
OpenVMS Guide to Extended
File Specifications
Order Number: AA–REZRB–TE

April 2001

This document provides an overview of Extended File Specifications
and describes the impact of Extended File Specifications on system
managers, application developers, and users of the traditional OpenVMS
environment.

Revision/Update Information: This manual supercedes the OpenVMS
Guide to Extended File Specifications,
Version 7.2.

Software Version: OpenVMS Alpha Version 7.3
OpenVMS VAX Version 7.3

Compaq Computer Corporation
Houston, Texas

© 2001 Compaq Computer Corporation

Compaq, VAX, VMS, and the Compaq logo Registered in U.S. Patent and Trademark Office.

OpenVMS is a trademark of Compaq Information Technologies Group, L.P. in the United States and
other countries.

Microsoft and MS-DOS are trademarks of Microsoft Corporation in the United States and other
countries.

Motif, OSF/1, and UNIX are trademarks of The Open Group in the United States and other
countries.

All other product names mentioned herein may be the trademarks or registered trademarks of their
respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein.

The information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK6536

The Compaq OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . vii

1 Overview of Extended File Specifications for OpenVMS

1.1 Benefits of Extended File Specifications . 1–1
1.2 Features of Extended File Specifications . 1–2
1.2.1 ODS-5 Volume Structure . 1–2
1.2.1.1 Long File Names . 1–2
1.2.1.2 More Characters Legal Within File Names 1–2
1.2.1.3 Preservation of Case . 1–3
1.2.2 Deep Directory Structures . 1–3
1.2.2.1 Directory Naming Syntax . 1–3
1.3 Considerations Before Enabling ODS-5 Volumes . 1–3
1.3.1 Considerations for System Management . 1–4
1.3.2 Considerations for Users . 1–4
1.3.2.1 Mixed-Version Support . 1–4
1.3.2.2 Mixed-Architecture Support . 1–5
1.3.3 Considerations for Applications . 1–5
1.4 Recommendations for Using Extended File Specifications on OpenVMS

Applications . 1–7

2 Managing Extended File Naming on OpenVMS Systems

2.1 Levels of Support for Extended File Specifications 2–1
2.1.1 Full Support . 2–1
2.1.2 Default Support . 2–2
2.1.3 No Support for Extended File Naming . 2–2
2.1.4 No Support for ODS-5 . 2–2
2.2 Enabling Extended File Specifications on OpenVMS Alpha Systems 2–3
2.2.1 Using RMS Default Extended File Specifications Features 2–3
2.2.2 Enabling ODS-5 Volumes . 2–4
2.2.2.1 Initializing a New ODS-5 Volume . 2–4
2.2.2.2 Converting an Existing Volume to ODS-5 2–5
2.2.3 Converting from ODS-5 to ODS-2 . 2–6
2.3 Controlling Access to ODS-5 Volumes . 2–9
2.3.1 Preventing VAX Users from Accessing an ODS-5 Volume 2–9
2.3.2 Preventing an Untested Application from Accessing an ODS-5

Volume . 2–10
2.4 System Management Utility Changes . 2–11
2.4.1 Analyze/Disk_Structure Utility . 2–11
2.4.2 Backup Utility (Alpha Only) . 2–11
2.4.3 Physical Backups of ODS-5 Volumes on VAX Systems 2–12
2.4.4 Mount Utility (Alpha Only) . 2–12

iii

3 Extended File Naming Characteristics

3.1 File Specifications . 3–1
3.1.1 Traditional (ODS-2) Syntax . 3–1
3.1.2 Extended (ODS-5) Syntax . 3–2
3.1.2.1 ISO Latin-1 Character Set . 3–2
3.1.2.2 Special Characters . 3–2
3.1.2.3 Interpretation of Period (.) . 3–3
3.1.2.4 Expanded File Specification Length . 3–3
3.1.2.5 Using Wildcards . 3–4
3.1.2.5.1 Wildcard Characters . 3–4
3.1.2.5.2 Wildcard Syntax . 3–4
3.1.2.6 Case Preservation . 3–5
3.2 Directory Specifications . 3–5
3.2.1 Deep Directory Structures . 3–5
3.2.2 Directory Naming Syntax . 3–5
3.2.2.1 Directory ID and File ID Abbreviation . 3–6
3.3 Working in Mixed Environments . 3–6
3.4 DCL Support for ODS-5 Volumes . 3–6
3.4.1 Using the Extended File Specifications Parsing Feature in DCL 3–7
3.4.1.1 Enabling the Extended File Name Parsing Style 3–7
3.4.1.2 Resetting the Default File Name Parsing Style 3–7
3.4.1.3 Switching Between File Name Parsing Styles 3–7
3.4.2 Using Extended File Names in DCL Command Parameters 3–7
3.4.3 Command Procedure File Specification . 3–8
3.4.4 Case Preservation and $FILE . 3–9
3.4.5 Ampersand Versus Apostrophe Substitution . 3–9
3.5 DCL Commands and Utilities . 3–10
3.6 Displaying Files with Extended Names . 3–12
3.6.1 DIRECTORY Command . 3–13
3.6.2 TYPE Command . 3–14
3.6.3 DELETE Command . 3–14
3.6.4 PURGE Command . 3–14
3.7 Displaying Extended File Names on a Terminal . 3–15

4 Extended File Naming Considerations for OpenVMS Application
Developers

4.1 Evaluating Your Current Support Status . 4–1
4.1.1 Default Support . 4–1
4.1.2 No Support for Extended File Names . 4–1
4.1.3 No Support for ODS-5 Volumes . 4–2
4.2 Upgrading an Application to Support Extended File Specifications 4–2
4.2.1 Upgrading to Default Support . 4–2
4.2.1.1 Providing Support for ODS-5 . 4–2
4.2.1.2 Providing Support for Extended File Naming 4–3
4.2.2 Upgrading to Full Support . 4–4

iv

A Setting Users’ Expectations of Extended File Specifications

A.1 New Extended File Specifications Characteristics A–1
A.2 ODS-2 and ODS-5 Used Together . A–4
A.3 Architecture-Related Notes . A–7
A.4 Restrictions . A–7

B Technical Information

B.1 System Services Changes . B–1
B.1.1 $SET_PROCESS_PROPERTIESW System Service (Alpha Only) B–1
B.1.2 $CVT_FILENAME System Service (Alpha Only) B–2
B.1.3 $GETJPI System Service . B–6
B.1.4 $CREPRC System Service . B–6
B.1.5 $SETDDIR System Service . B–7
B.2 Record Management Services (RMS) Changes . B–7
B.2.1 Overview of Record Management Services Changes B–7
B.2.1.1 Extended File Specification Support . B–7
B.2.1.2 Additional Characters . B–7
B.2.1.3 Deeply Nested Directory Support . B–8
B.2.2 Syntax and Semantics Changes . B–8
B.2.2.1 Use of Hyphen as First File Name Character B–8
B.2.2.2 Characters Accepted Directly . B–8
B.2.2.3 Characters That Require an Escape Character B–8
B.2.2.4 Characters That Can Have an Escape Character B–9
B.2.2.5 Reserved Escape Sequences . B–9
B.2.2.6 Canonical Form of File Specifications . B–9
B.2.2.7 DID Abbreviation . B–10
B.2.2.8 FID Abbreviation . B–11
B.2.3 RMS Data Structure Changes (Alpha Only) . B–11
B.2.3.1 NAM Block . B–11
B.2.3.2 NAML Block . B–12
B.2.3.2.1 Validating the NAML Block . B–14
B.2.3.2.2 Using the NAM and NAML Block . B–15
B.2.3.2.3 Condition Values Returned . B–16
B.3 Files-11 XQP Changes . B–16
B.3.1 File Naming and Format Changes . B–17
B.3.1.1 Specifying the Format of the Input File Name B–18
B.3.1.2 Controlling the Format of Returned File Names B–18
B.3.1.3 Wildcard Searches and Pseudonames . B–19
B.3.1.4 Compatibility with Unchanged Applications B–20
B.3.2 File Attribute Changes . B–21
B.3.2.1 Modified File Attributes . B–21
B.4 Programming Utility Changes . B–23
B.4.1 File Definition Language (FDL) Routines . B–23
B.4.1.1 FDL$CREATE Routine (Alpha Only) . B–23
B.4.1.2 FDL$GENERATE Routine (Alpha Only) . B–23
B.4.1.3 FDL$PARSE Routine (Alpha Only) . B–24
B.4.1.4 FDL$RELEASE Routine (Alpha Only) . B–24
B.5 Run-Time Library Changes . B–24
B.5.1 LIB$CREATE_DIR . B–25
B.5.2 LIB$DELETE_FILE . B–25
B.5.3 LIB$FILE_SCAN . B–25
B.5.4 LIB$FIND_FILE . B–26
B.5.5 LIB$RENAME_FILE . B–26

v

B.5.6 LIB$FID_TO_NAME . B–26

C Character Sets

Index

Figures

C–1 Differences Between DEC Multinational Character Set and ISO
Latin-1 Character Set . C–9

Tables

2–1 Non-Supported OpenVMS Components . 2–3
3–1 Sample Wildcards and Matching Patterns . 3–4
3–2 Directory Names on ODS-5 Volumes . 3–5
3–3 DCL New Features . 3–11
B–1 Property Code Descriptions . B–2
B–2 Flag Descriptions . B–4
B–3 New NAM$B_NOP Flag . B–12
B–4 New NAM$L_FNB Flags . B–12
B–5 NAM$B_NMC Flag . B–12
B–6 New Fields for the NAML Block . B–13
B–7 RMS Condition Values Returned When Using NAML Block B–16
B–8 FIB Constants for File Formats . B–18
B–9 New FIB$W_NMCTL Flags . B–18
B–10 FIB Flag Settings and Format of Related Returned Names B–20
B–11 Safe Buffer Sizes for Each File Format (in Bytes) B–20
B–12 Modified Attribute Codes . B–21
C–1 DEC Multinational Character Set . C–1

vi

Preface

Intended Audience
This document is intended for system managers, application developers, and
users who implement Extended File Specifications on one or more systems in an
OpenVMS environment.

Document Structure
This manual consists of the following chapters and appendixes:

• Chapter 1 provides an overview of Extended File Specifications and its
features.

• Chapter 2 describes the changes visible to OpenVMS system managers,
provides instructions on how to enable and control user access to ODS-5
volumes, and describes the impact on functions such as backing up and
restoring media.

• Chapter 3 describes the changes visible to OpenVMS users when using ODS-5
volumes.

• Chapter 4 describes how to evaluate the support for Extended File
Specifications of OpenVMS applications.

• Appendix A contains guidelines for setting users’ expectations about using the
features of Extended File Specifications.

• Appendix B contains detailed technical information about the changes to the
OpenVMS programming interface to support Extended File Specifications.
Much of this material appears in other documents in the OpenVMS
documentation.

• Appendix C describes the DEC Multinational character set and the ISO
Latin-1 character set.

Related Documents
For related information about Extended File Specifications, see the following
documents:

• Guide to OpenVMS File Applications

• OpenVMS DCL Dictionary: A–M

• OpenVMS DCL Dictionary: N–Z

• OpenVMS RTL Library (LIB$) Manual

• OpenVMS Record Management Services Reference Manual

• OpenVMS System Manager’s Manual, Volume 1: Essentials

vii

• OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and
Complex Systems

• OpenVMS System Management Utilities Reference Manual: A–L

• OpenVMS System Management Utilities Reference Manual: M–Z

• OpenVMS System Services Reference Manual: A–GETUAI

• OpenVMS System Services Reference Manual: GETUTC–Z

• OpenVMS Utility Routines Manual

• Compaq Advanced Server for OpenVMS Server Administrator’s Guide

For additional information about OpenVMS products and services, access the
Compaq website at the following location:

http://www.openvms.compaq.com/

Reader’s Comments
Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation
Use the following World Wide Web address to order additional documentation:

http://www.openvms.compaq.com/

If you need help deciding which documentation best meets your needs, call
800-282-6672.

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

viii

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

ix

1
Overview of Extended File Specifications for

OpenVMS

OpenVMS Version 7.2 on Alpha implements Extended File Specifications, which
consists of two major components:

• A new, optional, volume structure, ODS-5, which provides support for file
names that are longer and have a greater range of legal characters than in
previous versions of OpenVMS

• Support for deep directories

Taken together, these components provide much greater flexibility for OpenVMS
Alpha systems (using Advanced Server for OpenVMS 7.2, formerly known as
PATHWORKS for OpenVMS), to store, manage, serve, and access files that have
names similar to those in a Windows 95/98 or Windows NT environment.

This chapter provides a brief overview of the benefits, features, and support for
Extended File Specifications, as well as changes in OpenVMS behavior that occur
under Extended File Specifications.

1.1 Benefits of Extended File Specifications
The deep directories and extended file names supported by Extended File
Specifications provide the following benefits:

• Users of Advanced Server for OpenVMS 7.2 (formerly known as
PATHWORKS for OpenVMS) have the ability to store longer file names,
preserve the case of file names, and use deeper directory structures. These
new capabilities make the use of an OpenVMS file server more transparent to
Windows 95/98 and Windows NT users.

• OpenVMS system managers can see files on OpenVMS systems with the
names as specified by Windows 95/98 and Windows NT users.

• Applications developers who are porting applications from other environments
that have support for deep directories can use a parallel structure on
OpenVMS.

• Longer file naming capabilities and Unicode support enables OpenVMS
Version 7.2 to act as a DCOM server for Windows NT clients, and ODS-5
provides capabilites that make the OpenVMS and Windows NT environment
more homogeneous for DCOM developers.

• JAVA applications on OpenVMS will comply with JAVA object naming
standards.

• General OpenVMS users can make use of long file names, new character
support, and the ability to have lowercase and mixed-case file names.

These benefits result from the features described in Section 1.2.

Overview of Extended File Specifications for OpenVMS 1–1

Overview of Extended File Specifications for OpenVMS
1.2 Features of Extended File Specifications

1.2 Features of Extended File Specifications
Extended File Specifications consists of two main features, the ODS-5 volume
structure, and support for deep directories. These features are described in the
sections that follow.

1.2.1 ODS-5 Volume Structure
OpenVMS Version 7.2 implements On-Disk Structure Level 5 (ODS-5). This
structure provides the basis for creating and storing files with extended file
names. You can choose whether or not to convert a volume to ODS-5 on your
OpenVMS Alpha systems.

The ODS-5 volume structure allows the following features:

• Long file names

• More characters legal within file names

• Preservation of case within file names

These features are described in the sections that follow.

1.2.1.1 Long File Names
On an ODS-5 volume, the name of a file (excluding the version number) can be up
to 236 8-bit or 118 16-bit characters long. Complete file specifications longer than
255 bytes are abbreviated by RMS when presented to unmodified applications.

For more information on extended file names, see Section 3.1.2.

1.2.1.2 More Characters Legal Within File Names
A broader set of characters is available for naming files on OpenVMS. ODS-5
offers support for file names that use the 8-bit ISO Latin-1 character and 16-bit
Unicode (UCS-2) character sets.

ISO LATIN-1 and Unicode (UCS-2) Character Sets
The ISO Latin-1 Multinational character set is a superset of the traditional ASCII
character set used by versions of OpenVMS previous to Version 7.2. In extended
file specifications, all characters from the 8-bit ISO Latin-1 Multinational
character set are valid in file specifications, except the following:

C0 control codes (0x00 to 0x1F inclusive)
Double quotation marks (")
Asterisk (*)
Backslash (\)
Colon (:)
Left and right angle brackets (< >)
Slash (/)
Question mark (?)
Vertical bar (|)

To unambiguously enter or display certain special characters in an ODS-5
compliant file specification, such as a space, you must precede the character
with a circumflex (^).

For more information on how these character sets are used in file names, see
Section 3.1.2.

1–2 Overview of Extended File Specifications for OpenVMS

Overview of Extended File Specifications for OpenVMS
1.2 Features of Extended File Specifications

1.2.1.3 Preservation of Case
In prior versions of OpenVMS, DCL, RMS, and the file system converted all file
specifications to uppercase. ODS-5 preserves the case of file specifications. For
example:

$ CREATE x.Y
Ctrl/Z

$DIRECTORY

Directory DISK1:[USER1]

x.Y;1

$

As you can see, the mixed-case of the file name is preserved.

For more information on case sensitivity, see Section 3.1.2.6.

1.2.2 Deep Directory Structures
Both ODS-2 and ODS-5 volume structures support deep nesting of directories,
subject to the following limits:

• There can be up to 255 levels of directories.

• The name of each directory can be up to 236 8-bit or 118 16-bit characters
long.

For example, a user can create the following deeply nested directory:

$ CREATE/DIRECTORY [.a.b.c.d.e.f.g.h.i.j.k.l.m]

A user can create the following directory with a long name on an ODS-5 volume:

$ CREATE/DIRECTORY
[.AVeryLongDirectoryNameWhichHasNothingToDoWithAnythingInParticular]

Complete file specifications longer than 255 bytes are abbreviated by RMS when
presented to unmodified applications.

1.2.2.1 Directory Naming Syntax
On an ODS-5 volume, directory names conform to most of the same conventions
as file names when using the ISO Latin-1 character set. Periods and special
characters can be present in the directory name, but in some cases, they must be
preceded by a circumflex (^) in order to be recognized as literal characters.

Section 3.2 contains more information about deep directories. Section 3.6.1
contains information about displaying long directory names.

1.3 Considerations Before Enabling ODS-5 Volumes
ODS-5 is being introduced primarily to provide enhanced file sharing capabilities
for users of Advanced Server for OpenVMS 7.2 (formerly known as PATHWORKS
for OpenVMS), as well as DCOM and JAVA applications.

Once ODS-5 volumes are enabled, some of the new capabilities can potentially
impact certain applications or layered products, as well as some areas of system
management. The new syntax for file names that is allowed on ODS-5 volumes
cannot be fully utilized on ODS-2 volumes. Because pre-Version 7.2 Alpha
systems cannot access ODS-5 volumes, and Open VMS Version 7.2 VAX systems
have limited ODS-5 functionality, you must be careful where and how you enable
ODS-5 volumes in mixed-version and mixed-architecture OpenVMS Clusters.

Overview of Extended File Specifications for OpenVMS 1–3

Overview of Extended File Specifications for OpenVMS
1.3 Considerations Before Enabling ODS-5 Volumes

The following sections comprise a summary of how enabling ODS-5 volumes can
impact system management, users, and applications.

1.3.1 Considerations for System Management
RMS access to deep directories and extended file names is available only on
ODS-5 volumes mounted on OpenVMS Alpha V7.2 systems. Compaq recommends
that ODS-5 volumes be enabled only on a homogeneous OpenVMS Alpha V7.2
Cluster.

If ODS-5 is enabled in a mixed-version or mixed-architecture OpenVMS Cluster,
the system manager must follow special procedures and be aware of specific
restrictions on mixed-version and mixed-architecture OpenVMS Clusters with
ODS-5 volumes enabled:

• Users must access ODS-5 files and deep directories from OpenVMS Alpha
V7.2 systems only, because these capabilities are not supported on earlier
versions.

• Users who have created deep directories can view those directories only from
OpenVMS Alpha V7.2 systems.

• Pre-Version 7.2 systems cannot mount an ODS-5 volume nor read ODS-2 or
ODS-5 file names on that volume.

Section 1.3.2 describes in greater detail the limitations of ODS-5 support for users
in a mixed-version or mixed-architecture OpenVMS Cluster.

Most unprivileged applications will work with most extended file names, but
some may need modifications to work with all extended file names. Privileged
applications that use physical or logical I/O to disk and applications that have a
specific need to access ODS-5 file names or volumes may require modifications
and should be analyzed. See the website www.openvms.compaq.com for a list of
fully supported OpenVMS applications. Section 1.3.3 describes in greater detail
the impact of ODS-5 on OpenVMS applications.

Chapter 2 contains more information for determining the levels of support for
Extended File Specifications, and guidelines for managing a system with ODS-5
volumes enabled.

1.3.2 Considerations for Users
A user on an OpenVMS Alpha Version 7.2 system can take advantage of all
Extended File Specifications capabilities on ODS-5 volumes mounted on an
OpenVMS Alpha Version 7.2 system.

A user on a mixed-version or mixed-architecture OpenVMS Cluster is subject to
some limitations in ODS-5 functionality. Section 1.3.2.1 lists those restrictions
that exist on a mixed-version OpenVMS Cluster. Section 1.3.2.2 lists those
restrictions that exist on a mixed-architecture OpenVMS Cluster.

1.3.2.1 Mixed-Version Support
Systems running prior versions of OpenVMS cannot mount ODS-5 volumes,
correctly handle extended file names, or even see extended file names.

The following sections describe support on OpenVMS Version 7.2 and on prior
versions of OpenVMS in a mixed-version cluster.

1–4 Overview of Extended File Specifications for OpenVMS

Overview of Extended File Specifications for OpenVMS
1.3 Considerations Before Enabling ODS-5 Volumes

Users on OpenVMS Alpha Version 7.2 Systems
A user on an OpenVMS Alpha Version 7.2 system can continue to access pre-
Version 7.2 files and directories; for example, a user can do all of the following:

• Create and access deep directory structures on ODS-2 volumes.

• Read a BACKUP saveset created on an earlier version of OpenVMS.

• Use DECnet to copy a file with an ODS-5 name to a file with an ODS-2 name
on a system running an earlier version of OpenVMS.

Users on Pre-Version 7.2 Systems
On mixed-version clusters, some restrictions exist. Users on a version of
OpenVMS prior to Version 7.2:

• Cannot access any files on an ODS-5 volume. This is true regardless of
whether the volume is connected physically on a CI or SCSI bus, or by an
MSCP or QIO server.

• Cannot successfully create or restore an ODS-5 image saveset. However,
these users can successfully restore ODS-2-compliant file names from an
ODS-5 saveset.

1.3.2.2 Mixed-Architecture Support
Current ODS-2 volume and file management functions remain the same on both
VAX and Alpha Version 7.2 systems; however, extended file naming and parsing
are not available on VAX systems.

The following sections describe support on OpenVMS VAX and Alpha systems in
a mixed-architecture cluster.

Limited Extended File Specifications Capabilities on VAX Systems
In mixed-architecture OpenVMS Version 7.2 clusters, OpenVMS Version 7.2 VAX
systems are limited to the following Extended File Specifications functionality:

• Ability to mount an ODS-5 volume

• Ability to write and manage ODS-2-compliant files on an ODS-5 volume

• See pseudonames (\pISO_LATIN\.??? or \pUNICODE\.???) when accessing an
ODS-5 file specification

BACKUP Limitations
From a VAX system, users cannot successfully create or restore an ODS-5 image
saveset. However, these users can successfully restore ODS-2-compliant file
names from an ODS-5 saveset.

1.3.3 Considerations for Applications
ODS-5 functionality can be selected on a volume-by-volume basis. If ODS-5
volumes have not been enabled on your system, all existing applications will
continue to function as before. If ODS-5 volumes have been enabled, you need to
be aware of the following changes:

• OpenVMS file handling and command line parsing have been modified to
enable them to work with extended file names on ODS-5 volumes while
still being compatible with existing applications. The majority of existing,
unprivileged applications will work with most extended file names, but some
may need modifications to work with all extended file names.

Overview of Extended File Specifications for OpenVMS 1–5

Overview of Extended File Specifications for OpenVMS
1.3 Considerations Before Enabling ODS-5 Volumes

• Privileged applications that use physical or logical I/O to disk may require
modifications and should be analyzed. Applications that have a specific need
to access ODS-5 file names or volumes should be analyzed to determine if
they require modification.

On ODS-5 volumes, existing applications and layered products that are coded
to documented interfaces, as well as most DCL command procedures, should
continue to work without modification.

However, applications that are coded to undocumented interfaces, or include any
of the following, may need to be modified in order to function as expected on an
ODS-5 volume:

• Internal knowledge of the file system, including knowledge of:

The data layout on disk
The contents of file headers
The contents of directory files

• File parsing tailored to a particular on-disk structure.

