you use Digital’s
migration services?

For example:

A. Correct misaligned memory references

B. Correct page size dependencies

C. Correct non-ANSI coding constructs

D. Repair atomicity problems

E. Eliminate other dependencies

Include the following information, if relevant:

A. The need to write jacket routines, in cases where they will not be created
automatically

5–2

Writing a Migration Plan

B. Special set-up procedures for compiling, linking, or translating the
application; for example, using the compiler qualifier /TIE or the linker
option /[NO]NATIVE_ONLY.

How much work will be required for each phase of the migration?

V Dependencies and risks

Other software; hardware; support from other organizations

VI Resource Requirements

A. Hardware

B. On-site training

C. Telephone support

D. Engineering assistance

E. Testing assistance

5–3

6
Migrating Your Application

Actually migrating your application to an AXP system involves several steps:

• Setting up the migration environment

• Testing the application on a VAX system to establish baselines for evaluating
the migration

• Converting the application to run on an AXP system

• Debugging and testing the migrated application

• Integrating the migrated application into a software system

6.1 Setting Up the Migration Environment
The native AXP environment is a complete development environment equivalent
to that on VAX systems. (Some Digital compilers are not yet available on AXP
systems, however.)

At present, you will have to complete the debugging and testing of your migrated
application on AXP hardware.

An important element of the AXP migration environment is support from Digital,
which can provide help in modifying, debugging, and testing your application.

6.1.1 Hardware
There are several issues to consider when planning what hardware you will need
for your migration. To begin, consider what resources are required in your normal
VAX development environment:

• CPUs

• Disks

• Memory

To estimate the resources needed for an AXP migration environment, consider the
following issues:

• Greater image size on AXP systems

Compare VAX and AXP compiled and translated images.

• Greater page size and physical memory size on AXP systems

• CPU requirements

Using VEST tends to take a lot of CPU time. (It is difficult to predict how
much; it depends more on application complexity than size.) VEST also needs
a great deal of disk space for log files, for an AXP image if you request one, for
flowgraphs, and so on. The new image includes both the original VAX instructions
and the new Alpha AXP instructions, so it is always larger than the VAX image.

6–1

Migrating Your Application
6.1 Setting Up the Migration Environment

A suggested configuration consists of:

• 6 VUP multiprocessing system with 256 MB of memory

• 1 GB system disk

• 1 GB disk per application

In a multiprocessing system, each processor should be able to support the image
analysis of a separate application.

If computer resources are scarce, Digital suggests that you do one or more of the
following:

• Run compilers or VEST as a batch job at off-peak hours.

• Perform your migration at an AXP Migration Center (AMC).

• Lease additional equipment for the migration effort.

6.1.2 Software
To create an efficient migration environment, check the following elements:

• Migration tools

You need a compatible set of migration tools, including the following:

– Compilers

– Translation tools

– VEST and VEST/DEPENDENCY

– TIE

– RTLs

– System libraries

– Include files for C programs

• Logical names

Logical names must be consistently defined to point to VAX and AXP versions
of tools and files. For more information, see Section 6.4.

• Compile and link procedures

These procedures must be adjusted for new tools and the new environment.

• Tools for maintaining sources and building images

– CMS

– MMS

Native AXP Development
All of the standard development tools you have on VAX are also available as
native tools on AXP systems.

Translation
The software translator VEST runs on both VAX and AXP systems. The
Translated Image Environment (TIE), which is required to run a translated
image, is part of OpenVMS AXP, so final testing of a translated image must
either be done on an AXP system or at an AXP Migration Center.

6–2

Migrating Your Application
6.2 Converting Your Application

6.2 Converting Your Application
If you have thoroughly analyzed your code and planned the migration process,
this final stage should be fairly straightforward. You may be able to recompile
or translate many programs with no change. Programs that do not recompile or
translate directly will frequently need only straightforward changes to get them
up on an AXP system.

For more detailed information on the actual conversion of your code, see the
following OpenVMS AXP migration documentation:

• Migrating to an OpenVMS AXP System: Recompiling and Relinking
Applications

• DECmigrate for OpenVMS AXP Systems Translating Images

• Migrating to an OpenVMS AXP System: Porting VAX MACRO Code

For descriptions of these books, see the Preface of this manual.

The two migration environments and the principal tools used in each are
summarized in Figure 6–1.

6–3

Migrating Your Application
6.2 Converting Your Application

Figure 6–1 Migration Environments and Tools

ZK−4989A−GE

VAX Hardware Alpha Hardware

Native
Compiler Linker

Native
Debugger

VEST

VEST

Native
Debugger

Native Development

Translation

OpenVMS

.EXE
VAX

OpenVMS

.EXE
AXP

OpenVMS

.EXE
AXP

6.2.1 Recompiling and Relinking
In general, migrating your application involves repeated cycles of revising,
compiling, linking, and debugging your code. During the process, you will resolve
all syntax and logic errors noted by the development tools. Syntax errors are
usually simple to fix; logic errors typically require significant modifications to
your code.

Your compile and link commands will require some changes, such as new
compiler and linker switches. For example, to allow portability among different
AXP platforms, the linker default page size for AXP systems is 64 KB, which
allows any OpenVMS AXP image to run on any AXP processor, regardless of the
system page size on that processor. Also, AXP shareable images declare their
universal entry points and symbols by means of a symbol vector declaration in a
linker options file, not by means of the VAX transfer vector mechanism.

A number of native compilers and other tools are available for software
development and migration on an AXP platform.

6–4

Migrating Your Application
6.2 Converting Your Application

6.2.1.1 Native AXP Compilers
Recompiling and relinking an existing VAX source produces a native AXP
image that executes within the AXP environment with all the performance
advantages of a RISC architecture. For AXP code, Digital is using a series of
highly optimizing compilers. These compilers have a common optimizing code
generator. However, they use a different front end for each language, each of
which is compatible with a current VAX compiler.

For OpenVMS AXP Version 6.1, native AXP compilers are available for the
following languages:

• Ada

• BASIC

• C

• C++

• COBOL

• FORTRAN

• Pascal

• PL/I

• MACRO-32 (cross compiler)

Later releases of OpenVMS AXP will provide native compilers for other
languages, including LISP.

VAX user-mode programs that are written in any other language can be run on
an AXP system by translating them with VEST. Compilers for other languages
may be available through third-party vendors.

In general, the AXP compilers provide command-line qualifiers and language
semantics to allow code with dependencies on the VAX architecture to run on
an AXP system with little modification. For a list of such dependencies, see
Table 4–2. For more detailed information, see Migrating to an OpenVMS AXP
System: Recompiling and Relinking Applications.

Migrating to an OpenVMS AXP System: Recompiling and Relinking Applications
describes in greater detail the process of using AXP compilers to migrate VAX
programs to an AXP system.

6.2.1.2 Other Development Tools
Several other tools in addition to the compilers are available to create native AXP
images:

• OpenVMS Linker

The OpenVMS Linker can now accept VAX object files or AXP object files to
produce either a VAX image or an AXP image. It also functions as a cross
linker, since it can produce AXP images while running on VAX hardware.

• OpenVMS Debugger

The OpenVMS Debugger running on OpenVMS AXP has the same command
interface as the current OpenVMS VAX debugger. The graphical interface on
OpenVMS VAX systems is also available on OpenVMS AXP systems.

• OpenVMS Librarian utility

The OpenVMS Librarian utility creates either VAX or AXP libraries.

6–5

Migrating Your Application
6.2 Converting Your Application

• OpenVMS Message utility

The OpenVMS Message utility allows you to supplement the OpenVMS
system messages with your own messages.

• MACRO–64 Assembler for OpenVMS AXP

The MACRO–64 Assembler creates native AXP assembly language.

• ANALYZE/IMAGE

The Analyze/Image utility can analyze either VAX or AXP images.

• ANALYZE/OBJECT

The Analyze/Object utility can analyze either VAX or AXP objects.

• DECset

DECset, a comprehensive set of CASE tools, includes the Language Sensitive
Editor (LSE), Source Code Analyzer (SCA), Code Management System (CMS),
Module Management System (MMS), and other components.

6.2.2 Translating
The process of translating a VAX image to run on an AXP system is described
in detail in DECmigrate for OpenVMS AXP Systems Translating Images. In
general, the process is straightforward, although you may have to modify your
code somewhat to get it to translate without error.

6.2.2.1 VAX Environment Software Translator (VEST) and Translated Image Environment (TIE)
The main tools for migrating VAX user-mode images to OpenVMS AXP are a
static translator and a run-time support environment:

• The VAX Environment Software Translator (VEST) is a utility that analyzes
a VAX image and creates a functionally equivalent translated image. Using
VEST, you will be able to do the following:

– Determine whether a VAX image is translatable.

– Translate the VAX image to an AXP image.

