
Tru64 UNIX
Command and Shell User’s Guide

Part Number: AA-RH91C-TE

September 2002

Product Version: Tru64 UNIX Version 5.1B or higher

This guide explains how to use commands and shells in HP Tru64 UNIX
Version 5.1B or higher and how to communicate with other network
users. It also provides an introduction to file systems.

Hewlett-Packard Company
Palo Alto, California

© 2002 Hewlett-Packard Company

Microsoft® and Windows NT® are trademarks of Microsoft Corporation in the U.S. and/or other countries.

Intel®, Pentium®, and Intel Inside® are trademarks of Intel Corporation in the U.S. and/or other countries.

UNIX® is the trademark of The Open Group in the U.S. and/or other countries.

All other product names mentioned herein may be the trademarks of their respective companies.

Confidential computer software. Valid license from Compaq Computer Corporation, a wholly owned
subsidiary of Hewlett-Packard Company, required for possession, use, or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial
license.

None of Compaq, HP, or any of their subsidiaries shall be liable for technical or editorial errors or omissions
contained herein. The information is provided “as is” without warranty of any kind and is subject to
change without notice. The warranties for HP or Compaq products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as constituting
an additional warranty.

Contents

About This Manual

1 Getting Started
1.1 Logging In 1–2
1.1.1 Login Restrictions 1–4
1.2 Logging Out 1–5
1.3 Using Commands 1–5
1.4 Stopping Command Execution 1–7
1.5 Setting Your Password 1–7
1.5.1 Password Aging 1–8
1.5.2 Password Guidelines 1–9
1.5.3 Choosing Passwords 1–9
1.5.3.1 Selecting a System-Generated Password 1–10
1.5.3.2 Selecting Your Own Password 1–11
1.5.4 Password Procedures 1–12
1.6 Getting Help 1–13
1.6.1 Displaying and Printing Online Reference Pages (man) .. . 1–14
1.6.2 Locating Commands Using Descriptive Keywords 1–15

2 Overview of Files and Directories
2.1 Overview of Text Editors 2–1
2.2 Creating Sample Files with the vi Text Editor 2–2
2.3 Understanding Files, Directories and Pathnames 2–5
2.3.1 Files and File Names 2–5
2.3.2 Directories and Subdirectories 2–7
2.3.3 Displaying the Name of Your Current (Working) Directory

(pwd) 2–7
2.3.4 The Tree-Structure File System and Pathnames 2–8
2.4 Specifying Files with Pattern Matching 2–12

3 Managing Files
3.1 Listing Files (ls) 3–2
3.1.1 Listing Contents of the Current Directory 3–2
3.1.2 Listing Contents of Other Directories 3–3

Contents iii

3.1.3 Flags Used with the ls Command 3–3
3.2 Displaying Files 3–5
3.2.1 Displaying Files Without Formatting (pg, more, cat) 3–5
3.2.2 Displaying Files with Formatting (pr) 3–7
3.3 Printing Files (lpr, lpq, lprm) 3–10
3.4 Linking Files (ln) 3–13
3.4.1 Hard Links and Soft Links 3–13
3.4.2 Links and File Systems 3–14
3.4.3 Using Links 3–15
3.4.4 How Links Work − Understanding File Names and File

Serial Numbers 3–16
3.4.5 Removing Links 3–17
3.5 Copying Files (cp) 3–18
3.5.1 Copying Files in the Current Directory 3–19
3.5.2 Copying Files into Other Directories 3–20
3.6 Renaming or Moving Files (mv) 3–21
3.6.1 Renaming Files 3–21
3.6.2 Moving Files into a Different Directory 3–22
3.7 Comparing Files (diff) 3–23
3.8 Sorting File Contents (sort) 3–25
3.9 Removing Files (rm) 3–26
3.9.1 Removing a Single File 3–26
3.9.2 Removing Multiple Files − Matching Patterns 3–27
3.10 Determining File Type (file) 3–28

4 Managing Directories
4.1 Creating a Directory (mkdir) 4–2
4.2 Changing Directories (cd) 4–3
4.2.1 Changing Your Current Directory 4–4
4.2.2 Using Relative Pathname Notation 4–5
4.2.3 Accessing Directories Through Symbolic Links 4–7
4.3 Displaying Directories (ls −F) 4–7
4.4 Copying Directories (cp) 4–8
4.5 Renaming Directories (mv) 4–9
4.6 Removing Directories (rmdir) 4–10
4.6.1 Removing Empty Directories 4–11
4.6.2 Removing Multiple Directories 4–11
4.6.3 Removing Your Current Directory 4–12
4.6.4 Removing Files and Directories Simultaneously (rm −r) . . 4–12

iv Contents

5 Controlling Access to Your Files and Directories
5.1 Understanding Password and Group Security Files 5–1
5.1.1 The /etc/passwd File 5–2
5.1.2 The /etc/group File 5–3
5.2 Protecting Files and Directories 5–4
5.3 Displaying File and Directory Permissions (ls) 5–5
5.4 Setting File and Directory Permissions (chmod) 5–8
5.4.1 Specifying Permissions with Letters and Operation

Symbols 5–8
5.4.1.1 Changing File Permissions 5–9
5.4.1.2 Changing Directory Permissions 5–10
5.4.1.3 Using Pattern-Matching Characters 5–10
5.4.1.4 Setting Absolute Permissions 5–11
5.4.2 Specifying Permissions with Octal Numbers 5–11
5.5 Setting Default Permissions with the User Mask 5–13
5.5.1 Setting the umask 5–15
5.6 Changing Your Identity to Access Files 5–17
5.7 Superuser Concepts 5–18
5.8 Changing Owners and Groups (chown and chgrp) 5–19
5.9 Additional Security Considerations 5–20

6 Using Processes
6.1 Understanding Programs and Processes 6–1
6.2 Understanding Standard Input, Output and Error 6–1
6.2.1 Redirecting Input and Output 6–2
6.2.1.1 Reading Input from a File 6–2
6.2.1.2 Redirecting Output 6–3
6.2.2 Redirecting Standard Error to a File 6–4
6.2.2.1 Bourne, Korn and POSIX Shell Error Redirection 6–4
6.2.2.2 C Shell Error Redirection 6–5
6.2.3 Redirecting Both Standard Error and Standard Output . . 6–5
6.3 Running Several Processes Simultaneously 6–6
6.3.1 Running Foreground Processes 6–6
6.3.2 Running Background Processes 6–6
6.4 Monitoring and Terminating Processes 6–8
6.4.1 Checking Process Status 6–8
6.4.1.1 The ps Command 6–8
6.4.1.2 The jobs Command 6–10
6.4.2 Canceling a Foreground Process (Ctrl/C) 6–11
6.4.3 Canceling a Background Process (kill) 6–11

Contents v

6.4.4 Suspending and Resuming a Foreground Process (C Shell
Only) 6–13

6.5 Displaying Information About Users and Their Processes 6–14

7 Shell Overview
7.1 Purpose of Shells 7–1
7.2 Summary of C, Bourne, Korn and POSIX Shell Features 7–2
7.2.1 More Information on C and Korn or POSIX Shell

Features 7–3
7.2.2 The Restricted Bourne Shell 7–4
7.3 Changing Your Shell 7–4
7.3.1 Determining What Shell You Are Running 7–5
7.3.2 Temporarily Changing Your Shell 7–5
7.3.3 Permanently Changing Your Shell 7–6
7.4 Command Entry Aids 7–6
7.4.1 Using Multiple Commands and Command Lists 7–6
7.4.1.1 Running Commands in Sequence with a Semicolon (;) 7–7
7.4.1.2 Running Commands Conditionally 7–7
7.4.2 Using Pipes and Filters 7–8
7.4.3 Grouping Commands 7–10
7.4.3.1 Using Parentheses () 7–10
7.4.3.2 Using Braces { } 7–11
7.4.4 Quoting 7–11
7.4.4.1 Using the Backslash (\) 7–11
7.4.4.2 Using Single Quotes (’ ’) 7–12
7.4.4.3 Using Double Quotes (" ") 7–12
7.5 The Shell Environment 7–12
7.5.1 The login Program 7–13
7.5.2 Environment Variables 7–13
7.5.3 Shell Variables 7–15
7.6 Login Scripts and Your Environment 7–16
7.7 Using Variables 7–18
7.7.1 Setting Variables 7–18
7.7.1.1 Bourne, Korn and Posix Shell Variables 7–18
7.7.1.2 C Shell Variables 7–20
7.7.1.3 Setting Variables in All Shells 7–20
7.7.2 Referencing Variables (Parameter Substitution) 7–20
7.7.3 Displaying the Values of Variables 7–21
7.7.4 Clearing the Values of Variables 7–22
7.8 How the Shell Finds Commands 7–23
7.9 Using Logout Scripts 7–23

vi Contents

7.9.1 Logout Scripts and the Shell 7–24
7.9.2 A Sample .logout File 7–24
7.10 Using Shell Procedures (Scripts) 7–25
7.10.1 Writing and Running Shell Procedures 7–26
7.10.2 Specifying a Run Shell 7–27

8 Shell Features
8.1 Comparison of C, Bourne, Korn and POSIX Shell Features .. . 8–1
8.2 C Shell Features 8–2
8.2.1 Sample .cshrc and .login Scripts 8–2
8.2.2 Metacharacters 8–5
8.2.3 Command History 8–7
8.2.4 File Name Completion 8–8
8.2.5 Aliases 8–9
8.2.6 Built-In Variables 8–10
8.2.7 Built-In Commands 8–11
8.3 Bourne Shell Features 8–12
8.3.1 Sample .profile Login Script 8–12
8.3.2 Metacharacters 8–13
8.3.3 Built-In Variables 8–15
8.3.4 Built-In Commands 8–16
8.4 Korn or POSIX Shell Features 8–17
8.4.1 Sample .profile and .kshrc Login Scripts 8–17
8.4.2 Metacharacters 8–20
8.4.3 Command History 8–21
8.4.4 Command Line Editing Using the fc Command 8–23
8.4.4.1 Examples of Command Line Editing 8–24
8.4.5 File Name Completion 8–25
8.4.6 Aliases 8–26
8.4.7 Built-In Variables 8–27
8.4.8 Built-In Commands 8–29

9 Using the System V Habitat
9.1 Setting Up Your Environment 9–2
9.2 How the System V Habitat Access Works 9–3
9.3 Compatibility for Shell Scripts 9–4
9.4 System V Habitat Command Summary 9–4

10 Obtaining Information About Network Users and Hosts
10.1 Identifying Users on the Local Host 10–1

Contents vii

10.2 Obtaining Information About Network Users 10–2
10.2.1 Obtaining Information About a Specific User 10–3
10.2.2 Obtaining Information About Users on a Remote Host 10–3
10.2.3 Obtaining Information About an Individual User on a

Remote Host 10–4
10.2.4 Customizing Output from the finger Command 10–4
10.3 Obtaining Information About Remote Hosts and Users 10–5
10.4 Obtaining Information About Users on Remote Hosts 10–7
10.5 Determining Whether a Remote Host Is On Line 10–9

11 Sending and Receiving Messages
11.1 Addressing Mail Messages 11–1
11.2 Sending a Mail Message Using mailx 11–2
11.2.1 Editing a Message 11–4
11.2.2 Aborting a Message 11–4
11.2.2.1 Aborting a Message with Ctrl/C 11–4
11.2.2.2 Aborting a Message with an Escape Command 11–5
11.2.3 Including a File Within a Message 11–5
11.3 Receiving a Mail Message 11–7
11.3.1 Deleting a Message 11–9
11.3.2 Replying to a Message 11–10
11.3.3 Saving a Message 11–11
11.3.3.1 Saving a Message in a File 11–11
11.3.3.2 Saving a Message in a Folder 11–12
11.3.4 Forwarding a Message 11–13
11.4 Getting Help from mailx 11–14
11.5 Exiting Mail 11–15
11.6 Customizing Mail Sessions 11–15
11.6.1 Creating Mail Aliases 11–16
11.6.2 Setting Mail Variables 11–17
11.7 The Message Handling (MH) Program 11–18
11.8 Sending and Receiving Messages with write 11–21
11.9 Sending and Receiving Messages with talk 11–23

12 Copying Files to Another Host
12.1 Copying Files Between a Local and a Remote Host 12–1
12.1.1 Using rcp to Copy Files Between Local and Remote Hosts 12–2
12.1.2 Using ftp to Copy Files Between Local and Remote Hosts 12–3
12.1.3 Using mailx to Copy ASCII Files Between Local and

Remote Hosts 12–8

viii Contents

12.1.4 Using write to Copy Files Between Local and Remote
Hosts 12–9

12.2 Copying Directories of Files Between a Local and a Remote
Host 12–9

12.3 Copying Files Between Two Remote Hosts 12–10

13 Working on a Remote Host
13.1 Using rlogin to Log in to a Remote Host 13–1
13.2 Using rsh to Run Commands on a Remote Host 13–2
13.3 Using telnet to Log in to a Remote Host 13–3

14 The UUCP Networking Commands
14.1 UUCP Pathname Conventions 14–1
14.2 Finding Hosts that Support UUCP 14–2
14.3 Connecting to a Remote Host 14–2
14.3.1 Using cu to Connect to a Remote Host 14–3
14.3.1.1 Using cu to Connect by Name to a Remote Host 14–3
14.3.1.2 Using cu to Specify a Directly-Connected Remote

Host 14–4
14.3.1.3 Using cu to Connect by Telephone to a Remote Host . . 14–4
14.3.1.4 Local cu Commands 14–6
14.3.1.5 Using cu to Connect a Local Host to Several Remote

Hosts 14–7
14.3.2 Using tip to Connect to a Remote Host 14–8
14.3.2.1 Using tip to Connect by Name to a Remote Host 14–9
14.3.2.2 Using tip to Connect by Telephone to a Remote Host . . 14–9
14.3.2.3 Local tip Commands 14–11
14.3.2.4 Using tip to Connect a Local Host to Several Remote

Hosts 14–12
14.3.3 Using ct to Connect to a Remote Terminal with a Modem . 14–14
14.4 Using uux to Run Commands on Remote Hosts 14–16
14.4.1 Using uux from the Bourne, Korn or POSIX Shells 14–18
14.4.2 Using uux from the C Shell 14–18
14.4.3 Other uux Features and Suggestions 14–18
14.5 Using UUCP to Send and Receive Files 14–20
14.5.1 Using UUCP to Copy Files in the Bourne, Korn and

POSIX Shells 14–20
14.5.2 Using UUCP to Copy Files in the C Shell 14–21
14.6 Using uuto with uupick to Copy Files 14–23
14.7 Using uuto to Send a File Locally 14–24
14.8 Displaying Job Status of UUCP Utilities 14–25

Contents ix

14.8.1 The uustat Command 14–25
14.8.1.1 Displaying the Holding Queue Output with a uustat

Option 14–26
14.8.1.2 Displaying the Current Queue Output with uustat

Options 14–27
14.8.2 Using the uulog Command to Display UUCP Log Files .. . 14–28
14.8.3 Monitoring UUCP Status 14–29

A A Beginner’s Guide to Using vi
A.1 Getting Started A–2
A.1.1 Creating a File A–2
A.1.2 Opening an Existing File A–4
A.1.3 Saving a File and Quitting vi A–4
A.1.4 Moving Within a File A–6
A.1.4.1 Moving the Cursor Up, Down, Left and Right A–6
A.1.4.2 Moving the Cursor by Word, Line, Sentence and