• Assumptions about the syntax of file specifications, such as the placement of
delimiters and legal characters.

• Assumptions about the case of file specifications. Mixed and lowercase file
specifications will not be converted to uppercase, which can affect string
matching operations.

• Assumptions that file specifications are identical between RMS and the file
system.

Note

All unmodified XQP applications running on an OpenVMS VAX or Alpha
system that access an ODS-5 volume will see pseudonames returned in
place of Unicode or ISO Latin-1 names that are not ODS-2 compliant.
This can cause applications to act in an unpredictable manner.

Applications that specify or retrieve filenames with the XQP interface
using ODS-5 disks must be modified in order to access files with extended
names.

See Chapter 4 for further discussion of the support status of OpenVMS
applications.

1–6 Overview of Extended File Specifications for OpenVMS

Overview of Extended File Specifications for OpenVMS
1.4 Recommendations for Using Extended File Specifications on OpenVMS Applications

1.4 Recommendations for Using Extended File Specifications on
OpenVMS Applications

It is essential that system managers perform the following steps before enabling
ODS-5:

• Review all ODS-5 considerations.

• Understand the support levels for different OpenVMS applications.

• Segregate applications that do not support ODS-5 or have not been tested
with ODS-5 names or volumes.

• Review the guidelines for setting users’ expectations in Appendix A.

Note

Compaq recommends that you enable ODS-5 disks in a homogeneous
OpenVMS Version 7.2 Alpha cluster only.

Overview of Extended File Specifications for OpenVMS 1–7

2
Managing Extended File Naming on OpenVMS

Systems

Managing an OpenVMS system with Extended File Specifications requires an
understanding of the support provided by different OpenVMS applications, how
to enable and control the new environment, and the changes to OpenVMS system
management utilities. This chapter contains the following topics:

• Levels of support provided by the current set of OpenVMS commands and
utilities that support Extended File Specifications

• How to enable Extended File Specifications on an OpenVMS Alpha system

• How to control user access to ODS-5 volumes

• Changes to system management utilities

2.1 Levels of Support for Extended File Specifications
To help determine the expected behavior of OpenVMS utilities and commands for
ODS-5, the following levels of support have been established. Each level outlines
the acceptable behavior of a utility or command when it encounters an extended
(ODS-5 compliant) file specification.

The levels of support for ODS-5, from full support to no support, are defined in
Sections 2.1.1 through 2.1.4.

2.1.1 Full Support
OpenVMS utilities and commands that offer full support for ODS-5 have been
specifically modified to take advantage of all the features of extended file
naming. These utilities and commands should accept and handle extended
file specifications without error while maintaining the case as created.1

In addition, OpenVMS commands and utilities that fully support Extended
File Specifications can accept and produce long file specifications that exceed
the traditional 255-byte limit in their original form2—without requiring them
to be abbreviated in Directory ID (DID) or File ID (FID) format. For the list
of OpenVMS components that fully support Extended File Specifications, see
Section 3.4.

1 When creating the first version of a new file, the case of the new file matches that case
specified by the user. When creating subsequent versions of an existing file, the case
remains the same as the original version.

2 If you are typing a long file specification on a DCL command line, DCL still limits the
command line length to 255 bytes.

Managing Extended File Naming on OpenVMS Systems 2–1

Managing Extended File Naming on OpenVMS Systems
2.1 Levels of Support for Extended File Specifications

2.1.2 Default Support
OpenVMS utilities and commands with default support have had little or no
modification to take advantage of Extended File Specifications. These utilities
and commands are expected to handle most of the attributes of extended file
specifications (such as new characters and deep directory structures) correctly.
However, file names may be created or displayed with the wrong case.

In contrast with utilities that have full support, utilities with default support rely
on DID and FID abbreviation offered by RMS to handle long file specifications.
As a result, these utilities are subject to the following restrictions related to DID
and FID abbreviation:

• Matching operations in an environment where FID abbreviation is used may
not always work as expected. For example, wildcard matching operations
may not capture all target file names because the long file names may
be represented in their numeric FID-abbreviated form. This restriction
specifically applies to matching operations that are performed outside of
RMS.

• Wildcards and sticky defaults cannot be used with a FID abbreviation. For
example, the following commands are illegal:

$ DIRECTORY a[1,2,3]*.txt
$ COPY a[1,2,3].txt *.txt2

Because a FID abbreviation is a unique numeric representation of one file, it
cannot be used to represent or match any other file.

• Creating a file using a FID abbreviation is illegal.

For more information about DID abbreviations, see Section B.2.2.7. For more
information about FID abbreviations, see Section B.2.2.8.

2.1.3 No Support for Extended File Naming
OpenVMS utilities and commands that do not support extended file names
can function on ODS-5 volumes; however, they are restricted to operating with
traditional file specifications only. These utilities and commands should be
used carefully on ODS-5 volumes because Compaq cannot ensure that they will
function successfully when they encounter extended file specifications.

Table 2–1 lists the OpenVMS utilities and commands that do not support
Extended File Specifications because of limitations with either handling extended
file names or the ODS-5 volume structure.

2.1.4 No Support for ODS-5
OpenVMS utilities and commands that do not support the ODS-5 volume
structure cannot handle extended file names. These utilities and commands
should be used carefully on ODS-5 volumes because Compaq cannot ensure that
they will function successfully even when they only encounter traditional file
specifications.

Table 2–1 lists the OpenVMS utilities and commands that do not support
Extended File Specifications because of limitations with either handling extended
file names or the ODS-5 volume structure.

2–2 Managing Extended File Naming on OpenVMS Systems

Managing Extended File Naming on OpenVMS Systems
2.1 Levels of Support for Extended File Specifications

Table 2–1 Non-Supported OpenVMS Components

Component Notes

No ODS-5 Support

Disk defragmenters Unsupported unless a specific defragmentation tool
documents that it has been updated to support an ODS-5
volume. 1

System disk Do not set to or initialize as an ODS-5 volume.

No Extended File Naming Support

Code compilers Cannot use extended file names for object files. However,
code compilers can create applications that support
extended names.

INSTALL Known images Do not install an image with an extended file name as a
known image.

LINK Cannot output an image with an extended file name.

MONITOR Cannot reliably process extended file names.

Network files (NET*.DAT) Do not rename to an extended file name.

Object modules (.OBJ) Do not rename to an extended file name.

Page and swap files Do not use an extended file name.

SYSGEN Do not write a parameter file with an extended file name.

System startup files Do not rename to an extended file name.

1Note that DFO has been modified to support ODS-5 volumes.

2.2 Enabling Extended File Specifications on OpenVMS Alpha
Systems

Sections 2.2.1, 2.2.2, and 2.2.3 explain how to take advantage of Extended File
Specifications on OpenVMS systems.

Note

Extended File Specifications is not available on systems running versions
of OpenVMS Alpha prior to Version 7.2. On these systems, you cannot
mount ODS-5 volumes nor take advantage of extended file names on an
OpenVMS file system.

2.2.1 Using RMS Default Extended File Specifications Features
RMS allows you to use directory levels deeper than 8, as well as the new RMS
API extensions on both ODS-2 and ODS-5 volumes. However, you can create
extended file names only on ODS-5 volumes. Section 2.2.2 contains procedures
for creating new ODS-5 volumes and for converting ODS-2 volumes to ODS-5
volumes.

On ODS-5 volumes, you—and also a program—can create a file with an
extended name on an ODS-5 volume. However, by default, DCL (as well as
some applications) does not accept all extended file names and capitalizes any
lowercase file names entered on the command line. For DCL to accept all

Managing Extended File Naming on OpenVMS Systems 2–3

Managing Extended File Naming on OpenVMS Systems
2.2 Enabling Extended File Specifications on OpenVMS Alpha Systems

extended file names, you must enable the extended parsing style for DCL, as
explained in Section 3.4.1.

Section B.2 contains detailed information about RMS Extended File Specifications
features.

2.2.2 Enabling ODS-5 Volumes
To create an ODS-5 volume on an OpenVMS Alpha system, the system manager
must do either of the following:

• Initialize a new volume as ODS-5

• Convert an existing volume from ODS-2 to ODS-5

Creating ODS-5 volumes allows you to take advantage of ODS-5 attributes for
Advanced Server for OpenVMS 7.2 (formerly known as PATHWORKS) clients;
you can see and manage these attributes from OpenVMS.

Section 2.2.2.1 contains instructions for initializing a new ODS-5 volume.
Section 2.2.2.2 contains instructions for converting an existing volume to ODS-5.

Note

If you plan to add a new volume to a volume set, the structure level of the
new volume must match that of the volume set. If it does not, the Mount
utility displays the following error message:

Structure level on device ... is inconsistent with volume set

2.2.2.1 Initializing a New ODS-5 Volume
You can initialize a new volume as an ODS-5 volume by issuing the INITIALIZE
command in the following format. Note that once you initialize the volume, the
current contents of the volume are lost.

$ INITIALIZE /STRUCTURE_LEVEL=5 device-name volume-label

For example:

$ INITIALIZE /STRUCTURE_LEVEL=5 DKA300: DISK1
$ MOUNT DKA300: DISK1 /SYSTEM
%MOUNT-I-MOUNTED, DISK1 mounted on _STAR$DKA300:

The first command initializes the DKA300: device as an ODS-5 volume and
assigns the volume-label DISK1. The second command mounts the DISK1 volume
as a public volume.

To verify that the volume has been initialized ODS-5, you can issue a command
and see a display such as the following:

$ WRITE SYS$OUTPUT F$GETDVI ("DKA300:","ACPTYPE")
F11V5

F11V5 indicates that the volume is ODS-5.

2–4 Managing Extended File Naming on OpenVMS Systems

Managing Extended File Naming on OpenVMS Systems
2.2 Enabling Extended File Specifications on OpenVMS Alpha Systems

2.2.2.2 Converting an Existing Volume to ODS-5
To convert an existing volume to ODS-5, follow these steps:

1. Dismount the volume throughout the cluster; for example:

$ DISMOUNT /CLUSTER DKA300:

2. Mount the volume as a private volume; for example:

$ MOUNT DKA300: DISK1
%MOUNT-I-MOUNTED, DISK1 mounted on _STAR$DKA300:

Omitting the /SYSTEM qualifier causes the system to mount the volume as a
private, not a public, volume.

3. You can check that the volume is ODS-2 by issuing a command and seeing a
display such as the following:

$ WRITE SYS$OUTPUT F$GETDVI ("DKA300:","ACPTYPE")
F11V2

F11V2 indicates that the volume is ODS-2.

4. Compaq strongly recommends that you back up the volume. You cannot go
back to ODS-2 format once you change to ODS-5 except by restoring a backup,
as described in Section 2.2.3. For example:

$ BACKUP /IMAGE DKA300: SAV.BCK /SAVE_SET

5. Set the characteristics of the volume by using a command in the following
format:

$ SET VOLUME /STRUCTURE_LEVEL=5 device-name

For example:

$ SET VOLUME /STRUCTURE_LEVEL=5 DKA300:

Note

You cannot use the SET VOLUME command to change a volume from
ODS-5 to ODS-2. To reset a volume to ODS-2, see the instructions in
Section 2.2.3.

If a failure occurs after you issue the SET VOLUME/STRUCTURE_
LEVEL command, refer to the instructions following Step 5.

When you issue the SET VOLUME command, the system verifies that the
volume can be converted by testing for the following:

• The device must be a disk, and its on-disk structure must be ODS-2 or
ODS-5.

If the volume fails these tests, the system displays messages similar to
the following:

%SET-E-NOTMOD, DKA300: not modified
-SET-E-NOTDISK, device must be a Files-ll format disk

%SET-E-NOTMOD, DKA300: not modified
-SET-W-INVODSLVL, Invalid on-disk structure level

• The disk must be privately owned; the owner process-ID (PID) must be
the same as the process that issues the SET VOLUME command.

Managing Extended File Naming on OpenVMS Systems 2–5

Managing Extended File Naming on OpenVMS Systems
2.2 Enabling Extended File Specifications on OpenVMS Alpha Systems

If the volume fails this test, the system displays a message similar to the
following:

%SET-E-NOTMOD, DKA300: not modified
-SET-W-NOTPRIVATE, device must be mounted privately

• The mount count must indicate that the device has been mounted only
once, which protects against anyone mounting the device over a cluster.

If the volume fails this test, the system displays a message similar to the
following:

%SET-E-NOTMOD, DKA300: not modified
-SET-W-NOTONEACCR, device must be mounted with only one accessor

6. Dismount the private volume DKA300: and remount the volume publicly by
issuing commands such as the following:

$ DISMOUNT DKA300:
$ MOUNT /CLUSTER DKA300: DISK1
%MOUNT-I-MOUNTED, DISK1 mounted on _STAR$DKA300:

To verify that the volume has been converted to ODS-5, you can issue a
command and see a display such as the following:

$ WRITE SYS$OUTPUT F$GETDVI ("DKA300:","ACPTYPE")
F11V5

F11V5 indicates that the volume is ODS-5.

If a Failure Occurs...
If a failure such as an I/O error or a system crash occurs after you enter the SET
VOLUME/STRUCTURE_LEVEL command, but before the command completes,
the volume might be only partially updated. If so, when you enter the MOUNT
command, the Mount utility will display one of the following error messages:

Inconsistent file structure level on device ...

Structure level on device ... is inconsistent with volume set

If either condition is true, you can issue the MOUNT command only with the
/NOSHARE qualifier (or with no qualifier, because /NOSHARE is the default).
When you do, the system displays the same error message but only as a warning.

To recover from the error condition, reissue the SET VOLUME/STRUCTURE_
LEVEL=5 command. Then dismount and remount the disk. As a last resort, you
can restore the backup you made.

2.2.3 Converting from ODS-5 to ODS-2
Two types of BACKUP operations, file and image, support converting ODS-5
file names to ODS-2 file names. (File and image operations are described in the
Backup chapter of the OpenVMS System Manager’s Manual.)

In the examples in the following descriptions, notice that when you perform
a conversion to or from a save set, the ‘‘created as’’ or ‘‘copied as’’ message is
displayed for the converted files.

• Conversions during image operations

– Restoring an ODS-5 image save set to an ODS-2 disk

You can use this method if you have an image backup of an ODS-5 disk,
and you want to restore it to an ODS-2 disk.

2–6 Managing Extended File Naming on OpenVMS Systems

Managing Extended File Naming on OpenVMS Systems
2.2 Enabling Extended File Specifications on OpenVMS Alpha Systems

In the command line in the following example, IMAGE.BCK is the ODS-5
save set, and DKA200 is the ODS-2 disk. When you use this conversion
method, you must preinitialize the output disk to ODS-2 and then include
the /NOINIT qualifier in your command line.

$ BACKUP/LOG/IMAGE/CONVERT DKA500:[000000]IMAGE.BCK/SAVE -
_$ DKA200:/NOINIT

%BACKUP-I-ODS5CONV, structure level 5 files will be converted to structure
level 2 on DKA200:

-BACKUP-I-ODS5LOSS, conversion may result in loss of structure level 5
file attributes

%BACKUP-S-CREATED, created DKA200:[000000]000000.DIR;1
%BACKUP-S-CREATED, created DKA200:[000000]BACKUP.SYS;1
%BACKUP-S-CREATED, created DKA200:[000000]CONTIN.SYS;1
%BACKUP-S-CREATED, created DKA200:[000000]CORIMG.SYS;1
%BACKUP-S-CREATED, created DKA200:[000000]SECURITY.SYS;1
%BACKUP-S-CREATED, created MDA2:[000000]TEST_FILES.DIR;1
%BACKUP-S-CREATEDAS, created DKA200:[TEST_FILES]SUB^_^{DIR^}.DIR;1 as

DKA200:[TEST_FILES]SUB$$DIR$.DIR;1
%BACKUP-S-CREATEDAS, created

DKA200:[TEST_FILES.SUB^_^{DIR^}]SUB^&_~_FILE_~.DAT;1 as
DKA200:[TEST_FILES.SUB$$DIR$]SUB$_$_FILE_$.DAT;1

%BACKUP-S-CREATEDAS, created
DKA200:[TEST_FILES]THIS^_IS^_A^_TEST^{_FILE_^}.DAT;1 as
DKA200:[TEST_FILES]THISISA$TEST$_FILE_$.DAT;1

%BACKUP-S-CREATED, created DKA200:[000000]VOLSET.SYS;1

– Saving an ODS-5 disk to an ODS-2 image save set

You can use this method if you want to make an ODS-2 image save set
of an ODS-5 disk that can be read by a system running a version of
OpenVMS prior to Version 7.2.

In the following example, DKA500: is an ODS-5 disk, and IMAGE.BCK is
an ODS-2 save set on the DKA200: disk.

$ BACKUP/LOG/CONVERT/IMAGE DKA500: DKA200:[000000]IMAGE.BCK/SAVE

%BACKUP-I-ODS5CONV, structure level 5 files will be converted to
structure level 2 on DKA200:

-BACKUP-I-ODS5LOSS, conversion may result in loss of structure level 5
file attributes

%BACKUP-S-COPIED, copied DKA200:[000000]000000.DIR;1
%BACKUP-S-COPIED, copied DKA200:[000000]BACKUP.SYS;1
%BACKUP-S-HEADCOPIED, copied DKA200:[000000]BADBLK.SYS;1 header
%BACKUP-S-HEADCOPIED, copied DKA200:[000000]BADLOG.SYS;1 header
%BACKUP-S-HEADCOPIED, copied DKA200:[000000]BITMAP.SYS;1 header
%BACKUP-S-COPIED, copied DKA200:[000000]CONTIN.SYS;1
%BACKUP-S-COPIED, copied DKA200:[000000]CORIMG.SYS;1
%BACKUP-S-HEADCOPIED, copied DKA200:[000000]INDEXF.SYS;1 header
%BACKUP-S-COPIED, copied DKA200:[000000]SECURITY.SYS;1
%BACKUP-S-COPIED, copied DKA200:[000000]TEST_FILES.DIR;1
%BACKUP-S-COPIEDAS, copied DKA200:[TEST_FILES]Sub^_^{Dir^}.DIR;1 as

DKA200:[TEST_FILES]SUB$$DIR$.DIR;1
%BACKUP-S-COPIEDAS, copied

DKA200:[TEST_FILES.Sub^_^{Dir^}]Sub^&_~_File_~.Dat;1 as
DKA200:[TEST_FILES.SUB$$DIR$]SUB$_$_FILE_$.DAT;1

%BACKUP-S-COPIEDAS, copied
DKA200:[TEST_FILES]This^_is^_a^_Test^{_File_^}.Dat;1 as
DKA200:[TEST_FILES]THISISA$TEST$_FILE_$.DAT;1

%BACKUP-S-COPIED, copied DKA200:[000000]VOLSET.SYS;1

Managing Extended File Naming on OpenVMS Systems 2–7

Managing Extended File Naming on OpenVMS Systems
2.2 Enabling Extended File Specifications on OpenVMS Alpha Systems

– ‘‘Copying’’ the contents of an ODS-5 disk to an ODS-2 disk

You can use this method if you want to create an ODS-2 disk from an
ODS-5 disk without creating an intermediate save set.

When you use this conversion method, you must preinitialize the output
disk to ODS-2 and include the /NOINIT qualifier in your command line.
In the following example, DKA500 is the ODS-5 disk, and DKA200 is the
ODS-2 disk.

$ BACKUP/LOG/CONVERT/IMAGE DKA500: DKA200:/NOINIT

%BACKUP-I-ODS5CONV, structure level 5 files will be converted to
structure level 2 on DKA200:

-BACKUP-I-ODS5LOSS, conversion may result in loss of structure level 5
file attributes

%BACKUP-S-CREATED, created DKA200:[000000]000000.DIR;1
%BACKUP-S-CREATED, created DKA200:[000000]BACKUP.SYS;1
%BACKUP-S-CREATED, created DKA200:[000000]CONTIN.SYS;1
%BACKUP-S-CREATED, created DKA200:[000000]CORIMG.SYS;1
%BACKUP-S-CREATED, created DKA200:[000000]SECURITY.SYS;1
%BACKUP-S-CREATED, created DKA200:[000000]TEST_FILES.DIR;1
%BACKUP-S-CREATED, created DKA200:[TEST_FILES]SUB$$DIR$.DIR;1
%BACKUP-S-CREATED, created DKA200:[TEST_FILES]THISISA$TEST$_FILE_$.DAT;1
%BACKUP-S-CREATED, created DKA200:[000000]VOLSET.SYS;1

• Conversions during file operations

– ‘‘Copying’’ individual ODS-5 files to an ODS-2 disk

This conversion method allows you to interchange files between ODS-5
and ODS-2 disks. You can, for example, select a directory tree for a
disk-to-disk ‘‘copy’’ operation.

In the following example, DKA500 is the ODS-5 disk, and DKA200 is the
ODS-2 disk.

$ BACKUP/LOG/CONVERT DKA500:[*...]*.*;* DKA200:[*...]*.*;*

%BACKUP-I-ODS5CONV, structure level 5 files will be converted to
structure level 2 on DKA200:

-BACKUP-I-ODS5LOSS, conversion may result in loss of structure level 5
file attributes

%BACKUP-S-CREDIR, created directory DKA200:[TEST_FILES.SUB$$DIR$]
%BACKUP-S-CREATED, created DKA200:[TEST_FILES]THISISA$TEST$_FILE_$.DAT;1

– Saving individual ODS-5 files in an ODS-2 save set

You can use this method to save ODS-5 files in a save set that can be read
on a system running a version of OpenVMS prior to Version 7.2.

In the following example, DKA500 is an ODS-5 disk, and DKA200 is an
ODS-2 disk; FILES.BCK is the ODS-2 save set.

$ BACKUP/LOG/CONVERT DKA500:[*...]*.*;* DKA200:FILES.BCK/SAVE

2–8 Managing Extended File Naming on OpenVMS Systems

Managing Extended File Naming on OpenVMS Systems
2.2 Enabling Extended File Specifications on OpenVMS Alpha Systems

%BACKUP-I-ODS5CONV, structure level 5 files will be converted to
structure level 2 on DKA200:

-BACKUP-I-ODS5LOSS, conversion may result in loss of structure level
5 file attributes

%BACKUP-S-COPIED, copied DKA200:[000000]000000.DIR;1
%BACKUP-S-COPIED, copied DKA200:[000000]TEST_FILES.DIR;1
%BACKUP-S-COPIEDAS, copied DKA200:[TEST_FILES]Sub^_^{Dir^}.DIR;1 as

DKA200:[TEST_FILES]SUB$$DIR$.DIR;1
%BACKUP-S-COPIEDAS, copied

DKA200:[TEST_FILES.Sub^_^{Dir^}]Sub^&_~_File_~.Dat;1 as
DKA200:[TEST_FILES.SUB$$DIR$]SUB$_$_FILE_$.DAT;1

%BACKUP-S-COPIEDAS, copied
DKA200:[TEST_FILES]This^_is^_a^_Test^{_File_^}.Dat;1 as
DKA200:[TEST_FILES]THISISA$TEST$_FILE_$.DAT;1

If BACKUP cannot convert a file name within its existing directory, it converts
the file name and leaves it unconnected so that ANALYZE /DISK /REPAIR can
connect it to the [SYSLOST] directory, where the file has an ODS-2-compliant
name. BACKUP also displays messages such as the following:

%BACKUP-I-RECOVCNT, 5 files could not be converted into a directory on DKA100
-BACKUP-I-RECOVCMD, use the Analyze/Disk_Structure/Repair command to recover

files

In this case, you need to move the file from [SYSLOST] to the appropriate
directory. Refer to the ‘‘created as’’ log messages to see where the file logically
would have been placed so that you can move it there manually.

2.3 Controlling Access to ODS-5 Volumes
A system manager may choose to enforce one or both of the following restrictions:

• Prevent users on a VAX from accessing files on an ODS-5 volume

• Prevent untested applications from accessing files on an ODS-5 disk (You can
allow certain users to override this access control on an ODS-5 volume.)