– Identify specific incompatibilities with OpenVMS AXP within the image
and, when appropriate, obtain information on how to correct those
incompatibilities in the source files.

– Identify ways to improve the run-time performance of the translated
image.

• The Translated Image Environment (TIE) is an AXP shareable image that
supports translated images at run time. TIE provides the translated image
with an environment similar to OpenVMS VAX and processes all interactions
with the native AXP system. Items that TIE provides include:

• VAX instruction interpreter, which supports:

– Execution of VAX instructions (including instruction atomicity) that is
similar to their execution on a VAX system

– Complex VAX instructions, as subroutines

• VAX compatible exception handler

• Jacket routines that allow communication between native and translated
code

6–6

Migrating Your Application
6.2 Converting Your Application

• Emulated VAX stack
TIE is invoked automatically for any translated image; you do not need to call
it explicitly.

VEST locates and translates as much VAX code as possible into AXP code. TIE
interprets any VAX code that cannot be converted into Alpha AXP instructions;
for example:

• Instructions that VEST could not statically identify

• H- and D56 (56-bit D_floating) floating-point operations

Since interpreting instructions is a slow process, requiring perhaps 100 Alpha
AXP instructions per average VAX instruction, VEST attempts to find and
translate as much VAX code as possible in order to minimize the need for
interpreting it at run time. A translated image runs at approximately one-
third the speed of a comparable native AXP image, depending on how much VAX
code TIE needs to interpret. Translated VAX images run at least as fast as they
would run on equivalent (same technology) VAX hardware.

Note that you cannot specify dynamic interpretation of a VAX image on an
AXP system. You must use VEST to translate the image before it can run on
OpenVMS AXP.

Translating a VAX image produces an image that runs as a native image on AXP
hardware. The AXP image is not merely an interpreted or emulated version of
the VAX image, but contains Alpha AXP instructions that perform operations
identical to those performed by the instructions in the original VAX image. The
AXP .EXE file also contains the original VAX image in its entirety, which allows
TIE to interpret any code that VEST could not translate.

VEST’s analysis capability also makes it useful for evaluating programs that you
intend to recompile, rather than translate.

See DECmigrate for OpenVMS AXP Systems Translating Images for a complete
description of VEST and TIE. The manual explains in detail all the output that
VEST generates, such as flowgraphs, and how to interpret it. The manual also
explains how information provided in image information files (IIFs) created by
VEST can help you improve the translated image’s run-time performance.

6.3 Debugging and Testing the Migrated Application
Once you have migrated your application to OpenVMS AXP, you may have to
debug it.

You will also need to test the application for correct operation.

6.3.1 Debugging
The OpenVMS operating system provides the following debuggers:

• The OpenVMS Debugger supports debugging of both VAX and native AXP
programs. This debugger does not support the debugging of translated
images.

The OpenVMS Debugger is a symbolic debugger, that is, the debugger allows
you to refer to program locations by the symbols you used for them in your
program—the names of variables, routines, labels, and so on. You do not need
to specify memory addresses or machine registers when referring to program
locations, although you can if you wish.

6–7

Migrating Your Application
6.3 Debugging and Testing the Migrated Application

Although the OpenVMS Debugger does not generally work for translated
images, it is helpful in one area. Since the translated image mimics the VAX
registers, you can use the commands SHOW CALLS and SHOW STATE to
get some VAX context for more detailed debugging.

• The Delta Debugger supports debugging of VAX and AXP programs. This
debugger also supports the debugging of translated images.

The Delta Debugger is an address location debugger, that is, the debugger
requires you to refer to program locations by address location. This debugger
is primarily used to debug programs that run in privileged processor mode or
at an elevated interrupt level.

Debugging must take place on AXP hardware.

6.3.1.1 Debugging with the OpenVMS Debugger
When you debug your migrated application on an AXP system with the OpenVMS
Debugger, bear in mind the following considerations:

• You can use the debugger with programs written in any language for which
there is an AXP compiler available.

• The debugger does not support debugging of installed resident images. For
more information on installed resident images, see the OpenVMS System
Manager’s Manual: Tuning, Monitoring, and Complex Systems.

• The debugger does not support debugging of inlined routines. If you attempt
to debug an inlined routine, the debugger issues a message that it cannot
access the routine:

DBG> %DEBUG-E-ACCESSR, no read access to address 00000000

• The debugger does not completely support the debugging of Register Frame
Procedures or No Frame Procedures. If you issue STEP/OVER or STEP
/RETURN commands for these procedures, unexpected results can occur.

For more information on debugging with the OpenVMS Debugger, see the
OpenVMS Debugger Manual.

6.3.1.2 Debugging with the Delta Debugger
You can use the Delta Debugger to debug applications that are partly or
completely translated.

Translated Applications
When attempting to debug a translated image, you should:

• Make sure that the program you are translating works correctly under
OpenVMS VAX Version 6.1.

• Make sure that VEST and any IIF files for run-time libraries are of the same
release as the version of OpenVMS AXP you are using.

• Use the VEST qualifiers /DEBUG, /LIST, and /SHOW=MACHINE_CODE
to capture AXP and VAX instructions. (Note that in the listing, an asterisk
identifies a VAX instruction.) Have the VAX map and listing for the VAX
image at hand for comparison.

For more information on debugging translated images, contact Multivendor
Customer Services.

6–8

Migrating Your Application
6.3 Debugging and Testing the Migrated Application

Mixed Applications
To debug an application that is partly native AXP code and partly translated code,
make sure that the native parts of the application were compiled using the /TIE
qualifier; in addition, you must link the application with the /NO_NATIVE_ONLY
linker option.

For more information on debugging with the Delta Debugger, see the OpenVMS
Delta/XDelta Debugger Manual.

6.3.2 Testing
You must test your application to compare the performance and functionality of
the migrated version with those of the original VAX version.

The first step in testing is to establish baseline values for your application by
running your test suite on the VAX application.

Once your application is running on an AXP system, there are two types of tests
you will want to apply:

• The standard tests used for the VAX version of the application

• New tests to check specifically for problems due to the change in architecture

6.3.2.1 VAX Tests
Because the changes in your application are combined with use of a new
architecture, testing your application after it is migrated to OpenVMS AXP
is particularly important. Not only can the changes introduce errors into the
application, but the new environment may bring out latent problems in the VAX
version.

Testing your migrated application involves the following steps:

1. Get a complete set of standard data for the application prior to the migration.

2. Migrate your test suite along with the application (if the tests are not already
available on AXP).

3. Validate the test suite on an AXP system.

4. Run the migrated tests on the migrated application.

Both regression tests and stress tests are useful here. Stress tests are important
to test for platform differences in synchronization, particularly for applications
that use multiple threads of execution.

6.3.2.2 AXP Tests
While your standard tests should go a long way toward verifying the function of
the migrated application, you should add some tests that look at issues specific to
the migration. Points to focus on include the following:

• Compiler differences—changes in optimization and data alignment

• Architectural differences—changes in instruction atomicity, memory atomicity,
and read/write ordering, for example

• Integration—modules written in different languages, or modules that had to
be translated

6–9

Migrating Your Application
6.4 Integrating the Migrated Application into a Software System

6.4 Integrating the Migrated Application into a Software System
After you have migrated your application by recompiling or translating it, check
for problems that are caused by interactions with other software and that may
have been introduced during the migration.

Sources of problems in interoperability can include the following:

• AXP and VAX systems within a VMScluster environment must use separate
system disks. You must make sure that your application refers to the
appropriate system disk.

• Image names

In a mixed environment, be sure that your application refers to the correct
version.

– Native VAX and native AXP versions of an image have the same name.

– The translated version of an image has the string "_TV" added to its
name.

• Recompiled images may expect naturally aligned data, while translated
images have unaligned data, like the original VAX image.

6–10

A
Application Evaluation Checklist

This checklist is based on one used by Digital to evaluate applications for
OpenVMS AXP.

Comments in brackets following a question are intended to help clarify the
purpose of that question.

A–1

Application Evaluation Checklist

Application Evaluation Checklist

Development History and Plans

1. Does the application currently run on other operating
systems or hardware architectures?

YES NO

If yes, does the application currently run on a RISC
system?

YES NO

[If so, it will be easier to migrate to OpenVMS AXP.]

2. What are your plans for the application after migration?
a. No further development YES NO
b. Maintenance releases only YES NO
c. Additional or changed functionality YES NO
d. Maintain separate VAX and AXP sources YES NO
[If you answer "YES" to a, you may wish to consider
translating the application. A "YES" response to b or
c should give you reason to evaluate the benefits of
recompiling and relinking your application, although
translation is still possible. If you intend to maintain
separate VAX and AXP sources, as indicated by a "YES"
to d, you may need to consider interoperability and
consistency issues, especially if the different versions of
the application can access the same database.]