Paragraph A–7
A.1.4.3 Moving and Scrolling the Cursor Forward and

Backward Through a File A–8
A.1.4.4 Movement Command Summary A–8
A.1.5 Entering New Text A–9
A.1.6 Editing Text A–12
A.1.6.1 Deleting Words A–13
A.1.6.2 Deleting Lines A–13
A.1.6.3 Changing Text A–13
A.1.6.4 Text Editing Command Summary A–14
A.1.7 Undoing a Command A–14
A.1.8 Finishing Your Edit Session A–15
A.2 Using Advanced Techniques A–15
A.2.1 Searching for Strings A–15
A.2.2 Deleting and Moving Text A–16
A.2.3 Yanking and Moving Text A–17
A.2.4 Other vi Features A–17
A.3 Using the Underlying ex Commands A–18
A.3.1 Making Substitutions A–19
A.3.2 Writing a Whole File or Parts of a File A–20
A.3.3 Deleting a Block of Text A–20
A.3.4 Customizing Your Environment A–21
A.3.5 Saving Your Customizations A–23

x Contents

B Creating and Editing Files with ed
B.1 Understanding Text Files and the Edit Buffer B–1
B.2 Creating and Saving Text Files B–2
B.2.1 Starting the ed Program B–2
B.2.2 Entering Text − The a (append) Subcommand B–2
B.2.3 Displaying Text − The p (print) Subcommand B–3
B.2.4 Saving Text − The w (write) Subcommand B–4
B.2.4.1 Saving Text Under the Same File Name B–4
B.2.4.2 Saving Text Under a Different File Name B–5
B.2.4.3 Saving Part of a File B–5
B.2.5 Leaving the ed Program − The q (quit) Subcommand B–6
B.3 Loading Files into the Edit Buffer B–6
B.3.1 Using the ed (edit) Command B–7
B.3.2 Using the e (edit) Subcommand B–7
B.3.3 Using the r (read) Subcommand B–8
B.4 Displaying and Changing the Current Line B–9
B.4.1 Finding Your Position in the Buffer B–10
B.4.2 Changing Your Position in the Buffer B–10
B.5 Locating Text B–11
B.5.1 Searching Forward Through the Buffer B–12
B.5.2 Searching Backward Through the Buffer B–12
B.5.3 Changing the Direction of a Search B–13
B.6 Making Substitutions − The s (substitute) Subcommand B–13
B.6.1 Substituting on the Current Line B–14
B.6.2 Substituting on a Specific Line B–14
B.6.3 Substituting on Multiple Lines B–14
B.6.4 Changing Every Occurrence of a String B–15
B.6.5 Removing Characters B–16
B.6.6 Substituting at Line Beginnings and Ends B–16
B.6.7 Using a Context Search B–17
B.7 Deleting Lines − The d (delete) Subcommand B–17
B.7.1 Deleting the Current Line B–18
B.7.2 Deleting a Specific Line B–18
B.7.3 Deleting Multiple Lines B–18
B.8 Moving Text − The m (move) Subcommand B–19
B.9 Changing Lines of Text − The c (change) Subcommand B–20
B.9.1 Changing a Single Line of Text B–20
B.9.2 Changing Multiple Lines of Text B–21
B.10 Inserting Text − The i (insert) Subcommand B–21
B.10.1 Using Line Numbers B–22
B.10.2 Using a Context Search B–22

Contents xi

B.11 Copying Lines − The t (transfer) Subcommand B–23
B.12 Using System Commands from ed B–24
B.13 Ending the ed Program B–24

C Using Internationalization Features
C.1 Understanding Locale C–1
C.2 How Locale Affects Processing and Display of Data C–2
C.2.1 Collation C–3
C.2.2 Date and Time Formats C–4
C.2.3 Numeric and Monetary Formats C–5
C.2.4 Messages C–5
C.2.5 Yes/No Prompts C–5
C.3 Determining Whether a Locale Has Been Set C–6
C.4 Setting a Locale C–6
C.4.1 Locale Categories C–8
C.4.2 Limitations of Locale Settings C–10
C.4.2.1 Locale Settings Are Not Validated C–10
C.4.2.2 File Data Is Not Bound to a Locale C–10
C.4.2.3 Setting LC_ALL Overrides All Other Locale

Variables C–10

D Customizing Your mailx Session

E Using Escape Commands in Your mailx Session

F Using the mailx Commands

G Access Control Lists (ACLs)
G.1 ACL Structure G–1
G.2 Access Checking with ACLs G–3
G.3 ACL Inheritance G–4
G.3.1 ACL Inheritance Examples G–6
G.4 Managing ACLs G–8
G.4.1 Using the dxsetacl Interface G–8
G.4.2 Using the getacl Command G–8
G.4.3 Using the setacl Command G–9
G.5 ACL Interaction with Commands and Applications G–10
G.5.1 The pax and tar Commands G–10

xii Contents

Index

Examples
1–1 Typical Login Screen 1–4
1–2 Reference Page for date Command 1–14
3–1 Long (ls –l) Directory Listing 3–4
3–2 Output from the pg Command (One File) 3–6
3–3 Output from the pg Command (Multiple Files) 3–6
3–4 Using the lpr Command 3–11
3–5 Linking Files 3–15
5–1 Setting Absolute Permissions 5–11
5–2 Removing Absolute Permissions 5–11
5–3 Using the su Command 5–17
6–1 Output from the ps Command 6–9
6–2 Output from the who Command 6–14
6–3 Output from the who -u Command 6–15
6–4 Output from the w Command 6–15
6–5 Output from the ps au Command 6–16
8–1 Sample ksh history Output 8–22
11–1 Including the dead.letter File 11–6
11–2 Including a File with the mailx Command 11–7
11–3 Entering the mailx Environment 11–7
11–4 Reading a mailx Message 11–8
11–5 Reading Another mailx Message 11–9
11–6 Replying to a Message 11–10
11–7 Forwarding a Message 11–13
11–8 Output from mailx Help Command 11–15
11–9 Sample .mailrc File 11–16
12–1 Using ftp to Copy a File 12–4
13–1 Using the telnet Command 13–4
D–1 The mailx verbose Mode D–6
G–1 Displaying the ACL for a File G–8
G–2 Setting the ACL for a File G–9

Figures
1–1 Shell Interaction with the User and the Operating System 1–6
2–1 A Typical File System 2–9
2–2 Relative and Full Pathnames 2–11
3–1 Removing Links and Files 3–17

Contents xiii

4–1 Relationship Between Directories and Subdirectories 4–3
4–2 Copying a Directory Tree 4–9
5–1 File and Directory Permission Fields 5–7
7–1 Flow Through a Pipeline 7–8
9–1 System V Habitat 9–2

Tables
2–1 Pattern-matching Characters 2–13
2–2 Internationalized Pattern-matching Characters 2–14
3–1 The ls Command Flags 3–4
3–2 The pr Command Flags 3–8
3–3 The lpr Command Flags 3–11
5–1 Differences Between File and Directory Permissions 5–5
5–2 Permission Combinations 5–12
5–3 How Octal Numbers Relate to Permission Fields 5–12
5–4 The umask Permission Combinations 5–14
6–1 Shell Notation for Reading Input and Redirecting Output 6–2
7–1 Shell Names and Default Prompts 7–5
7–2 Multiple Command Operators 7–7
7–3 Command Grouping Symbols 7–10
7–4 Shell Quoting Conventions 7–11
7–5 Selected Shell Environment Variables 7–14
7–6 System and Local Login Scripts 7–17
7–7 Description of Example Shell Script 7–26
8–1 C, Bourne, Korn and POSIX Shell Features 8–1
8–2 Example .cshrc Script 8–3
8–3 Example .login Script 8–4
8–4 C Shell Metacharacters 8–5
8–5 Reexecuting History Buffer Commands 8–8
8–6 C Shell Built-In Variables 8–10
8–7 Built-In C Shell Commands 8–11
8–8 Example Bourne Shell .profile Script 8–13
8–9 Bourne Shell Metacharacters 8–14
8–10 Bourne Shell Built-In Variables 8–15
8–11 Bourne Shell Built-In Commands 8–16
8–12 Example Korn or POSIX Shell .profile Script 8–18
8–13 Example .kshrc Script 8–19
8–14 Korn or POSIX Shell Metacharacters 8–20
8–15 Reexecuting History Buffer Commands 8–22
8–16 Built-In Korn or POSIX Shell Variables 8–28
8–17 Korn or POSIX Shell Built-In Commands 8–29

xiv Contents

9–1 User Commands Summary 9–5
10–1 Options to the finger Command 10–4
10–2 Options to the ruptime Command 10–7
11–1 Commands for the MH Message-Handling Program 11–19
12–1 The ftp Subcommands for Connecting to a Host and Copying

Files 12–5
12–2 The ftp Subcommands for Directory and File Modification 12–7
12–3 The ftp Subcommands for Help and Status Information 12–8
13–1 The telnet Subcommands 13–5
14–1 Options to the cu Command 14–5
14–2 Local cu Commands 14–8
14–3 Options to the tip Command 14–11
14–4 Local tip Commands 14–13
14–5 Options to the ct Command 14–16
14–6 Options to the uux Command 14–19
14–7 Options to the UUCP Command 14–22
14–8 Options to the uupick Command 14–23
14–9 Options to the uuto Command 14–24
14–10 Options to the uustat Command 14–27
14–11 Options to the uulog Command 14–29
A–1 Write and Quit Command Summary A–6
A–2 Cursor Movement Command Summary A–8
A–3 Text Insertion Command Summary A–12
A–4 Text Editing Command Summary A–14
A–5 Selected vi Environment Variables A–21
C–1 Locale Names C–8
C–2 Environment Variables That Influence Locale Functions C–9
D–1 Variables for Customizing Your mailx Session D–1
E–1 Escape Commands in mailx E–1
F–1 Commands for the mailx Program F–1
G–1 Example ACL Entries G–3

Contents xv

About This Manual

The Command and Shell User’s Guide introduces users to the basic use of
commands and shells in the HP Tru64 UNIX operating system. This manual
also documents how to communicate with other network users.

Audience
This manual is written for those who do not have extensive knowledge
of UNIX compatible operating systems. This manual explains important
concepts, provides tutorials and is organized according to tasks.

This manual discusses the entry and execution of commands from the
command line. There are numerous graphical user interfaces (GUIs)
available to perform many of these functions or to perform additional tasks.
See the users instructions that accompany your window manager, the
particular application or your system administrator.

New and Changed Features
Appendix G has been added in this version of the manual. It describes how
to use Access Control Lists (ACLs) to set file and directory permissions for
particular users and groups of users.

Organization
This manual is organized as follows:

Chapter 1 Shows how to login and logout of your system, enter commands,
set your password and obtain online help.

Chapter 2 Provides an overview of the file system, consisting of the files
and directories that are used to store text, programs and other
data. This chapter also introduces you to the vi text editor, a
program that lets you create and modify files.

Chapter 3 Shows how to manage files. You will learn how to list, display,
copy, move, link and remove them.

Chapter 4 Explains how to manage directories. You will learn how to create,
change, display, copy, rename and remove files.

Chapter 5 Shows how to control access to your files and directories by
setting appropriate permissions. It also describes standard
password and group security issues. It also provides an overview
of additional security considerations.

About This Manual xvii

Chapter 6 Describes how the operating system creates and keeps track
of the processes. This chapter explains how to redirect process
input, output and error information, run processes simultaneously,
display process information and cancel processes.

Chapter 7 Introduces features common to the shells available with the operating
system: the C, Bourne, Korn, and POSIX shells. You learn how
to change your shell, use command entry aids, understand some
features of your shell environment (login scripts, environment
and shell variables), set and clear variables, write logout scripts
and also write and run basic shell procedures.

Chapter 8 Provides detailed reference information about the C, Bourne,
Korn, and POSIX shells, comparing their features. It details
the commands and environment variables of each program and
shows how to set up your login script.

Chapter 9 Shows how to access the System V habitat, a subset of
commands, subroutines and system calls that conforms to the
System V Interface Definition (SVID).

Chapter 10 Provides information on how to get information about other
users and remote hosts on the network.

Chapter 11 Provides information about how to send a message to another user.

Chapter 12 Provides information about how to copy files to or between remote hosts.

Chapter 13 Provides information about how to log in to or execute
commands at a remote host.

Chapter 14 Provides information about the UNIX-to-UNIX Copy Program
(UUCP) for performing communication tasks concurrently
on both a local and remote host.

Appendix A Teaches you how to use the basic features of the vi text editor.

Appendix B Teaches you how to use the ed text editor. Detailed information about
ed is provided because all systems have this editor and ed can be used in
critical system management situations when no other editor can be used.

Appendix C Describes the internationalization features that allow users to process
data and interact with the system in a manner appropriate to their
native language, customs and geographic region.

Appendix D Provides a list of variables that can be used in the .mailrc
file to customize a mailx session.

Appendix E Provides a list of escape commands that can be used to perform
certain tasks from within a mailx session.

Appendix F Provides a list of commands that can be used to send, read,
delete or save messages using mailx.

Appendix G Describes how to use Access Control Lists (ACLs).

xviii About This Manual

Related Documentation

The following Tru64 UNIX user documents are available in HTML format on
your CD-ROM and optionally in hardcopy:

• Network Administration: Connections

• Network Administration: Services

• Documentation Overview

• Reference Pages Section 1

• Reference Pages Sections 8 and 1m

• Security Administration

• System Administration

• Quick Reference Card

The Tru64 UNIX Documentation is available on the World Wide Web at the
following URL:

http://www.tru64unix.compaq.com/docs/.

The referred documents will help the user to understand the UNIX
commands in a better way, apart from providing better guidance on some
specific topics.

Icons on Tru64 UNIX Printed Manuals

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the manuals to help specific audiences quickly find the manuals
that meet their needs. (You can order the printed documentation from HP.)
The following list describes this convention:

G Manuals for general users

S Manuals for system and network administrators

P Manuals for programmers

R Manuals for reference page users

Some manuals in the documentation help meet the needs of several
audiences. For example, the information in some system manuals is also
used by programmers. Keep this in mind when searching for information
on specific topics.

The Documentation Overview provides information on all of the manuals in
the Tru64 UNIX documentation set.

About This Manual xix

Reader’s Comments

HP welcomes any comments and suggestions you have on this and other
Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603–884–0120 Attn: UBPG Publications, ZK03–3/Y32

• Internet electronic mail:

readers_comments@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

Please include the following information along with your comments:

• The full title of the manual and the order number (the order number is
printed on the title page of this manual and on its back cover).

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate HP technical support office. Information
provided with the software media explains how to send problem reports to
HP.

xx About This Manual

Conventions

The following conventions are used in this manual:

%

$ A percent sign represents the C shell system prompt.
A dollar sign represents the system prompt for the
Bourne, Korn, and POSIX shells.

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]

{ | } In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

. . .
In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

Ctrl/x This symbol indicates that you hold down the
first named key while pressing the key or mouse
button that follows the slash. In examples, this
key combination is enclosed in a box (for example,
Ctrl/C).

About This Manual xxi

1
Getting Started

This chapter introduces the basic tasks for using the operating system.
Before reading this chapter, familiarize yourself with your system’s
hardware components.

If you are familiar with the UNIX operating system or other operating
systems, you may want to just skim this chapter. This manual discusses the
use of the operating system from the command line. The system now has a
number of Graphical User Interface (GUI) capabilities. These are discussed
in separate manuals.

After completing this chapter, you will be able to:

• Log in to the operating system (Section 1.1)

• Log out of the operating system (Section 1.2)

• Set and change your password (Section 1.5)

• Execute commands (Section 1.3)

• Stop command execution (Section 1.4)

• View and display reference (man) pages (Section 1.6.1)

To use the operating system to its full capabilities, you must learn how to
create and modify files with a text editing program. See Chapter 2 for an
overview of text editors and Appendix A and Appendix B for information
on the vi and ed text editors, respectively. After you learn how to use a
text editor, you should have the basic skills necessary to start using the
operating system.

__________________ Security Note ___________________

If your system is running the optional enhanced security,
your login and password procedures may be different from
the procedures documented in this manual. See your system
administrator or the Security documentation for more information
about enhanced security.

Getting Started 1–1

1.1 Logging In
To use the operating system, your operating system must be installed and
running and you must be logged in. Logging in identifies you as a valid
system user and creates a work environment that belongs to you alone.

Before logging in, obtain your user name and password from the system
administrator. A user name (typically your surname or initials) identifies
you as an authorized user. A password (a group of characters that is easy for
you to remember but difficult for others to guess) verifies your identity.

Think of your user name and password as electronic keys that give you
access to the system. When you enter your user name and password during
the login process, you identify yourself as an authorized user.

Your password is an important part of system security as it prevents
unauthorized use of your data. For more information on passwords, see
Section 1.5.2.

The first step in the login process is to display the login prompt. When your
system is running and your workstation is on, the following login prompt
appears on your screen:

login:

On some systems, you may have to press the Return key a few times to
display the login prompt.

Your system’s login prompt screen may be somewhat different. For example,
in addition to the login prompt, the screen may display the system name and
the version number of the operating system.

To log in, perform the following steps:

1. Enter your user name at the login prompt. If you make a mistake, use
the Delete key or Backspace key to correct it.

For example, if your user name is larry, enter:

login: larry

The password prompt appears:

login: larry
Password:

2. Enter your password. For security reasons, the password does not
display on the screen when you type it.

If you think you made a mistake while typing your password, press
the Return key. If your password is incorrect, the system displays a
message and prompts you to enter your user name and password again.
On some systems, you may use the Delete key or the Backspace key to
correct errors while typing your passwords.

1–2 Getting Started

After you enter your user name and password correctly, the system displays
the following:

• The date and time of the last successful and unsuccessful login:

Last successful login for juanita: date and time on tty03
Last unsuccessful login for juanita: date and time on tty03

Always check the successful and unsuccessful login information against
your activity on the system. Any discrepancy means that someone has
attempted to log in to your account (or did log in to your account). Report
this activity immediately to your system administrator.

• If your password is about to expire, the system displays a warning:

Your password will expire on date and time

See Section 1.5for information on setting your password.

• The shell prompt, usually a dollar sign ($) prompt or a percent sign (%)
prompt. Your system’s shell prompt may be different.

_____________________ Note _____________________

In this manual, the shell prompt display is a dollar sign ($).