The system manager can impose either of these restrictions by using normal
OpenVMS discretionary controls. Refer to the OpenVMS Guide to System
Security for more information.

Sections 2.3.1 and 2.3.2 contain examples of restricting access to ODS-5 volumes.

2.3.1 Preventing VAX Users from Accessing an ODS-5 Volume
Follow these steps to prevent a user from accessing an ODS-5 volume from a VAX
node:

1. Define an identifier (for example, VAX_NODE) to identify users running on
an OpenVMS VAX node. For example:

$ RUN SYS$SYSTEM:AUTHORIZE

UAF> ADD /IDENTIFIER VAX_NODE

%UAF-I-RDBADDMSG, identifier VAX_NODE value %X80010037 added to
rights database

2. On each VAX node, add VAX_NODE to the system rightslist. For example:

$SET RIGHTS_LIST /ENABLE /SYSTEM VAX_NODE

The /ENABLE qualifier in the command adds VAX_NODE to the system
rightslist.

Also add this command to the SYSTARTUP_VMS.COM command procedure.

Managing Extended File Naming on OpenVMS Systems 2–9

Managing Extended File Naming on OpenVMS Systems
2.3 Controlling Access to ODS-5 Volumes

3. To prevent users on a VAX node from gaining access to an ODS-5 volume,
place an Access Control Entry (ACE) on the volume that denies access to
holders of the VAX_NODE identifier. For example:

$ SET SECURITY /CLASS=VOLUME ODS5_DISK -
_$ /ACL=(ID=VAX_NODE,ACCESS=NONE)

2.3.2 Preventing an Untested Application from Accessing an ODS-5 Volume
Follow these steps to prevent an untested application from accessing an ODS-5
volume:

1. Define an identifier (for example, ODS5_UNSAFE) to identify applications
that you do not want to access an ODS-5 volume. For example:

UAF> ADD /IDENTIFIER ODS5_UNSAFE /ATTR=SUBSYSTEM

%UAF-I-RDBADDMSG, identifier ODS5_UNSAFE value %X80010039 added to
rights database

2. Attach a protected subsystem ACE to the application with the ODS5_
UNSAFE identifier. For example:

$ SET SECURITY /CLASS=FILE SYS$SYSTEM:APPLICATION.EXE -
_$ /ACL=(SUBSYSTEM,ID=ODS5_UNSAFE)

3. To each ODS-5 volume, attach an ACE denying access to the ODS-5 volume
to holders of the ODS5_UNSAFE identifier. For example:

$ SET SECURITY /CLASS=VOLUME ODS5_DISK/ -
_$ ACL=(ID=ODS5_UNSAFE,ACCESS=NONE)

You can also override the restriction in the last step to allow trained users to
access untested applications by following the remaining steps:

a. Create another identifier (for example, ODS5_UNTRAINED):

UAF> ADD /IDENTIFIER ODS5_UNTRAINED

%UAF-I-RDBADDMSG, identifier ODS5_UNTRAINED value %X80010038 added to
rights database

b. Assign this identifier to all users. For example:

UAF> GRANT/IDENTIFIER ODS5_UNTRAINED *

%UAF-I-GRANTMSG, identifier ODS5_UNTRAINED granted to *

c. Instead of Step 3, place an Access Control Entry (ACE) on the volume that
denies access to holders of the ODS5_UNTRAINED identifier. For example:

$ SET SECURITY /CLASS=VOLUME ODS5_DISK/ -
_$ ACL=(ID=ODS5_UNSAFE+ODS5_UNTRAINED,ACCESS=NONE)

This command prevents ODS5_UNTRAINED users from accessing the volume
with ODS5_UNSAFE applications.

d. Remove the identifier from an individual user you are willing to let use any
application on an ODS-5 volume. For example:

UAF> REVOKE/IDENTIFIER ODS5_UNTRAINED SHEILA_USER

%UAF-I-REVOKEMSG, identifier ODS5_UNTRAINED revoked from SHEILA_USER

2–10 Managing Extended File Naming on OpenVMS Systems

Managing Extended File Naming on OpenVMS Systems
2.3 Controlling Access to ODS-5 Volumes

After you complete these steps:

• An untrained user can use an untested application only to access ODS-2
volumes.

• A trained user can access ODS-5 volumes with any application.

2.4 System Management Utility Changes
The following sections describe changes made to OpenVMS system management
utilities to support extended file names.

2.4.1 Analyze/Disk_Structure Utility
The Analyze/Disk_Structure utility (ANALYZE/DISK_STRUCTURE) now checks
the readability and validity of Files-11 On-Disk Structure (ODS) Levels 1, 2, and
5 disk volumes.

The following new qualifier has also been added:

/STATISTICS

This qualifier produces statistical information about the volume under verification
and creates a file, STATS.DAT, which contains per-volume statistics. The
information placed in STATS.DAT is the following:

• The number of ODS-2 and ODS-5 headers on the volume

• The number of special headers on ODS-5 volumes

• The distribution of file name lengths

• The distribution of extension header chain lengths

• The distribution of header identification area free space

• The distribution of header map area and ACL area free space

• The totals of header space that is in use and header space that is not in use

2.4.2 Backup Utility (Alpha Only)
Following are new features the Backup utility (BACKUP) has implemented to
support extended file names on Alpha systems:

• New BACKUP qualifier: /CONVERT

If you convert an ODS Level 5 file to an ODS Level 2 file, some ODS-5 file
attributes can be lost.

Note

Use the /CONVERT qualifier to perform image restores of ODS-5 save
sets to ODS-2 volumes. To preserve the output volume as ODS-2, you
must also use the /NOINIT qualifier.

• Deep directories

Enhanced algorithms handle deep directories. Prior to OpenVMS Version
7.2, 32 levels of directories were supported by the Backup utility. In Version
7.2, the Backup utility supports as many levels of directories as RMS allows,
which is currently 255 levels. final_cleanup>(page_break)

• Extended character set

Managing Extended File Naming on OpenVMS Systems 2–11

Managing Extended File Naming on OpenVMS Systems
2.4 System Management Utility Changes

BACKUP can process file names that use characters from the following
character sets:

– DEC Multinational (MCS)

– ISO Latin-1

– Unicode (UCS-2)

2.4.3 Physical Backups of ODS-5 Volumes on VAX Systems
On OpenVMS VAX systems, BACKUP supports ODS-5 volumes only when you
specify the /PHYSICAL qualifier to back up a volume. The BACKUP /PHYSICAL
command causes BACKUP to make a block-by-block physical backup of the disk,
ignoring the structured contents of the disk.

On Alpha systems, you can use either the BACKUP /IMAGE or BACKUP
/PHYSICAL command.

See the Backup chapter of the OpenVMS System Manager’s Manual for more
information about support for extended file names by the Backup utility on Alpha
processors.

2.4.4 Mount Utility (Alpha Only)
The Mount utility has been modified to provide full support for ODS-5 volumes.

2–12 Managing Extended File Naming on OpenVMS Systems

3
Extended File Naming Characteristics

Extended File Specifications provides a wider variety of character set options
and naming conventions, similar to those available on Windows NT. This chapter
describes the impact of Extended File Specifications on the general user, and
contains the following topics:

• Outlining the differences in file and directory specifications between ODS-2
and ODS-5

• Manipulating files with extended file names

• Using extended file names in DCL command procedures

• Displaying ODS-5 file specifications in DECwindows

3.1 File Specifications
On ODS-5 volumes, there are two possible naming styles for file specifications:
traditional (ODS-2 compliant) and extended (ODS-5 compliant).

Section 3.1.1 describes ODS-2 compliant name syntax. Section 3.1.2 describes
ODS-5 compliant name syntax.

3.1.1 Traditional (ODS-2) Syntax
The traditional (ODS-2) file name syntax is the syntax most OpenVMS users
are familiar with. OpenVMS Versions 7.1 and earlier follow this syntax, which
supports the following character set and naming conventions:

ODS-2 Character Set
Traditional (ODS-2-compliant) file names can use alphanumeric characters (A-Z,
a-z, 0-9), dollar sign ($), underscore (_) and hyphen (-).

Case Insensitivity
Case preservation is not supported with traditional syntax. You can enter file
names in uppercase, lowercase, or mixed case; however, all characters are stored
in uppercase format.

Standard Delimiters
With traditional syntax, the file type is preceded by a period (.). The file version
is separated from the type by a semicolon (;) or sometimes a period (.). (When
the system displays file specifications, it displays a semicolon in front of the file
version number.) Directories are enclosed by brackets ([]) or angle brackets (<>).
Directory levels are separated by periods (.).

Limited File Length
Traditional file specifications follow the 39.39 format, supporting only a single
period (.) separating the file name and file type.

Extended File Naming Characteristics 3–1

Extended File Naming Characteristics
3.1 File Specifications

3.1.2 Extended (ODS-5) Syntax
The extended file name syntax offered on ODS-5 volumes supports a larger
character set, longer file names, and longer file specifications. This syntax
allows OpenVMS systems to store and access files with Windows NT-style file
specifications that use the following character set and naming conventions:

3.1.2.1 ISO Latin-1 Character Set
The ISO Latin-1 character set is a superset of the traditional ASCII character set
used by versions of OpenVMS previous to 7.2. All characters from the 8-bit ISO
Latin-1 character set are valid in ODS-5 file specifications except the following:

C0 control codes (0x00 to 0x1F inclusive)
Double quotation marks (")
Asterisk (*)
Backslash (\)
Colon (:)
Left angle bracket (<)
Right angle bracket (>)
Slash (/)
Question mark (?)
Vertical bar (|)

3.1.2.2 Special Characters
Some ISO Latin-1 characters require an escape character to precede them in
a file specification in order to be interpreted as literal characters rather than
special function characters. In extended file names, RMS and DCL interpret the
circumflex (^) as an escape character. The following list contains rules for using
the escape character:

• The escape character (^) followed by underscore (_) or by a space represents a
space.

• The escape character (^) followed by any of the following characters means
that the character is to be used as part of a file name rather than having any
special meaning that it might otherwise have in a file specification:

. , ; [] % ^ &

• A user can enter a literal period (.) with or without the escape character (^)
in a file name. The system adds the escape character to any periods other
than those that act as delimiters for the file type and version number. Literal
periods (.) in directory names must be preceded by the escape character.

• An escape character followed by a hexadecimal digit requires a second
hexadecimal digit. Interpret the two following characters as a hexadecimal
value for an arbitrary 1-byte character.

For example, ^20 represents a space.

• An escape character followed by ‘‘U’’ within a file specification indicates that
the four hexadecimal digits that follow are to be interpreted as Unicode. For
example, ^U012F.

All characters in file specifications that are not preceded by an escape
character (^) are presumed to be ISO Latin-1.

3–2 Extended File Naming Characteristics

Extended File Naming Characteristics
3.1 File Specifications

Note

File names containing special characters cannot be accessed from a VAX
system. See Section 3.3 for more information about mixed-architecture
environments.

3.1.2.3 Interpretation of Period (.)
The use of the period (.) as a literal character in extended file names requires
RMS to determine which periods are file name characters and which are
delimiters.

When only one period (.) is used in an extended file name, that period is
interpreted as the delimiter. As in previous versions of OpenVMS, this behavior
also occurs if the single period is followed by a number:

$ CREATE Test.1

creates the file:

Test.1;1

Determination of Version Numbers
When there are multiple periods (.) in a file name, RMS looks at all the
characters after the last period. If those characters are all numeric, or all
numeric and preceded by a minus sign (-), the numeric string is determined
to be a version number. However, if there are more than 5 numeric characters,
RMS rejects the file name as illegal. If there is a nonnumeric character following
the last period, then it is interpreted as a type delimiter.

For example, the following command: $ CREATE Test4.3.2.1

creates the file: Test4^.3.2;1

where .2 is the file type and 1 is the file version.

A version number explicitly delimited by a semicolon (;) must also be 5 or fewer
numeric characters, and can be preceded by a minus sign (-).

3.1.2.4 Expanded File Specification Length
On an ODS-5 volume, the file name together with the file type can be up to 236
8-bit characters or 118 16-bit characters in length. Unmodified programs and
utilities may limit or abbreviate complete file specifications to 255 bytes.

$ CREATE This.File.Name.Has.A.Lot.Of.Periods.DAT
$ CREATE -
_$ ThisIsAVeryLongFileName^&ItWillKeepGoingForLotsAndLotsOfCharacters.Exceed -
_$ ingThe39^,39presentInPreviousVersionsOfOpenVMS
$ DIRECTORY

Directory TEST$ODS5:[TESTING]

ThisIsAVeryLongFileName^&ItWillKeepGoingForLotsAndLotsOfCharacters.Exceeding
The39^,39presentInPreviousVersionsOfOpenVMS;1
This^.File^.Name^.Has^.A^.Lot^.Of^.Periods.DAT;1

Total of 2 files.

Section 3.6 discusses how RMS abbreviates file specifications when the full file
specification exceeds the limit of 255 bytes.

Extended File Naming Characteristics 3–3

Extended File Naming Characteristics
3.1 File Specifications

3.1.2.5 Using Wildcards
Single- and multiple-character wildcards function as expected with ODS-5 files. A
single-character wildcard represents exactly one character in either the file name
or file type, but may not be used in the file version string. A multiple-character
wildcard can represent any number of characters (including zero characters) in
the file name or file type. A multiple-character wildcard can be used in place of a
version string.

3.1.2.5.1 Wildcard Characters The following characters are wildcard characters
when working on any OpenVMS 7.2 volume:

• The asterisk (*) is a multiple-character wildcard.

• The percent sign (%) is a single-character wildcard.

• The question mark (?) is a single-character wildcard.

The percent sign (%) continues to be a single-character wildcard to maintain
compatibility with existing applications. The percent sign (%) may be used as
a literal character when preceded by the circumflex (^) and is also a literal
character in Windows NT file names. Therefore, in addition to the percent sign,
RMS also recognizes the question mark (?) as a single character wildcard. The
question mark functions identically to the percent sign as a wildcard character on
OpenVMS 7.2 and later. The percent sign and the question mark each matches
exactly one character in a search pattern.

Note

An escaped character (such as ^.) or an escape sequence (such as ^EF
or ^U0101) is considered a single character for purposes of wildcard
matching.

3.1.2.5.2 Wildcard Syntax Although DCL preserves the case of extended file
names, wildcard matching is case blind.

A search operation with wildcards continues to match only against the
corresponding character in the same part of the target specification. Table 3–1
contains examples of some wildcard searches.

Table 3–1 Sample Wildcards and Matching Patterns

The pattern... matches... ...but does not match

A*B;* AHAB.;1 A.B;1

A.*.B* A^.DISK.BLOCK;1 A^.C^.B.DAT;1

A?B.TXT;* A^.B.TXT;5 A^.^.B.TXT;1

*.DAT Lots^.of^.Periods.dat;1 DAT.;1

Mil?no.dat Milano.dat;1 Millaano.dat;1

NAPOLI.?.DAT napoli.q.dat;1 napoli.abc77.dat;1

3–4 Extended File Naming Characteristics

Extended File Naming Characteristics
3.1 File Specifications

3.1.2.6 Case Preservation
On an ODS-5 volume, the case for all versions of a file name is identical; the case
is preserved as the file name was first created. When you create more than one
file with the same name differing only in case, DCL treats the subsequent files as
new versions, and converts them to the same case as the original file.

For example, the following sequence of commands:

$ CREATE CaPri.;1
$ CREATE CAPRI
$ CREATE capri

produces the resulting files:

CaPri.;1 CaPri.;2 CaPri.;3

In prior versions of OpenVMS, DCL and RMS converted all file specifications to
uppercase. On ODS-5 volumes, the case of all file names is preserved as created
by the user.

3.2 Directory Specifications
The following sections describe the deeper directory structures and extended
naming syntax available on ODS-5 volumes. It is now possible to go beyond the
eight levels of directories previously supported in OpenVMS.

3.2.1 Deep Directory Structures
OpenVMS 7.2 supports deep nesting of up to 255 directories with the restriction
that the total directory specification can be no longer than 512 8-bit or 16-bit
characters.

For example, a user can create the following directories on an ODS-2 or ODS-5
volume:

$ CREATE/DIRECTORY [a.b.c.d.e.f.g.h.i.j.k.l.m]

A user can create the following directory with a long name on an ODS-5 volume:

$ CREATE/DIRECTORY -
[.AVeryLongDirectoryNameWhichHasNothingToDoWithAnythingInParticular]

3.2.2 Directory Naming Syntax
On ODS-5 volumes, directory names conform to most of the same conventions
as file names when using the ISO Latin-1 character set. Periods and special
characters may be present in the directory name, but they must be preceded by
the escape character (^) in order to be recognized as literal characters, as shown
in Table 3–2.

Table 3–2 Directory Names on ODS-5 Volumes

CREATE/DIRECTORY. . . Result

[Hi^&Bye] Hi^&Bye.DIR;1

[Lots^.Of^.Periods^.In^.This^.Name] Lots^.Of^.Periods^.In^.This^.Name.DIR;1

Extended File Naming Characteristics 3–5

Extended File Naming Characteristics
3.2 Directory Specifications

3.2.2.1 Directory ID and File ID Abbreviation
Under some circumstances, a full file specification may contain more characters
than the 255 bytes allowed by unmodified applications. If a file specification that
such an application needs exceeds 255 bytes in length, RMS generates a shorter
file specification by abbreviating the directory to a DID, and if necessary, the
filename to a FID.

When the file specification is too long, RMS first attempts to generate a shorter
directory specification by identifying the directory with its directory ID. This
shorter specification is referred to as a DID.

TEST$ODS5:[5953,9,0]Alghero.TXT;1

Note that this form of the directory name must have three numbers and
two commas to avoid ambiguity with UIC format directory names. With the
DIRECTORY command you can view the shorter DID version as well as the full
version of a file specification. See Section 3.6 for more information on displaying
long file specifications. See Section B.2.2.7 for more information about DID
abbreviations. See Section B.2.2.8 for more information about FID abbreviations.

3.3 Working in Mixed Environments
When working in an environment that contains both OpenVMS Alpha and
OpenVMS VAX systems, it is important for a user to know the following:

• The system type

• The volume type where the user’s default directory resides

• The volume type where the user creates a new file

OpenVMS 7.2 allows VAX systems to mount ODS-5 volumes; however, users on
OpenVMS VAX systems can access only files with ODS-2-compliant file names.

When working in a mixed environment of ODS-2 and ODS-5 volumes, keep in
mind the restrictions of ODS-2 file names when creating files on ODS-5 volumes.
If you copy a file that has special characters in its name from an ODS-5 to an
ODS-2 volume, you must give it an ODS-2 compliant name.

3.4 DCL Support for ODS-5 Volumes
When using extended file names on the DCL command line, you need to set the
parsing style to EXTENDED to accept and display extended file specifications.
The default setting is TRADITIONAL. To set the parsing style, enter the
command:

$ SET PROCESS/PARSE_STYLE=EXTENDED

Note

DCL lexical functions use the DEC Multinational character set, which
is different from the ISO Latin-1 character set used for file names on an
ODS-5 disk. This can lead to unexpected results if, for example, you use
the DCL function F$EDIT to upcase a filename. F$EDIT will not upcase
DEC MCS characters with hexadecimal values of F0, F7, FE, and FF.

3–6 Extended File Naming Characteristics

Extended File Naming Characteristics
3.4 DCL Support for ODS-5 Volumes

See Section 3.4.1 for more information about changing the DCL name parsing
style.

3.4.1 Using the Extended File Specifications Parsing Feature in DCL
Sections 3.4.1.1, 3.4.1.2, and 3.4.1.3 describe how to control the DCL name
parsing style, both on the command line and in a command procedure.

3.4.1.1 Enabling the Extended File Name Parsing Style
On OpenVMS Alpha systems, you can tell DCL to accept ODS-5 file names on a
per process basis by entering the following command:

$ SET PROCESS/PARSE_STYLE=EXTENDED

Note that this command has no effect on an OpenVMS VAX system.

After you enter the command, DCL accepts a file name such as the following:

$ CREATE MY^[FILE

The circumflex (^) character is used as an escape character to tell DCL to treat
the next character (in this case, a left bracket) as a literal character in the name,
rather than as a delimiter.

For additional information, see the description of the SET PROCESS/PARSE_
STYLE command in the OpenVMS DCL Dictionary: N–Z.

3.4.1.2 Resetting the Default File Name Parsing Style
The default DCL parsing style for file names is for ODS-2 style file names. To
reset DCL to the default parsing style, enter the following command:

$ SET PROCESS/PARSE_STYLE=TRADITIONAL

After you enter this command, DCL accepts only ODS-2 file name formats.

3.4.1.3 Switching Between File Name Parsing Styles
A command procedure that requires a specific file name parsing style can
include commands within the procedure to switch between styles. The following
command procedure saves the current parsing style, sets the parsing style to
TRADITIONAL, performs (unspecified) commands, then restores the saved
parsing style.

$ original_style= f$getjpi("","parse_style_perm")
$ SET PROCESS/PARSE_STYLE=TRADITIONAL

.

.

.
$ SET PROCESS/PARSE_STYLE=’original_style’

The first command equates ’original_style’ with the current parse style. The
second command sets the parsing style to TRADITIONAL. The last command
resets the parsing style to the original style.

3.4.2 Using Extended File Names in DCL Command Parameters
Command procedures that use file names as parameters can produce different
results in an ODS-5 environment.

You can switch from the TRADITIONAL to the EXTENDED parsing style, and
this section describes the following areas that may be affected if you choose to do
so:

• Command procedure file specification

Extended File Naming Characteristics 3–7

Extended File Naming Characteristics
3.4 DCL Support for ODS-5 Volumes

• Case preservation and $FILE

• Ampersand versus apostrophe substitution

See Section 3.4.1 for more information on switching between parsing styles.

3.4.3 Command Procedure File Specification
If indirect command procedures are used, you may need to put quotes around
some procedure arguments.

The following examples show the differences in output between TRADITIONAL
and EXTENDED parsing styles when using the same command file, SS.COM:

$ create ss.com
$ if p1 .nes. "" then write sys$output "p1 = ",p1
$ if p2 .nes. "" then write sys$output "p2 = ",p2
$ if p3 .nes. "" then write sys$output "p3 = ",p3

• Setting the parsing style to TRADITIONAL and running SS.COM produces
the following output:

$ set process/parse_style=traditional
$ @ss ^ parg2 parg3
p1 = ^
p2 = PARG2
p3 = PARG3

Note that the circumflex (^) is the first argument (not an escape character),
and that case is not preserved for the p2 and p3 procedure arguments.

• Setting the parsing style to EXTENDED produces the following output when
running the same command procedure:

$ set process/parse_style=extended
$ @ss ^ parg2 parg3
p1 = ^ PARG2
p2 = PARG3

Note that the command procedure recognizes the circumflex (^) as the escape
character that identifies the space as a literal character rather than an
argument separator, and that "^ PARG2" is the first argument. Case is not
preserved.

• Adding quotes to the circumflex (^) produces the following results:

$ @ss "^" parg2 parg3
p1 = ^
p2 = PARG2
p3 = PARG3

Because the circumflex (^) is within a quoted string, it is not treated as an
escape character.

• Adding quotes to the p3 argument produces the following result:

$ @ss "^" parg2 "parg3"
p1 = ^
p2 = PARG2
p3 = parg3

Note that case is preserved for the p3 procedure argument.