External Dependencies

3. What is the system configuration (CPUs, memory, disks)
required to set up a development environment for the
application?
[This will help you plan for the resources needed for
migration.]

4. What is the system configuration (CPUs, memory, disks)
required to set up a typical user environment for the
application, including installation verification procedures,
regression tests, benchmarks, or workloads?
[This will help you determine whether your entire
environment is available on OpenVMS AXP.]

5. Does the application rely on any special hardware? YES NO
[This will help you determine whether the hardware is
available on OpenVMS AXP, and whether the application
includes hardware-specific code.]

6. a. What version of OpenVMS does your application
currently run on?
b. Does the application run on OpenVMS VAX Version 6.1? YES NO

A–2

Application Evaluation Checklist

c. Does the application use features that are not available
on OpenVMS AXP?

YES NO

[The migration base for OpenVMS AXP is OpenVMS VAX
Version 6.1. If you answer "YES" to c, your application may
use features that are not yet supported on OpenVMS AXP,
or be linked against an OpenVMS RTL or other shareable
image that is incompatible with the current version of
OpenVMS AXP.]

7. Does the application require layered products to run?
a. From Digital: (other than compiler RTLs) YES NO
b. From third parties: YES NO
[If you answer "YES" to a and are uncertain whether the
Digital layered products are yet available for OpenVMS
AXP, check with your Digital Account Representative. If
you answer "YES" to b, check with your third-party product
supplier.]

Composition of the Application

8. How large is your application?
How many modules?
How many lines or kilobytes of code?
How much disk space required?
[This will help you "size" the effort and the resources
required for migration.]

9. a. Do you have access to all source files that make up your
application?

YES NO

b. If you are considering using Digital Services, will it be
possible to give Digital access to these source files and build
procedures?

YES NO

[If you answer "YES" to a, translation may be your only
migration option for the files with missing sources. A
"YES" answer to b allows you to take advantage of a
greater range of Digital migration services.]

10. a. What languages is the application written in? (If
multiple languages are used, give the percentages of each.)
[If the compilers are not yet available, you must translate
or rewrite in a different language.]
b. If you use VAX MACRO, what are your specific reasons?
c. Could the function of the VAX MACRO code be
performed by a high-level-language compiler or a system
service (such as $GETJPI for retrieving process names)?

YES NO

A–3

Application Evaluation Checklist

[Digital does not recommend the use of VAX MACRO or
the Macro–64 Assembler for OpenVMS Alpha AXP in
AXP applications. You may be able to replace assembly-
language code in certain user-mode applications by a call
to an OpenVMS system service that did not exist when the
application was first written.]

11. a. Do you have regression tests for the application? YES NO
b. If yes, do they require DEC Test Manager? YES NO
[If you answer "YES" to a, you should consider migrating
those regression tests. The DEC Test Manager is not
available at the initial release of OpenVMS AXP. Contact
your Digital Account Representative if your regression tests
depend on this product.]

Dependencies on the VAX Architecture

12. a. Does the application use the H-floating data types? YES NO
b. Does the application use the D-floating data types? YES NO
c. If the application uses D-floating, does it require 56 bits
of precision (16 decimal digits) or would 53 bits (15 decimal
digits) suffice?

56 bits 53 bits

[If you answer "YES" to a, you must either translate your
application to obtain H-floating compatibility, or convert
the data to G-floating, S-floating, or T-floating format.
If you answer "YES" to b, you must either translate the
application to obtain full 56-bit VAX precision D-floating
compatibility, accept the 53-bit precision D-floating format
provided by AXP systems, or convert the data to G-floating,
S-floating, or T-floating format.]

13. a. Does the application use large amounts of data or data
structures?

YES NO

b. Is the data byte, word, or longword aligned? YES NO
[If you answer "YES" to a, but "NO" to b, you should
consider aligning your data naturally to achieve optimal
AXP performance. You must align data naturally if the
data is in a global section shared among a number of
processes, or is shared between a main program and an
AST.]

14. Does the application make assumptions about how
compilers align data (that is, does the application assume
that data structures are: packed, aligned naturally, aligned
on longwords, and so forth)?

YES NO

[If you answer "YES," you should consider portability
and interoperability issues resulting from differences in
compiler behavior, both on the AXP platform and between
the VAX and AXP platforms. Be aware that compiler
defaults for data alignment vary, as do compiler switches
for forcing alignment. Typically, VAX systems default to a
packed style alignment, whereas AXP compilers default to
natural alignment where possible.]

A–4

Application Evaluation Checklist

15. a. Does the application assume a 512-byte page size? YES NO
b. Does the application assume that a memory page is the
same size as a disk block?

YES NO

[If you answer "YES" to a, you should be prepared to adapt
the application to accommodate the Alpha AXP page size,
which is much larger than 512 bytes and varies from
system to system. Avoid hard-coded references to the page
size; rather, use memory management system services
and RTL routines wherever possible. If you answer "YES"
to b, you should examine all calls to the $CRMPSC and
$MGBLSC system services that map disk sections to
memory and remove these assumptions.]

16. Does the application call OpenVMS system services? YES NO
Specifically, services that:
a. Create or map global sections (such as $CRMPSC,
$MGBLSC, $UPDSEC)

YES NO

b. Modify the working set (such as $LCKPAG, $LKWSET) YES NO
c. Manipulate virtual addresses (such as $CRETVA,
$DELTVA)

YES NO

[If you answer "YES" to any of these, you may need
to examine your code to determine that it specifies the
required input parameters correctly.]

17. a. Does the application use multiple, cooperating processes? YES NO
If so:
b. How many processes?
c. What interprocess communication method is used?

$CRMPSC Mailboxes SCS Other
DLM SHM, IPC SMG$ STR$

d. If you use global sections ($CRMPSC) to share data with
other processes, how is data access synchronized?
[This will help you determine whether you will need to use
explicit synchronization, and the level of effort required
to guarantee synchronization among the parts of your
application. Use of a high-level synchronization method
generally allows you to migrate an application most easily.]

18. Does the application currently run in a multiprocessor
(SMP) environment?

YES NO

[If you answer "YES," it is likely that your application
already employs adequate interprocess synchronization
methods.]

A–5

Application Evaluation Checklist

19. Does the application use AST (asynchronous system trap)
mechanisms?

YES NO

[If you answer "YES," you should determine whether the
AST and main process share access to data in process
space. If so, you may need to explicitly synchronize such
accesses.]

20. a. Does the application contain condition handlers? YES NO
b. Does the application rely on immediate reporting of
arithmetic exceptions?

YES NO

[The Alpha AXP architecture does not provide immediate
reporting of arithmetic exceptions. If your handler
attempts to fix the condition and restart the instruction
sequence that led to the exception, you will need to alter
the handler.]

21. Does the application run in privileged mode or link against
SYS.STB?

YES NO

If so, why?
[If your application links against the OpenVMS executive
or runs in privileged mode, you must rewrite it for it to
work as a native AXP image.]

22. Do you write your own device drivers? YES NO
[User-written device drivers are not supported in the initial
release of OpenVMS AXP. Contact your Digital Account
Representative if you need this feature.]

23. Does the application use connect-to-interrupt mechanisms? YES NO
If yes, with what functionality?
[Connect-to-interrupt is not supported on OpenVMS AXP
systems. Contact your Digital Account Representative if
you need this feature.]

24. Does the application create or modify machine instructions? YES NO
[Guaranteeing correct execution of instructions written to
the instruction stream requires great care on OpenVMS
AXP.]

25. What parts of the application are most sensitive to
performance? I/O, floating point, memory, realtime (that is,
interrupt latency, and so on).
[This will help you determine how to prioritize work on the
various parts of your application and allow Digital to plan
performance enhancements that are most meaningful to
customers.]

A–6

B
Sample Migration Plan

The following migration plan is for a fictitious application, but is based on actual
migration plans written for customer applications.

B–1

Sample Migration Plan

Migration Plan for Omega-1

Omega Corporation

B.1 Executive Summary
Omega-1 is an enterprise-wide information system for accessing, analyzing,
managing, and presenting data.

Omega-1 has more than 4 million lines of source code. Most of the source code,
written in the C programming language, is common to a variety of platforms and
is considered highly portable.

However, Omega-1 has a set of routines, unique to each platform, that is
implemented in VAX C and VAX MACRO for the VAX platform (about 350,000
lines of code). These routines present a number of VAX architectural dependency
issues, described in Section B.2.4, that require resolution for successful migration.
Resolution of these issues will involve significant work including design changes,
but none of these appear to jeopardize shipping Omega-1 to customers in
December 1992.

Omega-1 supports connections to a number of Digital and third-party products.
Although some of these products will not be available on the AXP platform when
OpenVMS AXP is first shipped, Omega Corporation, the Omega-1 vendor, has
committed to migrating the base Omega-1 by that date.