The shell prompt display tells you that your login is successful and that the
system is ready to go to work for you. The shell prompt is your signal that
the shell is running. The shell is a program that interprets all commands
you enter, runs the programs you have asked for and sends the results to
your screen. For more information about commands and the shell prompt,
see Section 1.3 and Chapter 7.

_____________________ Caution _____________________

Never leave your terminal unattended when you are logged in.
Someone can take advantage of an unattended terminal while
you are logged in and run a program under your identity can
cause great damage.

When you first log in, you automatically are placed in your login directory.
This directory is often referred to as your home directory. See Chapter 2 for
information about your login directory.

If your system does not display the shell prompt, you are not logged in. You
may, for example, have entered your user name or your password incorrectly.
Try to log in again. If you still cannot log in, see your system administrator.
On some systems, for security reasons, the system rejects all attempts at

Getting Started 1–3

logging in after some number of consecutive incorrect attempts. If your
attempt at logging in is rejected, the only indication you receive, for security
reasons, is the following:

Login incorrect

______________________ Note _______________________

Your system may not require you to have a password or you
may have been assigned a password that is common to all new
users. To ensure security in these cases, set your own password.
For information on how to create or change a password, see
Section 1.5.

Many systems display a welcome message and announcements whenever
users log in. Example 1–1 is a typical login screen (your screen may vary).

Example 1–1: Typical Login Screen

Welcome to the Operating System 1
Fri Dec 7 09:48:25 EDT 19nn 2

Messages from the administrator 3

You have mail 4
$
The preceding announcement contains the following pieces of information:

1 A greeting

2 The date and time of your last login.

Note this information whenever you log in and tell your system administrator if you have not logged
in at the time specified. A wrong date and time might indicate that someone has been breaking into
your system.

3 Messages from the administrator

Your system administrator may set messages that each user receives each time a login is accomplished.
These messages may describe planned system updates, operational schedules or other information
of general interest. These messages are called the message of the day and are stored in the file
/etc/motd. You may redisplay these messages at any time by displaying this file.

4 Whether you have mail messages waiting to be read.

Briefly, mail is a program that lets you send and receive electronic mail. The system displays the
message You have mail when there are mail messages for you that are waiting to be read. If you
have no mail messages, this line does not appear.

1.1.1 Login Restrictions

An authorized user list can be created for a particular terminal. If such a list
exists, your user name must appear in the list or you cannot log in at that
terminal. In this case, the system displays the following message:

1–4 Getting Started

Not authorized for terminal access--see System Administrator

After a specified number of failed login attempts, the terminal can be
disabled. This security precaution protects the system against break-in
attempts by limiting the number of times someone can try to log in from a
given terminal.

A terminal can also be explicitly locked by the system administrator. If the
terminal is disabled or locked, the system displays the following message:

Terminal is disabled -- see Account Administrator

Your account can be disabled after a specified number of failed login
attempts. Like disabling a terminal, this security precaution protects the
system by limiting the number of times someone can try to guess your
password. Your account is also disabled automatically if your password
exceeds its lifetime defined by the system administrator.

Your account can also be explicitly disabled by the system administrator. If
your account is disabled, the system displays the following message:

Account is disabled -- see Account Administrator

If any of these messages appear when you try to log in, report the occurrence
to your system administrator. If the terminal or your account has been
disabled, the system administrator has to enable it again before you can
log in.

1.2 Logging Out
When you are ready to end your work session, log out of the system. Logging
out leaves the operating system running for other users and also ensures
that no one else can use your work environment.

To log out, perform the following steps:

1. Make sure that the shell prompt is displayed.

2. Press Ctrl/D. If Ctrl/D does not work, enter the exit command.

The system displays the login prompt or login screen. On some systems,
a message may also be displayed.

At this point, you or another user may log in.

1.3 Using Commands
Operating system commands are programs that perform tasks on the
operating system. The operating system has a large set of commands that
are described in the remaining chapters of this manual and in the related
reference pages.

Getting Started 1–5

Entering a command is an interactive process. When you enter a command,
the shell interprets that command and then gives an appropriate response
— that is, the system either runs the program or displays an error message.

A shell reads every command you enter and directs the operating system to
do what is requested. Therefore, the shell is a command interpreter.

The shell acts as a command interpreter in the following way:

1. The shell displays a shell prompt and waits for you to enter a command.

2. You enter a command, the shell analyzes it and locates the requested
program.

3. The shell asks the system to run the program or it returns an error
message.

4. When the program completes execution, control returns to the shell,
which again displays the prompt.

Figure 1–1 shows the relationship between the user, the shell and the
operating system. The shell interacts with both the user (to interpret
commands) and with the operating system (to request command execution).

Figure 1–1: Shell Interaction with the User and the Operating System

User types
command

Shell interprets
command

ZK-0530U-AI

Command Interpreted

Shell
line command

The Operating System
executes command

The operating system supports four different shells: the C shell and the
Bourne, Korn, and POSIX shells. Your system administrator determines
which shell is active when you log in for the first time. For more information
about shells, see Chapter 7.

When using the operating system, enter commands at the shell prompt on
the command line. For example, to display today’s date and time, enter:

$date

If you make a mistake while typing a command, use the Delete key or the
Backspace key to erase the incorrect characters and then retype them.

1–6 Getting Started

An argument is a string of characters that follows a command name. An
argument specifies the data the command uses to complete its action. For
example, the man command gives you information about operating system
commands. To display complete information about the date command, enter:

$ man date

Commands can have options that modify the way a command works. These
options are called flags and immediately follow the command name. Most
commands have several flags. If you use flags with a command, arguments
follow the flags on the command line.

For example, suppose that you use the −f flag with the man command. This
flag displays a one-line description of a specified command. To display a
one-line description of the date command, you would enter:

$ man −f date

While a command is running, the system does not display the shell prompt
because the control passes to the program you are running. When the
command completes its action, the system displays the shell prompt again,
indicating that you can enter another command.

In addition to using the commands provided with the system, you can
also create your own personalized commands. Refer to Section 7.10.1 for
information about creating these special commands.

1.4 Stopping Command Execution

If you enter a command and then decide that you do not want it to complete
executing, enter Ctrl/C. The command stops executing and the system
displays the shell prompt. You can now enter another command.

Depending upon the command, partial completion of the command may
have varied results (referred to as an unknown state). To see the result
of stopping a command during execution, enter Ctrl/C after executing
commands such as ls -l to list files in a directory or cat filename to
view a file on the screen.

1.5 Setting Your Password

Your user name is public information and generally does not change. Your
password, on the other hand, is private.

In most instances, when your system account is established, the system
administrator assigns a password that is common to new users. On some
systems, this new user password is valid for only one login, which will let
you access the system and set your own password. After getting familiar
with the system, select your own password to protect your account from

Getting Started 1–7

unauthorized access. In addition, change your password periodically to
protect your data from unauthorized access.

To set your password, use the passwd command. If your account does not
have a password, use the passwd command to set one. For information on
passwd procedures, see Section 1.5.4. If your system is part of a networked
system, you must use the yppasswd command to establish or change your
password.

The system administrator can select a number of options to determine how
passwords are created, issued, changed, and revoked. These options control
the following items:

• Whether you can change your password under any circumstances.

• Whether you have previously used a specific password.

• Whether you can choose your own password.

• What type of password the system generates for you if you cannot choose
your own.

• When you are allowed to change your password and when you must
change your password.

If you are not allowed to change your password and you run passwd, the
system displays the following message:

Password request denied.
Reason: you do not have any password changing options.

In this case, you must contact your system administrator and arrange to
have your password changed.

1.5.1 Password Aging

The system enforces a minimum change time, expiration time, and lifetime
for each password. Passwords cannot be changed until the minimum change
time has passed. This prevents you from changing your password and
then immediately changing it back so that you do not have to learn a new
password. If you try to change your password too soon, the system responds
with the following message:

Password cannot be changed.
Reason: minimum time between changes has not elapsed.

A password is valid until its expiration time is reached. Once a password
has expired, you must change that password before the system allows you to
log in again. You will usually see a message at login time if your password
is about to expire. You should change it when you see the message. If you
are logged out when your password expires, you can change it as part of the
login process when you next log in.

1–8 Getting Started

If the lifetime passes, the account is disabled. If you try to log in to a
disabled account, the system displays an appropriate message. In this case,
you must ask your system administrator to reenable your account, and you
must change your password when you next log in.

1.5.2 Password Guidelines

The identification (user name) and authentication (password) procedure is
one of the most important security tools the system uses to guard against
unauthorized access. Knowing a password and having physical access to a
terminal or remote access through the network are all that an unauthorized
user needs to gain access to a system.

Once such a user has logged on, he or she can steal data and corrupt the
system in subtle ways. The amount of damage a penetrator can do increases
as the account accessed has greater power on the system.

A penetrator’s actions can be traced only to your account, and you will be
held accountable. It is your responsibility to ensure that your password is
not compromised. Protect your password by following these guidelines:

• Never share your password. When you tell someone your password
and let them log in to your account, the system loses its ability to hold
individual users accountable for their own actions.

• Do not write down your password. Many system penetrations occur
simply because a user wrote his or her password on a terminal. If a
password must be recorded, keep it under lock and key.

• Never type a password while someone is watching. It is possible to steal
a password simply by watching someone type it. Be especially careful if
you are using a workstation in a public area.

• Change your password frequently, especially if you think it might have
been compromised.

• Do not put your password in e-mail.

1.5.3 Choosing Passwords

If you are allowed to change your password, your account can be set up to
allow you to select your password or to have the system generate one. These
options determine the dialog the system starts when you invoke passwd.
First, the system prompts you for your current password:

Old password:

Type in your old password. If you type it correctly, the system displays
password change times:

Getting Started 1–9

Last successful password change for user: date and time

Last unsuccessful password change for user: date and time

Always check these dates and times. Although you might not remember
exactly when you last changed your password, you should at least be able to
decide if the times are reasonable.

The system administrator can allow you to choose one or more of the
following password types for your account:

• System-generated random pronounceable syllables

• System-generated random characters, including punctuation marks
and digits

• System-generated random letters

• Your own choice

The following example shows the prompt when all possible options are
allowed:

Do you want (choose one option only):
1 pronounceable passwords generated for you
2 a string of characters generated for you
3 a string of letters generated for you
4 to pick your password

Select ONE item by number:

If you choose to pick your own password, the system prompts for the new
password twice to avoid mistypings.

1.5.3.1 Selecting a System-Generated Password

The following example shows the dialog for a system-generated
pronounceable password:

Generating random pronounceable password for user.

The password, along with the hyphenated version, is shown.

Hit <RETURN> or <ENTER> until you like the choice.

When you have chosen the password you want, type it in.

Note: Type your interupt character or "quit" to abort at any time.

Password: saglemot Hyphenation: sag-le-mot

Enter password:

1–10 Getting Started

The hyphenated version is shown to help you pronounce the password so you
can remember it more easily. You do not enter the hyphens. If you do not
like the first password, press Return to see another one. When the system
generates one that you want, enter it.

If you decide not to change your password, you can enter quit or use your
interrupt character (typically Ctrl/C). The system displays the following
message:

Password cannot be changed. Reason: user stopped program.

The system also updates your last unsuccessful password change time.

The dialogue when you select one of the other system-generated password
types is similar.

1.5.3.2 Selecting Your Own Password

The following guidelines are useful in selecting a password:

• Do not choose a word found in a dictionary.

• Do not use personal information as your password or as a substring of it,
such as your user name, names or nicknames (yours, your family’s, your
company’s, your pet’s), initials or the make or model of your car.

• Do not use birthdays, Social Security or bank account numbers, employee
identification numbers, telephone numbers or other similar information
as a password or as the numeric portion of a password.

• Do not use the default password you received with your account.

• Do not use old passwords or the same prefix or suffix you used in
previous passwords. This rule also applies to any passwords you may
have used in previous jobs.

• Do not use the same password on all systems when you have access to
several different systems.

• Do not choose a password that is easy to guess (includes all of the above
options) even if you reverse their spelling. Choose a password that is
hard to guess, not hard to remember.

• Do not choose passwords shorter than six characters in length. The
maximum length of your password depends on the security conventions
in force on your system. (Password length is measured in bytes, rather
than characters, but we can regard these terms as the same, for now.)

• Use a mixture of uppercase and lowercase letters in your password
if possible. You also should include any combination of numbers,
punctuation marks or underscores (_) in your password.

Getting Started 1–11

On most systems, you can change your password as often or seldom as you
like. However, to protect system security, your system administrator may
set limits on how often you should change your password, the length of time
your password remains valid or the nature of changes you can make. Some
typical password restrictions could be the following:

• Character restrictions

– Minimum number of alphabetic characters

– Minimum number of other characters, such as punctuation or
numbers

– Minimum number of characters in a new password that must be
different from the old password

– Maximum number of consecutive duplicate characters allowed in a
password

• Time restrictions

– Maximum number of weeks before your password expires

– Number of weeks before you can change a password

See your system administrator for more information about password
restrictions. There are several levels of security and access control that
may be installed or activated on your system. See the Security manual for
additional information about access control.

1.5.4 Password Procedures

To set or change your password, follow these steps:

1. Enter the passwd command:

$ passwd

The system displays the following message (identifying you as the user)
and prompts you for your old password:

Changing password for username
Old password:

If you do not have an old password, the system does not display this
prompt. Go to step 3.

2. Enter your old password. For security reasons, the system does not
display your password as you enter it.

After the system verifies your old password, it is ready to accept your
new password and displays the following prompt:

New password:

3. Enter your new password at the prompt.

1–12 Getting Started

Remember that your new password entry does not appear on the screen.
Finally, to verify the new password (since you cannot see it as you
enter), the system prompts you to enter the new password again:

Retype new password:

4. Enter your new password again. As before, the new password entry
does not appear on the screen. When the shell prompt returns to the
screen, your new password is in effect.

If you attempt to change your password and the new password does not
conform to password regulations, you receive a message stating the specific
problem and the restrictions in effect for the system. The exact messages
and the level of detail in the descriptions provided are determined by the
security and access control mechanisms in effect on your system.

______________________ Note _______________________

Try to remember your password because you cannot log in to the
system without it. If you forget your password, see your system
administrator.

1.6 Getting Help
This manual discusses the entry and execution of commands from the
command line. If you are using any of the numerous graphical user interfaces
(GUIs) that are available, see the users instructions that accompany your
window manager or see your system administrator.

Many of the basic operating system commands needed for your work are
described in this manual. If you want to learn more about these and other
commands, see the reference pages. The reference pages are provided in
several formats:

• On line (see Section 1.6.1)

• In hard copy (see Related Documentation)

• In Hypertext Markup Language (HTML) format
Ask your system administrator what optional formats are installed on your
system. When the hard copy documents and HTML are unavailable, you
quickly can access online command documentation by using the following
commands:

• The man command displays online reference pages.

• The apropos command displays a one line summary of each command
pertaining to a specified subject.

The following sections describe these features.

Getting Started 1–13

1.6.1 Displaying and Printing Online Reference Pages (man)

Online reference pages contain information about commands. To view a
reference page on line, use the man command. Example 1–2 shows how to
view the reference page for the date command (your screen display may
vary):

Example 1–2: Reference Page for date Command

$ man date

date(1) date(1)

NAME
date - Displays or sets the date

SYNOPSIS

Without Superuser Authority - Displays the Date

date [-u] [+field_descriptor ...]

With Superuser Authority - Sets the Date

date [-nu] [MMddhhmm.ssyy|alternate_date_format] [+field_descriptor ...]

Using XPG4-UNIX - Sets or Displays the Date

date [-u] mmddHHMM[yy]

date [-u] [+field_descriptor ...]

Using the Century Field Provided by HP - Sets the Date

date mmddHHMM[[cc]yy][.ss]

date [[cc]yy]mmddHHMM[.ss]

date mmddHHMM[.ss[[cc]yy]]

STANDARDS

Interfaces documented on this reference page conform to industry standards
as follows:

date: XPG4, XPG4-UNIX

Refer to the standards(5) reference page for more information about indus-
try standards and associated tags.

manaabima (7%)

The symbol manaabima (7%) at the bottom of the page indicates that 7%
of the reference page is currently displayed. At this point, you can press
the Space bar to display the next screen of information, press the Return
key to display one more line of information or enter q to quit and return
to the shell prompt.

1–14 Getting Started

Use the following command format to print a reference page:

man manpage | lpr −P printer_name

For example, to print the reference page for the date command on a specific
printer, enter:

$ man date | lpr -Pprinter_name

The reference page for the date command is now queued for printing on
printer_name. See Section 3.3 for more information about the lpr
command.

To display a brief, one-line description of a command, use the man −f
command. For example, to display a brief description of the who command,
enter:

$ man −f who
who (1) - Identifies users currently logged in
$

For complete information on the man command and its options, you can
display the reference page by entering the following:

$ man man

1.6.2 Locating Commands Using Descriptive Keywords

The apropos command and the man −k command are useful tools if you
forget a command name.

______________________ Note _______________________

The apropos and the man −k commands require access to the
whatis database. This database is available if your system
manager loaded the default whatis database when the operating
system was installed or created the database later using the
catman command.