3–8 Extended File Naming Characteristics

Extended File Naming Characteristics
3.4 DCL Support for ODS-5 Volumes

• When the parsing style is set to TRADITIONAL, the following command
treats the circumflex (^) and the parg2 and parg3 strings as procedure
arguments, and the command procedure produces the following results:

$ set process/parse_style=traditional
$ @ss^ parg2 parg3
p1 = ^
p2 = PARG2
p3 = PARG3

• When the parsing style is set to EXTENDED, the circumflex (^) is treated as
an escape character that identifies the space as a literal character. DCL looks
for the file "SS^_PARG2.COM" and produces the error shown in the following
example:

$ set process/parse_style=extended
$ @ss^ parg2 parg3
%DCL-E-OPENIN, error opening USER$DISK:[TEST]SS^_PARG2.COM; as input
-RMS-E-ACC, ACP file access failed
-SYSTEM-W-BADFILENAME, bad file name syntax

3.4.4 Case Preservation and $FILE
DCL attempts to preserve the case of file specifications. It can do this only for
commands defined with the Command Definition Utility (CDU). DCL preserves
case for any item defined in the command definition file (.CLD) with the $FILE
parse type.

Refer to the OpenVMS Command Definition, Librarian, and Message Utilities
Manual for more information.

3.4.5 Ampersand Versus Apostrophe Substitution
You can use ampersand (&) substitution, as opposed to apostrophe substitution,
to preserve case during traditional parsing.

The following traditional parsing example shows a series of commands that
change the case of a character string:

$ set process/parse_style=traditional
$ x = "string"
$ define y ’x’
$ sho log y

"Y" = "STRING" (LNM$PROCESS_TABLE)
$ define y &x
%DCL-I-SUPERSEDE, previous value of Y has been superseded
$ sho log y

"Y" = "string" (LNM$PROCESS_TABLE)

Note that the use of the ampersand (&) preserved the case of the character string
assigned to the x variable.

Apostrophe substitution takes place before the command line is set to uppercase,
and ampersand substitution takes place after the command line is set to
uppercase.

The following extended parsing example shows the same series of commands:

Extended File Naming Characteristics 3–9

Extended File Naming Characteristics
3.4 DCL Support for ODS-5 Volumes

$ set process/parse_style=extended
$ define y ’x’
%DCL-I-SUPERSEDE, previous value of Y has been superseded
$ sho log y

"Y" = "string" (LNM$PROCESS_TABLE)
$ define y &x
%DCL-I-SUPERSEDE, previous value of Y has been superseded
$ sho log y

"Y" = "string" (LNM$PROCESS_TABLE)

Note that both character strings for the y variable are returned lowercase. This
happens because the DEFINE command uses $FILE, which preserves the case.

Ampersand substitution can therefore be used to specify EXTENDED file names
even though the parsing style is set to TRADITIONAL, as shown in the following
example:

$ set process/parse=extended
$ cre file^ name.doc
Contents of an ODS5 file
Exit

$ set process/parse=traditional
$ a = "file^ name.doc"
$ type file^ name.doc
%DCL-W-PARMDEL, invalid parameter delimiter - check use of special characters
\^NAME\
$ type ’a’
%DCL-W-PARMDEL, invalid parameter delimiter - check use of special characters
\^NAME\
$ type &a
Contents of an ODS5 file

Note

Ampersand substitution does not work for foreign commands.

3.5 DCL Commands and Utilities
Some DCL commands and OpenVMS utilities have been modified to take
advantage of all the features of extended file names. These utilities and
commands accept and handle extended file specifications without error and
without modifying their expected case.

Other DCL commands and OpenVMS utilities have had little or no modification
to take advantage of extended file names. These utilities and commands are
expected to handle most of the attributes of extended file specifications (such as
new characters and deep directory structures) correctly.

See Table 3–3 for the new features in DCL to support Extended File
Specifications.

Section 2.1 fully defines the different levels of support for extended file names
provided by DCL commands and OpenVMS utilities in OpenVMS Version 7.2.

The following DCL commands and OpenVMS utilities provide full support for
extended file names:

ANALYZE /AUDIT
ANALYZE /DISK
ANALYZE /RMS
BACKUP

3–10 Extended File Naming Characteristics

Extended File Naming Characteristics
3.5 DCL Commands and Utilities

CONVERT
CONVERT /RECLAIM
COPY
CREATE /DIRECTORY
DELETE
DIRECTORY
DUMP
EDIT /ACL
EXCHANGE /NETWORK
FDL
PURGE
RECOVER/RMS
RENAME
SEARCH
SET SECURITY
SYSMAN
TYPE

Table 3–3 lists the new features in DCL to support Extended File Specifications.

Table 3–3 DCL New Features

DCL Command New Features

COPY Added new qualifier, /STYLE, with new
keywords, EXPANDED and CONDENSED

DELETE Added new qualifier, /STYLE, with new
keywords, EXPANDED and CONDENSED

DIRECTORY Added the following items:

• Qualifier, /STYLE, with new keywords,
EXPANDED and CONDENSED

• Display item to /FULL to display Client
Attributes

DUMP Added the following items:

• Display item to /DIRECTORY to display
Name type attribute

• Display item to /HEADER to display new
attributes

• Qualifier, /STYLE, with new keywords,
EXPANDED and CONDENSED

EXCHANGE NETWORK Added new qualifier, /STYLE, with new
keywords, EXPANDED and CONDENSED

F$FILE_ATTRIBUTES Lexical Added new item codes: FILE_LENGTH_
HINT, VERLIMIT, DIRECTORY

F$GETDVI Lexical Added new type to the ACPTYPE item code.

F$GETJPI Lexical Added new item codes: PARSE_STYLE_
PERM and PARSE_STYLE_IMAGE

(continued on next page)

Extended File Naming Characteristics 3–11

Extended File Naming Characteristics
3.5 DCL Commands and Utilities

Table 3–3 (Cont.) DCL New Features

DCL Command New Features

INITIALIZE Added a new qualifier: /STRUCTURE=5
device-name[:] volume-label

PRINT Added new qualifier, /STYLE, with new
keywords, EXPANDED and CONDENSED

PURGE Added new qualifier, /STYLE, with new
keywords, EXPANDED and CONDENSED

RENAME Added new qualifier, /STYLE, with new
keywords, EXPANDED and CONDENSED

SEARCH Added new qualifier, /STYLE, with new
keywords, EXPANDED and CONDENSED

SET ACL Added new qualifier, /STYLE, with new
keywords, EXPANDED and CONDENSED

SET DEFAULT Modified the directory-spec parameter to
accept ODS-5-compliant file specifications.

SET DIRECTORY Added new qualifier, /STYLE, with new
keywords, EXPANDED and CONDENSED

SET FILE Added new qualifier, /STYLE, with new
keywords, EXPANDED and CONDENSED

SET PROCESS Added a new qualifier: /PARSE_
STYLE=(keyword), where keywords are
TRADITIONAL and EXTENDED.

SET SECURITY Added new qualifier, /STYLE, with new
keywords, EXPANDED and CONDENSED

SET VOLUME Added a new qualifier: /STRUCTURE_
LEVEL=5

SHOW DEVICE/FULL Updated the display information to show the
disk structure level.

SUBMIT Added new qualifier, /STYLE, with new
keywords, EXPANDED and CONDENSED

TYPE Added new qualifier, /STYLE, with new
keywords, EXPANDED and CONDENSED

For detailed information about the enhancements made to the OpenVMS
operating system and utilities in support of Extended File Specifications, see the
OpenVMS DCL Dictionary: A–M, the OpenVMS DCL Dictionary: N–Z, and the
OpenVMS Utility Routines Manual.

3.6 Displaying Files with Extended Names
Some DCL commands, as listed in Table 3–3, have the following new qualifier to
control the display of extended file names:

/STYLE= [CONDENSED | EXPANDED]

This qualifier allows you to control how the modified DCL commands display
extended file names and any associated prompts.

The keyword CONDENSED displays the file specification as it is generated
to fit within the 255-byte character string limit imposed by many utilities.
When necessary, this file specification may contain a DID abbreviation or a
FID abbreviation. The keyword EXPANDED displays the file specification that

3–12 Extended File Naming Characteristics

Extended File Naming Characteristics
3.6 Displaying Files with Extended Names

is stored on disk in full and does not contain a DID abbreviation or a FID
abbreviation.

The following sections contain examples of using the /STYLE qualifier with the
DIRECTORY, TYPE, PURGE, and DELETE commands.

3.6.1 DIRECTORY Command
The DIRECTORY command allows you to select in what format the file name is
displayed when viewing the contents of a directory:

DIRECTORY/STYLE=(keyword[,keyword])

The DIRECTORY command by default displays file names as you see in the
following example, using DIDs where necessary and switching back to the full
directory specification where DIDs are not necessary:

$ DIRECTORY

Directory TEST$ODS5:[23,1,0]

abcdefghijklmnopqrstuvwxyABCDEFGHIJKLMNOPQRSTUVWXYabcdefghijklmnopqrs
tuvwxyABCDEFGHIJKLMNOPQRSTUVWXYabcdefghijklmnopqrstuvwxyABCDEFGHIJKLM
NOPQRSTUVWXY.abcdefghijklmnopqrstuvwxyABCDEFGHIJKLMNOPQRSTUVWXYabcdef
ghijklmnopqrst;2

Total of 1 file.

Directory TEST$ODS5:[TEST.RANDOMTESTING.RANDOM]

AddressFiles.DIR;1 LOGIN.COM;3 test.1;1 test^.1.clue;1
Travel.LIS;1 whee.;5 work.dat;8

Total of 8 files.

Grand total of 2 directories, 9 files.

The DIRECTORY command, using both keywords with the /STYLE qualifier,
produces a two-column directory list. Each column lists all the file names. The
CONDENSED column contains any needed DIDs or FIDs, while the EXPANDED
column contains full directory names and file names. Any file errors are displayed
in the CONDENSED column. The following example shows the results of the
DIRECTORY command with the /STYLE qualifier taking both keywords.

$ DIRECTORY/STYLE=(CONDENSED,EXPANDED)

Directory TEST$ODS5:[23,1,0] TEST$ODS5:[TEST.RANDOMTESTING.RANDO
M]

abcdefghijklmnopqrstuvwxyABCDEFGHIJ abcdefghijklmnopqrstuvwxyABCDEFGHIJ
KLMNOPQRSTUVWXYabcdefghijklmnopqrst KLMNOPQRSTUVWXYabcdefghijklmnopqrst
uvwxyABCDEFGHIJKLMNOPQRSTUVWXYabcde uvwxyABCDEFGHIJKLMNOPQRSTUVWXYabcde
fghijklmnopqrstuvwxyABCDEFGHIJKLMNO fghijklmnopqrstuvwxyABCDEFGHIJKLMNO
PQRSTUVWXY.abcdefghijklmnopqrstuvwx PQRSTUVWXY.abcdefghijklmnopqrstuvwx
yABCDEFGHIJKLMNOPQRSTUVWXYabcdefghi yABCDEFGHIJKLMNOPQRSTUVWXYabcdefghi
jklmnopqrst;2 jklmnopqrst;2
AddressFiles.DIR;1 AddressFiles.DIR;1
LOGIN.COM;3 LOGIN.COM;3
test.1;1 test.1;1
test^.1.clue;1 test^.1.clue;1
Travel.LIS;1 Travel.LIS;1
whee.;5 whee.;5
work.dat;8 work.dat;8

Total of 8 files.

DIRECTORY can either use one or both keywords with the /STYLE qualifier.

Extended File Naming Characteristics 3–13

Extended File Naming Characteristics
3.6 Displaying Files with Extended Names

3.6.2 TYPE Command
The TYPE command accepts the /STYLE qualifier to select the file name format
displayed in system messages while typing files and prompts.

$ TYPE/STYLE=(keyword)

This example shows the use of the TYPE command with the TYPE=EXPANDED
and CONFIRM qualifiers.

$ TYPE/CONFIRM/STYLE=EXPANDED abc*.*rst;2
TYPE TEST$ODS5:[TEST.RANDOMTESTING.RANDOM]abcdefghijklmnopqrstuvwxyzABCDEF
GHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYabc
defghijklmnopqrstuvwxyzGHIJKLMNOPQRSTUVWXYabcdefghijklmnopqrst;2 ? [N]: Y

[System outputs contents of file]

3.6.3 DELETE Command
The DELETE command accepts the /STYLE qualifier to select the file name
format for display purposes when performing the command.

$DELETE/STYLE=(keyword)

In the following examples, the ellipsis (...) represents many characters within
the file name. These examples use the CONFIRM qualifier to generate a system
message.

DELETE using default (CONDENSED):

$ DELETE/CONFIRM abc*.*.*
DELETE TEST$ODS5:[TEST.RANDOMTESTING.RANDOM]abcAlphabet.stuff;1 ? [N]: Y
DELETE TEST$ODS5:[23,1,0] abcdefg. . .QRSTUVWXY.abcdefg. . .tuvw
xy;1 ? [N]: Y

When the full file specification is required, use the DELETE command with the
/STYLE qualifier and the EXPANDED keyword:

$ DELETE/CONFIRM/STYLE=EXPANDED abc*.*.*
DELETE TEST$ODS5:[TEST.RANDOMTESTING.RANDOM]abcAlphabet.stuff;1 ? [N]: Y
DELETE TEST$ODS5:[TEST.RANDOMTESTING.RANDOM]abcdefg. . .QRSTUVWX
Y.abcdefg. . .tuvwxy;1 ? [N]: Y

3.6.4 PURGE Command
The PURGE command accepts the /STYLE qualifier to select the file name format
for display purposes when performing the command.

$ PURGE/STYLE=(keyword)

In the following examples, the ellipsis (...) represents many characters within
the file name. These examples use the CONFIRM qualifier to generate a system
message.

PURGE using default (CONDENSED):

$ PURGE/CONFIRM
DELETE TEST$ODS5:[23,1,0]abcdefg. . .QRSTUVWXY.abcdefg. . .tuvwxy;1
? [N]: Y

When the full file specification is needed, use the PURGE command with the
/STYLE qualifier and the EXPANDED keyword:

$ PURGE/CONFIRM/STYLE=EXPANDED
DELETE TEST$ODS5:[TEST.RANDOMTESTING.RANDOM]abcdefg. . .QRSTUVWXY.ab
cdefg. . .tuvwxy;1 ? [N]: Y

3–14 Extended File Naming Characteristics

Extended File Naming Characteristics
3.7 Displaying Extended File Names on a Terminal

3.7 Displaying Extended File Names on a Terminal
When you want to display extended file names on a terminal, you must specify
ISO Latin-1 as the character set for the terminal to display. Otherwise, the
characters displayed on the terminal may not match those shown by a PC. The
characters that differ between the DEC MCS and the ISO Latin-1 character sets
are listed in Figure C–1.

To display the ISO Latin-1 character set correctly on a DECterm, select
UPSS ISO Latin 1 from the General submenu on the Options menu.

To display the DEC Multinational character set correctly on a DECterm, select
UPSS DEC Supplemental from the General submenu on the Options menu.

To display the ISO Latin-1 character set correctly on a VT320 or VT420, select
UPSS ISO Latin 1 from the General submenu on the Setup menu.

To display the DEC Multinational character set correctly on a VT320 or VT420,
select UPSS DEC Supplemental from the General submenu on the Setup menu.

Extended File Naming Characteristics 3–15

4
Extended File Naming Considerations for

OpenVMS Application Developers

This chapter describes how to evaluate an application’s support for Extended File
Specifications.

4.1 Evaluating Your Current Support Status
As part of testing OpenVMS Alpha Version 7.2, OpenVMS application developers
should evaluate and test all existing applications to determine their current level
of support for Extended File Specifications and whether that level is appropriate.
See Section 2.1 for a description of the levels of support.

Any applications that are coded to undocumented interfaces may not provide
support for either deep directories or extended file names. Section 4.1.2 lists
additional application attributes that may prevent an application from supporting
extended file names. Section 4.1.3 lists additional application attributes that may
prevent an application from supporting ODS-5 volumes.

You can choose either to modify these applications to support Extended File
Specifications or not to use them under Extended File Specifications. For
information on how to modify an application to provide default support for
Extended File Specifications, see Section 4.2.1. For information on how to
upgrade an application to full support, see Section 4.2.2.

4.1.1 Default Support
Most unmodified OpenVMS applications fall into the default support category.
Specifically, these applications use the traditional API rather than the new API
when making RMS calls (see Section B.2 for details about the new RMS API).
Applications that use high-level language calls to perform file operations will also
fit into this category unless the language run-time libraries have been modified
to full support.1 In most cases, you will not need to modify these applications for
them to function successfully under Extended File Specifications.

4.1.2 No Support for Extended File Names
An application that does any of the following may not support extended file
names:

1. Uses the QIO interface to specify file names. Developers should examine
all layered products and applications and evaluate any file name interaction
between the RMS and the XQP interfaces. The format for extended file names
varies for each interface. As a result, an application can no longer assume
that it can use the same file name for both RMS and the XQP. In addition, the
XQP does not allow an unmodified application to use extended file names. For
more information about the changes made to the XQP to support extended file
names, see Section B.3. Valid file names could differ between interfaces.

1 As of OpenVMS Version 7.2, no language RTLs have been upgraded to full support.

Extended File Naming Considerations for OpenVMS Application Developers 4–1

Extended File Naming Considerations for OpenVMS Application Developers
4.1 Evaluating Your Current Support Status

2. Makes assumptions about the syntax of file specifications, such as the
placement of delimiters and legal characters.

3. Makes assumptions about the case of file specifications. RMS no longer
converts mixed and lowercase file specifications to uppercase in all cases.
This could affect string matching operations.

4. Depends on the traditional directory depth (fewer than 8 levels).

4.1.3 No Support for ODS-5 Volumes
An application that uses internal knowledge of the file system, including
knowledge of the contents of a directory and how file header data is structured on
a disk cannot work correctly on an ODS-5 volume.

4.2 Upgrading an Application to Support Extended File
Specifications

The following sections describe the changes necessary to upgrade the level of
support for Extended File Specifications. Note that you must first ensure that the
application meets the default support level before you can upgrade it to the full
support level.

Note

If you are not using the RMS or QIO interfaces to perform disk I/O, the
Extended File Specifications support level of your application depends on
whether the interface you are using (such as a language run-time library)
provides full support.

4.2.1 Upgrading to Default Support
To upgrade an application to provide default support for Extended File
Specifications, you must ensure that it minimally supports both the ODS-5
volume structure and extended file naming as recommended in Sections 4.2.1.1
and 4.2.1.2, respectively. Default support is defined in Section 2.1.2.

4.2.1.1 Providing Support for ODS-5
Applications that do not support the new ODS-5 volume structure do not
operate successfully on these volumes even if they encounter only traditional
file specifications.

If an application does not work properly on an ODS-5 volume, examine the
application for the following:

• Does the application use physical or logical I/O to bypass the file system when
accessing the volume, or does it access metadata files such as BITMAP.SYS
directly? These applications are usually system programs, such as disk
defragmenters, or programs that try to avoid overhead by accessing the disk
directly. These applications rely on specific knowledge of the file or directory
structure on the disk, which has changed with introduction of the ODS-5
structure.

Recommendation: Applications should use documented interfaces and
structures whenever possible.

4–2 Extended File Naming Considerations for OpenVMS Application Developers

Extended File Naming Considerations for OpenVMS Application Developers
4.2 Upgrading an Application to Support Extended File Specifications

• Does the application access and interpret the contents of directory files directly?
If so, the application may fail when it encounters a directory that contains
extended file names.

Recommendation: Modify the application to use the search functions
provided with the RMS2 or QIO interface, or with LIBRTL routines such
as LIB$FIND_FILE.

4.2.1.2 Providing Support for Extended File Naming
If an application does not handle extended names successfully, examine the
application for any the following:

• Does the application attempt to parse or assume knowledge of the syntax of a
file specification? For example, the application might search for a bracket ([)
to locate the beginning of a directory specification, or for a space character to
mark the end of a file specification.

Recommendation: The application should rely on RMS to determine whether
a file specification is legal rather than pretesting the actual name. Use the
NAML_NODE, NAML_DEV, NAML_DIR, NAML_TYPE, and NAM$L_
VER fields of the NAM block or SYS$FILESCAN to retrieve this information.

• Does the application attempt to determine if two file names are the same
by doing a string comparison? Because file names are case-insensitive, and
because there are several ways to represent some characters, a string compare
may fail even though two strings represent the same file.

Recommendation: See the
example program [SYSHLP.EXAMPLES]FILENAME_COMPARE.C for a
way to use the new system service $CVT_FILENAMES to compare filenames.

• Does the application depend on the NAM$V_DIR_LVLS bits in the NAM$L_
FNB field to determine how many directory levels there are in the current
file specification? Because there are only three bits in this field, it can only
specify a maximum of eight levels. Applications seldom use these bits;
they are mainly used by RMS when a NAM is specified as a related file
specification.

Recommendation: Starting with OpenVMS Version 7.2, there is a new larger
field available in both the NAM and the NAML blocks, NAM$W_LONG_DIR_
LEVELS. Use this field to locate the correct number of directory levels.

• Does the application rely on the NAM$V_WILD_UFD and SFD1 - SFD7 bits to
determine where there are wildcard directories? Because there are only eight
of these bits, they can only report wildcards in the first eight directory levels.
Applications seldom use these bits; they are mainly used by RMS when a
NAM is specified as a related file specification.

Recommendation: Starting with OpenVMS Version 7.2, there is a new field
available in both the NAM and NAML block, NAML$W_FIRST_WILD_DIR.
Use this field to locate the highest directory level where a wildcard is to be
found.

• Does the application use the QIO interface to the file system and specify or
request a file name from QIO directly? The QIO interface requires that an
application specify explicitly that it understands extended file names before
it will accept or return the names. In addition, the file name format for
extended file names is not identical between RMS and the QIO interface.

2 RMS directory caching size has drastically increased on OpenVMS Alpha Version 7.2,
greatly improving performance of the $SEARCH system service with large directories.

Extended File Naming Considerations for OpenVMS Application Developers 4–3

Extended File Naming Considerations for OpenVMS Application Developers
4.2 Upgrading an Application to Support Extended File Specifications

Additionally, some file names may be specified in 2-byte Unicode (UCS-2)
characters. Your application must be capable of dealing with 1 character that
spans 2 bytes.

Recommendations: Most applications that use the QIO interface also use
RMS to parse file specifications and retrieve the file and directory ID for the
file. They then use these ID values to access the file with the QIO interface.
This method of access continues to work with extended names. Compaq
recommends changing to this method to fix the problem.

You can also obtain the name that the QIO system uses from the NAML$L_
FILESYS_NAME field of a NAML block, or use the new system service
(SYS$CVT_FILENAME) to convert between the RMS and the QIO file name.
In this case, you will also need to provide an expanded FIB block to the QIO
service to specify that your application understands extended names, expand
your buffers to the maximum size, and prepare to deal with 2-byte Unicode
characters.

4.2.2 Upgrading to Full Support
Some OpenVMS applications, such as system or disk management utilities, may
require full support for Extended File Specifications. Typically, these are utilities
that must be able to view and manipulate all file specifications without DID or
FID abbreviation. To upgrade an application so that it fully supports all the
features of Extended File Specifications, do the following:

1. Convert all uses of the RMS NAM block to the new NAML block.

2. Expand the input and output file name buffers used by RMS. To do this,
use the NAML long_expanded and long_resultant buffer pointers (NAML$L_
LONG_EXPAND and NAML$L_LONG_RESULT) rather than the short buffer
pointers (NAML$L_ESA and NAML$L_RSA), and increase the buffer sizes
from NAM$C_MAXRSS to NAML$C_MAXRSS.

3. If long file names (greater than 255 bytes) are specified in the FAB file
name buffer field (FAB$L_FNA), use the NAML long_filename buffer field
(NAML$L_LONG_FILENAME) instead. If long file names are specified in the
FAB default name buffer field (FAB$L_DNA), use the NAML default name
buffer field (NAML$L_LONG_DEFNAME) instead.

4. If you use the LIB$FIND_FILE, LIB$RENAME or LIB$DELETE routines, set
LIB$M_FIL_LONG_NAMES in the flags argument (flags is a new argument
to the LIB$DELETE routine). Note that you can use the NAML block in
place of the NAM block to pass information to LIB$FILE_SCAN without
additional changes.