Digital Services will provide support services to Omega Corporation throughout
the life of the migration project as detailed in this plan. In summary, the support
plan for Omega Corporation includes:

• On-site hardware and software tools for AXP development at Omega
Corporation

• Engineering assistance for quality assurance testing

• Access to AXP systems at an AXP Migration Center

• Telephone access to a Digital engineer who will provide AXP technical
information, support the cross-development tools, and act as a liaison for
resolving any problems with Digital software products reported by Omega
Corporation

• A three-day technical seminar for Omega Corporation developers at their site

One additional problem is providing the hardware for Omega to carry out an
adequate field test of their products prior to the ship date. Normally, the Omega
developers conduct field tests for four months before revenue shipment at 30 to
40 of their customer sites. It is unclear whether the number of required AXP
units will be available for a field test of this size.

B.2 Technical Analysis
The technical analysis was performed by Omega Corporation in conjunction with
Digital Services.

B–2

Sample Migration Plan
B.2 Technical Analysis

B.2.1 Application Characteristics
Omega-1 runs on most VAX platforms and platforms of other vendors. It consists
of three layers that may or may not take advantage of specific aspects of the VAX
environment. However, there are no direct dependencies on particular hardware
configurations or devices.

Most of the functionality is provided in the applications layer, which contains the
user interface, basic data management tools, and the Omega fourth generation
language (4GL). The Omega-1 base product does not depend on any Digital or
third-party layered products.

Additional products in Omega-1 are layered on top of the base product and
provide expanded data management or communications functionality. These
options depend on Digital or third-party layered products and will be available
when the underlying products are released. The layered product dependencies
are listed in Table B–3.

B.2.2 Software Architecture
Omega-1 is built in layers as shown in Figure B–1. This layering creates a high
degree of portability for the software, because only about 10% of the system is
specific to a particular implementation, and all of this code is contained within
one set of modules, the host layer.

The applications and core layers are expected to run on the AXP platform simply
by recompiling and relinking all of the source files. The only prerequisite is
successful migration of the Omega software development tools, which are also
considered quite portable and depend only on the C compiler and run-time
libraries for OpenVMS AXP.

The host layer will require a number of changes such as a rewrite of some
modules that contain some VAX hardware dependencies.

Figure B–1 Layer Structure of Omega-1

Applications Layer

Core Layer

Host Layer

70% of code

20% of code

10% of code

ZK−5174A−GE

• Applications layer

This layer comprises the bulk of the system and is considered portable
because it is implemented similarly on many platforms.

B–3

Sample Migration Plan
B.2 Technical Analysis

• Core layer

This layer creates an Omega-designed set of services that conforms to the
special needs of Omega-1 on each platform. Essentially, anything that is
part of the Omega-1 "virtual operating system" but can be written portably
resides in this layer. Components include high-level I/O, high-level memory
management, character-based window systems, and the 4GL compiler with its
execution environment. This layer is portable.

• Host layer

This layer provides an interface to specific operating system elements and
may be dependent on aspects of the hardware architecture. Components
include:

• I/O operation

• Image loading and unloading

• Memory management

• Lightweight thread management

• Terminal services

• Windowing interfaces
The host layer is different for each platform implementation. The VAX
implementation is written in VAX C and VAX MACRO. This layer embodies
most of the issues on which the migration project will focus.

B.2.3 Results of Image Analysis
Although Omega-1 will be recompiled and relinked, the VAX Environment
Software Translator (VEST) was used to analyze 26 images of the host layer. A
large number of these images had instructions that relied on the D_floating data
type, which is the default for VAX C. If Omega engineers decide to move from
D_floating to another floating-point format, they must be aware of the issues
concerning compatibility of data files across mixed VAX and AXP VMScluster
environments.

Table B–1 lists the error messages generated by the images during image
analysis.

Table B–1 Image Analysis Results

Image Name % Code Found by VEST Major Findings

OMEGADEV60 -Fatal errors-
no code found

VEST-F-PROTISD
VEST-F-ISDALIGN
VEST-F-ISDMIXED
VEST-W-STACKMATCH
Packed decimal instructions

OMECRTL 92% VEST-W-STACKMATCH
VEST-W-STKUNAL
Packed decimal instructions

PSCN 64% VEST-W-STKUNAL
VEST-W-STACKMATCH

(continued on next page)

B–4

Sample Migration Plan
B.2 Technical Analysis

Table B–1 (Cont.) Image Analysis Results

Image Name % Code Found by VEST Major Findings

PVSN 65% VEST-W-STKUNAL
VEST-W-STACKMATCH

The following list describes the major findings of the Omega image analysis:

• PROTISD—user-written system service vector that indicates that an image
has one or more user-written system services. This problem will be handled
automatically when compiling the code using a native AXP compiler.

• ISDALIGN—the image section is not aligned on a 64 KB boundary. Before
performing another VEST analysis, it will be necessary to relink the image
with 64KB pages. The linker will handle this problem during the migration
process.

• ISDMIXED—incompatible VAX image sections were mapped to the same
64KB block. The linker will handle this problem during the migration
process.

• STKUNAL—a warning indicates that a block of code changes the stack
from longword aligned to unaligned, which causes performance degradation.
Omega engineers will review the logs from the VEST analysis.

• STACKMATCH—the stack may be unbalanced at a certain point. Omega
engineers will review the logs from the VEST analysis.

• Packed decimal instructions—supported only with software and not with
hardware, which may hinder performance of the application. Omega
engineers will review the packed decimal code.

B.2.4 Results of Source Analysis
As stated previously, the migration of the applications and core layers is fairly
straightforward; however, the host layer of Omega-1 contains many VAX
dependencies. Discussions with Omega engineers uncovered the architectural
dependencies described in the following list:

• Data alignment

The Omega-1 software contains unaligned public data structures. To maintain
source code portability, Omega engineers will compile this code with the
/NOMEMBER_ALIGN qualifier of the DEC C compiler.

• Data types

Omega-1 extensively uses floating-point calculations and data files. The VAX
version uses the D56 format for all operations, which is not implemented in
the native Alpha AXP instruction set. For customers who may eventually
operate with mixed VAX and AXP clusters, it is best to maintain the D_
floating format. Omega is not concerned about the slight loss of floating-point
precision entailed in using the 53-bit (versus 56-bit) version of D_floating
available on AXP.

However, most of the other Omega-1 implementations use the IEEE floating-
point formats, which are fully supported by the Alpha AXP instruction set.
Reimplementation to the IEEE format involves simply recompiling with
a different qualifier, but VAX customers would then need to convert all

B–5

Sample Migration Plan
B.2 Technical Analysis

floating-point data in their files to the new format as part of their migration
process.

• Read/write/modify atomicity

A few AST routines need to be examined to determine whether any operations
on shared variables need to be protected by explicit synchronization methods.
No major problems are expected in this area.

• Granularity of byte and word operations

The Omega-1 software has a latch that protects data that is not aligned
on natural quadword boundaries. Digital engineers discussed this problem
with Omega engineers and reviewed a code sample for the solution. They
determined that the compilers can handle this type of access using shared
data declarations and compiler directives.

• VAX page size

The host layer includes a few routines that handle memory management on
behalf of the applications. Although the existing algorithms do not actually
require that the page size be 512 bytes, nevertheless, they are hard coded as
512. Correct functionality will be guaranteed by modifying these modules to
query for system page size at system startup and then using the system page
size for calculations involving memory management operations.

• VAX procedure calling standard

Omega-1 "chases" the call frame stack to determine call history when a user
interrupt occurs. Omega-1 modifies the return address in one of the preceding
call frames to redirect flow-of-control, or accept the interrupt, when in a
noncritical region of the code. Much of this is similar to what SYS$UNWIND
does, except that Omega-1 does it with an AST instead of an exception
handler.

Omega-1 includes a number of functions that depend on the VAX calling
standard, including Omega’s own implementation of setjmp() and longjmp().
These functions are written in VAX MACRO and are isolated in the operating-
system code. Omega will rewrite these functions to remove dependencies on
the VAX calling standard.

• Exception handling

Omega-1 fixes illegal or faulted floating-point operations with a statistical
"missing" value. It is a concern whether the current design can correctly
decode the actual faulting instruction on the Alpha AXP architecture, where
delivery of exception traps may be delayed.

• VAX instruction set and code generation

The host layer includes a code generator that writes platform-native
instructions into memory and executes them as part of its 4GL language.
This code generator produces, among other things, "scatter/gather" code
to handle database I/O operations. A portable interpreter that is "plug
compatible" with the code generator can be used for the early stages of the
migration project. However, a new version of the generator that produces
Alpha AXP instructions will eventually have to be implemented.