The apropos and man −k commands perform the same function. These
commands let you enter a command description in the form of keywords. The
commands then list all the reference pages that contain any of the keywords.

As shown in the example, if a command description contains more than one
word, the words must be enclosed in single quotes (’ ’) or double quotes (" ").
If the command description contains only one word, it is not necessary to
enclose the descriptive word in quotes.

Assume that you cannot remember the name of the command that displays
who is logged in to the system. To display the names and descriptions of all

Getting Started 1–15

reference pages that have something to do with displaying users who are
logged in, enter one of the following:

$ apropos "logged in"

or

$ man −k ’logged in’

The system displays the following:

rusers (1) - Displays a list of users who are logged in to a remote machine
rwho (1) - Shows which users are logged in to hosts on the local network.
who (1) - Identifies users currently logged in

______________________ Note _______________________

The numbers enclosed in parentheses refer to the section
numbers of the reference pages. See the man(1) reference page for
a discussion of the structure of the reference page files.

After using the apropos or man −k commands, you now know that several
commands: rwho, rusers and who can be used to display the users who
are logged into the system. You can then use the man command to get
information on using any of these commands.

1–16 Getting Started

2
Overview of Files and Directories

This chapter provides an introduction to files, file systems and text editors.
A file is a collection of data stored together in the computer. Typical files
contain memos, reports, correspondence, programs or other data. A file
system is the useful arrangement of files into directories.

A text editor is a program that lets you create new files and modify existing
ones.

After completing this chapter, you will be able to:

• Create files with the vi text editor. These files will be useful for working
through the examples later in this manual (Section 2.2).

• Understand the file system components and concepts (Section 2.3).

This knowledge can help you design a file system that is appropriate for the
type of information you use and the way you work.

2.1 Overview of Text Editors

An editor is a program that lets you create and change files containing text,
programs or other data. An editor does not provide the formatting and
printing features of a word processor or publishing software.

With a text editor, you can:

• Create, read and write files

• Display and search for data

• Add, replace and remove data

• Move and copy data

• Run operating system commands

Your editing takes place in an edit buffer that you can save or discard.

The vi and ed text editing programs are available on the operating system.
Each editor has its own methods of displaying text as well as its own set
of subcommands and rules.

For information about vi, read Section 2.2 and Appendix A. For information
about ed, see Appendix B.

Overview of Files and Directories 2–1

Your system may contain additional editors; see your system administrator
for details.

2.2 Creating Sample Files with the vi Text Editor

This section shows how to create three files with the vi text editor.

The goal of this section is to have you create, using a minimal set of
commands, files that can be used for working through the examples later
in this manual. For more information about vi, see Appendix A and the
vi(1) reference page.

______________________ Note _______________________

If you are familiar with a different editing program, you can use
that program to create the three sample files described in this
section. If you already have created three files with an editing
program, you can use those files by substituting their names for
the file names used in the examples.

When following the steps that are used to create the sample files, only enter
the text that is shown in boldface characters. System prompts and output
are shown in a different typeface, like this.

To create three sample files, follow these steps:

1. Start the vi program by typing vi and the name of a new file at the
shell prompt. Press the Return key.

$ vi file1 Return

This is a new file, so the system responds by putting your cursor at
the top of a screen:

~
~
~
~
~
~
"file1" [New file]

Notice the blank lines on your screen that begin with a tilde (~). These
tildes indicate the lines that contain no text. Because you have not
entered any text, all lines begin with a tilde.

2. Type the lowercase letter i to specify that you want to insert text to the
new file. The system does not display the i that you enter.

2–2 Overview of Files and Directories

Enter the following sample text, pressing the Return key after each
line. To correct mistakes before moving to the next line, use ’x’ or other
’vi’ delete commands.

You start the vi program by entering Return
the vi command optionally followed by the name Return
of a new or existing file. Escape
~
~
~
~
~
~
"file1" [New file]

3. Press the Escape key to indicate that you have finished your current
work. Type a colon (:) to enter the Last Line mode.

____________________ Note _____________________

Depending upon how your terminal or workstation is set up,
the Escape key may be programmed to perform a different
function. It is possible that one of the function keys on
your keyboard may have been set up to perform the escape
function. This function is often assigned to the F11 key.
See your system administrator if your Escape key does not
operate properly.

The colon is displayed as a prompt at the bottom of the screen as follows:

You start the vi program by entering
the vi command optionally followed by the name
of a new or existing file.
~
~
~
~
~
~
:

4. Enter a lowercase letter w next. Entering the letter w indicates to the
system that you want to write or save, a copy of the new file in your
current, user directory (see Chapter 4 for an explanation about your
current directory).

Your screen will look like this:

You start the vi program by entering
the vi command optionally followed by the name
of a new or existing file.

Overview of Files and Directories 2–3

~
~
~
~
~
~
"file1" [New file] 3 lines, 111 characters

The system displays the name of the new file as well as the number of
lines and characters it contains.

The system is still in the vi text editor so you can create two more
sample files. The process is the same as the one you used to create
file1, but the text you enter will be different.

5. Type a colon (:). The colon is displayed as a prompt at the bottom of the
screen. To create your second sample file, enter vi file2. The system
responds with a screen that looks like this:

~
~
~
~
~
~
~
"file2" No such file or directory

The message file2 No such file or directory indicates that
file2 is a new file.

6. Indicate that you want to insert text to the new file by typing the
lowercase letter i. Enter the following sample text:

If you have created a new file, you will find Return
that it is easy to add text. Escape

7. Type a colon (:) and enter the lowercase letter w to write or save, the
file in your current directory.

Your screen will look like this:

If you have created a new file, you will find
that it is easy to add text.
~
~
~
~
~
~
~
"file2" [New file] 2 lines, 75 characters

2–4 Overview of Files and Directories

8. Follow the instructions in step 5 to create the third file. However, name
the file file3 and enter the following sample text:

You will find that vi is a useful Return
editor that has many features. Escape

9. Type a colon (:) and enter the wq command.

The wq command writes the file, quits (that is, exits) the editor and
returns you to the shell prompt.

2.3 Understanding Files, Directories and Pathnames
A file is a collection of data stored in a computer. A file stored in a computer
is like a document stored in a filing cabinet because you can retrieve it, open
it, process it, close it and store it as a unit. Every computer file has a file
name that both users and the system use to refer to the file.

A file system is the arrangement of files into a useful pattern. Any time you
organize information, you create something like a computer file system. For
example, the structure of a manual file system (file cabinets, file drawers,
file folders and documents) resembles the structure of a computer file
system. (The software that manages the file storage is also known as the file
system, but that usage of the term does not occur in this chapter. On some
systems, this software is also called the file manager.)

After you have organized your file system (manual or computer), you can
find a particular piece of information quickly because you understand the
structure of the system. To understand the file system, you should first
become familiar with the following three concepts:

• Files and file names

• Directories and subdirectories

• Tree structures and pathnames

2.3.1 Files and File Names

A file can contain the text of a document, a computer program, records for a
general ledger, the numerical or statistical output of a computer program or
other data.

A file name can contain any character except the following because these
characters have special meaning to the shell:

• Slash (/)

• Backslash (\)

• Ampersand (&)

• Left- and right-angle brackets (< and >)

Overview of Files and Directories 2–5

• Question mark (?)

• Dollar sign ($)

• Left bracket ([)

• Asterisk (*)

• Tilde (~)

• Vertical bar or pipe symbol (|)

• Hash (#)

You may use a period or dot (.) in the middle of a file name, but never at
the beginning of the file name unless you want the file to be hidden when
doing a simple listing of files. For information about characters with special
meanings to your shell, see Section 8.2.2 and Section 8.3.2. For information
about listing hidden files, see Section 3.1.3.

______________________ Note _______________________

Unlike some operating systems, this operating system
distinguishes between uppercase and lowercase letters in file
names (that is, it is case sensitive). For example, the following
three file names represent three distinct files: filea, Filea
and FILEA.

Use file names that reflect the actual contents of your files. For example, a
file name such as memo.advt might indicate that the file contains a memo
about advertising. On the other hand, file names such as filea, fileb or
filec tell you nothing about the contents of that file.

It is also a good idea to use a consistent pattern to name related files.
For example, suppose you have an advertising report that is divided into
chapters, with each chapter contained in a separate file. You might name
these files in the following way:

chap1.advt
chap2.advt
chap3.advt

______________________ Note _______________________

Many programs that you invoke use the portion of the file name
following the dot (.), called the extension, as an indicator of the
file’s purpose.

2–6 Overview of Files and Directories

The maximum length of a file name depends upon the file system used on
your operating system. For example, your file system may allow a maximum
file name length of 255 characters (the default) or it may allow a maximum
file name length of only 14 characters. As knowing the maximum file name
length is important to providing files with meaningful file names, see your
system administrator for details.

2.3.2 Directories and Subdirectories

You can organize your files into groups and subgroups that resemble the
cabinets, drawers and folders in a manual file system. These groups
are called directories and the subgroups are called subdirectories. A
well-organized system of directories and subdirectories lets you retrieve and
manipulate the data in your files quickly.

Directories differ from files in two significant ways:

• Directories are organizational tools; files are storage places for data.

• Directories contain the names of files, other directories or both.

When you first log in, the system automatically places you in your login
directory. This directory is also called your home directory. The system
also sets your HOME environment variable to the full path name of this
directory. This directory was created for you when your computer account
was established. However, a file system in which all files are arranged under
your login directory is not necessarily the most efficient method to organize
your files.

As you work with the system, you may want to set up additional directories
and subdirectories and thereby organize your files into useful groups. For
example, assume that you work for the Sales department, wherein you
are responsible for four lines of automobiles. You may want to create a
subdirectory under your login directory for each automobile line. Each
subdirectory can contain all memos, reports and sales figures applicable for
the automobile model.

After your files are arranged into a directory structure that you find useful,
you can move easily between directories. See Chapter 4 for information
about creating directories and moving between them.

2.3.3 Displaying the Name of Your Current (Working) Directory (pwd)

The directory in which you are working at any given time is your current
or working directory.

Whenever you are uncertain about the directory in which you are working or
where that directory exists in the file system, enter the pwd (print working
directory) command as follows:

Overview of Files and Directories 2–7

$ pwd

The system displays the name of your current directory in the format:

/usr/msg

This information indicates that you are currently working in a directory
named msg that is located under the usr directory.

The /usr/msg notation is known as the pathname of your working directory.
See Section 2.3.4 for information about pathnames. See the pwd(1) reference
page for further information on the pwd command.

2.3.4 The Tree-Structure File System and Pathnames

The files and directories in the file system are arranged hierarchically in a
structure that resembles an upside-down tree with the roots at the top and
the branches at the bottom. This arrangement is called a tree structure.
You can find more detailed information about the directory structure in
the hier(5) reference page.

Figure 2–1 shows a typical file system arranged in a tree structure. The
names of directories are printed in bold and the names of files are printed
in italics.

2–8 Overview of Files and Directories

Figure 2–1: A Typical File System

/

bin usr dev etc lib lost + found tmpusr

chang smith

plans report payroll

part1 part2
regular contract

1Q 3Q 4Q

1

2

3

4

5

ZK-0531U-AI

part3

1Q 2Q 3Q 4Q1Q 2Q 3Q 4Q

2Q

1 At the top of the file system shown in Figure 2–1 (that is, at the root
of the inverted tree structure) is a directory called the root directory.
The symbol that represents this first major division of the file system is
a slash (/).

2 At the next level down from the root of the file system are eight
directories, each with its own system of subdirectories and files.
Figure 2–1, however, shows only the subdirectories under the directory
named usr. These are the login directories for the users of this system.

3 The third level down the tree structure contains the login directories for
two of the system’s users, smith and chang. It is in these directories
that smith and chang begin their work after logging in.

4 The fourth level of the figure shows three directories under the chang
login directory: plans, report and payroll.

5 The fifth level of the tree structure contains both files and subdirectories.
The plans directory contains four files, one for each quarter. The

Overview of Files and Directories 2–9

report directory contains three files comprising the three parts of
a report. Also on the fifth level are two subdirectories, regular and
contract, which further organizes the information in the payroll
directory.

A higher level directory is frequently called a parent directory. For example,
in Figure 2–1, the directories plans, report and payroll all have chang
as their parent directory.

A pathname specifies the location of a directory or a file within the file
system. For example, when you want to change from working on File A
in Directory X to File B in Directory Y, you enter the pathname to File B.
The operating system then uses this pathname to search through the file
system until it locates File B.

A pathname consists of a sequence of directory names separated by slashes
(/) that ends with a directory name or a file name. The first element in a
pathname specifies where the system is to begin searching and the final
element specifies the target of the search. The following pathname is based
on Figure 2–1:

/usr/chang/report/part3

The first slash (/) represents the root directory and indicates the starting
place for the search. The remainder of the pathname indicates that the
search is to go to the user directory, then to the chang directory, next to the
report directory and finally to the part3 file.

Whether you are changing your current directory, sending data to a file or
copying or moving a file from one place in your file system to another, you
use pathnames to indicate the objects you want to manipulate.

A pathname that starts with a slash (/) (the symbol representing the root
directory) is called a full pathname or an absolute pathname. You can also
think of a full pathname as the complete name of a file or a directory.
Regardless of where you are working in the file system, you can always find
a file or a directory by specifying its full pathname.

The file system also lets you use relative pathnames. Relative pathnames
do not begin with the / that represents the root directory because they
are relative to the current directory.

You can specify a relative pathname in one of several ways:

• As the name of a file in the current directory.

• As a pathname that begins with the name of a directory one level below
your current directory.

• As a pathname that begins with .. (dot dot, the relative pathname
for the parent directory).

2–10 Overview of Files and Directories

• As a pathname that begins with . (dot, which refers to the current
directory). This relative pathname notation is useful when you want to
run your own version of an operating system command in the current
directory (for example ./ls).

Every directory contains at least two entries: .. (dot dot) and . (dot).

In Figure 2–2, for example, if your current directory is chang,
the relative pathname for the file 1Q in the contract directory is
payroll/contract/1Q. By comparing this relative pathname with the full
pathname for the same file, /usr/chang/payroll/contract/1Q, you can
see that using relative pathnames means less typing and more convenience.

Figure 2–2: Relative and Full Pathnames

/

bin dev etc lib lost + found tmpusr

smith

plans report

part1 part2 part3
regular

1Q 2Q 3Q 4Q

1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q

ZK-0532U-AI

= Relative pathname
= Full pathname

usr

contract

payroll

chang

In the C shell and the Korn or POSIX shell, you may also use a tilde (~) at
the beginning of relative pathnames. The tilde character used alone specifies

Overview of Files and Directories 2–11

a user’s login (home) directory. The tilde character followed by a user name
specifies the login (home) directory of another user on the same system.

For example, to specify your own login directory, use the tilde alone. To
specify the login directory of user chang, specify ~chang.

For more information on using relative pathnames, see Chapter 4.

______________________ Note _______________________

If there are other users on your system, you may or may not be
able to get to their files and directories, depending upon the
permissions set for them. For more information about file and
directory permissions, see Chapter 5. In addition, your system
may contain enhanced security features that may affect access
to files and directories. If so, see your system administrator for
details.

2.4 Specifying Files with Pattern Matching

Commands often take file names as arguments. To use several different file
names as arguments to a command, you can type out the full name of each
file, as the following example shows:

$ ls file1 file2 file3

However, if the file names have a common pattern (in this example, the file
prefix), the shell can match that pattern, generate a list of those names and
automatically pass them to the command as arguments.

The asterisk (*), sometimes referred to as a wildcard, matches any string
of characters. In the following example, the ls command finds the name of
every text file in the current directory that includes the file prefix:

$ ls file*

The file* matches any file name that begins with file and ends with any
other character string. The shell passes every file name that matches this
pattern as an argument for the ls command.

Thus, you do not have to enter (or even remember) the full name of each file
in order to use it as an argument. Both commands (ls with all file names
typed out and ls file*) do the same thing — they pass all files with the
file prefix in the directory as arguments to the ls command.

There is one exception to the general rules for pattern matching. When
the first character of a file name is a period, you must match the period
explicitly. For example, ls * displays the names of all files in the current

2–12 Overview of Files and Directories

directory that do not begin with a period. The command ls −a displays all
file names, those that begin with a period and all others.

This restriction prevents the shell from automatically matching the relative
directory names. These are . (dot, standing for the current directory) and
.. (dot dot, standing for the parent directory). For more information on
relative directory names, see Chapter 4.

If a pattern does not match any file names, the shell displays a message
informing you that no match has been found.

In addition to the asterisk (*), operating system shells provide other ways
to match character patterns. Table 2–1 summarizes all pattern-matching
characters and provides examples.

Table 2–1: Pattern-matching Characters
Character Action

* Matches any string, including the null string.
For example, th* matches th, theodore and theresa.

? Matches any single character.
For example, 304?b matches 304Tb, 3045b, 304Bb or
any string that begins with 304, ends with b and has one
character in between.