5. If you use the LIB$FID_TO_NAME routine, the descriptor for the returned
file specification may need to be changed to take advantage of the increased
maximum allowed of 4095 (NAML$C_MAXRSS) bytes.

6. If you use the FDL$CREATE, FDL$GENERATE, FDL$PARSE, or
FDL$RELEASE routine, you must set FDL$M_LONG_NAMES in the
flags argument.

7. Examine the source code for any additional assumptions made internally that
a file specification is no longer than 255 8-bit bytes.

4–4 Extended File Naming Considerations for OpenVMS Application Developers

A
Setting Users’ Expectations of Extended File

Specifications

Extended File Specifications enables users to use Windows-style file specifications
in an OpenVMS environment. Among the ways you can help users become
accustomed to Extended File Specifications is to explain some differences they
might see between ODS-2 and ODS-5 file names. These differences become most
apparent when users change from ODS-2 to ODS-5 styles.

Following are usage notes that you, as system manager, might pass on to users.
These notes have been divided into the following categories:

• New Extended File Specifications characteristics

• ODS-2 and ODS-5 used together

• Architecture-related notes

A.1 New Extended File Specifications Characteristics
The following notes discuss issues related to new HSF characteristics that are
unfamiliar to users.

Be Aware of Volume Structure
So that you can place ODS-5 files on ODS-5 volumes, make sure you know
whether a disk is an ODS-2 or ODS-5 volume.

You can display the type of volume by issuing commands like the following:

$ SHOW DEVICE DKA500:/FULL

Disk AABOUT$DKA500:, device type RZ25, is online, allocated, deallocate
on dismount, mounted, file-oriented device, shareable.

Error count 0 Operations completed 155
.
.
.

Volume Status: ODS-5, subject to mount verification, file high-water
marking, write-back caching enabled.

$ SHOW DEVICE DKA200:/FULL

Disk AABOUT$DKA200:, device type RZ25, is online, allocated, deallocate
on dismount, mounted, file-oriented device, shareable.

Error count 0 Operations completed 232
.
.
.

Volume Status: ODS-2, subject to mount verification, file high-water
marking, write-back caching enabled.

Setting Users’ Expectations of Extended File Specifications A–1

Setting Users’ Expectations of Extended File Specifications
A.1 New Extended File Specifications Characteristics

After each command, the ‘‘Volume Status:’’ displayed indicates whether the
volume is ODS-5 or ODS-2.

Do Not Use Extended File Names on ODS-2 Volumes
You cannot create a file with an extended file name on an ODS-2 volume.

In the following example, DKA200 is an ODS-2 volume, and the parse style is
EXTENDED, which causes RMS to return an error message.

$ SET DEFAULT DKA200:[TEST]
$ CREATE x.x.x.x
%CREATE-E-OPENOUT, error opening DAK200:[TEST]X^.X^.X.X; as output
-RMS-E-CRE, ACP file create failed
-SYSTEM-W-BADFILEVER, bad file version number

Case Is Determined by the First Instance of an Extended File Name
On an ODS-5 volume, the case for all versions of a file name is identical; the case
is preserved as the file name was first created.

In the following example, DKA500 is an ODS-5 disk.

$ SET DEFAULT DKA500:[TEST]
$ SET PROCESS /PARSE_STYLE=EXTENDED
$ CREATE myfile.txt

Ctrl/Z

$ CREATE MYFILE.TXT
Ctrl/Z

$ DIRECTORY

Directory DKA500:[TEST]

myfile.txt;2 myfile.txt;1

Be Aware of Extended File Specifications Case Preservation and Case
Blindness
Although an ODS-5 volume preserves the case of a file as it is first entered, file
searches are performed in a case-blind manner. Similarly, users must also be
careful when they do comparisons, such as when they use DCL string functions
such as .EQS. and F$LOCATE in a DCL command procedure.

The following example demonstrates the importance of case-blind matching of
file names in DCL. In the program, notice that you specify no argument to do a
case-sensitive match but that you specify an argument to do a case-blind match.

This program uses F$SEARCH to find all files that have a file type of ‘‘.TXT.’’
Because RMS (and thus F$SEARCH) does case-blind matching, F$SEARCH also
finds files with the file type ‘‘.txt.’’ F$SEARCH then uses F$LOCATE to search
the file name for ‘‘TEST.’’ Because F$LOCATE does case-sensitive comparisons, it
fails to match unless you first change the string to uppercase.

A–2 Setting Users’ Expectations of Extended File Specifications

Setting Users’ Expectations of Extended File Specifications
A.1 New Extended File Specifications Characteristics

$ case_blind = 0
$ if p1 .nes. "" then case_blind = 1 !
$loop:
$ file = f$search("*.TXT;") "
$ if file .eqs. "" then goto not_found
$ write sys$output "Search returns " + file
$ if case_blind .eq. 1 then file = f$edit(file,"UPCASE") #
$ if (f$locate("TEST",file) .ne. f$length(file)) then goto found $
$ goto loop
$found:
$ write sys$output "Found a file matching TEST"
$ exit
$not_found:
$ write sys$output "Did not find file matching TEST"
$ exit

Following are explanations of the callouts in the example.

! Set ‘‘case_blind’’ to 1 if there is an argument (which requests the program to
do a case-blind comparison).

" Get a file ending in ‘‘.TXT’’ or ‘‘.txt’’ (because F$SEARCH is case-blind).

If a case-blind comparison was selected in Step 1, change the file name to
uppercase to make a case-blind comparison.

$ If F$LOCATE finds a file, it will go to ‘‘found:.’’

In the following example, the search program performs a case-sensitive search
and does not find a match.

$ @test
Search returns DKA300:[FISHER]test.txt;1
Did not find file matching TEST

In the following example, the search program performs a case-blind search and
does find a match.

$ @test case-blind
Search returns DKA300:[FISHER]test.txt;1

Found a file matching TEST

Abbreviated and Full Directories Listed Separately with CONDENSED File
Names
Some system utilities and DCL commands, such as DIRECTORY, have a style
switch to control how they display file names. If the style is CONDENSED, file
names up to 255 bytes in length are displayed. When a file specification reaches
the 255-byte limit, the directory name is abbreviated to a directory ID (DID).

The following example shows a CONDENSED directory name. The DIRECTORY
command considers a DID abbreviated directory name as different from the
unabbreviated directory name and therefore generates a separate header when
the abbreviation occurs.

$ DIR/STYLE=CONDENSED

Directory DKA300:[DEEPER.aaaa.bbbb.cccc.dddd.eeee.ffff.gggg.hhhh.iiii._ten.aaaa.
bbbb.cccc.dddd.eeee.ffff.gggg.hhhh.iiii._ten.aaaa.bbbb.cccc.dddd.eeee.ffff.gggg.
hhhh.iiii._ten.aaaa.bbbb.cccc.dddd.eeee.ffff.gggg.hhhh.iiii._ten]!

aaaa.txt;1

Total of 1 file.

Directory DKA300:[528,7036,0]"

Setting Users’ Expectations of Extended File Specifications A–3

Setting Users’ Expectations of Extended File Specifications
A.1 New Extended File Specifications Characteristics

xxx.txt;1

Total of 1 file.

Grand total of 2 directories, 2 files.#

! With the CONDENSED style, if the combination of the directory name and
file name does not exceed 255 bytes, the directory name is not shortened to a
DID.

" With the CONDENSED style, if the combination of the directory name and
file name exceeds 255 bytes, the directory name is shortened to a DID.

When you issue a DIRECTORY command that displays both a full and an
abbreviated directory format for the same directory name, DIRECTORY
counts these as two different directories.

For more information about DIRECTORY commands, see the OpenVMS DCL
Dictionary.

Be Aware of Extended File Specifications as Equivalence Names
The Extended File Specifications escape character (^), is not used in a logical
name equivalence string. When you define a logical name for an extended file
name that requires escape characters, omit the escape characters from the
extended file name in the DEFINE command. For example:

$ define xxx a&b
$ dir xxx

Directory DKA500:[EXTENDED_FILES]

a^&b.txt;1

Total of 1 file.

A.2 ODS-2 and ODS-5 Used Together
The following notes discuss issues related to using ODS-2 and ODS-5 together in
a cluster.

Use Traditional File Names in a Mixed-Volume Environment
To avoid ODS-2 and ODS-5 file name incompatibility if you are working with
both ODS-2 and ODS-5 volumes, and to assure backward compatibility with prior
versions of OpenVMS, use only ODS-2 traditional file names.

Error Messages Can Vary Depending on Parse Style
Error messages displayed to users might vary depending on the parse style.
Syntax errors that were formerly detected at the DCL-level are now passed
on to the file system level, RMS and XQP, for example, if the parse style is
EXTENDED. As a result, the messages users receive for file syntax errors might
be slightly different depending on the parse style and volume structure.

Following are examples of varying error messages.

• Examples of TRADITIONAL and EXTENDED styles on an ODS-5 volume:

$ SHOW DEVICE DKA500:/FULL

Disk AABOUT$DKA500:, device type RZ25, is online, allocated, deallocate
on dismount, mounted, file-oriented device, shareable.

A–4 Setting Users’ Expectations of Extended File Specifications

Setting Users’ Expectations of Extended File Specifications
A.2 ODS-2 and ODS-5 Used Together

Error count 0 Operations completed 155
.
.
.

Volume Status: ODS-5, ! subject to mount verification, file high-water
marking, write-back caching enabled.

$ SET PROCESS /PARSE_STYLE=TRADITIONAL "
$ OPEN /WRITE FILE z.z.z.z
%DCL-W-PARMDEL, invalid parameter delimiter - check use of special
characters \.Z\ #
$ SET PROCESS /PARSE_STYLE=EXTENDED $
$ OPEN /WRITE FILE z.z.z.z
$ %

! The volume is ODS-5.

" The parse style is set to TRADITIONAL.

DCL returns an error on some ODS-5 file names such as this one.

$ The parse style is set to EXTENDED.

% DCL creates the file.

• Examples of TRADITIONAL and EXTENDED styles on an ODS-2 volume:

Disk AABOUT$DKA200:, device type RZ25, is online, allocated, deallocate
on dismount, mounted, file-oriented device, shareable.

Error count 0 Operations completed 232
.
.
.

Volume Status: ODS-2, ! subject to mount verification, file high-water
marking, write-back caching enabled.

$ SET PROCESS /PARSE_STYLE=TRADITIONAL "
$ OPEN /WRITE FILE z.z.z.z
%DCL-W-PARMDEL, invalid parameter delimiter - check use of special
characters \.Z\ #
$ SET PROCESS /PARSE_STYLE=EXTENDED $
$ OPEN /WRITE FILE z.z.z.z
%DCL-E-OPENIN, error opening
-RMS-E-CRE, ACP file create failed %
-SYSTEM-W-BADFILEVER, bad file version number

! The volume is ODS-2.

" The parse style is set to TRADITIONAL.

DCL returns an error message.

$ The parse style is set to EXTENDED.

% DCL allows the file name, but XQP returns an error.

• Examples of different error messages for the same syntax error:

$ SHOW DEVICE DKA500:/FULL

Disk AABOUT$DKA500:, device type RZ25, is online, allocated, deallocate
on dismount, mounted, file-oriented device, shareable.

Setting Users’ Expectations of Extended File Specifications A–5

Setting Users’ Expectations of Extended File Specifications
A.2 ODS-2 and ODS-5 Used Together

Error count 0 Operations completed 155
.
.
.

Volume Status: ODS-5, ! subject to mount verification, file high-water
marking, write-back caching enabled.

$ SET PROCESS /PARSE_STYLE=TRADITIONAL "
$ CREATE a^<b.c

%DCL-W-PARMDEL, invalid parameter delimiter - check use of special
characters
\^\ #

$ SET PROCESS /PARSE_STYLE=EXTENDED $
$ CREATE a^<b.c

%CREATE-E-OPENOUT, error opening a^<b.c as output
-RMS-F-SYN, file specification syntax error %

! The volume is ODS-5.

" The parse style is set to TRADITIONAL.

DCL returns an error message for a syntax error.

$ The parse style is set to EXTENDED.

% RMS returns a different error message for the same syntax error ("<" is
not allowed even in an extended file name).

Be Aware of Implicit File Name Output
Be wary of defaults when you allow utilities to create output files based on the
file name being processed. Be sure you know where a file is being placed so you
will not inadvertently try to place an extended file on an ODS-2 volume.

The following examples show files being placed somewhere you might not expect:

• An error results if an application or a utility attempts to write an ODS-5
extended file name to an ODS-2 (DKA200:) volume; for example:

$ SHOW DEFAULT
DKA200:[DOREO]

$ DUMP /OUTPUT DKA500:[DOREO]This^_is^_a^_file.Dat
%DUMP-E-OPENOUT, error opening DKA200:[DOREO]THIS^_IS^_A^_FILE.DMP;as
output
-RMS-E-CRE, ACP file create failed
-SYSTEM-W-BADFILENAME, bad file name syntax

The output file specified with the /OUTPUT qualifier defaults to the same name
as the input file, with .DMP as the file type, in the default directory. While the
input file specification is an extended name on an ODS-5 volume, the .DMP file
must have a traditional name, because it will be written to an ODS-2 volume. As
a result, an error occurs.

• A batch command file will fail to execute if the following conditions apply:

– a log file was requested implicitly or explicitly and

– the implicit or explicit log file specification would have an extended file
name (that is, the name would be non-ODS-2-compliant) and

– the log file would be created on an ODS-2 volume.

A–6 Setting Users’ Expectations of Extended File Specifications

Setting Users’ Expectations of Extended File Specifications
A.2 ODS-2 and ODS-5 Used Together

The batch command file does not execute because a log file cannot be created.
Most frequently, this situation occurs when the logical name SYS$LOGIN
refers to an ODS-2 volume; this is because log files are implicitly created on
the SYS$LOGIN device. In addition, if notification is disabled, you are not
notified that your batch job did not execute.

To avoid the problem, use the /LOG= qualifier and an ODS-2-compliant log
file specification when you submit command files with extended file names.

A.3 Architecture-Related Notes
The following notes discuss Extended File Specifications issues related to system
architecture.

Extended File Names Are Not Visible from a VAX System
Although you can mount ODS-5 volumes on a VAX, if you log in to a VAX system,
extended file names are not visible. In their place, you will see a pseudoname:

• On VAX, if you attempt to display a file name that contains 2-byte Unicode
characters, the pseudoname displayed is \PUNICODE\.???

• Any other name that is not a legal ODS-2 name is displayed as
\PISO_LATIN\.???

For example, following are listings of the same directory as they appear on Alpha
and VAX systems:

• On an Alpha system:

$ DIRECTORY DPA100:[TEST]

Directory DPA100:[TEST]

Accounting^_data.lis;1 atest.txt;1

• On an VAX system:

$ DIRECTORY DPA200:[TEST]

Directory DPA200:[TEST]

\PISO_LATIN\.??? ATEST.TXT

In addition, the directory depth on a VAX is limited to 8 (or 16, using rooted
logicals).

A.4 Restrictions
The following topic describes a restriction when using extended file names.

Tilde (~) As First Character in a File Name
The Compaq C Run Time Library (CRTL) allows a programmer to specify both
Unix-style and VMS-style file specifications to routines such as creat() and
fopen().

In Unix file specifications, a tilde (~) in the first character of a pathname
represents the user’s home directory. However, in an OpenVMS extended file
name, a tilde is legal anywhere in a file name or directory name.

To preserve backward compatibility, the CRTL will continue to interpret a
leading tilde (~) to mean the user’s home directory. To pass an OpenVMS file
name that begins with a tilde (~) to a CRTL routine that accepts Unix-style file
specifications, specify the tilde preceded by the escape character (^). For example,
^~.

Setting Users’ Expectations of Extended File Specifications A–7

Setting Users’ Expectations of Extended File Specifications
A.4 Restrictions

The following Compaq CRTL functions accept OpenVMS extended file names and
require this syntax for a leading tilde (~) in the file specification:

.create

.fopen

.freopen

.open

.stat

A–8 Setting Users’ Expectations of Extended File Specifications

B
Technical Information

This appendix duplicates technical information that appears in other parts of the
OpenVMS documentation.

B.1 System Services Changes
This section describes the following system services:

• New services:

$SET_PROCESS_PROPERTIESW

$CVT_FILENAME

• Changed services:

$CREPRC

$GETJPI

$SETDDIR

B.1.1 $SET_PROCESS_PROPERTIESW System Service (Alpha Only)
The $SET_PROCESS_PROPERTIESW system service sets a simple value
associated with a process.

Format

$SET_PROCESS_PROPERTIESW mbz1 ,mbz2 ,mbz3 ,property ,value, prev_value

C Prototype:
int sys$set_process_properties(

unsigned int mbz1,
unsigned int mbz2,
unsigned int mbz3,
unsigned int property,
unsigned __int64 value,
unsigned __int64 *prev_value);

Arguments
mbz1,mbz2,mbz3

Reserved for future use by Compaq. Must be specified as 0.

property
OpenVMS usage: integer
type: longword (unsigned)
access: read only
mechanism: by value

A constant that selects which property to set.

Technical Information B–1

Technical Information
B.1 System Services Changes

Valid values for property are defined by the $PPROPDEF macro as shown in
Table B–1.

Table B–1 Property Code Descriptions

Property Code Description

PPROP$C_PARSE_STYLE_TEMP: The type of command parsing to use. This
value will be set only for the life of the image.
The value will revert to the permanent style
on image rundown. Valid values are: PARSE_
STYLE$C_TRADITIONAL and PARSE_
STYLE$C_EXTENDED.

PPROP$C_PARSE_STYLE_PERM: The type of command parsing to use. This
value will be set for the life of the process
unless the style is set again. Valid values
are: PARSE_STYLE$C_TRADITIONAL and
PARSE_STYLE$C_EXTENDED.

value
OpenVMS usage: integer
type: quadword (unsigned)
access: read
mechanism: by value

A quadword value to which to set the property.

prev_value
OpenVMS usage: access_mode
type: quadword (unsigned) address of a quadword value
access: write
mechanism: by reference

The address of a quadword that will receive the previous value of the property.

Required Access or Privileges
None.

Required Quota
None.

Related Services
$GETJPI

Condition Values Returned
SS$NORMAL The service completed successfully.
SS$ACCVIO Access violation.

B.1.2 $CVT_FILENAME System Service (Alpha Only)
Converts a string from RMS format to file-system (ACP-QIO) format or from
file-system (ACP-QIO) format to RMS format.

Format

SYS$CVT_FILENAME cvttyp ,srcstr ,inflags ,outbuf ,outlen ,outflags

B–2 Technical Information

Technical Information
B.1 System Services Changes

C Prototype:
int sys$cvt_filename (unsigned int cvttyp,

void *srcstr,
unsigned int inflags,
void *outbuf,
unsigned short int *outlen,
unsigned int *outflags);

Arguments
cvttyp
OpenVMS usage: unsigned_longword
type: longword (unsigned)
access: read only
mechanism: by value

Longword value that indicates whether the conversion is to be from RMS format
to ACP-QIO format or vice versa.

There are two legal values for this parameter, represented by the symbols
CVTFNM$C_ACPQIO_TO_RMS and CVTFNM$C_RMS_TO_ACPQIO, which
are defined by the $CVTFNMDEF macro.

srcstr
OpenVMS usage: string of bytes or words
type: string of bytes or words
access: read only
mechanism: by 32-bit descriptor--fixed length string descriptor

String to be converted by the service.

If the conversion is to be from RMS format to ACP-QIO format, srcstr is an
ISO Latin-1 or VTF-7-encoded character string. If the conversion is to be from
ACP-QIO format to RMS format, srcstr is a string of byte-width or word-width
characters.

The descriptor length field indicates the length of the input string in bytes,
whether the characters are byte-width or word-width.

The srcstr argument is the 32-bit address of a descriptor that points to this
string.

inflags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Longword flag mask indicating characteristics of the input string.

For conversion from RMS format to ACP-QIO format, only the CVTFNM$V_NO_
DELIMITERS flag is valid.

For conversion from ACP-QIO format to RMS format, legal flags are
CVTFNM$V_WORD_CHARS and CVTFNM$V_NO_DELIMITERS (defined by
the $CVTFNMDEF macro). The flag descriptions are shown in Table B–2.

Technical Information B–3

Technical Information
B.1 System Services Changes

Table B–2 Flag Descriptions

Flag Description

CVTFNM$V_WORD_CHARS Input source string contains word-width UCS-2
characters (ACPQIO_TO_RMS).

CVTFNM$V_NO_DELIMITERS Input source string should be treated as an
arbitrary string (such as a subdirectory name)
rather than as a filename that contains (or should
contain) dots or semicolons as type and version
delimiters.

outbuf
OpenVMS usage: string of bytes or words
type: string of bytes or words
access: write only
mechanism: by 32-bit descriptor--fixed-length string descriptor

The buffer into which the converted string is to be written.

If the conversion is from RMS format to ACP-QIO format, the string may consist
of byte-width ISO Latin-1 characters or word-width UCS-2 characters, depending
upon the characters in the source string. (If any character in the source string
requires a word to represent, then all characters in the output buffer will be of
word width.)

If the conversion is from ACP-QIO format to RMS format, then the output string
will consist of ISO Latin-1 and VTF-7 characters, in RMS canonical form. (Refer
to the Guide to OpenVMS File Applications.)

For ACPQIO_TO_RMS conversion, if the output string is composed of word-width
characters, the CVTFNM$V_WORD_CHARS flag in the outflags flag mask will
be set.

The outbuf argument is the 32-bit address of a descriptor pointing to a buffer
writable in the mode of the caller.

outlen
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by 32-bit reference

The outlen argument is the 32-bit address of a (16-bit) word writable in the mode
of the caller.

outflags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by 32-bit reference

Longword flag mask in which the service sets or clears flags to indicate
characteristics of the output string.

For an RMS_TO_ACPQIO conversion, SYS$CVT_FILENAME sets the bit
corresponding to CVTFNM$V_WORD_CHARS (defined by the $CVTFNMDEF
macro) if the characters of the converted string are one word (rather than one
byte) wide. If the characters of the converted string are one byte wide, the service
clears the CVTFNM$V_WORD_CHARS bit. All other bits are cleared by an
RMS_TO_ACPQIO conversion.

B–4 Technical Information

Technical Information
B.1 System Services Changes

The outflags argument is the 32-bit address of a 32-bit flag mask writable in the
mode of the caller.

Description
This service is intended to provide conversion of a filename(1) or of a subdirectory
name(2) between the RMS format (as seen at the RMS interface) and ACP-QIO
format (as stored on-disk). Prior to Version 7.2, these representations were the
same. This is not necessarily the case for extended (ODS-5) filenames. (Refer to
the Guide to OpenVMS File Applications for details on ODS-5 file specifications.)

1. A filename consists of a file name, a file type, and a file version.

2. A subdirectory name is a string to which ".DIR;1" may be appended to form a
directory file name, as stored on-disk.

Depending upon the value of cvttyp, the service will perform conversion of a
string from RMS format to ACP-QIO format or from ACP-QIO format to RMS
format.

The source string is described by the argument srcstr, the output buffer is
described by the argument outbuf, and the resultant string length is written to
the argument outlen.

If any of the source string falls within the address range of the output buffer, the
output string is unpredictable.

RMS-to-ACPQIO Conversion:

A string described by the srcstr descriptor argument is converted to an ISO
Latin-1 or UCS-2 string with each character represented in a form that can be
passed to the ACP-QIO via the $QIO service.

If the CVTFNM$V_NO_DELIMITERS input flag is clear, the source string will
be scanned, and, if necessary, a dot and a semicolon will be inserted or appended
as though a $PARSE were done with no default name, type, or version fields
supplied. If the scan detects any delimiters indicating the presence of fields other
than name (without FID), type, or version, a syntax error will be returned.

If the CVTFNM$V_NO_DELIMITERS input flag is set, individual characters will
be validated and converted to their on-disk form. However, no scan is done to
determine if type and version delimiters are present, and no delimiters are added.