B–6

Sample Migration Plan
B.3 Milestones and Deliverables

B.3 Milestones and Deliverables
The ship date goal for the Omega-1 base product is December 1992. Table B–2
summarizes the major milestones and deliverables for the base product project.
For a discussion of each of the deliverables, see Section B.4.

Table B–2 Milestones and Deliverables

Milestone Responsible Digital Role Completion Date

Omega-1 line-mode prompt Omega/Digital Consulting November 1991

New cross-image bridge Omega/Digital Consulting December 1991

Floating-point decision Omega — December 1991

Omega-1 exception handler Omega/Digital Consulting January 1992

Begin code generator Omega/Digital Consulting January 1992

Build applications layer Omega/Digital Consulting January 1992

Test code generator Omega/Digital Run test scripts March 1992

Test applications Omega/Digital Run test scripts May 1992

Implement and test Motif
user interface

Omega/Digital Run test scripts July 1992

Begin Omega QA and field
test

Omega On-site support December 1992

Ship date Omega — December 1992

B.4 Technical Approach
The following sections describe in detail the approach to be taken to reach each
milestone of this migration project.

B.4.1 Line Mode Prompt
The first milestone is bringing Omega-1 to a line-mode prompt and entering
a meaningful Omega-1 program name or command sequence for execution.
Reaching this goal will demonstrate basic functionality of the development tools
and run-time libraries. At this point, the host layer will be functional except for
the following:

• The Omega-1 interpreter will be used instead of code generation for the 4GL
functionality.

• The image bridge will be a temporary implementation.

• Exception handling will be incomplete.

Furthermore, the core layer will be functional (without the windowing user
interface), and at least one Omega-1 application will be tried. This work is being
done by the Omega VMS Host Group with support from Digital.

B.4.2 The Image Bridge
Omega-1 has a central bridge routine that dispatches all jumps across images.
This allows Omega-1 to call routines in unloaded images, which will then be
loaded dynamically. The bridge also allows images to be unloaded by Omega-1.

The image activation routines and the format of AXP object files have already
established that the bridge for OpenVMS AXP can be implemented similarly to
its implementation on OpenVMS VAX.

B–7

Sample Migration Plan
B.4 Technical Approach

The work will be done by the Omega VMS Host Group with support from Digital,
and the required changes can be completed by December 1991.

B.4.3 Floating-Point Format Decision
Omega-1 and many customers that use it rely on the D56 floating-point data type.
Although it is possible to replace D56 with IEEE T_floating for increased speed,
this will require that all users convert their data from one format to the other.

This is an Omega business decision, which will be made by the end of calendar
year 1991.

B.4.4 Full Omega-1 Exception Handling
The next major issue to be resolved is how to perform Omega-1 exception
handling on OpenVMS AXP. General exception handling, such as a run-time
access violation upon opening a file, is trapped by the Omega-1 exception
handler, which may then proceed with a "stack chase" on the call frames. Omega
developers will make the necessary changes to account for the new calling
standard on OpenVMS AXP, and will use the "setjmp" and "longjmp" features of
DEC C.

Floating-point exception handling will also require design changes and
reimplementation. There are a number of options for getting correct functionality,
but the best answer for performance considerations is yet to be determined. Still,
the Omega developers expect to solve this by the scheduled date.

B.4.5 Begin Code Generator Implementation
The final component required for a full implementation of the host layer is the
code generator. To implement the code generator, the Omega developers need a
complete definition of the native Alpha AXP instruction set. The code generator
effort will be fully handled by the Omega OpenVMS Host Group. Digital will
provide support by telephone, as needed.

B.4.6 Build Applications
Once the host layer has achieved full functionality, the applications can be built
during January 1992. These applications are expected to recompile and run, since
they are all written in C to very strict portability standards. Digital will provide
telephone support for tools and compiler issues to the Omega developers.

B.4.7 Test Code Generator
Digital will provide assistance with debugging and functional testing for the
Omega-1 code generator on an AXP system during the month of March 1992.
An Omega developer will establish a test bed environment on the AXP system
in an AXP Migration Center, train a Digital engineer how to run the tests, and
supervise the initial set of tests. After that, Omega will send test scripts and
data sets by mail for the Digital engineer to run.

B.4.8 Test Complete Application
Omega maintains a number of developmental regression test streams, which
must be run on an AXP system to verify successful porting. If Omega does not
have an AXP system by the time they are ready for this testing, Digital will
run the regression tests against the Omega-1 base system applications on one of
Digital’s systems.

B–8

Sample Migration Plan
B.4 Technical Approach

To do this, an Omega developer will establish a test bed environment on an
AXP system in the Digital laboratory, train a Digital engineer how to run the
regression tests, and supervise the initial set of tests. After that, Omega will
send test scripts and data sets by mail for the Digital engineer to run. Digital
will then report results back to Omega. This effort will begin in April 1992 and
will be finished by the end of May.

B.4.9 DECwindows Motif User Interface
Omega needs to have the Motif developers tool kit prior to field test, so that the
developers can test their Motif user interface.

B.4.10 Omega Quality Assurance and Field Test
Omega maintains an extensive set of test streams used to validate their final
product. They routinely run these suites immediately prior to starting their field
tests. These tests must be run on a full AXP system implementation.

At this point, some testing and optimization may be required to fix specific
performance problems that become apparent only on an AXP system. Digital will
provide on-site engineering support for these efforts.

B.5 Dependencies and Risks
The chief risk to the successful delivery of Omega-1 is related to Omega’s quality
assurance and field test processes. The developers normally conduct their field
test with 30 to 40 of their customers, and it takes about four months to complete.
Omega and its Digital account team need to determine how Omega can execute
a testing program that meets its minimum requirements and can be completed
before December 1992.

The following list shows the software dependencies for the Omega-1 base product:

• DEC C for OpenVMS AXP compiler

• VAX MACRO–32 Compiler for OpenVMS AXP

• MACRO–64 Assembler for OpenVMS AXP

• OpenVMS Debugger

• DEC C Run-Time Library

• OpenVMS Run-Time Library (LIB$)

• Screen Management Library (SMG$)

• DECTPU

Omega-1 applications also offer access to Digital or third-party data management
or networking options. For example:

• Omega/Graph can use CDA tools to generate graphic images in DDIF format.

• Omega/Access can access Rdb/VMS or ORACLE databases.

• Omega/Share and Omega/Connection can access remote data with TCP/IP
using the ULTRIX Connection (UCX).

Table B–3 lists all of the layered product options available to the users of
Omega-1 along with the expected delivery dates.

B–9

Sample Migration Plan
B.5 Dependencies and Risks

Table B–3 Omega Optional Product Dependences

Item Field Test Shipping

Digital Products

DECwindows Motif user interface (tool
kit)

TBS TBS

CDA TBS TBS

ALL–IN–1 TBS TBS

Rdb/VMS TBS TBS

CDD/Repository TBS TBS

CDD/Plus TBS TBS

DECnet (Phase IV) TBS TBS

PATHWORKS TBS TBS

SPM TBS TBS

Third-Party Products

ORACLE TBS TBS

Ingres TBS TBS

B.6 Resource Requirements
Digital resources used to support the plan outlined in Section B.3 are summarized
in Table B–4 and are described in the following sections.

Table B–4 Summary of Digital Support

Resource Time Frame Activity Level of Effort

On-site training Dec 91 Training 1 engineer for 3
days

Telephone support Dec 91–Aug 92 General support 1 engineer for 8
hours/week

Engineering assistance Mar 92 Test code generator 1 full-time
engineer for 2
weeks, half time
for 4 weeks

AXP hardware Mar 92 Test code generator 5 days/week for
two weeks, 2
days/week for 4
weeks

Engineering assistance Apr–May 92 Application testing 1 engineer, half
time for 8 weeks

AXP hardware Apr–May 92 Application testing 2 days/week for 8
weeks

(continued on next page)

B–10

Sample Migration Plan
B.6 Resource Requirements

Table B–4 (Cont.) Summary of Digital Support

Resource Time Frame Activity Level of Effort

On-site support Jan–Aug 92 Omega QA 1 week per
month

B.6.1 Hardware
Omega requires that a system be loaned to its site to complete the migration
tasks without affecting normal development activities.

The Omega-1 base product spans several RA90 drives on its development system,
which is a VAX 6000 Model 550. Disk space may become a problem for building
the full application set.

B.6.2 On-Site Training
Digital will assume an active role in support of Omega migration beginning in
December 1991 with a three-day AXP technical seminar for the application and
core-layer developers at Omega.

B.6.3 Telephone Support
During the first quarter of 1992, the Omega developers will continue their efforts
to migrate the host layer at their site using the cross tools on a Digital-supplied
platform. During this period, and throughout the entire migration effort, Omega
will receive telephone support from a software engineer at Digital. The assigned
engineer will spend approximately eight hours per week working with Omega
issues, following up on bug reports, and supporting the cross tools.