[…] Matches any one of the enclosed characters.
For example, [AGX]* matches all file names in the current
directory that begin with A, G or X.

[.-.] Matches any character that falls within the specified range,
as defined by the current locale. For more information on
locale, see Appendix C.
For example, [T-W]* matches all file names in the current
directory that begin with T, U, V or W.

[!…] Matches any single character except one of those enclosed.
For example, [!abyz]* matches all file names in the current
directory that begin with any character except a, b, y or z.
This pattern matching is available only in the Bourne, Korn,
and POSIX shells.

An internationalized operating system provides the additional
pattern-matching features described in Table 2–2.

Overview of Files and Directories 2–13

Table 2–2: Internationalized Pattern-matching Characters
Character Action

[[:class:]] A character class name enclosed in bracket-colon delimiters
matches any of the set of characters in the named class.
The supported classes are alpha, upper, lower, digit,
alnum, xdigit, space, print, punct, graph and cntrl.
For example, the alpha character class name specifies that
you want to match any alphabetic character (uppercase
and lowercase) as defined by the current locale. If you are
running an American-based locale, alpha matches any
character in the alphabet (A-Z, a-z).

[[=char=]] A character enclosed in bracket-equal delimiters matches
any equivalence class character.
An equivalence class is a set of collating elements that all
sort to the same primary location. It is generally designed to
deal with primary-secondary sorting; that is, for languages
such as French that define groups of characters as sorting to
the same primary location and then having a tie-breaking,
secondary sort.

For more information on internationalized pattern-matching characters, see
the grep(1) reference page. For more information on internationalization
features, see Appendix C.

2–14 Overview of Files and Directories

3
Managing Files

This chapter describes how to manage files on your system. After completing
this chapter, you will be able to:

• List files (Section 3.1)

• Display files (Section 3.2)

• Print files (Section 3.3)

• Link files (Section 3.4)

• Copy files (Section 3.5)

• Rename and move files (Section 3.6)

• Compare files (Section 3.7)

• Sort files (Section 3.8)

• Remove files from the system (Section 3.9)

• Determine file type (Section 3.10)

To learn about managing files, follow the examples in this chapter. Do
each example (in the same order) so that the information on your screen is
consistent with the information in this manual.

Before you can work through the examples, you must be logged in and your
login directory must contain the following three files created in Chapter 2:
file1, file2 and file3. To produce a listing of the files in your login
directory, enter the ls command, which is explained in Section 3.1. If you
are using files with different names, make the appropriate substitutions
as you work through the examples.

In the following examples, when you are asked to return to your login
directory, enter the cd (change directory) command as follows:

$ cd

In the preceding example, the dollar sign ($) represents the shell prompt.
Your shell prompt may vary.

Also, before working on the examples in this chapter, create a subdirectory
called project in your login directory. To do so, enter the following mkdir
(make directory) command from your login directory:

Managing Files 3–1

$ mkdir project

For more information on the cd and mkdir commands, see Section 4.2 or
the cd(1) reference page and Section 4.1 or the mkdir(1) reference page,
respectively.

3.1 Listing Files (ls)

You can display a listing of the contents of one or more directories with the
ls command. This command produces a list of the files and subdirectories
(if any) in your current directory. You can also display other types of
information, such as the contents of directories other than your current
directory.

The format of the ls command is:

ls

The ls command has a number of options, called flags, that enable you to
display different types of information about the contents of a directory. See
Section 3.1.3 for information about these flags.

3.1.1 Listing Contents of the Current Directory

To list the contents of your current directory, enter:

$ ls

Used without flags in this format, the ls command lists the names of the
files and directories in your current directory:

$ ls
file1 file2 file3 project
$

You may also list portions of your current directory’s contents by using the
command format:

ls filename

The filename entry can be the name of the file or a list of file names
separated by spaces. You may also use pattern-matching characters to
specify files. See Chapter 2 for information on pattern matching.

For example, to list the files whose names begin with the characters file,
you would enter the following command:

$ ls file*
file1 file2 file3
$

3–2 Managing Files

3.1.2 Listing Contents of Other Directories

To display a listing of the contents of a directory other than your current
directory, use the following format:

ls dirname

The dirname entry is the pathname of the directory whose contents you
want to display.

In the following example, the current directory is your login directory and
you want to display the /users directory. Your system may contain another
directory with a name similar to the /users directory. The name of the
/users directory is preceded by a slash (/), which indicates that the system
should begin searching from the root directory.

$ ls /users
amy beth chang george jerry larry
mark monique ron
$

The ls command lists directory and file names in collated order as
determined by the current locale. For more information about locales (as
used with internationalization), see Appendix C.

3.1.3 Flags Used with the ls Command

In its simplest form, the ls command displays only the names of files and
directories contained in the specified directory. However, ls has several
flags that provide additional information about the listed items or change
the way in which the system displays the listing.

When you want to include flags with the ls command, use the following
format:

ls −flagname

The −flagname entry specifies one or more flags (options) that you are using
with the command. For example, the −l flag produces a long listing of the
directory contents.

If you want to use multiple flags with the command, enter the flag names
together in one string:

$ ls −lta

Table 3–1 lists some of the most useful ls command flags.

Managing Files 3–3

Table 3–1: The ls Command Flags
Flag Action

−a Lists all entries including hidden files. Without this flag, the ls
command does not list the names of entries that begin with a dot
(.), such as .profile, .login and relative pathnames.

−l Lists in long format. An −l listing provides the type, permissions,
number of links, owner, group, size and time of last modification
for each file or directory listed.

−r Reverses the order of the sort to get reverse collated order
(ls −r) or reverse time order (ls −tr).

−t Sorts the files and directories by the time they were last modified
(latest first), rather than collated by name.

−F Puts a / (slash) after each file name if the file is a directory or an *
(asterisk) after each file name if the file can be executed.

−R Lists all subdirectories recursively. Descends into each directory and
subdirectory to provide a listing of the entire directory tree.

Example 3–1 shows a long (−l) listing of a current directory. The components
of the listing are explained once, even though they may appear on several
lines.

Example 3–1: Long (ls –l) Directory Listing

$ ls −l
total 4 1
-rw-r--r-- 1 larry system 101 Jun 5 10:03 file1 2 3
-rw-r--r-- 1 larry system 75 Jun 5 10:03 file2 4 5
-rw-r--r-- 1 larry system 65 Jun 5 10:06 file3 6 7
drwxr-xr-x 2 larry system 32 Jun 5 10:07 project 8
$
The following list items correspond to the numbers in the example:

1 Number of 512-byte blocks taken up by files in this directory.

2 1 — Number of links to each file. For an explanation of file links, see Section 3.4.

3 101 — Number of bytes in the file.

4 larry — User name of the file’s owner. Your user name will replace larry on the screen.

5 system — Group to which the file belongs. Your group name will replace system on the screen.

6 file3 — Name of the file or directory.

7 Jun 5 10:06 — Date and time the file was created or last modified in the format defined by your
current locale. If the date is more than six months prior to the current date, the year in four digit
format replaces the time.

8 drwxr-xr-x — File type and permissions as set for each file or directory. The first character in this
field indicates file type:

− (hyphen) for ordinary files

b for block-special files

3–4 Managing Files

Example 3–1: Long (ls –l) Directory Listing (cont.)

c for character-special files

d for directories

l for symbolic links

p for pipe-special files (first in, first out)

s for local sockets

The remaining characters are interpreted as three groups of three characters each that indicate what
read (r), write (w) and execute (x) permissions are set for the owner, group and others. If a hyphen (-) is
displayed, the corresponding permission is not set.

In addition, other permission information may also be displayed. For more information on permissions,
see Chapter 5.

There are other ls command flags that you may find useful as you gain
experience with the operating system. For detailed information about the
ls command flags, see the ls(1) reference page.

3.2 Displaying Files

You can view any text file stored on your system with a text editor. However,
if you want to just look at a file without making any changes, you may view
it (with or without screen formatting) using a variety of operating system
commands. The following sections describe these commands.

3.2.1 Displaying Files Without Formatting (pg, more, cat)

The following commands display a file just as it is, without adding any
special characteristics that govern the appearance of the contents:

• pg

• cat

• more

• page

For information on displaying files with formatting, see Section 3.2.2.

To display a file without formatting, the general format is:

command filename

The command entry is one of the following command names: pg, more,
page or cat. The filename entry can be the name of one file or a series
of file names separated by spaces. You may also use pattern-matching
characters to specify your files. See Chapter 2 for information on using
pattern-matching characters.

Managing Files 3–5

The pg command lets you view one or more files. In Example 3–2, the pg
command displays the contents of file1 in your login directory:

Example 3–2: Output from the pg Command (One File)

$ pg file1
You start the vi program by entering
the command vi, optionally followed by the name
of a new or existing file.
$

To view the contents of both file1 and file2, enter both file names on the
command line. When you display files that contain more lines than will fit
on the screen, the pg command pauses as it displays each screen. To view
the next screen of information in a file, press the Return key until you reach
the end of the current file. When you reach the end of the current file, you
are prompted with the name of the next file. When you press the Return key
at the end of the current file, the start of the next file is displayed. The pg
command always displays multiple files in the order in which you listed
them on the command line. In Example 3–3, (EOF): (end of file) means that
you are at the end of the current file.

Example 3–3: Output from the pg Command (Multiple Files)

$ pg file1 file2
You start the vi program by entering
the command vi, optionally followed by the name
of a new or existing file.
(EOF): Return
(Next file: file2) Return
If you have created a new file, you will find
that it is easy to add text.
(EOF): Return
$

At the Next file: filename prompt, you can enter the −n option to go
back to the previous file instead of displaying the next file.

When you display files that contain more lines than will fit on the screen,
the pg command pauses as it displays each screen. To see the next screen of
information in a file, press the Return key.

The more command also lets you enter multiple file names on the command
line and is very much like the pg command in the way that it handles long
files. If the file contains more lines than can fit on your screen, more pauses
and displays a message telling you what percentage of the file you have
viewed thus far. At this point, you can do one of the following:

3–6 Managing Files

• Press the Space bar to display the remainder of the file one page at a time

• Press the Return key to display one line at a time

• Type q to quit viewing the file

The page command is identical to the more command, except that it clears
the screen and begins the display at the top of the screen for each page
when a file contains more lines than will fit on one page. In some operating
environments or with some display devices, this difference may not be
noticeable.

The cat command also displays text. However, it is less useful for viewing
long files because it does not paginate files. When viewing a file that is
larger than one screen, the contents will display too quickly to be read.
When this happens, press Ctrl/S to halt the display. You can then read the
text. When you want to display the remainder of the file, press Ctrl/Q.
Because cat is not useful for viewing long files, you may prefer using the pg,
more or page command in these cases.

The pg, more, page and cat commands all have additional options that you
may find useful. For more information, see the cat(1), more(1), page(1)
and pg(1) reference pages.

3.2.2 Displaying Files with Formatting (pr)

Formatting is the process of controlling the way the contents of your files
appear when you display or print them. The pr command displays a file
in a simple but useful style.

______________________ Note _______________________

The pr command does not interpret any text formatting
information that may reside in your file. It does not format files
as nroff or the troff. Files generated by word processing
and desktop publishing software may not be recognized by the
pr command.

To display a file with simple formatting, the format of the command is:

pr filename

The filename entry can be the name of the file, the relative pathname of
the file, the full pathname of the file or a list of file names separated by
spaces. The format you use depends on where the file is located in relation
to your current directory. You may also use pattern-matching characters to
specify files. See Chapter 2 for information on pattern matching. You may
specify filename as a dash (-). In this case, the pr command will read from

Managing Files 3–7

your terminal until you terminate the input with an end of file (usually
Ctrl/D) mark.

Used without any options, the pr command does the following:

• Divides the contents of the file into pages

• Puts the date, time, page number and file name in a heading at the
top of each page

• Leaves five blank lines at the end of the page

When you use the pr command to display a file, its contents may scroll
off your screen too quickly for you to read them. When this happens, you
can view the formatted file by using the pr command along with the more
command. The more command instructs the system to pause at the end of
each screenful of text.

For example, to display a long file called report so that it pauses when the
screen is full, enter the following command:

$ pr report | more

When the system pauses at the first screen of text, press the Space bar to
display the next screen. The previous command uses the pipe symbol (|)
to take the output from the pr command and use it as input to the more
command. For more information on pipes, see Section 7.4.2.

Sometimes you may prefer to display a file in a more sophisticated format.
You can use a number of flags in the command format to specify additional
formatting features. Table 3–2 explains several of these flags.

Table 3–2: The pr Command Flags
Flag Action

+page Begins formatting on page number page. Otherwise,
formatting begins on page 1.
For example, the pr +2 file1 command starts formatting
file1 on page 2.

-column Formats page into column columns. Otherwise, pr formats
pages with one column.
For example, the pr −2 file1 command formats file1
into two columns.

−m Formats all specified files at the same time, side-by-side,
one per column.
For example, the pr −m file1 file2 command displays
the contents of file1 in the left column and that of file2 in
the right column.

3–8 Managing Files

Table 3–2: The pr Command Flags (cont.)

Flag Action

−d Formats double-spaced output. Otherwise, output is
single-spaced.
For example, the pr −d file1 command displays file1 in
double-spaced format.

−f Uses a formfeed character to advance to a new page.
(Otherwise, pr issues a sequence of linefeed characters.)
Pauses before beginning the first page if the standard output
is a terminal.

−F Uses a formfeed character to advance to a new page.
(Otherwise, issues a sequence of linefeed characters.) Does
not pause before beginning the first page if the standard
output is a terminal.

−w num Sets line width to num columns. Otherwise, line width is 72
columns.
For example, the pr −w 40 file1 command sets the line
width of file1 to 40 columns.

−o num Offsets (indents) each line by num column positions.
Otherwise, offset is 0 (zero) column positions.
For example, the pr −o 5 file1 command indents each
line of file1 five spaces.

−l num Sets page length to num lines. Otherwise, page length is 66
lines.
For example, the pr −l 30 file1 command sets the page
length of file1 to 30 lines.

−h string Uses the specified string of characters, rather than the file
name, in the header (title) that is displayed at the top of
every page. If string includes blanks or special characters,
it must be enclosed in ’ ’ (single quotes)
For example, the pr −h ’My Novel’ file1 command
specifies “My Novel” as the title.

−t Prevents pr from formatting headings and the blank lines at
the end of each page.
For example, the pr −t file1 command specifies that
file1 be formatted without headings and blank lines at the
end of each page.

−schar Separates columns with the character char rather than with
blank spaces. You must enclose special characters in single
quotes.
For example, the pr −s’*’ file1 command specifies that
asterisks separate columns.

Managing Files 3–9

You can use more than one flag at a time with the pr command. In
the following example, you instruct pr to format file1 with these
characteristics:

• With double spacing (-d)

• With the title "My Novel" (-h) rather than the name of the file

$ pr −dh ’My Novel’ file1

For detailed information about the pr command and its flags, see the pr(1)
reference page.

3.3 Printing Files (lpr, lpq, lprm)

Use the lpr command to send one or more files to the system printer. The
lpr command actually places files in a print queue, which is a list of files
waiting to be printed. After the lpr command places your files in the queue,
you can continue to do other work on your system while you wait for the files
to print or you may terminate your session.

The general format of the lpr command is:

lpr filename

The filename entry can be the name of the file, the relative pathname of
the file, the full pathname of the file or a list of file names separated by
spaces. The format you use depends on where the file is located in relation
to your current directory. You may also use pattern-matching characters to
specify files. See Chapter 2 for information on pattern matching.

If your system has more than one printer, use the following format to specify
where you want the file to print:

lpr -P printername filename

The −P flag indicates that you want to specify a printer. The printername
entry is the name of a printer. Printers often have names that describe
the location of the printer (for example, southmailroom), the custodian
or nearest monitor (for example, leslie) or some other descriptive
nomenclature. If your system has several types of printers available, they
may be assigned names such as slide or color that describe their function
or capability. See your system administrator for information on the printer
configuration available on your system.

If your system has more than one printer, one of them is the default printer.
When you do not enter a specific printername, your print request goes
to the default printer. Use the lpstat -s command to find the names of
available printers on your system.

3–10 Managing Files

Example 3–4 shows how to use the lpr command to print one or more files
on a printer named lp0.

Example 3–4: Using the lpr Command

$ lpr −P lp0 file1 1
$ lpr −P lp0 file2 file3 2
$
The lpr commands function in the following manner:

1 The first lpr command sends file1 to the lp0 printer and then displays the shell prompt: a dollar
sign ($).

2 The second lpr command sends file2 and file3 to the same print queue and then displays the shell
prompt before the files finish printing.

Several lpr command flags enable you to control the way in which your file
prints. Following is the general format for using a flag with this command:

lpr flag filename

Table 3–3 explains some of the most useful lpr command flags. For a
complete description of the lpr command flags, see the lpr(1) reference
page.