A percent sign (%) that is not preceded by the escape character (^) is converted
to a question mark. An ISO Latin-1 character that is preceded by the escape
character (^) is converted to the corresponding ISO Latin-1 character. A VTF-7
character (for example, ^U1234) that is preceded by the escape character (^) is
converted to a UCS-2 character (for example, 0x1234).

If any character requires UCS-2 (word-width character) representation, all
characters are represented in the output string with UCS-2. If no character
requires word-width character representation, all characters are represented in
the output string with ISO Latin-1 (byte-width) characters.

Valid characters are those that are legal in an RMS filename (file name, file
type, and file version) or in an RMS subdirectory name. For example, directory
delimiters ‘‘[’’ and ‘‘]’’ are not legal, unless preceded by the escape character (^).

ACPQIO-to-RMS Conversion:

The string described by the srcstr descriptor argument is converted to the RMS
canonical form for that string.

Technical Information B–5

Technical Information
B.1 System Services Changes

If the CVTFNM$V_NO_DELIMITERS input flag is clear, the source string must
contain at least one semicolon, and, to the left of the semicolon, at least one dot.
If it does not, RMS$_SYN (syntax error) is returned. In the output string, all dots
and semicolons other than those two are preceded by the RMS escape character
(^).

If the CVTFNM$V_NO_DELIMITERS input flag is set, any dot or semicolon
encountered is preceded in the output string by the RMS escape character (^).

The CVTFNM$V_WORD_CHARS flag of the inflags argument indicates whether
the input string is to be interpreted as having byte-width (ISO Latin-1) or word-
width (UCS-2) characters. If the argument indicates word-width characters, but
the input length value is an odd number, a syntax error is returned.

Question marks are converted to percent signs; percent signs are preceded by the
escape character (^). UCS-2 characters are converted to VTF-7 characters. All
characters will be represented in RMS canonical form.

Required Access or Privileges
None.

Required Quota
None.

Related Services
None.

Condition Values Returned
SS$NORMAL The service completed successfully.
SS$_BADPARAM Unrecognized conversion type, extraneous input

flags set, or zero-length input string.
SS$_INSFARG Not enough arguments provided.
SS$_TOO_MANY_ARGS Too many arguments provided.
RMS$_SYN The service could not translate one or more

characters in the strings described by the
srcstr argument, the input string has word-width
characters but odd byte-length (ACPQIO_TO_RMS
only), or the CVTFNM$V_NO_DELIMITERS input flag
was clear and the input string did not contain
both type and version delimiters.

SS$_BUFFEROVF The output buffer was not large enough
to accommodate the converted string.

B.1.3 $GETJPI System Service
There are two new item codes for this system service. They are:

JPI$_PARSE_STYLE_PERM
JPI$_PARSE_STYLE_IMAGE

These return the values that were set by $SET_PROCESS_PROPERTIES,
that can be either PARSE_STYLE$C_TRADITIONAL or PARSE_STYLE$C_
EXTENDED. Return length is one byte for each one.

B.1.4 $CREPRC System Service
There is a new flag allowed in the stsflg parameter:
PRC$M_PARSE_EXPANDED

This sets the PARSE_STYLE_PERM and the PARSE_STYLE_IMAGE properties
for the new process to EXPANDED.

B–6 Technical Information

Technical Information
B.1 System Services Changes

B.1.5 $SETDDIR System Service
The following text has been added to the system service description:

On Alpha systems, the Set Default Directory service attempts to replace the
default directory string with a DID if the length of the resulting default directory
exceeds 255 bytes. If this happens, then in addition to the normal syntax check,
the entire path to that specification, including the device, is verified and must
exist for the call to succeed.

B.2 Record Management Services (RMS) Changes
OpenVMS Record Management Services (RMS) has been modified to support
Extended File Specifications. The following sections describe syntax and
semantics changes and RMS data structure changes.

B.2.1 Overview of Record Management Services Changes
To support Extended File Specifications, the Record Management Services (RMS)
have been enhanced to provide the following functions through existing interfaces:

• Support for a wider range of characters in a file name, extension, and
directory

• Access to file specifications with extended characters

• Support for directory structures deeper than eight levels

• Access to file specifications longer than 255 bytes through the NAM block
with some restrictions in functionality

• Access and complete specification of file specifications longer than 255 bytes
by callers who are aware of the new naming characteristics through a new
interface (NAML block)

B.2.1.1 Extended File Specification Support
On ODS-5 volumes, RMS can manipulate filenames and subdirectory
specifications of up to 255 8-bit or 16-bit characters in length. RMS can handle a
total path name 512 8-bit or 16-bit characters in length.

Prior to OpenVMS Alpha Version 7.2, the NAM block interface could pass file
specifications of up to 255 bytes each (including the resultant file specification).
The following sections describe the changes that allow for passing longer file
specifications and that provide compatibility with applications using the NAM
block interface prior to this release.

B.2.1.2 Additional Characters
On ODS-5 volumes, RMS supports access to files and directories with names that
contain arbitrary 8-bit characters, except for the C0 control set (hexadecimal 00
through 1F) and the following characters:

Double quotation marks (")
Asterisk (*)
Backslash (\)
Colon (:)
Left and right angle brackets (< >)
Slash (/)

Technical Information B–7

Technical Information
B.2 Record Management Services (RMS) Changes

Question mark (?)
Vertical bar (|)

Note that this explicitly includes both the C1 character set (hex 80-9F) as well
as graphical and other characters between 9F and FF. This allows the entire ISO
Latin-1 character set (with the 7-bit character exclusions noted above) and any
defined Unicode character.

B.2.1.3 Deeply Nested Directory Support
Under Extended File Specifications on Alpha, RMS supports deep nesting of up
to 255 directories, with the restriction that the total directory specification must
be no longer than 512 8-bit or 16-bit characters. The deep nesting of directories
is also supported on ODS-2 disks.

B.2.2 Syntax and Semantics Changes
The following sections describe new RMS file specification syntax and semantics
features. See the Guide to OpenVMS File Applications for more information
about using RMS with Extended File Specifications.

B.2.2.1 Use of Hyphen as First File Name Character
Prior to OpenVMS Version 7.2, RMS documentation recommended against
creating files with names that begin with a hyphen (minus sign).

On Alpha systems, the Extended File Specifications changes to RMS allow you to
use a hyphen anywhere in a file name or a directory name. If a directory name
containing a hyphen is ambiguous, that is, if it could be interpreted as referring
to a parent directory, you must prefix the hyphen with the escape character (^) to
accurately specify the file or directory.

B.2.2.2 Characters Accepted Directly
The set of characters valid through the RMS interface in a file specification
(without any special escape character) is extended according to the following
list. Note that these characters must not be preceded by the escape character
circumflex (^).

• Upper and lowercase alphanumeric characters:

A - Z, a - z, 0 - 9

• Special ASCII (7-bit) characters:

$ - _

• ISO Latin-1 characters in the range (hex) A0 to FF.

B.2.2.3 Characters That Require an Escape Character

• Escape (^) followed by a hexadecimal digit requires a second hexadecimal
digit. The two following characters represent a hexadecimal value for an
arbitrary 8-bit character.

For example, ^20 represents a space.

• Escape followed by underscore (^_) or by a space represents one space.

• Escape followed by uppercase U (^U) indicates that the next four characters
represent a hexadecimal value for an arbitrary 16-bit character.

• Each 2-byte Unicode character must be represented as a ^Uxxxx sequence.

B–8 Technical Information

Technical Information
B.2 Record Management Services (RMS) Changes

• The following characters require an escape character when they are used as
part of a file name on input to RMS and DCL. For the period (.)1 and tilde
(~)2, the escape character is only required under some circumstances, detailed
in their respective footnotes.

Exclamation point (!)
Pound sign (#)
Ampersand (&)
Apostrophe (’)
Left parenthesis (()
Right parenthesis ())
Plus sign (+)
Atsign (@)
Left brace ({)
Right brace (})
Period (.)1
Comma (,)
Grave accent (‘)
Semicolon (;)
Left bracket ([)
Right bracket (])
Percent sign (%)
Circumflex (^)
Equal sign (=)
Tilde (~)2

B.2.2.4 Characters That Can Have an Escape Character
The following characters can be preceded by the escape character (^) on input
to RMS or DCL, but need not be. For the period (.)1 and tilde (~)2 the escape
character is only required under some circumstances, detailed in their respective
footnotes.

Dollar sign ($)
Minus sign (-)
Period (.)1
Tilde (~)2

B.2.2.5 Reserved Escape Sequences
Sequences consisting of the escape character followed by any character not
mentioned previously are reserved.

B.2.2.6 Canonical Form of File Specifications
In some cases, there are multiple ways to write the same characters. For
example, ^20, ^ , and ^_ are all equivalent. When RMS outputs a file
specification (as a resultant name, for example), it follows these rules to
determine which form to use:

• Any character that cannot be represented with eight bits is represented as
^Uxxxx, where xxxx is four hexadecimal digits.

• Space is represented as the escape character followed by an underscore (^_).

1 The escape character is required before a period in a directory name, is optional before a
period in a file name, and must not be used for the period that delimits the file type. A
period is not permitted in a file type.

2 The tilde that is the leading character in a file name or directory may require an escape
character.

Technical Information B–9

Technical Information
B.2 Record Management Services (RMS) Changes

• Other ISO Latin-1 8-bit characters that have no graphical representation
or which are used for control functions by other OpenVMS software or by
terminals is represented by an escape character followed by two hexadecimal
digits (^xx). Otherwise, it is represented by its own character. The following
8-bit values are output as an escape character followed by two hexadecimal
digits.

7F (rubout)
80-9F (C1 control characters)
A0 (nonbreaking space)
FF (Latin small letter y diaeresis)

• If the file specification is longer than 255 bytes and must be output through a
NAM block, a DID or FID abbreviation is used.

• The following characters are output preceded by the escape character (^):

Exclamation point (!)
Pound sign (#)
Ampersand (&)
Apostrophe (’)
Grave accent (‘)
Left parenthesis (()
Right parenthesis ())
Plus sign (+)
Atsign (@)
Left brace ({)
Right brace (})
Period (.)
Comma (,)
Semicolon (;)
Left bracket ([)
Right bracket (])
Percent sign (%)
Circumflex (^)
Equal sign (=)

B.2.2.7 DID Abbreviation
With extended file names, some legal names will be too long for unmodified
RMS applications or for DCL to handle, either because of many levels of long
directory names or because of a long file name with escape characters in it. To
maintain compatibility with applications using the traditional (or pre-Version 7.2)
interfaces, shorter names that RMS can output to the application and that an
application can input to RMS through the traditional interface will be generated.

DID abbreviation is the first step that RMS uses to create a generated name
if the file specification is longer than 255 bytes. RMS attempts to generate a
short enough name by abbreviating the directory with its directory ID (DID). For
example:

DKA100:[5953,9,0]FOO.TXT;1.

Restrictions on DID Abbreviations
When RMS is processing a file specification that does not fit into a traditional
(pre-Version 7.2) short output buffer, RMS can attempt to abbreviate the root
or directory component by replacing the component with the directory ID of the
lowest-level subdirectory in the component.

B–10 Technical Information

Technical Information
B.2 Record Management Services (RMS) Changes

There are circumstances in which RMS will not be able to generate a DID-
abbreviated root or directory component. For example, if the path to the lowest-
level subdirectory includes a wildcard, RMS does not have a particular directory
ID to use. (And RMS does not attempt to replace a portion of a root or directory
component with a DID.)

When RMS is unable to sufficiently shorten a file specification by generating a
DID-abbreviated root or directory, it proceeds to the next step, FID abbreviation.

B.2.2.8 FID Abbreviation
If the file specification is still too long after DID abbreviation, RMS next attempts
to generate a short enough name by abbreviating the file with its File ID (a
comma-separated sequence of decimal digit strings, surrounded by brackets) in
the file name field.

In cases where the extension field is normally presented, a generated name
includes the complete extension or drops the extension (including the period (.)),
depending on whether there is space.

In cases where the version number is normally presented, a FID abbreviated file
name includes the version. As a human-readable aid in recognizing files, when
a FID abbreviation is generated, the name field also contains an initial subset
of the actual file name. The subset consists of the first 38 characters of the file
name (where escape counts as a character) followed by the tilde (~). No attempt
is made to resolve ambiguities for files that differ only after the first 38 characters
of their names.

Here is an example of a FID abbreviation:

LookAtWhatWeHave^!ThisIsAVery_long^.fi~[7254,30,0].txt;1

Restrictions on FID Abbreviations and DID Abbreviations
A FID abbreviated file name can be used for input to RMS, but only the FID
abbreviation itself is significant to RMS. The subset file name, the type field, and
the version are all ignored on input.

A FID cannot be used as input to the CREATE command (or any other file
creation command or API) when creating a file. A DID cannot be used to create
a directory. When a FID is used in a file specification, the file specification
either initially contains a device and directory or it acquires them from defaults
processing in RMS. If a file with the specified FID exists on the volume, it must
exist within the specified directory; otherwise, RMS acts as though the file were
not found.

B.2.3 RMS Data Structure Changes (Alpha Only)
This section lists the changes to the name (NAM) block. It also describes the
new name (NAML) block that is used to specify file specifications longer than 255
bytes.

B.2.3.1 NAM Block
The file name block options field, NAM$B_NOP, has a new flag as shown in
Table B–3.

Technical Information B–11

Technical Information
B.2 Record Management Services (RMS) Changes

Table B–3 New NAM$B_NOP Flag

Flag Meaning

NAM$V_NO_SHORT_UPCASE Set by the user to tell RMS not to convert the
directory and file specification in the NAM$L_
ESA buffer to uppercase.

The file name status bits field, NAM$L_FNB, has the new flags as described in
Table B–4.

Table B–4 New NAM$L_FNB Flags

Flag Meaning

NAM$V_DIR_LVLS_G7 Indicates that the number of directory levels are greater than
7. If this is set, NAM$V_DIR_LVLS is set to 7.

NAM$V_WILD_SFDG7 Indicates that a subdirectory greater than 7 contains a
wildcard character. This field offset is summarized in the
NAM$V_WILDCARD field offset.

The NAM has three new fields: NAMB_NMC, NAMW_FIRST_WILD_DIR,
and NAM$W_LONG_DIR_LEVELS. The NAM$B_NMC field returns the flags
described in Table B–5.

Table B–5 NAM$B_NMC Flag

Flag Meaning

NAM$V_DID Set by RMS if it found a DID-abbreviated directory in the
root or directory name component of an input directory.

NAM$V_FID Set by RMS if it found a FID-abbreviated file name in an
input file specification.

NAM$V_RES_DID Set by RMS if there is a DID-abbreviated directory in the
short resultant or expanded buffer.

NAM$V_RES_FID Set by RMS if there is a FID-abbreviated name in the short
resultant or expanded buffer.

NAM$V_RES_ESCAPE Set by RMS if there are any escape characters (^) in the
short resultant or expanded buffer.

NAM$V_RES_UNICODE Set by RMS if there is one or more ^U sequences in the short
resultant or expanded buffer.

B.2.3.2 NAML Block
The NAML is a new block that can optionally take the place of a NAM block. The
NAML has all the fields of the NAM, and additionally contains new fields to allow
filespecs to be specified that are longer than 255 bytes.

Table B–6 describes the new fields for the NAML Block.

B–12 Technical Information

Technical Information
B.2 Record Management Services (RMS) Changes

Table B–6 New Fields for the NAML Block

Extended Field Name
Size
(bytes) Meaning

NAML$L_FILESYS_NAME 4 File system name buffer address specified by the user.
If RMS sets the NAML$V_FILESYS_NAME_UCS2
output flag, the output filename is in 2-byte characters,
and everything that is in the file name including
ASCII characters and delimiters are 2-byte characters.
Otherwise, they are single byte characters.

NAML$L_FILESYS_NAME_ALLOC 4 File system name buffer allocated size specified by the
user.

NAML$L_FILESYS_NAME_SIZE 4 File system name length returned by RMS.

NAML$L_LONG_DEFNAME_SIZE 4 Long default file specification string size specified as input.
Equivalent to FAB$B_DNS (input only). Used only if
FAB$L_DNA is set to -1, and FAB$B_DNS is set to 0.

NAML$L_LONG_DEFNAME 4 Long default file specification string address specified as
input. Equivalent to FAB$L_DNA (input only). Used only
if FAB$L_DNA is set to -1, and FAB$B_DNS is set to 0.

NAML$L_LONG_FILENAME_SIZE 4 Long file specification string size. Equivalent to FAB$B_
FNS (input only). Used only if FAB$L_FNA is set to -1,
and FAB$B_FNS is set to 0.

NAML$L_LONG_FILENAME 4 Long file specification string address. Equivalent to
FAB$L_FNA (input only). Used only if FAB$L_FNA is
set to -1, and FAB$B_FNS is set to 0.

NAML$L_LONG_NODE_SIZE 4 Long node name string length.

NAML$L_LONG_NODE 4 Long node name string address.

NAML$L_LONG_DEV_SIZE 4 Long device string length.

NAML$L_LONG_DEV 4 Long device string address.

NAML$L_LONG_DIR_SIZE 4 Long directory string length.

NAML$L_LONG_DIR 4 Long directory string address.

NAML$L_LONG_NAME_SIZE 4 Long file name string length.

NAML$L_LONG_NAME 4 Long file name string address.

NAML$L_LONG_TYPE_SIZE 4 Long file type string length.

NAML$L_LONG_TYPE 4 Long file type string address.

NAML$L_LONG_VER_SIZE 4 Long file version string length.

NAML$L_LONG_VER 4 Long file version string address.

NAML$L_LONG_EXPAND_ALLOC 4 Long expanded string area size. Set by the caller to specify
the size of the long expanded buffer.

NAML$L_LONG_EXPAND_SIZE 4 Long expanded string length. Set by RMS to show the
length of the long expanded string.

NAML$L_LONG_EXPAND 4 Long expanded string area address. Set by the caller to
point to the long expanded buffer.

NAML$L_LONG_RESULT_ALLOC 4 Long resultant string area size. Set by the caller to specify
the size of the long resultant buffer.

NAML$L_LONG_RESULT_SIZE 4 Long resultant string length. Set by RMS to show the
length of the long resultant string.

(continued on next page)

Technical Information B–13

Technical Information
B.2 Record Management Services (RMS) Changes

Table B–6 (Cont.) New Fields for the NAML Block

Extended Field Name
Size
(bytes) Meaning

NAML$L_LONG RESULT 4 Long resultant string area address. Set by the caller to
point to the long resultant buffer.

NAML$L_INPUT_FLAGS 4 Additional flags specified as input to RMS, including
NAML$V_NO_SHORT_OUTPUT, which is defined the
table below.

NAML$L_OUTPUT_FLAGS 4 Additional status bits passed as output by RMS, including
NAML$V_LONG_RESULT_ESCAPE and NAML$V_
FILESYS_NAME_UCS2, which are defined in the table
below.

NAML$Q_USER_CONTEXT 8 Caller can use this for any purpose. Will not be read or
modified by RMS.

RMS reads the following flag from the NAML$L_INPUT_FLAGS field:

Flag Meaning

NAML$V_NO_SHORT_OUTPUT Set by the user to tell RMS not to fill in the
NAM$L_ESA or NAM$L_RSA buffer.

RMS writes the following flags to the NAML$L_OUTPUT_FLAGS field:

Flag Meaning

NAML$V_FILESYS_NAME_UCS2 Set by RMS if name pointed to by NAML$L_
FILESYS_NAME consists of 6 2-byte Unicode
characters.

NAML$V_LONG_RESULT_DID Set by RMS if there is a DID-abbreviated
directory in the long resultant or expanded
buffer.

NAML$V_LONG_RESULT_ESCAPE Set by RMS if there are any escape characters
(^) in the long resultant or expanded buffer.

NAML$V_LONG_RESULT_FID Set by RMS if there is a FID-abbreviated name
in the long resultant or expanded buffer.

NAML$V_LONG_RESULT_UNICODE Set by RMS if there is one or more ^U
sequences in the long resultant or expanded
buffer.

B.2.3.2.1 Validating the NAML Block If the name block passed to RMS (see
FAB$L_NAM) contains a block identifier (see NAML$B_BID) equal to NAML$C_
BID, RMS performs the following validation checks:

1. NAML$B_BLN field is exactly equal to NAML$C_BLN.

2. NAML$L_LONG_RESULT_ALLOC and NAML$L_LONG_EXPAND_ALLOC
are less than or equal to NAML$C_MAXRSS.

3. All unused fields (which have a symbolic name containing MBZ) contain zero.
You can clear the entire structure before initializing any fields to meet this
requirement.

If any of these validation checks fail, a RMS$_NAML error status is returned.

B–14 Technical Information

Technical Information
B.2 Record Management Services (RMS) Changes

B.2.3.2.2 Using the NAM and NAML Block The NAML has fields that are
equivalent to all the NAM fields, plus 28 additional fields to accommodate longer
file specifications. There are no FDL attributes for the NAML fields.

Many of the additional fields in the NAML correspond to NAM fields but allow
longer names. For example, the fields NAML$L_LONG_EXPAND, NAML$L_
LONG_EXPAND_ALLOC, and NAML$L_LONG_EXPAND_SIZE correspond to
NAML_ESA, NAMB_ESS, and NAM$B_ESL, but allow names that are longer
than 255 bytes. When there are fields that correspond this way, the original field
is referred to as a "short field." The corresponding field is referred to as a "long
field."

When RMS is writing information into fields in a NAML that have both a short
and long version, RMS normally writes the equivalent information into both
fields. If either the short field or the long field is too small to contain the
information, RMS returns an error, though RMS first attempts to abbreviate
specifications to allow them to fit in the short fields. You can prevent the error
on the short fields by setting the flag NAML$V_NO_SHORT_OUTPUT, which
instructs RMS not to write into the short fields. However, if you are using a
NAML, RMS always uses the long fields. If you do not want RMS to use the long
fields, you must use a NAM rather than a NAML.

When RMS is reading information from fields in a NAML that has both a short
and a long version, RMS always reads from the long version. To cause RMS to
read from the short fields, use a NAM rather than a NAML. The most common
time that RMS reads from these fields is during a $SEARCH operation following
a $PARSE, when RMS reads from the buffer pointed to by NAML$L_LONG_
EXPAND for a NAML and NAM$L_ESA for a NAM. In addition, if a NAM or
NAML is used as a related name block, RMS reads information from the buffer
pointed to by NAML$L_LONG_RESULT for a NAML, or NAM$L_RSA for a
NAM.

Because of these differences in the way RMS processes a NAM and a NAML, it
is important that any code that might come in contact with the NAML be aware
that it is a NAML and not a NAM. Several operations that a routine might do on
a NAM will not work as expected on a NAML. For example, if a routine makes
a copy of a NAML but uses the NAM$C_BLN constant as the length to copy, the
result is an illegal NAML. If a routine replaces the buffers pointed to by NAM$L_
ESA and NAM$L_RSA with the expectation that it can use the NAM without
affecting the calling routine, it misses the buffers pointed to by NAML$L_LONG_
EXPAND and NAML$L_LONG_RESULT.

For this reason, any API supplied by OpenVMS adheres to the rule that if
it returned a NAM (either directly or indirectly through a FAB) in previous
versions, it will not now start returning a NAML without some explicit action
by the caller (usually setting a flag bit). We recommend that other APIs use the
same rule. Further, if a NAML-aware application passes a NAML to an API,
it must be prepared for that API to use only the NAM section (for example, it
should not set the NAML$V_NO_SHORT_OUTPUT bit).

If you are writing a routine that is to accept either a NAM or a NAML, you should
check the NAM$B_BID field to determine whether you have a NAM or a NAML;
if you have a NAML, and you wish to read information that RMS has left in the
NAML, look at the information in the long fields. In addition, if you wish to copy
that NAM or NAML block to another location, you must be careful to use the
length that is stored in the structure itself to determine how much to copy. You
should use the NAM$B_BLN field in the structure you are copying rather than

Technical Information B–15

Technical Information
B.2 Record Management Services (RMS) Changes

the NAM$C_BLN constant, because NAM$B_BLN contains the actual length of
the structure. If you use the symbol NAM$C_BLN, which is the length of a NAM,
it would be too short for a NAML.