B.6.4 Testing Assistance
Digital will support several phases of testing the Omega-1 application.

B.6.4.1 Testing the Code Generator
One full-time Digital engineer is required for the first two weeks of March to
test the code generator. This period includes training by a Omega developer and
running the initial tests. During the following four weeks, the assigned engineer
will spend 50 percent of working time performing follow-up tests and reporting
the results to Omega.

The code generator testing will require nearly full-time use of an AXP system
during the first two weeks, followed by two additional days of AXP hardware time
per week during the following four weeks.

B.6.4.2 Testing Applications
Application testing will be done at Digital during the months of April and May
1992, and will require 50 percent of an engineer’s time for running regression
tests and reporting results to Omega. This effort will require two days on AXP
hardware per week during the eight-week test period.

B.6.4.3 Omega Quality Assurance
A Digital engineer will be available for an estimated 15 days during the months
of September to November 1992 to provide on-site support at Omega.

B–11

Glossary

alignment

See natural alignment.

atomic instruction

An instruction that consists of one or more discrete operations that are handled
by the hardware as a single operation, without interruption.

atomic operation

An operation that cannot be interrupted by other system events, such as an AST
(asynchronous system trap) service routine; an atomic operation appears to other
processes to be a single operation. Once an atomic operation starts, it always
completes without interruption.

Read-modify-write operations are typically not atomic at an instruction level on a
RISC machine.

byte granularity

A property of memory systems in which adjacent bytes can be written
concurrently and independently by different processes or processors.

CISC

See complex instruction set computer.

compatibility

The ability of programs written for one type of computer system (such as
OpenVMS VAX) to execute on another type of system (such as OpenVMS AXP).

complex instruction set computer (CISC)

A computer that has individual instructions that perform complex operations,
including complex operations performed directly on locations in memory.
Examples of such operations include instructions that do multibyte data moves or
substring searches. CISC computers are typically contrasted with RISC (reduced
instruction set computer) computers.

concurrency

Simultaneous operations by multiple agents on a shared object.

cross development

The process of creating software using tools running on one system, but targeted
for another type of system; for example, creating code for AXP systems using
tools running on a VAX system.

Glossary–1

granularity

A characteristic of storage systems that defines the amount of data that can be
read or written with a single instruction, or read or written independently. VAX
systems have byte or multibyte granularities while disk systems typically have
512-byte or greater granularities.

image information fi le (IIF)

An ASCII file that contains information about the interface between VAX images.
VEST uses IIFs to resolve references to other images and to generate the
appropriate linkages.

image section

A group of program sections with the same attributes (such as read-only access,
read/write access, absolute, relocatable, and so on) that is the unit of virtual
memory allocation for an image.

interlocked instruction

An interlocked instruction performs some action in a way that guarantees the
complete result as a single, uninterruptible operation in a multiprocessing
environment. Since other potentially conflicting operations can be blocked
while the interlocked instruction completes, interlocked instructions can have a
negative performance impact.

jacket routine

A procedure that converts procedure calls from one calling standard to another;
for example, calls between translated VAX images, which use the VAX calling
standard, and native AXP images, which use the AXP calling standard.

load/store architecture

A machine architecture in which data items are first loaded into a processor
register, then operated on, and finally stored back to memory. No operations on
memory other than load and store are provided by the instruction set.

longword

Four contiguous bytes (32 bits) starting on any addressable byte boundary. Bits
are numbered from right to left, 0 to 31. The address of the longword is the
address of the byte containing the low-order bit (bit 0). A longword is naturally
aligned if its address is evenly divisible by 4.

multiple instruction issue

Issuing more than one instruction during a single clock cycle.

natural alignment

Data storage in memory such that the address of the data is evenly divisible by
the size of the data in bytes. For example, a naturally aligned longword has an
address that is evenly divisible by 4, and a naturally aligned quadword has an
address that is evenly divisible by 8. A structure is naturally aligned when all its
members are naturally aligned.

page size

The number of bytes that a system’s hardware treats as a unit for address
mapping, sharing, protection, and movement to and from secondary storage.

Glossary–2

pagelet

A 512-byte unit of memory in an AXP environment. On AXP systems, certain
DCL and utility commands, system services, and system routines accept as input
or provide as output memory requirements and quotas in terms of pagelets.
Although this allows the external interfaces of these components to be compatible
with those of VAX systems, OpenVMS AXP internally manages memory only in
even multiples of the CPU memory page size.

PALcode

See privileged architecture library.

privileged architecture library (PAL)

A library of callable routines for performing instructions unique to a particular
operating system. Special instructions call the routines, which must run without
interruption.

processor status (PS)

On AXP systems, a privileged processor register consisting of a quadword of
information including the current access mode, the current interrupt priority
level (IPL), the stack alignment, and several reserved fields.

processor status longword (PSL)

On VAX systems, a privileged processor register consisting of a word of privileged
processor status and the processor status word itself. The privileged processor
status information includes the current interrupt priority level (IPL), the previous
access mode, the current access mode, the interrupt stack bit, the trace trap
pending bit, and the compatibility mode bit.

processor status word (PSW)

On VAX systems, the low-order word of the processor status longword. Processor
status information includes the condition codes (carry, overflow, 0, negative),
the arithmetic trap enable bits (integer overflow, decimal overflow, floating
underflow), and the trace enable bit.

program counter (PC)

That portion of the CPU that contains the virtual address of the next instruction
to be executed. Most current CPUs implement the program counter as a register.
This register is visible to the programmer through the instruction set.

quadword

Four contiguous words (64 bits) starting on any addressable byte boundary.
Bits are numbered from right to left, 0 to 63. The address of a quadword is the
address of the word containing the low-order bit (bit 0). A quadword is naturally
aligned if its address is evenly divisible by 8.

quadword granularity

A property of memory systems in which adjacent quadwords can be written
concurrently and independently by different processes or processors.

read-modify-write operation

A hardware operation that involves the reading, modifying, and writing of a piece
of data in main memory as a single, uninterruptible operation.

Glossary–3

read-write ordering

The order in which memory on one CPU becomes visible to an execution agent (a
different CPU or device within a tightly-coupled system).

reduced instruction set computer (RISC)

A computer that has an instruction set reduced in complexity, but not necessarily
in the number of instructions. RISC architectures typically require more
instructions than CISC architectures to perform a given operation, because an
individual instruction performs less work than a CISC instruction.

RISC

See reduced instruction set computer.

synchronization

A method of controlling access to some shared resource so that predictable, well-
defined results are obtained when operating in a multiprocessing environment or
in a uniprocessing environment using shared data.

translated code

The native AXP object code in a translated image. Translated code includes:

• AXP code that reproduces the behavior of equivalent VAX code in the original
image

• Calls to the Translated Image Environment (TIE)

translated image

An AXP executable or shareable image created by translation of the object code
of a VAX image. The translated image, which is functionally equivalent to the
VAX image from which it was translated, includes both translated code and the
original image. See VAX Environment Software Translator.

Translated Image Environment (TIE)

A native AXP shareable image that supports the execution of translated images.
The TIE processes all interactions with the native AXP system and provides an
environment similar to OpenVMS VAX for the translated image by managing
VAX state; by emulating VAX features such as exception processing, AST
delivery, and complex VAX instructions; and by interpreting untranslated VAX
instructions.

translation

The process of converting a VAX binary image to an AXP image that runs with
the assistance of the TIE on an AXP system. Translation is a static process that
converts as much VAX code as possible to native Alpha AXP instructions. The
TIE interprets any untranslated VAX code at run time.

VEST

See VAX Environment Software Translator.

VAX Environment Software Translator (VEST)

A software migration tool that performs the translation of VAX executable
and shareable images into translated images that run on AXP systems. See
translated image.

Glossary–4

word granularity

A property of memory systems in which adjacent words can be written
concurrently and independently by different processes or processors.

writable global section

A data structure (for example, FORTRAN global common) or shareable
image section potentially available to all processes in the system for use in
communicating between processes.