Table 3–3: The lpr Command Flags
Flag Action

−#num Prints num copies of the file. Otherwise, lpr prints
one copy. For example, the lpr −#2 file1 command
prints two copies of file1.

−wnum Sets line width to num columns. Otherwise, line width is
72 columns. For example, the lpr −w40 file1 command
prints file1 with lines that are 40 columns wide.

−inum Offsets (indents) each line by num space positions.
Otherwise, offset is 8 spaces. For example, the
lpr −i5 file1 command prints file1 with lines
that are indented five spaces.

−p Formats the file using pr as a filter.

−T ’string’ Uses the specified string of characters, rather than
the file name, in the header used by pr. Requires
the −p flag. If the string includes blanks or special
characters, it must be enclosed in ’ ’ (single quotes).
For example, the lpr −p −T ’My Novel’ file1
command specifies “My Novel” as the title.

−m Sends mail when the file completes printing. For example,
the command lpr −m file1 specifies that you want
mail to be sent to you after file1 prints.

Managing Files 3–11

After you enter the lpr command, your print request is entered into the
print queue.

To see the position of the request in the print queue, use the lpq command.
To look at the print queue, enter:

$ lpq

If your request has already been printed or if there are no requests in the
print queue, the system responds with the following message:

no entries

If there are entries in the print queue, the system lists them and indicates
which request is currently being printed. Following is a typical listing of
print queue entries (your listing will vary):

Rank Owner Job Files Total Size
active marilyn 489 report 8470 bytes
1st sue 135 letter 5444 bytes
2nd juan 360 (standard input) 969 bytes
3rd larry 490 travel 1492 bytes

The lpq command displays the following for each print queue entry:

• Its position in the queue

• Its owner

• Its job number

• Name of the file

• Size of the file in bytes

For example, Marilyn’s report (job number 489) is currently being printed
and the requests of Sue, Juan and Larry are pending.

When you print files, the position of the request in the queue as well as its
size may help you estimate when your request may be finished. Generally,
the lower the position in the queue and the larger the print request, the
more time it will take.

If your system has more than one printer, use the following format to specify
which print queue you want to see:

lpq -P printername file name

The −P flag indicates that you want to specify a print queue. The
printername entry is the name of a particular printer. The printername
entry should be the same as was used to initiate the print request. Use the
lpstat −s command to learn the names of all the printers. See the lpq(1)
reference page for a complete description of the lpq command.

3–12 Managing Files

If you decide not to print your request, you can delete it from the print queue
by using the lprm command. The general format of the lprm command
is the following:

lprm -P printername jobnumber

The jobnumber entry specifies the job number that the system has assigned
to your print request. The printername entry should be the same as was
used to initiate the print request. You can see the job number by entering
the lpq command.

For example, if Larry wants to cancel his print request, he can enter:

$ lprm 490
$

The travel file will be removed from the print queue.

For complete information on the lprm command, see the lprm(1) reference
page.

This information provides a basic description of the commands to print your
files. For additional details on the printing capabilities of the system and the
commands available, see the lp(1), cancel(1) and lpstat(1) reference pages.

3.4 Linking Files (ln)

A link is a connection between a file name and the file itself. Usually, a file
has one link − a connection to its original file name. However, you can use
the ln (link) command to connect a file to more than one file name at the
same time.

Links are convenient whenever you need to work with the same data in
more than one place. For example, suppose you have a file containing
assembly-line production statistics. You use the data in this file in two
different documents — in a monthly report prepared for management and in
a monthly synopsis prepared for the line workers.

You can link the statistics file to two different file names, for example,
mgmt.stat and line.stat and place these file names in two different
directories. In this way, you save storage space because you have only one
copy of the file. More importantly, you do not have to update multiple files.
Because mgmt.stat and line.stat are linked, editing one automatically
updates the other and both file names always refer to the same data.

3.4.1 Hard Links and Soft Links

There are two kinds of links available for your use: hard links and soft or
symbolic, links.

Managing Files 3–13

• Hard links let you link only files in the same file system. When you
create a hard link, you are providing another name for the same file.
All the hard link names for a file, including the original name, are on
equal footing. It is incorrect to think of one file name as the real name
and another as only a link.

• Soft links or symbolic links let you link both files and directories. In
addition, you may link both files and directories across different file
systems. A symbolic link is actually a distinct file that contains a
pointer to another file or directory. This pointer is the pathname to
the destination file or directory. Only the original file name is the real
name of the file or directory. Unlike a hard link, a soft link is actually
only a link.

With both hard and soft links, changes made to a file through one name
appear in the file as seen through another name.

A major difference between hard and soft links occurs when removing
them. A file with hard-linked names persists until all its names have been
removed. A file with soft-linked names vanishes when its original name
has been removed; any remaining soft links then point to a nonexistent
file. See Section 3.4.5.

3.4.2 Links and File Systems

The term file system as used in this discussion of links differs from its
earlier usage in this manual. Previously, a file system was defined as a
useful arrangement of files into a directory structure. Here, the same term
acquires a more precise meaning: the files and directories contained within
a single disk partition. A disk partition is a physical disk or a portion of one,
that has been prepared to contain file directories.

You can use the df command to discover the name of the disk partition that
holds any particular directory on your operating system. Here is an example
in which df shows that the directories /u1/info and /etc are in different
file systems, but that /etc and /tmp are in the same file system:

$ df /u1/info
Filesystem 512-blks used avail capacity Mounted on
/dev/disk/dsk2c 196990 163124 14166 92% /u1
$ df /etc
Filesystem 512-blks used avail capacity Mounted on
/dev/rz3a 30686 19252 8364 70% /
$ df /tmp
Filesystem 512-blks used avail capacity Mounted on
/dev/rz3a 30686 19252 8364 70% /
$

For more information on the df command, see the df(1) reference page.

3–14 Managing Files

3.4.3 Using Links

To link files in the same file system, use the following command format:

ln /dirname1/filename1 /dirname2/filename2

The /dirname1/filename1 entry is the pathname of an existing file. The
/dirname2/filename2 entry is the pathname of a new file name in the
same file system to be linked to the existing /dirname1/filename1. The
dirname1 and dirname2 arguments are optional if you are linking files
in the same directory.

If you want to link files and directories across file systems, you can create
symbolic links. To create a symbolic link, add an −s flag to the ln command
sequence and specify the full pathnames of both files. The ln command for
symbolic links takes the following form:

ln −s /dirname1/filename1 /dirname2/filename2

The /dirname1/filename1 entry is the pathname of an existing file. The
/dirname2/filename2 entry is a pathname of a new file name in either a
different file system or the same file system.

In Example 3–5 you use the ln command to link the new file name
checkfile to the existing file named file3. You then use the more
command to verify that file3 and checkfile are two names for the same
file.

Example 3–5: Linking Files

$ ln file3 checkfile 1
$ more file3 2
You will find that vi is a useful 3
editor that has many features. 3
$ more checkfile 4
You will find that vi is a useful 3
editor that has many features. 3
$
The following list items correspond to the numbers in the example:

1 Create a hard link between the two files.

2 Display the text of file3.

3 Now display the text of checkfile.

4 Observe that both file3 and checkfile contain the same information. Any change that you make to
the file under one name will show up when you access the file by its other name. Updating file3, for
example, will also update checkfile.

If your two files are located in directories that are in two different file
systems, you would need to create a symbolic link between them. For
example, to link a file called newfile that is in the /reports directory to

Managing Files 3–15

the file called mtgfile in the /summary directory, you can create a symbolic
link by using the following:

$ ln −s /reports/newfile /summary/mtgfile
$

The information in both files is still updated in the same manner as
previously explained.

For more information on the ln command and linking files, see the ln(1)
reference page.

3.4.4 How Links Work − Understanding File Names and File Serial
Numbers

Each file has a unique identification number, called a file serial number.
The file serial number refers to the file itself − data stored at a particular
location − rather than to the file name. The file serial number distinguishes
the file from other files within the same file system.

A directory entry is a link between a file serial number that represents a
physical file and a file name. It is this relationship between files and file
names that enables you to link multiple file names to the same physical file
− that is, to the same file serial number.

To display the file serial numbers of files in your current directory, use the ls
command with the −i (print file serial number) flag in the following format:

ls −i

Examine the identification numbers of the files in your login directory. The
number preceding each file name in the listing is the file serial number
for that file.

$ ls −i
1079 checkfile 1077 file1 1078 file2 1079 file3
$

The file serial numbers in your listing will differ from those shown in this
example. However, the important thing to note is the identical file serial
numbers for file3 and checkfile, the two files linked in the previous
example. In this case, the file serial number is 1079.

Because a file serial number represents a file within a particular file system,
hard links cannot exist between separate file systems.

The situation is entirely different with symbolic links, where the link
becomes a new file with its own, new file serial number. The symbolic link is
not another file name on the original file’s file serial number, but instead
is a separate file with its own file serial number. Because the symbolic

3–16 Managing Files

link refers to the original file by name, rather than by file serial number,
symbolic links work correctly between separate file systems.

3.4.5 Removing Links

The rm (remove file) command does not always remove a file. For example,
suppose that a file is linked to more than one file name; that is, several
names refer to the same file serial number. In this case, the rm command
removes the link between the file serial number and that file name, but
leaves the physical file intact. The rm command actually removes a physical
file only after it has removed the last link between that file and a file name,
as shown in Figure 3–1. When a symbolic link is removed, the file name
specifying the pointer to the destination file or directory is removed.

For detailed information about the rm command, see Section 3.9 or the
rm(1) manpage.

Figure 3–1: Removing Links and Files

ZK-0533U-AI

name2

rm name1

rm name2

name1

name2File

File

To display both the file serial numbers and the number of file names linked
to a particular file serial number, use the ls command with the −i (print file
serial number) and the −l (long listing) flags in the following format:

ls −il

Examine the links in your login directory. Remember that the file serial
numbers displayed on your screen will differ from those shown in the

Managing Files 3–17

example and that your user name and your group name will replace the
larry and system entries.

$ ls −il
total 3
1079 -rw-r--r-- 2 larry system 65 Jun 5 10:06 checkfile
1077 -rw-r--r-- 1 larry system 101 Jun 5 10:03 file1
1078 -rw-r--r-- 1 larry system 75 Jun 5 10:03 file2
1079 -rw-r--r-- 2 larry system 65 Jun 5 10:06 file3
1080 drwxr-xr-x 2 larry system 32 Jun 5 10:07 project
$

Again, the first number in each entry shows the file serial number for that
file name. The second element in each line shows the file permissions,
described in detail in Chapter 5.

The third field for each entry, the number to the left of the user name,
represents the number of links to that file serial number. Notice that file3
and checkfile have the same file serial number, 1079 and that both show
two links. Each time the rm command removes a file name, it reduces the
number of links to that file serial number by one.

In the following example, use the rm command to remove the file name
checkfile.

$ rm checkfile
$

List the contents of the directory with the ls −il command. Notice that
the rm command has reduced the number of links to file serial number 1079,
which is the same file serial number to which file3 is linked, by one.

$ ls −il
total 3
1077 -rw-r--r-- 1 larry system 101 Jun 5 10:03 file1
1078 -rw-r--r-- 1 larry system 75 Jun 5 10:03 file2
1079 -rw-r--r-- 1 larry system 65 Jun 5 10:06 file3
1080 drwxr-xr-x 2 larry system 32 Jun 5 10:07 project
$

3.5 Copying Files (cp)
This section provides information about how to copy files on a local system.
For information about copying files to and from remote systems, see
Chapter 12 and Chapter 14.

The cp (copy) command copies a file from one file name to another file name
in your current directory or copies the file from one directory to another
directory.

The cp command is especially useful to make backup copies of important
files. Because the backup and the original are two distinct files, you can

3–18 Managing Files

make changes to the original while still maintaining an unchanged copy in
the backup file. This is helpful in case something happens to the original
version. Also, if you decide you do not want to save your most recent changes
to the original file, you can begin again with the backup file.

Compare the cp command, which actually copies files, with the ln command,
which creates multiple names for the same file. Section 3.4 explains the ln
command in detail. See also the cp(1) and ln(1) manpages.

The format of the cp command is:

cp source destination

The source entry is the name of the file to be copied. The destination
entry is the name of the file to which you want to copy source. The source
and destination entries can be file names in your current directory or
pathnames to different directories. This statement is true when you are
copying files from one directory to another. To copy the contents of an
entire directory to another directory (recursively, using the -r option), see
Section 4.4.

To copy files to a different directory, use the general format of the cp
command. In this case, source is a series of one or more file names and
destination is a pathname that ends with the name of the target directory.
In the source entry you may also use pattern-matching characters.

3.5.1 Copying Files in the Current Directory

The cp command creates the destination file if it does not exist already.
However, if a file with the same name as the destination file does exist, cp
copies the source file over the existing destination file.

_____________________ Caution _____________________

If the destination file exists, your shell may allow the cp command
to erase the contents of that file before it copies the source file.
Therefore, be certain that you do not need the contents of the
destination file or that you have a backup copy of the file, before
you use it as the destination file for the cp command. If you use
the C shell, see Table 8–6 for the noclobber variable that can be
set to prevent the erasure of the destination file.

In the following example, the destination file does not exist, so the cp
command creates it. First, list the contents of your login directory:

$ ls
file1 file2 file3 project
$

Managing Files 3–19

Copy the source file, file2, into the new destination file, file2x:

$ cp file2 file2x
$

List the contents of the directory to verify that the copying process was
successful:

$ ls
file1 file2 file2x file3 project
$

3.5.2 Copying Files into Other Directories

You need a subdirectory to work through the following example, so create
one called reports with the mkdir command:

$ mkdir reports
$

To copy the file2 file into the reports directory, enter:

$ cp file2 reports
$

List the contents of reports to verify that it contains a copy of file2:

$ ls reports
file2
$

You can also use the cp command to copy multiple files from one directory
into another directory. The format of the command is:

cp filename1 filename2 dirname

In the following example, enter the cp command to copy both file2 and
file3 into the reports directory and then list the contents of that directory:

$ cp file2 file3 reports
$ ls reports
file2 file3
$

In the previous example, you do not have to specify file2 and file3 as
part of the dirname entry because the files being copied are retaining their
original file names.

You may also use pattern-matching characters to copy files. For example, to
copy file1, file2 and file3 into reports, enter:

$ cp file* reports
$

To change the name of a file when you copy it into another directory, enter
the name of the source file (the original file), the directory name, a slash (/)

3–20 Managing Files

and then the new file name. In the following example, copy file3 into
the reports directory under the new name notes and list the contents of
the reports directory:

$ cp file3 reports/notes
$ ls reports
file1 file2 file3 notes
$

3.6 Renaming or Moving Files (mv)
You can use the mv (move) command to perform the following actions:

• Move one or more files from one directory into another directory

• Rename files

• Rename directories

The format of the mv command is:

mv oldfilename newfilename

The oldfilename entry is the name of the file you want to move or rename.
The newfilename entry is the new name you want to assign to the original
file. Both entries can be names of files in the current directory or pathnames
to files in a different directory. You may also use pattern-matching
characters.

The mv command links a new name to an existing file serial number and
breaks the link between the old name and that file serial number. It is
useful to compare the mv command with the ln and cp commands, which
are explained in Section 3.4 and Section 3.5. See also the mv(1), ln(1) and
cp(1) manpages.

3.6.1 Renaming Files

In the following example, first list the file serial number of each file in your
current directory with the ls −i command. Next, enter the mv command
to change the name of file file2x to newfile. The file serial numbers
displayed on your screen will differ from the numbers in the example:

$ ls −i
1077 file1 1088 file2x 1080 project
1078 file2 1079 file3 1085 reports
$ mv file2x newfile
$

Again, list the contents of the directory:

$ ls −i
1077 file1 1079 file3 1080 project
1078 file2 1088 newfile 1085 reports

Managing Files 3–21

$

Notice two things in previous example:

• The mv command changes the name of file file2x to newfile.

• The file serial number for the original file (file2x) and newfile is
the same − 1088.

The mv command removes the connection between file serial number 1088
and file name file2x, replacing it with a connection between file serial
number 1088 and file name newfile. However, the command does not
change the file itself.

3.6.2 Moving Files into a Different Directory

You can also use the mv command to move one or more files from your
current directory into a different directory.

_____________________ Caution _____________________

Type the target directory name carefully because the mv command
does not distinguish between file names and directory names. If
you enter an invalid directory name, the mv command takes that
name as a new file name. The result is that the file is renamed
rather than moved.