B.2.3.2.3 Condition Values Returned Table B–7 shows the additional condition
values returned for various RMS services when using the NAML block.

Table B–7 RMS Condition Values Returned When Using NAML Block

RMS Service Condition Value Returned

$CREATE RMS$_NAML
RMS$_NAMLESS
RMS$_NAMLFSINV
RMS$_NAMLFSSIZ
RMS$_NAMLRSS

$DISPLAY RMS$_NAMLESS
RMS$_NAMLFSINV
RMS$_NAMLFSSIZ

$ENTER RMS$_NAML
RMS$_NAMLFSINV
RMS$_NAMLFSSIZ
RMS$_NAMLRSS

$ERASE RMS$_NAML
RMS$_NAMLESS
RMS$_NAMLFSINV
RMS$_NAMLFSSIZ
RMS$_NAMLRSS

$OPEN RMS$_NAML
RMS$_NAMLESS
RMS$_NAMLFSINV
RMS$_NAMLFSSIZ
RMS$_NAMLRSS

$PARSE RMS$_NAML
RMS$_NAMLESS
RMS$_NAMLFSINV
RMS$_NAMLFSSIZ

$REMOVE RMS$_NAML
RMS$_NALFSINV
RMS$_NAMLFSSIZ
RMS$_NAMLRSS

$RENAME RMS$_NAML
RMS$_NAMLESS
RMS$_NAMLFSINV
RMS$_NAMLFSSIZ
RMS$_NAMLRSS

$SEARCH RMS$_NAML
RMS$_NAMLFSINV
RMS$_NAMLFSSIZ
RMS$_NAMLRSS

B.3 Files-11 XQP Changes
Note

The information about the file system contained in this section currently
appears only in this document.

B–16 Technical Information

Technical Information
B.3 Files-11 XQP Changes

Files-11 Extended QIO Processor (XQP) file system has been enhanced to support
extended file names through the $QIO interface. Note that in some cases, XQP
file format rules differ from those that apply to other system services that accept
file names, such as those provided by RMS. For a description of the new syntax
and semantics used by RMS, see Section B.2.2.

The XQP enhancements support the following features of Extended File
Specifications:

• Use of more characters, including those from the 8-bit ISO Latin-1 character
set, and the 16-bit Unicode (UCS-2) character set

• Longer file names

• Preservation of case (as first created) within file names

The rest of Section B.3 describes the changes made to the Files-11 XQP file
system and $QIO interface in more detail.

B.3.1 File Naming and Format Changes
Prior to OpenVMS Version 7.2, valid file names supported by the Files-11 XQP
were limited to 85 ASCII characters3 with both the file name and file type limited
to 39 characters. In support of extended file names, these restrictions have been
relaxed to allow the following:

• Use of most characters in the 8-bit ISO Latin-1 multinational character set
(of which ASCII is a subset) in file names with the following exceptions:

The C0 control set (hexadecimal 00 through 1F)
Left angle bracket (<)
Right angle bracket (>)
Colon (:)
Slash (/)
Backslash (\)
Vertical bar (|)
Question mark (?)
Asterisk (*)

Note that this explicitly includes both the C1 character set (hex 80-9F) as
well as graphical and other characters between 9F and FF.

• Periods (.) within file names

• File and directory specifications encoded using 16-bit Unicode characters
(UCS-2)

• Longer lengths for file names and file types, with the restriction that the file
name and file type can total 236 8-bit or 118 16-bit characters, including a
1-character delimiter (.)

• File specifications up to 242 8-bit characters4 or 124 16-bit characters5

• Mixed or lowercase input file specifications stored on disk without conversion
to uppercase (also known as case preservation)

3 39-character file name + 1-character delimiter (.) + 39-character file type + 1-character
delimiter (;) + 5-character version number = 85 characters.

4 236-character file name, delimiter (.), file type + 1-character delimiter (;) + 5-character
version number = 242 characters.

5 118-character file name, delimiter (.), file type + 1-character delimiter (;) + 5-character
version number = 124 characters.

Technical Information B–17

Technical Information
B.3 Files-11 XQP Changes

These changes apply only to those volumes that have been initialized or converted
to the Files-11 ODS-5 format. Applications that rely on the semantics and
behavior currently exhibited by ODS-2 volumes should continue to function as
expected.

B.3.1.1 Specifying the Format of the Input File Name
File specifications are passed to the file system by descriptor by using the QIO P2
parameter. The descriptor contains a pointer to the text of the specification and a
length field, which is the total length in bytes of the file specification.

The format of the specification can be identified in the new FIB$B_NAME_
FORMAT_IN field, which can take one of the values listed in Table B–8.

Table B–8 FIB Constants for File Formats

Format Value Format Type

FIB$C_ODS2 ODS-2 Format

FIB$C_ISO_LATIN ISO Latin-1 Format

FIB$C_UCS2 Unicode (UCS-2) Format

If the format specified is not one of those recognized by the file system, an SS$_
BADPARAM error is returned. Otherwise, the file system attempts to parse the
file specification according to the rules defined for the specified format. If the
attempt to parse the name fails, an SS$_BADFILENAME or SS$_BADFILEVER
error is returned.

If the FIB passed to the file system does not include the FIB$B_NAME_
FORMAT_IN field, the file system assumes that the file specification supplied is
in ODS-2 format. This is done to ensure compatibility with unchanged programs.

Before storing file specifications on the volume, the file system converts them to
the simplest compatible format. For example, specifications supplied in Unicode
(UCS-2) format that do not contain character values greater than 0x00FF are
converted to ISO Latin-1 format before being stored on the volume.

B.3.1.2 Controlling the Format of Returned File Names
When returning a file specification, the file system writes the file format into the
new FIB$B_NAME_FORMAT_OUT field. The value used will be one of those
listed in Table B–8.

However, not all programs may be able to handle all available naming formats.
Callers of the QIO system service can select which formats are returned to them
using the new FIB$W_NMCTL flags described in Table B–9.

Table B–9 New FIB$W_NMCTL Flags

Flag Name Interpretation

FIB$V_NAMES_8BIT Caller can accept (8-bit) ODS-2 and ISO Latin-1 formats

FIB$V_NAMES_16BIT Caller can accept (16-bit) Unicode (UCS-2) format.

B–18 Technical Information

Technical Information
B.3 Files-11 XQP Changes

These new flags control the format of returned file specifications as follows:

• Both flags clear

Only ODS-2 format names are returned. Note that this includes specifications
that were originally in ISO Latin-1 format or Unicode (UCS-2) format
but converted to ODS-2 format before being stored on the volume. All
specifications are converted to uppercase before being returned.

• FIB$V_ NAMES_8BIT set
FIB$V_ NAMES_16BIT clear

Only those file specifications stored in ODS-2 and ISO Latin-1 formats are
returned. The value in the FIB$B_NAME_FORMAT_OUT field indicates the
format of the particular name being returned. ODS-2 format file specifications
are not converted to uppercase before being returned.

• FIB$V_ NAMES_8BIT clear
FIB$V_ NAMES_16BIT set

All file specifications are returned in Unicode (UCS-2) format.

• Both flags set

File specifications are returned in the format stored on the volume. This is
the simplest format compatible with the file name syntax and the characters
it contains. For example, a specification originally in Unicode format that
only contains characters that are part of the ISO Latin-1 character set, are
returned in ISO Latin-1 format.

B.3.1.3 Wildcard Searches and Pseudonames
The file specification returned by a file system operation is normally in a
format that the calling program understands. This is not necessarily the case
for operations where the input specification contains wildcard characters. For
example, the wildcard in the following ODS-2 compliant file specification:

A*.DOC

could now correspond to the following ISO Latin-1 file specification:

A sample name with periods.and.other;punctuation#in the name.doc;1

Applications that assume that returned file specifications contain only one
delimiting period could fail to perform correctly. Rather than return a file
specification that would cause the calling program to fail, the file system returns
a pseudoname in its place. The actual pseudoname returned depends on the type
of name it represents, as shown in the following table.

File Format Sample Pseudoname

ISO Latin-1 (FIB$C_ISL1) \pISO_LATIN\.???

Unicode (FIB$C_UCS2) \pUNICODE\.???

The file system determines which formats the calling program can understand
from the settings of the FIB$V_NAMES_8BIT and FIB$V_NAMES_16BIT flags.
These flags control the format of the returned name as shown in Table B–10.

Technical Information B–19

Technical Information
B.3 Files-11 XQP Changes

Table B–10 FIB Flag Settings and Format of Related Returned Names

FIB Flag Settings File Formats

8BIT 16BIT ODS-2 ISO Latin-1 Unicode

false false ODS-2 pseudoname pseudoname

true false ODS-2 ISO Latin-1 pseudoname

false true UCS-2 UCS-2 UCS-2

true true ODS-2 ISO Latin-1 UCS-2

When returning a pseudoname, the file system notifies the user or calling
application of the file without allowing direct file access. For this reason,
pseudonames include characters that are not legal for input file specifications.
Any attempt to use a pseudoname to manipulate a file will return a SYSTEM-F-
BADFILENAME error.

Buffer Sizes
Table B–11 shows the minimum size that each buffer must be to contain all
possible returned file specifications.

Table B–11 Safe Buffer Sizes for Each File Format (in Bytes)

File Format QIO Minimum XQP Minimum

ODS-2 86 86

ISO Latin-1 264 243

Unicode 538 486

The limit for a particular application depends on which formats it supports.
Note that the minimum for the XQP is lower than the general limit for other
file systems that use the QIO interface. This is because of the 236-byte size
restriction for file specifications imposed by XQP.

If a file specification is longer than the supplied buffer, the file system truncates
the returned specification without generating an error. If the file specification
is shorter than the supplied buffer, the additional space from the end of the
specification to the end of the buffer is filled with zeros.

B.3.1.4 Compatibility with Unchanged Applications
Any application that is not modified to take advantage of the new features of the
QIO interface will, by default, receive only ODS-2 compatible file specifications or
pseudonames provided they:

• Leave the FIB$V_NAMES_8BIT and _16BIT flags clear, or

• Supply a FIB that does not include the new FIB$B_NAME_FORMAT_IN and
FIB$B_NAME_FORMAT_OUT fields.

File specifications that contain lowercase characters, which would otherwise be
ODS-2 legal, are converted to uppercase before being returned.

File specifications supplied as input parameters by unchanged applications are
interpreted as 8-bit ODS-2 names. The name is validated using the existing ODS-
2 parsing rules. On an ODS-5 volume, the file specification is not converted to
uppercase before it is stored on the disk. Unchanged applications will see the file
specification in uppercase because of the conversion described above. Applications

B–20 Technical Information

Technical Information
B.3 Files-11 XQP Changes

that set one of the new FIB flags will, however, see the specification in mixed
case.

B.3.2 File Attribute Changes
The following sections describe the new file attributes introduced with ODS-5 and
any changes to the semantics of existing attributes.

B.3.2.1 Modified File Attributes
Table B–12 shows the attributes that are modified or restricted for files on ODS-5
volumes.

Table B–12 Modified Attribute Codes

Attribute Name Max Size (bytes) Meaning

ATR$C_ASCNAME 252 File specification stored in file header

ATR$C_FILE_SPEC 4098 Device, best try path, and file
specification

ATR$C_FILNAM 10 Radix-50 file name

ATR$C_FILTYP 4 Radix-50 file type

ATR$C_FILVER 2 Radix-50 file version

ATR$C_ASCNAME
The ATR$C_ASCNAME attribute allows the file specification stored in a file’s
primary file header to be read and written.

Reading the ATR$C_ASCNAME Attribute
For ODS-2 volumes, the ASCNAME attribute is returned as before. For ODS-5
volumes, the file specification is returned in the supplied buffer, and the name
format is returned in the new FIB$B_ASCNAME_FORMAT cell.

The format in which the name is returned is controlled by the settings of the
FIB$V_NAMES_8BIT and FIB$V_NAMES_16BIT flags in the same way as the
output file specification parameter. A pseudoname can be returned in place of the
actual file specification if the format is not one of those the calling program can
accept.

Unlike the output file specification parameter, the length of a file specification
contained in the ASCNAME attribute is not passed back explicitly. To determine
the length of the file specification, the calling program must search the attribute
buffer for the first occurrence of the padding character. If neither the FIB$V_
NAMES_8BIT nor the FIB$V_NAMES_16BIT flag is set, the buffer is padded
with space (note that only ODS-2 format names are returned in this case). If one
or more of the flags are set, the attribute buffer is padded with zeros.

Note

The file system does not enforce a minimum length on the attribute
buffer. If the file specification is longer than the attribute buffer, the
value returned is truncated without signaling an error or warning.

In contrast, the file system does enforce a maximum size for the attribute
buffer. Supplying a larger buffer returns a BADPARAM error.

Technical Information B–21

Technical Information
B.3 Files-11 XQP Changes

Writing the ATR$C_ASCNAME Attribute
The ASCNAME attribute can only be written for files on ODS-2 or ODS-5 volumes
provided that the FIB$V_NAMES_8BIT and FIB$V_NAMES_16BIT flags are
clear.

The ability to write this attribute is only intended to provide compatibility with
existing applications that do so. New and modified programs should not write
this attribute. Changing its value can prevent a file from being permanently
deleted.

In those cases where it is legal to write the attribute, the contents of the attribute
buffer (up to 252 bytes) are copied to the file name field in the file header. For
ODS-5 headers, the format is set to ODS-2, and the file name length is set to
the offset of the first space character. This can be 252 bytes or the length of the
supplied buffer, whichever is the least.

ATR$C_FILE_SPEC
The FILE_SPEC attribute is a read-only attribute that returns the physical file
specification in the form:

DDnn:[DIR1.DIR2_DIRn]name.type;1

The file name returned is that from the file header, which may be different
from that in the directory. The specification may be incomplete if any errors are
encountered while reading the file headers of any of the directories in the path.

For files on ODS-5 volumes, the path may contain file names that are in any
of the three name formats. This creates a number of problems; for instance,
the presence of periods in a directory name could return an ambiguous path
specification. To avoid this and other problems, the file system makes use of
services provided by RMS to translate the file specification and the components of
the path to their escaped form.6

If the escaped form of the path is longer than can be accommodated by the buffer
for the attribute, one or more directories in the path may be replaced by the DID
of the rightmost of those replaced. This process is identical to that performed
by RMS and is described in more detail in Section B.2. However, if the file
specification, even after DID abbreviation, is longer than can be accommodated
by the buffer, the file name is truncated. The file specification string returned to
the user buffer has a 2-byte count prefix. The count contains the number of bytes
for the untruncated file specification. If the count is greater than the size of the
user buffer (minus the two bytes that contain the count), the user can conclude
that the returned file specification has been truncated.

ATRC_FILNAM, ATRC_FILTYP, and ATR$C_FILVER
The first two of these attributes allow the file name and file type to be read and
written using Radix-50 encoding. This encoding scheme enables 3 characters to
be packed into a 16-bit word. Only 38 characters in the ODS-2 format set are
valid for Radix-50 names, with the exceptions being dash (-) and underscore (_).

6 When you access files on an ODS-5 volume from a VAX system in a mixed architecture
OpenVMS system, no escaped forms are returned. For an ODS-2 or ISO Latin-1 file
format, the name stored in the file header is returned. For a UCS-2 file format, a
pseudoname is returned, followed by the file identifier in parentheses. For example:

DKA100:[ABC]\pUNICODE\ .??? (10095,5,0)

B–22 Technical Information

Technical Information
B.3 Files-11 XQP Changes

The maximum component lengths of a Radix-50 encoded file specification are:

• File name: 15 characters (10 bytes)

• File type: 6 characters (4 bytes)

As a result of the additional character and length restrictions, only a subset of
legal ODS-2 file names is expressible in the Radix-50 encoding.

The file system only attempts to read or write the three attributes if the format
of the existing file name in the file header is ODS-2. If this is not the case, a
NORAD50 error will be returned. If the existing file name is in ODS-2 format,
but is incompatible with the Radix-50 encoding or the length limits on Radix-50
file names, a BADFILENAME error will be returned.

The ATR$C_FILVER attribute allows the file version number in the file header
to be read or written as a 2-byte integer. As the process requires the existing file
name to be converted into a Radix-50 file name, the above restriction also applies
to this attribute.

B.4 Programming Utility Changes
The following sections describe changes specific to OpenVMS programming
utilities and their routines to support Extended File Specifications.

B.4.1 File Definition Language (FDL) Routines
The File Definition Language (FDL) routines have been enhanced on OpenVMS
Version 7.2 for Alpha to support Extended File Specifications. A new flag,
FDL$V_LONG_NAMES, has been added to the flags argument of the following
routines:

FDL$CREATE
FDL$GENERATE
FDL$PARSE
FDL$RELEASE

The following sections describe the FDL$V_LONG_NAMES flag as it relates to
each FDL routine.

B.4.1.1 FDL$CREATE Routine (Alpha Only)
The following new flag has been added to the flags argument:

Flag Function

FDL$V_LONG_NAMES Returns the RESULT_NAME using the long result name
from a long name access block (NAML). By default, the
RESULT_NAME is returned from the short fields of a
name access block (NAM) and thus may have a generated
specification.

This flag is valid for OpenVMS Alpha only.

B.4.1.2 FDL$GENERATE Routine (Alpha Only)
The following new flag has been added to the flags argument:

Technical Information B–23

Technical Information
B.4 Programming Utility Changes

Flag Function

FDL$V_LONG_NAMES Returns the FDL_FILE_RESNAM using the long result
name from a long name access block (NAML). By default,
the FDL_FILE_RESNAM is returned from the short
fields of a name access block (NAM) and thus may have a
generated specification.

This flag is valid for OpenVMS Alpha only.

B.4.1.3 FDL$PARSE Routine (Alpha Only)
The following new flag has been added to the flags argument:

Flag Function

FDL$V_LONG_NAMES Allocates and returns a long name access block (NAML)
linked to the returned RMS file access block (FAB). The
appropriate values are set in the NAML and FAB blocks
so that the long file name fields of the NAML block will
be used.

By default, a name block is not allocated and the file
name fields of FAB are used.

If the FDL$V_LONG_NAMES flag is set, then the
FDL$V_LONG_NAMES bit must also be set in the
flags argument to the FDL$RELEASE routine to ensure
that memory allocated for the NAML block is deallocated
properly.

This flag is valid for OpenVMS Alpha only.

B.4.1.4 FDL$RELEASE Routine (Alpha Only)
The following new flag has been added to the flags argument:

Flag Function

FDL$V_LONG_NAMES Deallocates any virtual memory used for a long name
access block (NAML) created by the FDL$PARSE routine.

This flag is valid for OpenVMS Alpha only.

B.5 Run-Time Library Changes
To enable the use of extended file names, several routines in the LIB$ Run-Time
Library have been modified so that they can optionally accept or return a NAML
block rather than a NAM block. The following routines have been modified:

• LIB$CREATE_DIR

• LIB$DELETE_FILE

• LIB$FILE_SCAN

• LIB$FIND_FILE

• LIB$RENAME_FILE

• LIB$FID_TO_NAME

B–24 Technical Information

Technical Information
B.5 Run-Time Library Changes

B.5.1 LIB$CREATE_DIR
The maximum size of argument device-directory-spec is now 255 characters on
VAX, and 4095 characters on Alpha.

B.5.2 LIB$DELETE_FILE
The format of LIB$DELETE_FILE is now:

LIB$DELETE_FILE filespec [,default-filespec] [,related-filespec]
[,user-success-procedure] [,user-error-procedure]
[,user-confirm-procedure] [,user-specified-argument]
[,resultant-name] [,file-scan-context] [,flags])

The flags argument is new, and has the following format:

flags
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

User flags. The flags argument is the address of an unsigned longword
containing the user flags.

The flag bits and their corresponding symbols are described in the following table:

Bit Symbol Description

0 Reserved to Compaq.

1 Reserved to Compaq.

2 LIB$M_FIL_LONG_NAMES (Alpha only) If set, LIB$DELETE_FILE can
process file names with a maximum length of
NAML$C_MAXRSS. If clear, LIB$DELETE_
FILE can process file specifications with a
maximum length of 255 bytes (default).

On Alpha systems, if you specify the user-confirm-procedure in the call to
LIB$DELETE_FILE, and the LIB$M_FIL_LONG_NAMES flag is set, the FAB
referenced by the fab argument to the confirm-procedure routine references a
NAML block rather than a NAM block. The NAML block supports the use of long
file names with a maximum length of NAML$C_MAXRSS. See the OpenVMS
Record Management Services Reference Manual for information on NAML blocks.

LIB$DELETE_FILE has an additional condition value returned. LIB$INVARG
indicates that an unspecified bit was set in the flags argument.

B.5.3 LIB$FILE_SCAN
The fab argument to LIB$FILE_SCAN can now reference either a NAM or
NAML block.

Technical Information B–25

Technical Information
B.5 Run-Time Library Changes

B.5.4 LIB$FIND_FILE
The flags argument to LIB$FIND_FILE has the following new bit:

Bit Symbol Description

2 LIB$M_FIL_LONG_NAMES (Alpha only) If set, LIB$FIND_FILE can
process file specifications with a maximum
length of NAML$C_MAXRSS. If clear,
LIB$FIND_FILE can process file specifications
with a maximum length of 255 bytes (default).

On Alpha systems, support for file specifications longer than 255 bytes is provided
only when the LIB$M_FIL_LONG_NAMES flag is set in the flags argument.
When this flag is set, a NAML block (rather than a NAM block) is part of
the context, and file specifications can have a maximum length of NAML$C_
MAXRSS. See the OpenVMS Record Management Services Reference Manual for
information on NAML blocks.

B.5.5 LIB$RENAME_FILE
The flags argument to LIB$RENAME_FILE has the following new bit:

Bit Symbol Description

2 LIB$M_FIL_LONG_NAMES (Alpha only) Controls whether to accept file
specifications greater than 255 bytes in length.

If this bit is set, LIB$RENAME_FILE can
process file specifications with a maximum
length of NAML$C_MAXRSS characters. If
this bit is clear, LIB$RENAME_FILE can
process file names with a maximum length of
255 bytes.

On Alpha systems, if you specify the user-confirm-procedure in the call to
LIB$RENAME_FILE, and the LIB$M_FIL_LONG_NAMES flag is set, the FAB
referenced by the old-fab argument to the confirm-procedure routine references
a NAML block rather than a NAM block. The NAML block supports the use of
long file names with a maximum length of NAML$C_MAXRSS. See the OpenVMS
Record Management Services Reference Manual for information on NAML blocks.

B.5.6 LIB$FID_TO_NAME
If the file specification is longer than can be accommodated by the filespec
buffer, a directory in the path may be replaced by a DID abbreviation (see
Section 3.2.2.1). If the file specification after DID abbreviation is longer than can
be accommodated by the buffer, the file specification is truncated and, as in prior
versions, LIB$_STRTRU is returned as an alternate success status. In the case
of a dynamic descriptor, the maximum allows a string as large as 4095 bytes to
be returned.

B–26 Technical Information

C
Character Sets

The DEC Multinational Character Set (MCS) consists of a definition of the
characters identified by hexadecimal values 00 through FF, inclusive, that was
created and used by Digital Equipment Corporation. The DEC MCS is divided
into two parts, the ASCII 7-bit character set (identified by hexadecimal values 00
through 7F, inclusive), and the set of 8-bit characters identified by hexadecimal
values 80 through FF, inclusive. The DEC MCS is familiar to most users of
software created and sold by DIGITAL.

The Unicode Standard Character Set (UCS-2) is a definition, by The Unicode
Consortium, of the set of 16-bit characters that can be identified by hexadecimal
values 0000 through FFFF, inclusive.