Glossary–5

Index

A
Access modes

inner, 4–5
Alignment

See data alignment
Alpha AXP architecture

compared to other RISC architectures, 1–4 to
1–5

compared to VAX, 1–4
general description, 1–4

Alpha Migration Centers (AMCs)
See Business Partner Development Assistance

centers
Alpha Resource Centers (ARCs)

See Business Partner Development Assistance
centers

Analyze/Image utility (ANALYZE/IMAGE), 6–6
Analyze/Object utility (ANALYZE/OBJECT), 6–6
Analyzing an application, 4–15 to 4–16
AP

See Argument pointer (AP)
Applications

analyzing, 4–15 to 4–16
establishing baseline values for, 6–9
languages used, A–3
portability, 5–1
size, A–3

Argument pointer (AP), 4–13
Arithmetic exceptions, 4–12 to 4–13

condition handler for, 4–13
precise

VEST qualifiers, 4–21
Assembly language

no performance advantage on AXP, 4–4
replaced by system services, 4–4

AST (asynchronous system trap), 1–5, A–6
sharing data, 4–8
synchronizing with, 4–8

AST parameter list
reliance on architectural details of, 4–14

AST service routines, 4–14
Asynchronous system trap

See AST

Atomicity
definition, 4–8
language constructs to guarantee, 4–8
of byte and word write operations, 4–9, 4–19
of read-modify-write operations, 4–19, B–6
provided by PALcode, 1–5
VEST qualifiers

instruction, 4–20
memory, 4–20

B
Based images, 4–2
Baseline values for application

establishing, 6–9
/BPAGE linker option, 4–21
BPDA centers

See Business Partner Development Assistance
centers

Build procedures, 3–2
changes required, 1–1

Business Partner Development Assistance centers
(BPDA), 2–4

Byte granularity, 4–9, 4–19
Byte variables

accessing, 4–10

C
Call frames

interpreting contents of, 4–13
Call frame stack, B–6
Calling standard

call frame stack, B–6
reliance on, 4–13

Calls
nonstandard

writing jacket routines for, 4–22
CALLx VAX instruction, 4–21
Choosing a migration method, 4–1, 4–18
$CMEXEC system service, 4–5
$CMKRNL system service, 4–5
CMS (Code Management System), 3–2, 6–2
COBOL

fast performance, 4–7
packed decimal data, 4–7

Index–1

Code Management System (CMS)
See CMS

Code reviews, 4–16
Command procedures, 1–1
Compatibility

granularity specified by compiler, 4–10
mixing native and translated images, 2–3
OpenVMS VAX and OpenVMS AXP, 1–1 to 1–3
using translation for, 2–2, 4–20

Compile commands
changes required, 6–4

Compile procedures, 6–2
Compilers

availability on AXP, 4–2, 6–5
commands, 6–4
data alignment defaults, 4–18
messages generated by, 4–16
native AXP, 4–2, 6–5
optimizing, 6–5
options

exception reporting, 4–13
qualifiers, 1–1
qualifiers for VAX dependencies, 6–5
specifying granularity, 4–10

Condition handlers, A–6
arithmetic exceptions, 4–13
establishing dynamic handler, 4–13

Connect-to-interrupt mechanisms, A–6
$CRETVA system service, A–5
$CRMPSC system service, 4–5, 4–10, 4–11, A–5
Custom Project Service, 2–4

D
Data

ODS-1 format not supported in AXP, 1–2
ODS-2 format unchanged, 1–2

Data alignment, 4–6 to 4–7, 4–9, 4–18, A–4
compiler defaults, 4–18
compiler options, 4–6
finding unaligned data, 4–6
global sections, 4–4
incompatibility with translated software, 4–7
performance, 4–6, 4–18
run-time faults, 4–16
static unaligned data, 4–16
unaligned stack operations, 4–16
VEST qualifiers, 4–20

Databases
same function on AXP, 1–3

Data types, 4–7
AXP implementations, 4–7
D-floating

full precision, A–4
D_floating, 1–5, 4–7, 4–16, 4–19

full precision, 1–2
in mixed-architecture clusters, B–4, B–5

G_floating, 1–2, 4–7, 4–19

Data types (cont’d)
H-floating, A–4
H_floating, 1–2, 1–5, 4–7, 4–16, 4–19
IEEE formats, 4–7

little endian, 1–2
packed decimal, 4–7, 4–16, 4–19

DCL (DIGITAL Command Language), 1–1
Debugger, 6–7 to 6–9

detecting unaligned data, 4–6
native AXP, 6–5

Debugging, 6–5, 6–7 to 6–9
on AXP hardware only, 6–8
restrictions on AXP systems, 6–8
translated images, 6–8

DECforms, 1–1
DECset, 6–6
DECwindows, 1–1
Delta debugger, 6–8
$DELTVA system service, A–5
Dependencies on other software

identifying, 3–1
$DEQ system service, 4–8, 4–11
Detailed Analysis Service, 2–3
Device configuration functions

in SYSMAN for AXP, 1–2
Device drivers, 4–2

user-written, 4–5, A–6
DIGITAL Command Language

See DCL
Disk block size

relation to page size, 4–11
DMA controller, 4–9
Documentation comments, sending to Digital, iii
Dynamic condition handler

establishing, 4–13
D_floating data type, 1–2, 1–5, 4–7, 4–16, B–4

in mixed-architecture clusters, B–5

E
Editors

unchanged for AXP, 1–1
$ENQ system service, 4–8, 4–11
Evaluating code, 2–1

checklist, A–1
Exception reporting, 4–12 to 4–13, B–6, B–8

compiler options, 4–13
immediacy of, A–6
imprecise, 4–12
precise, 4–12, 4–20
reliance on architectural details of, 4–14

Index–2

F
Feedback on documentation, sending to Digital, iii
Flag-passing protocols

for synchronization, 4–11
Floating-point data types

locating references, 4–16

G
Generating VAX instructions at run time, 4–4,

4–15, 4–21, B–6, B–8
$GETSYI system service, 4–11
Global sections

alignment of, 4–4
creating, A–5
mapping, A–5
writable, 4–8

Global Symbol Table (GST), 4–22
Granularity, 4–6, 4–9 to 4–11

byte, 4–9
of byte and word operations, 4–19, 4–21, B–6
quadword, 4–9
specifying by compiler, 4–10
VEST qualifiers

memory, 4–21
G_floating data type, 1–2, 4–7

H
H_floating data type, 1–2, 1–5, 4–7, 4–16

I
IEEE data types, 4–7

little endian, 1–2
Imprecise exception reporting, 4–12
Include files

for C programs, 6–2
Inner access modes, 4–2, 4–5
Instructions

atomicity, 4–8
provided by PALcode, 1–5
VEST qualifiers, 4–20

memory barrier, 4–12
multi-instruction issue, 1–5
out-of-order completion, 1–5
parallel execution, 1–5

Instruction stream
inspecting, 4–4

Interoperability
confirming, 6–10
of native AXP and translated images, 2–3,

4–17, 4–21
Interrupt priority level

See IPL

IPL (interrupt priority level)
elevated, 4–2
retained on Alpha AXP, 1–5

J
Jacket routines, 4–22, 6–6

created automatically, 4–22
writing for nonstandard calls, 4–22

JSB VAX instruction, 4–21, 4–22

L
Languages

programming
See programming languages

$LCKPAG system service, A–5
LIB$ESTABLISH library routine, 4–14
LIB$REVERT library routine, 4–14
Librarian utility (LIBRARIAN)

native AXP, 6–5
Library (LIB$) routines, 4–8

LIB$ESTABLISH, 4–14
LIB$REVERT, 4–14
not on AXP, 1–2

Link commands
changes required, 6–4

Linker utility
/BPAGE option, 4–21
commands, 6–4
default page size, 6–4
native AXP, 6–5
/NONATIVE_ONLY option, 4–22
options file changes, 1–1

Link procedures, 6–2
Little-endian data types, 1–2
$LKWSET system service, A–5
Load/store operations, 1–5
Locking mechanisms

for accessing byte variables, 4–10
Locking services

$DEQ, 4–8, 4–11
$ENQ, 4–8, 4–11

Logical names
for tools and files, 6–2

M
Machine instructions

creating, A–6
MACRO–64 assembler, 6–6
MACRO code

replacing, A–3
Managing code migration, 2–1
Mechanism array

reliance on architectural details of, 4–14

Index–3

Memory barrier instructions, 4–12
Memory-management system services, 4–11
Memory protection

page size granularity, 4–10
Message utility (MESSAGE)

native AXP, 6–6
$MGBLSC system service, 4–11, A–5
Migrating

ease of, 1–1
privileged code, 4–5
third-party products, 3–2
user-mode code, 1–1, 2–1

Migration documentation, x
Migration methods

and program architectural dependencies, 4–18
comparison of, 4–17
for user-mode code, 2–1
illustration of, 2–1
selecting, 4–1, 4–18

Migration planning
services, 2–3

Migration plans
business decisions, 5–1
contents, 5–1
sample, B–1
template, 5–1 to 5–3

Migration services
Custom Project Service, 2–3
Detailed Analysis Service, 2–3
how to order, 2–3
Migration Support Service, 2–3
Orientation Service, 2–3
Project Planning Service, 2–3

Migration Support Service, 2–3
Migration tools, 6–2
Migration training, 2–4

how to order, 2–4
Mixing native AXP and translated images

as a stage in migration, 2–3
possibility of, 2–3

MMS (Module Management System), 3–2, 6–2
Module Management System (MMS)