In the following example, the ls command lists the contents of your login
directory. The mv command moves file2 from your current directory into
the reports directory. The ls command then verifies that the file has been
removed:

$ ls
file1 file2 file3 newfile project reports
$ mv file2 reports
$ ls
file1 file3 newfile project reports
$

List the contents of the reports directory to verify that the command has
moved the file:

3–22 Managing Files

$ ls reports
file2 file3 notes
$

You may also use pattern-matching characters to move files. For example,
to move file1 and file3 into reports, you could enter the following
command:

$ mv file* reports
$

Now list the contents of your login directory to verify that file1 and file3
have been moved:

$ ls
newfile project reports
$

Copy file1, file2 and file3 back into your login directory. The dot (.)
in the following command line specifies the current directory, which in this
case is your login directory:

$ cp reports/file* .
$

Verify that the files are back in your login directory:

$ ls
file1 file2 file3 newfile project reports
$

Lastly, verify that file1, file2 and file3 are still in the reports
directory:

$ ls reports
file1 file2 file3 newfile project reports
$

3.7 Comparing Files (diff)
You can compare the contents of text files with the diff command. Use the
diff command when you want to pinpoint the differences in the contents of
two files that are expected to be somewhat different.

The format of the diff command is:

diff file1 file2
The diff command scans each line in both files looking for differences.
When the diff command finds a line (or lines) that differ, for each line that
is different the following information is reported:

• Line numbers of any changes

• Whether the difference is an addition, a deletion or a change to the line

Managing Files 3–23

If the change is caused by an addition, diff displays the following:

l[,l] a r[,r]

The l is a line number in file1 and r is a line number in file2. The a
indicates an addition. If the difference was a deletion, diff would specify a
d; if the difference was a change to a line, diff would specify a c.

The actual differing lines follow. In the leftmost column, a left angle bracket
(<) indicates lines from file1 and a right angle bracket (>) indicates lines
from file2.

For example, suppose that you want to quickly compare the following
meeting rosters in the files jan15mtg and jan22mtg:

jan15mtg jan22mtg

alice alice

colleen brent

daniel carol

david colleen

emily daniel

frank david

grace emily

helmut frank

howard grace

jack helmut

jane jack

juan jane

lawrence juan

rusty lawrence

soshanna rusty

sue soshanna

tom sue

tom

Instead of tediously comparing the list by sight, you can use the diff
command to compare jan15mtg with jan22mtg as follows:

$ diff jan15mtg jan22mtg
2a3,4
> brent
> carol

3–24 Managing Files

10d11
< howard
$

Here we find that Brent and Carol attended the meeting on January 22 and
Howard did not. We know this because the line number and text output
indicate that brent and carol are additions to file jan22mtg and that
howard is a deletion.

In cases where there are no differences between files, the system will return
merely your prompt. For more information, see the diff(1) reference page.

3.8 Sorting File Contents (sort)

You can sort the contents of text files with the sort command. You can use
this command to sort a single file or multiple files.

The format of the sort command is:

sort filename

The filename entry can be the name of the file, the relative pathname of
the file, the full pathname of the file or a list of file names separated by
spaces. You may also use pattern-matching characters to specify files. See
Chapter 2 for information about pattern matching.

A good example of what the sort command can do for you is to sort a list
of names and put them in collated order as defined by your current locale.
For example, assume that you have lists of names that are contained in
three files, list1, list2 and list3:

list1 list2 list3

Zenith andre Rocca, Carol Hamilton, Abe

Dikson, Barry Shepard, Louis Anastio, William

D’Ambrose, Jeanette Hillary, Mimi Saluccio, William

Julio, Annette Chung, Jean Hsaio, Peter

To sort the names in all three files, enter:

$ sort list*
Anastio, William
Chung, Jean
D’Ambrose, Jeanette
Dickson, Barry
Hamilton, Abe
Hillary, Mimi
Hsaio, Peter
Julio, Annette
Rocca, Carol

Managing Files 3–25

Saluccio, Julius
Shepard, Louis
Zenith andrew
$

You also can capture the sorted list by redirecting the screen output to a file
that you name by entering:

$ sort list* > newlist
$

For more information about redirecting output, see Chapter 6. For a detailed
description of the sort command and its many options, see the sort(1)
reference page.

3.9 Removing Files (rm)
When you no longer need a file, you can remove it with the rm (remove file)
command. Use this command to remove a single file or multiple files.

The format of the rm command is:

rm filename

The filename entry can be the name of the file, the relative pathname of
the file, the full pathname of the file or a list of file names. The format you
use depends on where the file is located in relation to your current directory.
See the rm(1) reference page for a complete description of the command.

3.9.1 Removing a Single File

In the following example, you remove the file called file1 from your login
directory.

First, return to your login directory with the cd (change directory) command.
Next, enter the pwd (print working directory) command to verify that your
login directory is your current directory and then list its contents. Remember
that the system substitutes the name of your login directory for the notation
/u/uname in the example.

$ cd
$ pwd
/u/uname
$ ls
file1 file2 file3 newfile project reports
$

Enter the rm command to remove newfile and then list the contents of the
directory to verify that the system has removed the file.

$ rm newfile
$ ls

3–26 Managing Files

file1 file2 file3 project reports
$

You must have permission to access a directory before you can remove files
from it. For information about directory permissions, see Chapter 5.

______________________ Note _______________________

In addition to removing one or more files, rm also removes the
links between files and file names. The rm command actually
removes the file itself only when it removes the last link to that
file. For information about using the rm command to remove
links, see Section 3.4.5.

3.9.2 Removing Multiple Files − Matching Patterns

You can remove more than one file at a time with the rm command by
using pattern-matching characters. See Chapter 2 for a description of
pattern-matching characters.

For example, suppose your current directory contains the following files:
receivable.jun, payable.jun, payroll.jun and expenses.jun. You
can remove all four of these files with the rm *.jun command.

_____________________ Caution _____________________

Be certain that you understand how the * pattern-matching
character works before you use it. For example: if you are a
regular user, the rm * command removes every file in your
current directory except those with a file name beginning with
a dot (.). Be especially careful with * at the beginning or end
of a file name. If you mistakenly enter rm * name instead of
rm *name, you will remove all your files, rather than just those
ending with name. (If your system is backed up on a regular basis,
your system administrator can help you recover lost files.)

You may prefer to use the −i flag with the rm command, which
prompts you for verification before deleting a file or files. See the
end of this section for details.

To perform the examples for pattern-matching, your directory must contain
the files record1, record2, record3, record4, record5 and record6.
Create those files now in your login directory by using the touch command
as follows:

$ touch record1 record2 record3 record4 record5 record6
$

Managing Files 3–27

The touch command is useful when you want to create empty files, as you
have just done in hte previous example. For complete information on the
touch command, see the touch(1) reference page.

You can also use the pattern-matching question mark (?) character with
the rm command to remove files whose names are the same, except for a
single character. For example, if your current directory contains the files
record1, record2, record3 and record4, you can remove all four files
with the rm record? command.

For detailed information about pattern-matching characters, see Chapter 2.

When using pattern-matching characters, you may find the −i (interactive)
flag of the rm command particularly useful. The rm −i command lets you
selectively delete files. For each file selected by the command, the operating
system asks whether or not you want to delete or retain the file.

If you want to remove four of the six files in your directory that begin with
the characters record, enter:

$ rm −i record?
rm: remove record1?n
rm: remove record2?y
rm: remove record3?y
rm: remove record4?y
rm: remove record5?y
rm: remove record6?n
$

______________________ Note _______________________

In addition to removing one or more files, the rm command also
provides an option, the −r flag, that removes files and directories
at the same time. See Chapter 4 for more information.

3.10 Determining File Type (file)

Use the file command when you want to see what kind of data a file
contains, without having to display its contents. The file command
displays whether the file is one of the following:

• A text file

• A directory

• A FIFO (pipe) special file

• A block special file

• A character special file

3–28 Managing Files

• Source code for the C or FORTRAN programming languages

• An executable (binary) file

• An archive file in ar format

• An archive file in extended cpio or extended tar format

• An archive file in zip format

• A compressed data file in gzip format

• A file of commands text (shell script)

• An audio file in .voc, .iff or .wav format

• An image file in TIFF, GIF, MPEG or JPEG format

The file command is especially useful when you suspect that a file contains
a compiled program, audio data or image data. Displaying the contents of
these types of files can produce disconcerting results on your screen. You
may not understand the purpose of each of these types of files. As you gain
experience in the use of the UNIX commands, their purpose will be better
understood.

The format of the file command is:

file filename

The filename entry can be the name of the file, the relative pathname of
the file, the full pathname of the file or a list of file names. The format you
use depends on where the file is located in relation to your current directory.
You may also use pattern-matching characters to specify files. See Chapter 2
for information on pattern matching.

For example, to determine the file type of entries in your login directory,
enter the following:

$ cd
$ pwd
/u/uname
$ file *
file1: ascii text
file2: English text
file3: English text
project: directory
record1: empty
record6: empty
reports: directory
$

The file command has identified file1, file2 and file3 as English text
files, project and reports as directories and record1 and record6 as
empty files.

Managing Files 3–29

For more information on the file command, see the file(1) reference page.

3–30 Managing Files

4
Managing Directories

This chapter shows you how to manage directories on your system. After
completing this chapter, you will be able to:

• Create directories (Section 4.1)

• Change directories (Section 4.2)

• Display directories (Section 4.3)

• Copy directories (Section 4.4)

• Rename directories (Section 4.5)

• Remove directories (Section 4.6)

To learn about managing directories, try the examples in this chapter. You
should perform each example in sequence so that the information on your
screen is consistent with the information shown in this chapter.

Before you can do the examples, you must be logged in and your login
directory should contain the following:

• The files file1, file2, file3, record1 and record6

• The subdirectory, reports, that contains the files file1, file2, file3
and notes

• The empty subdirectory project

If you are using files with different names, make the appropriate
substitutions as you work through the examples. Use the ls command
(which is explained in Chapter 3) with the -R and -F flags, as described in
Table 3–1, to produce a listing of the files in your current directory. Your
screen should look similar to the following:

$ ls -RF
file1 file2 file3 project/ record1 record6
reports/

./project:

./reports:
file1 file2 file3 notes
$

Managing Directories 4–1

4.1 Creating a Directory (mkdir)

Directories let you organize individual files into useful groups. For example,
you could put all the sections of a report in a directory named reports
or the data and programs you use in cost estimating in a directory named
estimate. A directory can contain files, other directories, or both.

Your login directory was created for you when your computer account was
established. However, you probably will need additional directories to
organize the files you create while working with the operating system. You
create new directories with the mkdir (make directory) command.

The format of the mkdir command is:

mkdir dirname

The dirname entry is the name you want to assign to the new directory.

The system creates dirname as a subdirectory of your working directory.
This means that the new directory is located at the next level below your
current directory.

In the following example, return to your login directory by entering the cd
command and create a directory named project2:

$ cd
$ mkdir project2
$

Now, create a subdirectory in the reports directory by entering a relative
pathname:

$ mkdir reports/status
$

Figure 4–1 shows the new file system tree structure. The project,
project2 and reports directories are located one level below your login
directory and the status subdirectory is located one level below the
reports directory.

4–2 Managing Directories

Figure 4–1: Relationship Between Directories and Subdirectories

Login Directory

file1 record1
file2 record6
file3

project2
subdirectory

project
subdirectory

reports
subdirectory

file1, file2
file3, notes

status
subdirectory

ZK-0534U-AI

Like file names, the maximum length of a directory name depends upon the
file system used on your computer. For example, your file system may allow
a maximum directory name length of 255 bytes (the default) or it may allow
a maximum directory name length of only 14 bytes. Knowing the maximum
directory name length is important to help you give meaningful names to
your directories. See your system administrator for details.

The operating system does not have a symbol or notation that automatically
distinguishes between a file name and a directory name, so you may find
it useful to establish your own naming conventions to designate files and
directories. However, you can use the ls −F command to distinguish
between file names and directory names when the contents of your current
directory are displayed. For more information on this command, see
Section 4.3.

4.2 Changing Directories (cd)

The cd (change directory) command lets you switch from your current
(working) directory to another directory. You can move to any directory in
the file system from any other directory in the file system by executing cd
with the proper pathname.

Managing Directories 4–3

______________________ Note _______________________

You must have execute permission to access a directory before
you can use the cd command. For information about directory
permissions, see Chapter 5.

The format of the cd command is:

cd pathname

The pathname entry can either be the full pathname or the relative
pathname of the directory that you want to set as your current directory.

If you enter the cd command without a pathname, the system returns you to
your login directory (also known as your HOME directory).

To check the name of and display the path for your current directory, enter
the pwd (print working directory) command. See Chapter 2 for information
about the pwd command.

4.2.1 Changing Your Current Directory

In the following example, you enter the pwd command to display the name
(which is also the pathname) of your working directory. You then use the cd
command to change your current directory.

First return to your login directory, if necessary, by entering the cd command
without a pathname. Next, enter the pwd command to verify that your login
directory is your current directory. Remember that the system substitutes
the name of your login directory for the notation /u/uname in the example:

$ cd
$ pwd
/u/uname
$

Enter the cd command with the relative pathname project2 to change
to the project2 directory:

$ cd project2
$

Enter pwd again to verify that project2 is the current directory. Then,
enter cd to return to your login directory:

$ pwd
/u/uname/project2
$ cd
$

4–4 Managing Directories

To change your current directory to the status directory, which is a
different branch of the file system tree structure, enter the cd command
with a full pathname:

$ cd reports/status
$ pwd
/u/uname/reports/status
$

4.2.2 Using Relative Pathname Notation

You can use the following relative pathname notations to change directories
quickly:

• Dot notation (. and ..)

• Tilde notation (~)

Every directory contains at least two entries that are represented by dot (.)
and dot dot (..). These entries refer to directories relative to the current
directory:

dot (.) This entry refers to the current directory.

dot dot (..) This entry refers to the parent directory of your
working directory. The parent directory is the
directory immediately above the current directory
in the file system tree structure.

To display the . and .. entries as well as any files beginning with a period,
use the −a flag with the ls command.

In the following example, change to the reports directory by changing first
to your login directory and then to the reports directory:

$ cd
$ cd reports
$

The ls command displays the directory contents as well as the status
subdirectory you created earlier:

$ ls
file1 file2 file3 notes status
$

Now, execute the ls −a command to list all directory entries as well as those
that begin with a dot (.) − the relative directory names:

Managing Directories 4–5

$ ls −a
./ ../ file1 file2 file3 notes status
$

You can use the relative directory name dot dot (..) to refer to files and
directories located above the current directory in the file system tree
structure. That is, if you want to move up the directory tree by one level,
use the relative directory name for the parent directory rather than using
the full pathname.

In the following example, the cd .. command changes the current directory
from reports to your login directory, which is the parent directory of
reports. Remember that the /u/uname entry represents your login
directory.

$ pwd
/u/uname/reports
$ cd ..
$ pwd
/u/uname
$

To move up the directory structure more than one level, you can use a
series of relative directory names, as shown in the following example. The
response to the following pwd command, the slash (/) entry, represents the
root directory.

$ cd ../..
$ pwd
/
$

In the Korn or POSIX shell and the C shell you may use a tilde (~) to specify
a user’s login directory. For example, to specify your own login directory,
use the tilde alone as follows:

$ cd ~

The above tilde notation does not save you keystrokes because in all
operating system shells you may get the same results by merely entering
cd from any place in the file system.

However, if you want to access a directory below your login directory, tilde
notation can save you keystrokes. For example, to access the reports
directory from anywhere in the file system, enter the following:

$ cd ~/reports

Tilde notation is also very useful when you want to access a file or directory
either in or below another user’s login directory. You may not know the
precise location of that user’s login directory, but assuming you have the
appropriate permissions, you could get there with a minimum of keystrokes.

4–6 Managing Directories

For example, from any place in the file system, you could specify the login
directory of a hypothetical user jones by entering the following:

$ cd ~jones

In addition, if user jones tells you that you can find a file in the status
directory immediately below the login directory, you can access the directory
by entering the following:

$ cd ~jones/status

4.2.3 Accessing Directories Through Symbolic Links

When directories are connected through a symbolic link, the parent directory
you access with the cd command differs depending upon whether you are
specifying the actual directory name or the relative directory name. In
particular, using the full pathname to find the parent of a symbolically
linked directory results in accessing the actual parent directory.

For example, suppose user2 is working on a file in the /u/user2/project
directory, which is the symbolic link to /u/user1/project. To change to
the actual parent directory (/u/user2), user2 types the following:

$ cd /u/user2
$ pwd
/u/user2
$

If user2 specified the relative directory name (..), the parent directory of the
symbolic link would be accessed. For example, suppose user2 is working
on the same file in the /u/user2/project directory, which is the symbolic
link to /u/user1/project. To access the parent directory of the symbolic
link, user2 enters the following:

$ cd ..
$ pwd
/u/user1
$

Instead of being in the /u/user2 directory, user2 is now in the directory
called /u/user1.

For background information on symbolic links, see Section 3.4.

4.3 Displaying Directories (ls −F)
A directory can contain subdirectories as well as files. To display
subdirectories, use the ls −F command. This command displays the
contents of the current directory and marks each directory with a trailing
slash character (/) so that it readily can be distinguished from a file.