The ISO Latin-1 character set is the UCS-2 definition of the 8-bit characters
identified by hexadecimal values 00 through FF, inclusive. The ISO Latin-1
character set definition differs slightly from the DEC MCS definition of the
hexadecimal values 80 through FF.

Table C–1 contains the DEC Multinational Character Set (MCS). Table C–1
indicates the characters that differ between the two character sets, and
Figure C–1 shows the differing characters.

See The Unicode Standard, published by The Unicode Consortium, for details
about the Unicode (UCS-2) character set.

Table C–1 DEC Multinational Character Set

Hex
Code

MCS Char or
Abbrev. DEC Multinational Character Name

ASCII Control Characters1

00 NUL null character

01 SOH start of heading (Ctrl/A)

02 STX start of text (Ctrl/B)

03 ETX end of text (Ctrl/C)

04 EOT end of transmission (Ctrl/D)

05 ENQ enquiry (Ctrl/E)

06 ACK acknowledge (Ctrl/F)

07 BEL bell (Ctrl/G)

08 BS backspace (Ctrl/H)

1The ALTMODE and DELETE characters (decimal 125, 126, and 127) are also control characters.

(continued on next page)

Character Sets C–1

Character Sets

Table C–1 (Cont.) DEC Multinational Character Set

Hex
Code

MCS Char or
Abbrev. DEC Multinational Character Name

ASCII Control Characters1

09 HT horizontal tabulation (Ctrl/I)

0A LF line feed (Ctrl/J)

0B VT vertical tabulation (Ctrl/K)

0C FF form feed (Ctrl/L)

0D CR carriage return (Ctrl/M)

0E SO shift out (Ctrl/N)

0F SI shift in (Ctrl/O)

10 DLE data link escape (Ctrl/P)

11 DC1 device control 1 (Ctrl/Q)

12 DC2 device control 2 (Ctrl/R)

13 DC3 device control 3 (Ctrl/S)

14 DC4 device control 4 (Ctrl/T)

15 NAK negative acknowlege (Ctrl/U)

16 SYN synchronous idle (Ctrl/V)

17 ETB end of transmission block (Ctrl/W)

18 CAN cancel (Ctrl/X)

19 EM end of medium (Ctrl/Y)

1A SUB substitute (Ctrl/Z)

1B ESC escape

1C FS file separator

1D GS group separator

1E RS record separator

1F US unit separator

ASCII Special and Numeric Characters

20 SP space

21 ! exclamation point

22 " quotation marks (double quote)

23 # number sign

24 $ dollar sign

25 % percent sign

26 & ampersand

27 ’ apostrophe (single quote)

28 (opening parenthesis

29) closing parenthesis

2A * asterisk

1The ALTMODE and DELETE characters (decimal 125, 126, and 127) are also control characters.

(continued on next page)

C–2 Character Sets

Character Sets

Table C–1 (Cont.) DEC Multinational Character Set

Hex
Code

MCS Char or
Abbrev. DEC Multinational Character Name

ASCII Special and Numeric Characters

2B + plus

2C , comma

2D – hyphen or minus

2E . period or decimal point

2F / slash

30 0 zero

31 1 one

32 2 two

33 3 three

34 4 four

35 5 five

36 6 six

37 7 seven

38 8 eight

39 9 nine

3A : colon

3B ; semicolon

3C < less than

3D = equals

3E > greater than

3F ? question mark

ASCII Alphabetic Characters

40 @ commercial at sign

41 A uppercase A

42 B uppercase B

43 C uppercase C

44 D uppercase D

45 E uppercase E

46 F uppercase F

47 G uppercase G

48 H uppercase H

49 I uppercase I

4A J uppercase J

4B K uppercase K

4C L uppercase L

(continued on next page)

Character Sets C–3

Character Sets

Table C–1 (Cont.) DEC Multinational Character Set

Hex
Code

MCS Char or
Abbrev. DEC Multinational Character Name

ASCII Alphabetic Characters

4D M uppercase M

4E N uppercase N

4F O uppercase O

50 P uppercase P

51 Q uppercase Q

52 R uppercase R

53 S uppercase S

54 T uppercase T

55 U uppercase U

56 V uppercase V

57 W uppercase W

58 X uppercase X

59 Y uppercase Y

5A Z uppercase Z

5B [left bracket

5C \ backslash

5D] right bracket

5E ^ circumflex

5F _ underscore

60 ‘ grave accent

61 a lowercase a

62 b lowercase b

63 c lowercase c

64 d lowercase d

65 e lowercase e

66 f lowercase f

67 g lowercase g

68 h lowercase h

69 i lowercase i

6A j lowercase j

6B k lowercase k

6C l lowercase l

6D m lowercase m

6E n lowercase n

6F o lowercase o

70 p lowercase p

(continued on next page)

C–4 Character Sets

Character Sets

Table C–1 (Cont.) DEC Multinational Character Set

Hex
Code

MCS Char or
Abbrev. DEC Multinational Character Name

ASCII Alphabetic Characters

71 q lowercase q

72 r lowercase r

73 s lowercase s

74 t lowercase t

75 u lowercase u

76 v lowercase v

77 w lowercase w

78 x lowercase x

79 y lowercase y

7A z lowercase z

7B { left brace

7C | vertical line

7D } right brace (ALTMODE)

7E ~ tilde (ALTMODE)

7F DEL rubout (DELETE)

Control Characters

80 [reserved]

81 [reserved]

82 [reserved]

83 [reserved]

84 IND index

85 NEL next line

86 SSA start of selected area

87 ESA end of selected area

88 HTS horizontal tab set

89 HTJ horizontal tab set with justification

8A VTS vertical tab set

8B PLD partial line down

8C PLU partial line up

8D RI reverse index

8E SS2 single shift 2

8F SS3 single shift 3

90 DCS device control string

91 PU1 private use 1

92 PU2 private use 2

(continued on next page)

Character Sets C–5

Character Sets

Table C–1 (Cont.) DEC Multinational Character Set

Hex
Code

MCS Char or
Abbrev. DEC Multinational Character Name

Control Characters

93 STS set transmit state

94 CCH cancel character

95 MW message waiting

96 SPA start of protected area

97 EPA end of protected area

98 [reserved]

99 [reserved]

9A [reserved]

9B CSI control sequence introducer

9C ST string terminator

9D OSC operating system command

9E PM privacy message

9F APC application

Other Characters

A0 [reserved]2

A1 ¡ inverted exclamation point

A2 ¢ cent sign

A3 £ pound sign

A4 [reserved]2

A5 ¥ yen sign

A6 [reserved]2

A7 § section sign

A8 ¤ general currency sign2

A9 © copyright sign

AA ª feminine ordinal indicator

AB « angle quotation mark left

AC [reserved]2

AD [reserved]2

AE [reserved]2

AF [reserved]2

B0 ° degree sign

B1 ± plus/minus sign

B2 ² superscript 2

B3 ³ superscript 3

B4 [reserved]2

2Different character in ISO Latin-1. See Figure C–1.

(continued on next page)

C–6 Character Sets

Character Sets

Table C–1 (Cont.) DEC Multinational Character Set

Hex
Code

MCS Char or
Abbrev. DEC Multinational Character Name

Other Characters

B5 µ micro sign

B6 ¶ paragraph sign, pilcrow

B7 · middle dot

B8 [reserved]2

B9 ¹ superscript 1

BA º masculine ordinal indicator

BB » angle quotation mark right

BC ¼ fraction one-quarter

BD ½ fraction one-half

BE [reserved]2

BF ¿ inverted question mark

C0 À uppercase A with grave accent

C1 Á uppercase A with acute accent

C2 Â uppercase A with circumflex

C3 Ã uppercase A with tilde

C4 Ä uppercase A with umlaut (diaeresis)

C5 Å uppercase A with ring

C6 Æ uppercase AE diphthong

C7 Ç uppercase C with cedilla

C8 È uppercase E with grave accent

C9 É uppercase E with acute accent

CA Ê uppercase E with circumflex

CB Ë uppercase E with umlaut (diaeresis)

CC Ì uppercase I with grave accent

CD Í uppercase I with acute accent

CE Î uppercase I with circumflex

CF Ï uppercase I with umlaut (diaeresis)

D0 [reserved]2

D1 Ñ uppercase N with tilde

D2 Ò uppercase O with grave accent

D3 Ó uppercase O with acute accent

D4 Ô uppercase O with circumflex

D5 Õ uppercase O with tilde

D6 Ö uppercase O with umlaut (diaeresis)

D7 Œ uppercase OE ligature2

D8 Ø uppercase O with slash

2Different character in ISO Latin-1. See Figure C–1.

(continued on next page)

Character Sets C–7

Character Sets

Table C–1 (Cont.) DEC Multinational Character Set

Hex
Code

MCS Char or
Abbrev. DEC Multinational Character Name

Other Characters

D9 Ù uppercase U with grave accent

DA Ú uppercase U with acute accent

DB Û uppercase U with circumflex

DC Ü uppercase U with umlaut (diaeresis)

DD Ÿ uppercase Y with umlaut (diaeresis)

DE [reserved]2

DF ß German lowercase sharp s

E0 à lowercase a with grave accent

E1 á lowercase a with acute accent

E2 â lowercase a with circumflex

E3 ã lowercase a with tilde

E4 ä lowercase a with umlaut (diaeresis)

E5 å lowercase a with ring

E6 æ lowercase ae diphthong

E7 ç lowercase c with cedilla

E8 è lowercase e with grave accent

E9 é lowercase e with acute accent

EA ê lowercase e with circumflex

EB ë lowercase e with umlaut (diaeresis)

EC ì lowercase i with grave accent

ED í lowercase i with acute accent

EE î lowercase i with circumflex

EF ï lowercase i with umlaut (diaeresis)

F0 [reserved]2

F1 ñ lowercase n with tilde

F2 ò lowercase o with grave accent

F3 ó lowercase o with acute accent

F4 ô lowercase o with circumflex

F5 õ lowercase o with tilde

F6 ö lowercase o with umlaut (diaeresis)

F7 œ lowercase oe ligature2

F8 ø lowercase o with slash

F9 ù lowercase u with grave accent

FA ú lowercase u with acute accent

2Different character in ISO Latin-1. See Figure C–1.

(continued on next page)

C–8 Character Sets

Character Sets

Table C–1 (Cont.) DEC Multinational Character Set

Hex
Code

MCS Char or
Abbrev. DEC Multinational Character Name

Other Characters

FB û lowercase u with circumflex

FC ü lowercase u with umlaut (diaeresis)

FD ÿ lowercase y with umlaut (diaeresis)2

FE [reserved]2

FF [reserved]2

2Different character in ISO Latin-1. See Figure C–1.

Figure C–1 Differences Between DEC Multinational Character Set and ISO
Latin-1 Character Set

Hex
Code

MCS
Char or
Abbrev.

DEC Multinational Character
Name

Isolatin-
1 Char Isolatin-1 Character Name

A0 [reserved] nonbreaking space

A4 [reserved] ¤ currencysign

A6 [reserved] broken vertical bar

A8 ¤ currency sign spacing diaeresis

AC [reserved] not sign

AD [reserved] soft hyphen

AE [reserved] ® registered trademark
sign

B4 [reserved] spacing acute

B8 [reserved] spacing cedilla

BE [reserved] fraction three quarters

D0 [reserved] Latin capital letter eth

D7 Œ uppercase OE ligature multiplication sign

DE [reserved] Latin capital letter thorn

F0 [reserved] Latin small letter eth

F7 œ lowercase oe ligature division sign

FD ÿ lowercase y with umlaut,
(diaeresis)

Latin small letter y acute

FE [reserved] Latin small letter thorn

FF [reserved] ÿ Latin small letter y
diaeresis

AF [reserved] spacing macron

ÿ'

D

I

I

3
4

VM-0128A-AI

O

U

`

Character Sets C–9

Index

A
Access Control Entry (ACE), 2–10
ANALYZE/DISK_STRUCTURE

checking the volume structure, 2–11
/STATISTICS qualifier, 2–11

Analyze/Disk_Structure utility
See ANALYZE/DISK_STRUCTURE

ASCII character set, 1–2, B–8, C–1
Asterisk (*), 3–4

B
Backing up, ODS-5 volumes, 2–12
BACKUP command, using /PHYSICAL qualifier on

VAX systems, 2–12
BACKUP utility

/CONVERT qualifier, 2–11
restoring ODS-5 files as ODS-2 files, 2–11
support for deep directories, 2–11
support for extended character set, 2–11

C
C0 control codes, 3–2
C1 character set, B–8
Case, preservation of, 1–3, 3–1
Character sets, 1–2, 1–3, 3–1, B–7, B–8

See DEC Multinational character set, C–1
Circumflex character, 1–2, 1–3, 3–4, 3–8, 3–9,

B–5, B–8
Code compilers, 2–3
Command Definition Utility (CDU), 3–9
Control characters, list, C–1
/CONVERT qualifier, 2–11
COPY command, 3–11
$CREPRC system service, B–6
$CVT_FILENAME system service, B–2

D
DCL commands, 3–6

COPY, 3–11
DELETE, 3–11
DIRECTORY, 3–11
DUMP, 3–11
EXCHANGE NETWORK, 3–11

DCL commands (cont’d)
INITIALIZE, 3–12
PRINT, 3–12
PURGE, 3–12
RENAME, 3–12
SEARCH, 3–12
SET ACL, 3–12
SET DEFAULT, 3–12
SET DIRECTORY, 3–12
SET FILE, 3–12
SET PROCESS, 3–12
SET SECURITY, 3–12
SET VOLUME, 3–12
SHOW DEVICE/FULL, 3–12
SUBMIT, 3–12
TYPE, 3–12

DCL lexical function
F$FILE_ATTRIBUTES, 3–11
F$GETDVI, 3–11
F$GETJPI, 3–11

DCOM, 1–1, 1–3
DEC Multinational character set, C–1
DECnet, file copying, 1–5
DELETE command, 3–11
DID abbreviations, restrictions, B–10
DIRECTORY command, 3–11
Directory structures

limits, 1–3
support for deep nesting of, B–8

Disk defragmenters, 2–3
DUMP command, 3–11

E
/ENABLE qualifier, 2–9
Equivalence names, A–4
Escape character, 3–2, 3–5, 3–7, 3–8, B–5
EXCHANGE NETWORK command, 3–11
Extended File Specifications, 1–1

benefits, 1–1
DID (Directory ID)

using, 3–6
enabling ODS-5 volumes, 2–4
extended file names

with batch command file, A–6
features, 1–2
file name parsing

controlling, 3–7

Index–1

Extended File Specifications
file name parsing (cont’d)

enabling, 3–7
related error messages, A–4
resetting the default style, 3–7
switching between styles, 3–7

file names
avoiding incompatibility, A–4
extended (ODS-5), 3–2
implicit output, A–6
traditional (ODS-2), 3–1
using in DCL command parameters, 3–7

Files-11 XQP Changes, B–16
initializing a new volume, 2–4
long file names, 1–2
mixed-architecture support, 1–5, 3–6
mixed-version support, 1–4
programming utilities changes, B–23
RMS changes, B–7
submitting a batch command file, A–6
system management utilities changes, 2–11
using RMS features, 2–3
volume structures

converting existing volumes to ODS-5, 2–5

F
F$FILE_ATTRIBUTES lexical function, 3–11
F$GETDVI lexical function, 3–11
F$GETJPI lexical function, 3–11
FDL$CREATE routine, B–23
FDL$GENERATE routine, B–23
FDL$PARSE routine, B–24
FDL$RELEASE routine, B–24
FDL (File Definition Language)

routine enhancements, B–23
File naming styles

extended (ODS-5 compliant), 3–1
traditional (ODS-2 compliant), 3–1

File system (XQP), B–16
First file character, hyphen, B–8

G
$GETJPI system service, B–6

H
Hyphen (-)

first file name character, B–8

I
INITIALIZE/STRUCTURE_LEVEL=5 command,

2–4
INITIALIZE command, 3–12

ISO Latin-1 character set, C–1

J
JAVA

applications on OpenVMS, 1–1
object naming standards, 1–1

K
Known images, 2–3

L
LIB$ Run-Time Library, B–24
LINK command, 2–3

M
Multinational character set

See DEC Multinational character set

N
NAM and NAML blocks, B–11

using, B–15
NAMLs (long name blocks), B–12

validating, B–14

O
ODS-2

displaying disk type, A–2
ODS-5

converting an existing volume to, 2–5
displaying disk type, A–2
extended file names

creating, A–2
on VAX systems, A–7

initializing a new volume, 2–4
mounting a new volume, 2–4

ODS volumes
checked by ANALYZE/DISK_STRUCTURE,

2–11
converting from ODS-5 to ODS-2, 2–6

P
Page and swap files, 2–3
Parsing styles

EXTENDED, 3–7
related error messages, A–4
TRADITIONAL, 3–7

PATHWORKS for OpenVMS, 1–1, 1–3
Percent sign character, 3–4, B–5
PRINT command, 3–12

Index–2

PURGE command, 3–12

Q
QIO interface, 4–1, 4–2, 4–3, 4–4
Question mark character, 3–4

R
Radix-50 encoding, B–22, B–23
RENAME command, 3–12
Restoring ODS-5 files as ODS-2, 2–11
RMS, changes for Extended File Specifications,

B–7
RMS interface, B–8
RMS services, condition values returned, B–16

S
SEARCH command, 3–12
SET ACL command, 3–12
$SETDDIR system service, B–7
SET DEFAULT command, 3–12
SET DIRECTORY command, 3–12
SET FILE command, 3–12
SET PROCESS command, 3–12
SET SECURITY command, 3–12
SET VOLUME command, 2–5, 3–12
$SET_PROCESS_PROPERTIESW system service,

B–1
SHOW DEVICE/FULL command, 3–12
STATS.DAT file

created ANALYZE/DISK_STRUCTURE
/STATISTICS command, 2–11

/STYLE qualifier, 3–12
SUBMIT command, 3–12
System disks

not ODS-5 volumes, 2–3
System Generation Utility (SYSGEN), 2–3
System services

$CREPRC, B–6
$CVT_FILENAME, B–2
$GETJPI, B–6
$SETDDIR, B–7
$SET_PROCESS_PROPERTIESW, B–1

System startup, not extended file name, 2–3

T
Terminals

control characters
numeric values, C–1

Tilde (~)
first file name character, A–7
restrictions, A–7

TYPE command, 3–12

U
Unicode (UCS-2), 1–2, B–18

V
Version numbers, in Extended File Specifications,

3–3
VTF-7 characters, B–3, B–4, B–5, B–6

Index–3

	OpenVMSGuide to Extended File Specifications
	Contents
	Preface
	Intended Audience
	Document Structure
	Related Documents
	Reader’s Comments
	How to Order Additional Documentation
	Conventions

	1 Overview of Extended File Specifications for OpenVMS
	1.1 Benefits of Extended File Specifications
	1.2 Features of Extended File Specifications
	1.2.1 ODS-5 Volume Structure
	1.2.2 Deep Directory Structures

	1.3 Considerations Before Enabling ODS-5 Volumes
	1.3.1 Considerations for System Management
	1.3.2 Considerations for Users
	1.3.3 Considerations for Applications

	1.4 Recommendations for Using Extended File Specifications on OpenVMS Applications

	2 Managing Extended File Naming on OpenVMS Systems
	2.1 Levels of Support for Extended File Specifications
	2.1.1 Full Support
	2.1.2 Default Support
	2.1.3 No Support for Extended File Naming
	2.1.4 No Support for ODS-5

	2.2 Enabling Extended File Specifications on OpenVMS Alpha Systems
	2.2.1 Using RMS Default Extended File Specifications Features
	2.2.2 Enabling ODS-5 Volumes
	2.2.3 Converting from ODS-5 to ODS-2

	2.3 Controlling Access to ODS-5 Volumes
	2.3.1 Preventing VAX Users from Accessing an ODS-5 Volume
	2.3.2 Preventing an Untested Application from Accessing an ODS-5 Volume

	2.4 System Management Utility Changes
	2.4.1 Analyze/Disk_Structure Utility
	2.4.2 Backup Utility (Alpha Only)
	2.4.3 Physical Backups of ODS-5 Volumes on VAX Systems
	2.4.4 Mount Utility (Alpha Only)

	3 Extended File Naming Characteristics
	3.1 File Specifications
	3.1.1 Traditional (ODS-2) Syntax
	3.1.2 Extended (ODS-5) Syntax

	3.2 Directory Specifications
	3.2.1 Deep Directory Structures
	3.2.2 Directory Naming Syntax

	3.3 Working in Mixed Environments
	3.4 DCL Support for ODS-5 Volumes
	3.4.1 Using the Extended File Specifications Parsing Feature in DCL
	3.4.2 Using Extended File Names in DCL Command Parameters
	3.4.3 Command Procedure File Specification
	3.4.4 Case Preservation and $FILE
	3.4.5 Ampersand Versus Apostrophe Substitution

	3.5 DCL Commands and Utilities
	3.6 Displaying Files with Extended Names
	3.6.1 DIRECTORY Command
	3.6.2 TYPE Command
	3.6.3 DELETE Command
	3.6.4 PURGE Command

	3.7 Displaying Extended File Names on a Terminal

	4 Extended File Naming Considerations for OpenVMS Application Developers
	4.1 Evaluating Your Current Support Status
	4.1.1 Default Support
	4.1.2 No Support for Extended File Names
	4.1.3 No Support for ODS-5 Volumes

	4.2 Upgrading an Application to Support Extended File Specifications
	4.2.1 Upgrading to Default Support
	4.2.2 Upgrading to Full Support

	A Setting Users’ Expectations of Extended File Specifications
	A.1 New Extended File Specifications Characteristics
	A.2 ODS-2 and ODS-5 Used Together
	A.3 Architecture-Related Notes
	A.4 Restrictions

	B Technical Information
	B.1 System Services Changes
	B.1.1 $SET_PROCESS_PROPERTIESW System Service (Alpha Only)
	B.1.2 $CVT_FILENAME System Service (Alpha Only)
	B.1.3 $GETJPI System Service
	B.1.4 $CREPRC System Service
	B.1.5 $SETDDIR System Service

	B.2 Record Management Services (RMS) Changes
	B.2.1 Overview of Record Management Services Changes
	B.2.2 Syntax and Semantics Changes
	B.2.3 RMS Data Structure Changes (Alpha Only)

	B.3 Files-11 XQP Changes
	B.3.1 File Naming and Format Changes
	B.3.2 File Attribute Changes

	B.4 Programming Utility Changes
	B.4.1 File Definition Language (FDL) Routines

	B.5 Run-Time Library Changes
	B.5.1 LIB$CREATE_DIR
	B.5.2 LIB$DELETE_FILE
	B.5.3 LIB$FILE_SCAN
	B.5.4 LIB$FIND_FILE
	B.5.5 LIB$RENAME_FILE
	B.5.6 LIB$FID_TO_NAME

	C Character Sets
	Index
	Figures
	Figure C–1 Differences Between DEC Multinational Character Set and ISO Latin-1 Character Set

	Tables
	Table 2–1 Non-Supported OpenVMS Components
	Table 3–1 Sample Wildcards and Matching Patterns
	Table 3–2 Directory Names on ODS-5 Volumes
	Table 3–3 DCL New Features
	Table B–1 Property Code Descriptions
	Table B–2 Flag Descriptions
	Table B–3 New NAM$B_NOP Flag
	Table B–4 New NAM$L_FNB Flags
	Table B–5 NAM$B_NMC Flag
	Table B–6 New Fields for the NAML Block
	Table B–7 RMS Condition Values Returned When Using NAML Block
	Table B–8 FIB Constants for File Formats
	Table B–9 New FIB$W_NMCTL Flags
	Table B–10 FIB Flag Settings and Format of Related Returned Names
	Table B–11 Safe Buffer Sizes for Each File Format (in Bytes)
	Table B–12 Modified Attribute Codes
	Table C–1 DEC Multinational Character Set