See MMS
Multi-instruction issue, 1–5
Multiprocessing, A–5

N
Natural alignment of data

See data alignment
Network interfaces

supported on AXP, 1–3
/NOMEMBER_ALIGN qualifier

for DEC C compiler, B–5
Nonstandard calls

writing jacket routines for, 4–22

O
OpenVMS AXP operating system

compatibility goals of, 1–1
Optimized code, 4–4
Optimizing compilers, 6–5
Order information

migration services, 2–3
migration training, 2–4

Orientation Service, 2–3

P
Packed decimal data type, 4–7, 4–16
Page size, 1–4, 4–10 to 4–11, A–5, B–6

hard-coded references, 4–11
memory protection granularity, 4–10, 4–21
permissive protection, 4–4, 4–19
relation to disk block size, 4–11

PALcode, 1–5
Parallel execution of instructions, 1–5
Parallel Processing Run-Time Library (PPL$)

routines, 4–8, 4–11
PCA (Performance and Coverage Analyzer)

analyzing images, 4–16
detecting unaligned data, 4–6, 4–16
identifying critical images, 4–18

PDP–11 compatibility mode, 4–2
Performance

of translated images, 2–2
Performance and Coverage Analyzer

See PCA
Performance monitors

non-Digital, 4–5
Permissive protection, 4–21
Planning a migration, 2–1, 3–1
Portability

of application in future, 5–1
#PRAGMA NO_MEMBER_ALIGNMENT, 4–6
Precise exception reporting, 4–12, 4–20, 4–21

VEST qualifiers, 4–21
Privileged architecture library

See PALcode
Privileged code

finding with VEST, 4–16
migrating to OpenVMS AXP, 4–5

Privileged mode operation, A–6
Privileged shareable images, 4–5
Privileged VAX instructions, 4–2
Procedure arguments

accessing, 4–13
Processor modes

unchanged on AXP, 1–5
Processor status word (PSW), 4–15

Index–4

Process space
used by translated image, 4–4

Program counter (PC), 4–2, 4–12
modifying, 4–15

Programming languages
See also specific languages
Ada, 4–2, 6–5
BASIC, 4–2, 6–5
C, 4–2, 6–5

include files, 6–2
/NOMEMBER_ALIGN qualifier, B–5
VOLATILE declaration, 4–8

C++, 4–2, 6–5
COBOL, 4–2, 6–5
FORTRAN, 4–2, 6–5
LISP, 4–2, 6–5
Pascal, 4–2, 6–5
PL/I, 4–2, 6–5
VAX MACRO, 4–2, 6–5

Project Planning, 2–3
Protection

permissive, 4–21

Q
Quadword granularity, 4–9

R
Rdb/VMS

same function on AXP, 1–3
Read/write operations

ordering of, 4–11 to 4–12, 4–19
Recompiling, 4–15

changes in compile commands, 6–4
comparison with translating, 4–17, 4–18
effect of architectural dependencies, 4–18 to

4–20
produces native AXP image, 6–5
resolving errors, 6–4
restrictions, 4–2
to create native AXP images, 2–1

Record Management Services
See RMS

Relinking, 6–5
changes in link commands, 6–4
to create native AXP images, 2–1

Return addresses
modifying on stack, 4–13

Reviewing application code, 4–16
RISC architecture

characteristics of, 1–4 to 1–5
RMS (Record Management Services)

unchanged for AXP, 1–2
RTL routines

LIB$ESTABLISH, 4–14
LIB$REVERT, 4–14

Run-time libraries
calling interface unchanged, 1–2
different operation on AXP, 1–2

Run-time library routines
See RTL routines

S
Selecting a migration method, 4–1, 4–18
Self-modifying code, 4–4
$SETAST system service, 4–8
Shareable images

identifying, 3–1
linker options file changes required, 1–1
privileged, 4–5
translated, 4–22

Shared data, 4–8
Shared variables

atomicity of, 4–8
Signal array

reliance on architectural details of, 4–14
Software migration tools, 2–1
Stack

modifying return addresses on, 4–13
Stack switching, 4–2
Support for migration, 2–3
Switching stacks, 4–2
Synchronization

and VEST, 4–16
explicit, 4–8
instructions, 4–19
latent problems, 4–15
of interprocess communication, A–5
using flag-passing protocols, 4–11
using system services, 4–11

SYS$LIBRARY:LIB
compiling against, 4–5

SYS.STB
linking against, 4–5, A–6

SYSGEN
See System Generation utility

SYSMAN
See System Management utility

System Generation utility (SYSGEN)
device configuration functions, 1–2

System library
compiling against, 4–5

System Management utility (SYSMAN)
device configuration functions, 1–2

System services
asynchronous, 4–9
calling interface unchanged, 1–2
$CMEXEC, 4–5
$CMKRNL, 4–5
$CRETVA, A–5
$CRMPSC, 4–5, 4–10, 4–11, A–5
$DELTVA, A–5

Index–5

System services (cont’d)
$DEQ, 4–8, 4–11
different operation on AXP, 1–2
$ENQ, 4–8, 4–11
$GETSYI, 4–11
$LCKPAG, A–5
$LKWSET, A–5
memory management, 4–11
$MGBLSC, 4–11, A–5
protection problems created, A–5
replacing VAX MACRO code, 4–4
$SETAST, 4–8
undocumented, 4–2
$UPDSEC, A–5
user-written, 4–5

System space
reference to addresses in, 4–2, 4–5

System symbol table (SYS.STB)
linking against, 4–5

T
Third-party products

migrating, 3–2
Threaded code, 4–2
TIE (Translated Image Environment), 1–2, 6–2

description, 6–6
invoked automatically, 6–7

Training, 2–4
Translated Image Environment

See TIE
Translated images

contents, 6–7
debugging, 6–8
description, 2–2
library routine calls, 1–2
performance of, 2–2
system service calls, 1–2

Translating, 1–2, 6–6
See also VEST
as a stage in migration, 4–20
comparison with recompiling, 4–17, 4–18
effect of architectural dependencies, 4–18 to

4–20
for compatibility, 2–2, 4–20
performance of translated image, 2–2
programs in languages with no AXP compiler,

6–5
restrictions, 4–2
tools for, 6–6
type of image produced, 6–7

U
Unaligned data

cause of reduced performance, 2–2
in dynamic structures, 4–16
supported under translation, 4–18

Unaligned variables, 4–16
Uninitialized variables, 4–16
$UPDSEC system service, A–5

V
Variables

shared
atomicity of, 4–8

unaligned, 4–16
uninitialized, 4–16

VAX architecture
dependencies, 4–5
general description, 1–3

VAX calling standard
call frame stack, B–6
reliance on, 4–13

VAX Environment Software Translator
See VEST

VAX instructions
CALLx, 4–21
generating at run time, 4–4, 4–15, 4–21, B–6,

B–8
interpreting, 6–7
JSB, 4–21, 4–22
LONGJMP, B–6
modifying, 4–15
privileged instructions, 4–2
reliance on behavior of, 4–15

cause of reduced performance, 2–2
SETJMP, B–6
supported in PALcode, 1–5
vector instructions, 4–2

VAX MACRO
as compiled language, 4–4
only a migration aid, 4–4
replaced by system services, 4–4

VAX MACRO-32 compiler, 4–13
only a migration aid, 4–4

Vector instructions, 4–2
VEST (VAX Environment Software Translator),

2–2, 6–2
analytical ability, 6–7
and page size, 4–21
as analysis tool, 4–16

restrictions, 4–16
capabilities, 6–6
/FLOAT=D53_FLOAT qualifier, 4–19
/FLOAT=D56_FLOAT qualifier, 4–19
generating VAX instructions, 4–21

Index–6

VEST (VAX Environment Software Translator)
(cont’d)

/OPTIMIZE=ALIGNMENT qualifier, 4–18,
4–20

/OPTIMIZE=NOALIGNMENT qualifier, 4–20
/PRESERVE=FLOAT_EXCEPTIONS qualifier,

4–20, 4–21
/PRESERVE=INSTRUCTION_ATOMICITY

qualifier, 4–19, 4–20
/PRESERVE=INTEGER_EXCEPTIONS

qualifier, 4–20, 4–21
/PRESERVE=MEMORY_ATOMICITY qualifier,

4–19, 4–21

/PRESERVE=READ_WRITE_ORDERING
qualifier, 4–19

resources required, 6–2
runs on VAX and AXP systems, 6–2
warning messages, B–4

VEST/DEPENDENCY analysis tool, 3–1, 6–2
Virtual addresses

manipulating, A–5

W
Working set

modifying, A–5
Writable global sections, 4–8

Index–7