The format of the ls −F command is:

Managing Directories 4–7

ls −F

In the following example, return to your login directory and enter the ls −F
command to display the directory contents. The project, project2 and
reports directories are marked with a slash:

$ cd
$ ls −F
file1 file3 project2/ record6
file2 project/ record1 reports/
$

Some Korn or POSIX shell and C shell users define an alias for the ls
command so that whenever they enter ls, the ls −F command is executed.
For more information about defining aliases, see Chapter 8.

4.4 Copying Directories (cp)

You can use the cp command with the −r flag to recursively copy directories
and directory trees to another part of the file system. The cp −r command
has the following format:

cp −r source destination

The source entry is the name of the directory to be copied. The
destination entry is the name of the directory location to which you want
to copy source.

Figure 4–2 shows how the cp −r command in the following example copies
the directory tree reports into the directory project. It is assumed that
the command is entered from the login directory:

$ cp −r reports project
$

4–8 Managing Directories

Figure 4–2: Copying a Directory Tree

Login Directory

file1 record1
file2 record6
file3

project2
subdirectory

project
subdirectory

reports
subdirectory

file1, file2
file3, notes

status
subdirectory

reports
subdirectory

file1, file2, file3, notes

ZK-0535U-AI

status
subdirectory

The reports directory files, file1, file2, file3 and notes, as well as
the status subdirectory, have been copied to project.

4.5 Renaming Directories (mv)

You can use the mv command to rename a directory only when that directory
is contained in the same disk partition.

The format of the mv command is:

mv olddirectoryname newdirectoryname

The olddirectoryname entry is the name of the directory you want to
move or rename. The newdirectoryname entry is the new name you want
to assign to the original directory name.

Managing Directories 4–9

In the following example, first change to the reports directory. Then, enter
ls −i −d command to list the file serial number for the status directory:

$ cd reports
$ ls −i −d status
1091 status
$

Now, enter the mv command to change the name of status to newstatus.
Then, list the file serial number for the newstatus directory:

$ mv status newstatus
$ ls −i −d newstatus
1091 newstatus
$

The second ls −i −d command does not list the original directory name
status. However, it does list the new directory name, newstatus and
displays the same file serial number (1091 in this example) for the new
directory as for the original status directory.

4.6 Removing Directories (rmdir)
When you no longer need a particular directory, you can remove it from the
file system with the rmdir (remove directory) command. This command
removes only empty directories − those that contain no files or subdirectories.
For information about removing files from directories, see Section 4.6.4 and
Section 3.9.

The format of the rmdir command is:

rmdir dirname
The dirname entry is the name or pathname, of the directory you want to
remove.

Before working through the examples in the following sections, create three
subdirectories in the directory project2.

First, use the cd project2 command to set project2 as your current
directory. Next, use the mkdir command to create the schedule, tasks and
costs directories. Then, list the contents of the project2 directory:

$ cd project2
$ mkdir costs schedule tasks
$ ls -F
costs/ schedule/ tasks/
$

Finally, use the cd command to return to your login directory:

$ cd
$ pwd
/u/uname

4–10 Managing Directories

$

4.6.1 Removing Empty Directories

The rmdir command removes only empty directories. If you try to remove
a directory that contains any files or subdirectories, the rmdir command
displays an error message, as the following example shows:

$ rmdir project2
rmdir: project2 not empty
$

______________________ Note _______________________

You cannot remove a directory while you are positioned in it. To
remove a directory, you must be elsewhere in the directory tree.
See Section 4.6 for more information.

Before you can remove the directory project2, you must first remove
the contents of that directory. In the following example, the cd command
makes project2 your current directory and the ls -F command lists the
contents of project2:

$ cd project2
$ ls -F
costs/ schedule/ tasks/

Now remove the directory schedule from the current directory and then list
the remaining contents of the project2 directory:

$ rmdir schedule
$ ls -F
costs/ tasks/
$

The project2 directory still contains two subdirectories: costs and tasks.
You can remove them by using pattern-matching characters, as described in
the next section. Once these subdirectories are removed, you can delete the
project2 directory, as described in Section 4.6.

4.6.2 Removing Multiple Directories

You can remove more than one directory at a time with the rmdir
command by using pattern-matching characters. See Chapter 2 for detailed
information about pattern-matching characters.

For example, suppose that you are in the project2 directory and want to
remove two subdirectories: costs and tasks. To do so, enter the rmdir

Managing Directories 4–11

*s?s command. Then, enter the ls command to verify that the project2
directory contains no entries:

$ rmdir *s?s
$ ls
$

_____________________ Caution _____________________

Entering the rmdir command with the asterisk (*) character
alone removes ALL empty directories from your current directory.
Use the asterisk (*) pattern-matching character with care.

4.6.3 Removing Your Current Directory

You cannot remove your current directory while you are still working in it.
You can remove it only after you move into another directory. You generally
enter the dot dot (..) command to move into the parent directory of your
current directory and then enter rmdir with the pathname of the target
directory.

The directory project2 is empty. To remove project2, first move to your
login directory, which is the parent directory of project2. Then, use the
rmdir dirname command to remove project2 and enter ls to confirm
the removal:

$ cd
$ rmdir project2
$ ls
file1 file2 file3 project/ record1 record6 reports/
$

Your login directory no longer contains the project2 directory.

4.6.4 Removing Files and Directories Simultaneously (rm −r)

The rmdir command removes only directories, not files. You can, however,
remove files and directories at the same time by using the rm command
with the −r (recursive) flag.

The rm −r command first deletes the files from a directory and then deletes
the directory itself. It deletes the directory you specify as well as any
subdirectories (and the files they contain) below it on the directory tree. This
command should be used with caution.

The format of the rm −r command is:

rm −r pathname

4–12 Managing Directories

The pathname entry can either be the full pathname or the relative
pathname of the directory that you want to remove. You may also use
pattern-matching characters to specify files.

_____________________ Caution _____________________

Be certain that you understand how the −r flag works before
you use it. For example, entering the rm −r * command from
your login directory deletes all files and directories to which you
have access. If you have superuser authority and are in the root
directory, this command will delete all system files. See Section 5.7
for more information about superuser authority.

When using the rm −r command to remove files or directories, it is a good
idea to include the −i flag in the command line:

rm −ri pathname

When you enter the command in this form, the system prompts you for
verification before actually removing the specified items. In this way, by
answering y (yes) or n (no) in response to the prompt, you control the actual
removal of a file or directory. Keep in mind that using the −ri option may
require you to reply to many, many prompts (depending upon how many
files you have).

Managing Directories 4–13

5
Controlling Access to Your Files and

Directories

This chapter shows you how to control access to your system as well as your
files and directories. After reading this chapter, you will be able to:

• Understand password, group and system security issues (Section 5.1)

• Understand file and directory permissions (Section 5.2)

• Display and set file and directory permissions (Section 5.3)

• Change owners and groups (Section 5.8)

• Change your identity to access files (Section 5.6)

• Understand superuser concepts (Section 5.7)

• Find information about enhancements to security that may be installed
on your system (Section 5.9)

A good way to learn about the topics in this chapter is to do the examples
so that the information on your screen is consistent with the information
in this manual.

Before you can work through the examples, you must be logged in and your
login directory should contain:

• The files file1, file2, file3, record1 and record6

• The subdirectory reports that contains the file1, file2, file3 and
notes files and the subdirectory newstatus

• The project subdirectory that contains the files file1, file2, file3
and notes as well as the subdirectory status

If you are using files with different names, make the appropriate
substitutions as you work through the examples.

5.1 Understanding Password and Group Security Files
Before a user can log in successfully, the user must be made known to the
system by the creation of a user account. Adding a user account is a routine
but critical activity that is usually performed by the system administrator.

When a user account is created, information about the new user is added to
the following two files:

Controlling Access to Your Files and Directories 5–1

/etc/passwd This file contains individual user information for
all users of the system.

/etc/group This file contains group information for all groups
on the system.

These files define who can use the system and each user’s access rights. In
addition, all other system security controls depend upon password and group
security. The following sections describe the /etc/passwd and /etc/group
files.

5.1.1 The /etc/passwd File

The /etc/passwd file contains records that define login accounts and
attributes for all system users. This file can be altered only by a user with
superuser privileges. See Section 5.7 for more information.

Each record in the /etc/passwd file defines a login account for an
individual user. The fields are separated by colons and the last field
ends with a newline character. The following text shows the format of an
/etc/passwd file entry and describes the meaning of each field:

username:password:UID:GID:gecos:login_directory:login_shell

username Your login name.

password Your password stored in encrypted form. Encryption
prevents unauthorized users or programs from
discovering your actual password. If no password
has been specified for a user, this field will be blank.

UID (User ID) A unique number identifying you with
the system.

GID (Group ID) A number identifying your default group.
You can belong to one or more groups.

gecos This field usually contains general information
about yourself, stored in some installation specific
format. Conventionally, this is a comma separated
list of the following:

name Your full name

5–2 Controlling Access to Your Files and Directories

office Your office number

wphone Your office phone number

hphone Your home phone number

login_directory Your current directory after logging in to the system.
It is usually a directory you own and use to store
private files.

login_shell The program run by the login program after you
successfully log in to the system. It is usually a shell
program used to interpret commands. For more
information on shells, see Chapter 7 and Chapter 8.

The following example is a sample entry in the /etc/passwd file:

lee:NebPsa9qxMkbD:201:20:Lee Voy,Sales,x1234:/users/lee: \
/usr/bin/posix/sh

The user account lee has user ID 201 and group ID 20. Lee’s full
name is Lee Voy. Lee is in the Sales department and with a telephone
extension of 1234. The login directory is /users/lee and the POSIX
shell (/usr/bin/posix/sh) is defined as the command interpreter. The
password field contains Lee’s password in encrypted form.

5.1.2 The /etc/group File

The /etc/group file defines login accounts for all groups using the system.
This file can be altered only by a user with superuser privileges and login
as root. The user name should be added in ’etc/group’ file. See Section 5.7
for more information.

Each record in the group database defines the login account of one group.
Groups provide a convenient way to share files among users with a common
interest, or among those who are working on the same project.

Each entry in the /etc/group file is a single line that contains four fields.
The fields are separated by colons and the last field ends with a newline
character. The following text shows the format of each entry and describes
the meaning of each field:

groupname:password:GID:user1[,user2,…,userN]

groupname A unique character string that identifies the group
to the system.

Controlling Access to Your Files and Directories 5–3

password This field is always empty. Entries in this field
are ignored.

GID (Group ID) A unique number that identifies the
group to the system.

usernames A list of users who belong to the group.

5.2 Protecting Files and Directories

The operating system has a number of commands that enable you to control
access to your files and directories. You can protect a file or directory by
setting or changing its permissions, which are codes that determine the way
in which anyone working on your system can use the stored data.

Setting or changing permission is synonymous with changing the protections
on your files or directories. You generally protect your data for one or both of
the following reasons:

• Your files and directories contain sensitive information that should not
be available to everyone who uses your system.

• Not everyone who has access to your files and directories should have the
permission to alter them.

_____________________ Caution _____________________

Your system may allow two or more users to modify the same file
simultaneously without notifying them about these independent
actions. If this is so, the system saves the changes made by the
last user to close the file; changes made by the other users are
lost (some text editors warn users of this situation). It is therefore
a good idea to set file permissions to allow only authorized users
to modify files. These users should then communicate about when
and how they are using the files.

Each file and each directory has nine permissions associated with it. Files
and directories have the following three types of permissions:

• r (read)

• w (write)

• x (execute)

These three permissions occur for each of the following three classes of users:

• u (user/owner)

5–4 Controlling Access to Your Files and Directories

The user/owner of a file or directory is generally the person who created
it.

• g (group)

The group specifies the group to which the file belongs.

All users who are members of the specified group acquire the group
permission.

• o (all others; also known as world)

All users acquire the other permission.

______________________ Note _______________________

The group permission applies to all users who are members of the
specified group. The other permission applies to all users. To set
permissions for a specific user or group of users, you use Access
Control Lists (ACLs). See Appendix G for more information
about ACLs.

The meanings of the three types of permissions differ slightly between
ordinary files and directories. See Table 5–1 for more information.

Table 5–1: Differences Between File and Directory Permissions
Permission For a File For a Directory

r (read) Contents can be viewed
or printed.

Contents can be read, but
not searched. Usually r
and x are used together.

w (write) Contents can be changed
or deleted.

Entries can be added
or removed.

x (execute) File can be used as a program. Directory can be searched.

5.3 Displaying File and Directory Permissions (ls)

To display the current file permissions, enter the ls command with the −l
flag. To display the permissions for a single file or selected files, enter the
following command:

$ ls −l filename

The filename entry can be the name of the file or a list of file names
separated by spaces. You may also use pattern-matching characters to
specify files. See Section 5.4.1.3 for more information.

To display the permissions for all of the files in your current directory, enter
the ls −l command:

Controlling Access to Your Files and Directories 5–5

$ ls −l
total 7
-rw-r--r-- 1 larry system 101 Jun 5 10:03 file1
-rw-r--r-- 1 larry system 171 Jun 5 10:03 file2
-rw-r--r-- 1 larry system 130 Jun 5 10:06 file3
drwxr-xr-x 2 larry system 32 Jun 5 10:07 project
-rw-r--r-- 1 larry system 0 Jun 5 11:03 record1
-rw-r--r-- 1 larry system 0 Jun 5 11:03 record6
drwxr-xr-x 2 larry system 32 Jun 5 10:31 reports
$

The first string of each entry in the directory shows the permissions for that
file or directory. For example, the fourth entry, drwxr-xr-x, indicates that:

• This is a directory (the d notation)

• The owner can view it, write in it and search it (the rwx sequence)

• The group can view it and search it, but not write in it (the first r-x
sequence)

• All others can view it and search it, but not write in it (the second r-x
sequence)

The third field shows the file’s owner, (in this case, larry) and the fourth
field shows the group to which the file belongs, (in this case, system).

To list the permissions for a single directory, use the ls −ld command:

$ ls −ld reports
drwxr-xr-x 2 larry system 32 Jun 5 10:31 reports
$

Taken together, all the permissions for a file or directory are called its
permission code. As Figure 5–1 shows, a permission code consists of four
parts:

• A single character shows the file type. The dash (−) indicates an ordinary
file, d a directory and l a symbolic link. Any other character indicates an
I/O (Input/Output) device.

• A 3-character permission field shows user (owner) permissions, which
may be any combination of read, write and execute.

• Another 3-character permission field shows group permissions.

• Another 3-character permission field shows permissions for all others.

5–6 Controlling Access to Your Files and Directories

Figure 5–1: File and Directory Permission Fields

ZK-0536U-AI

type group othersowner

rwx rwx rwx

permission

r read
w write
x execute

d (directory)
l (symbolic link)

c (character special file)
p (named pipe special file)
s (local socket special file)

b (block special file)

 (file)

When you create a file or directory, the system automatically supplies a
predetermined permission code. The following is a typical file permission
code:

-rw-r--r--

This file permission code specifies that the owner has read and write
permissions while the group and all others have read permission. The
dashes (−) in some positions following the file-type notation indicate that the
specified class of user does not have permission for that operation.

The following is a typical directory permission code:

drwxr-xr-x

This directory permission code specifies that owner has read, write and
search permissions, while the group and all others have read and search
permissions.

The default permission codes that your system provides relieve you from the
task of specifying them explicitly every time you create a file or directory.
If you want to create your own default permission codes, you must change
your user mask with the umask command. For an explanation of the umask
command, see the description of the command in Section 5.5.

______________________ Note _______________________

Although a file’s owner, group, and other permissions as shown
by ls specify that a process has access to a file, the file’s ACL

Controlling Access to Your Files and Directories 5–7

may not allow the process access. This can be true even if the
process has the same effective group as the group of the file. See
Appendix G for more information on ACLs.

5.4 Setting File and Directory Permissions (chmod)

Your ability to change permissions gives you a great deal of control over the
way your data can be used. Use the chmod (change mode) command to set or
change the permissions for your files and directories.

For example, you obviously permit yourself to read, modify and execute a
file. You generally permit members of your group to read a file. Depending
upon the nature of your work and the composition of your group, you often
let them modify or execute it. You generally prohibit all other system users
from having any access to a file.

______________________ Note _______________________

You must be the owner of the file or directory (or have superuser
authority) before you can change its permissions. This means
that your user name must be in the third field in an ls −l listing
of that file.

It is important to realize that whatever restrictions you impose on file and
directory access, the superuser can always override them. For example, if
you use the chmod command to specify that only you can have access to the
report20 file, the superuser can still access this file. For more information
on this topic, see Section 5.7.

There are two ways to specify the permissions set by the chmod command:

• You can specify permissions with letters and operation symbols.

• You can specify permissions with octal numbers.

The following sections describe how to specify permissions with letters and
operation symbols, as well as with octal numbers.

5.4.1 Specifying Permissions with Letters and Operation Symbols

You can use letters and operation symbols to change file and directory
permissions.

The following is the format of the chmod command when using letters and
operation symbols:

chmod userclass-operation-permission filename

5–8 Controlling Access to Your Files and Directories

The userclass-operation-permission entry actually represents three
codes that specify the user class, group, operation and permission code that
you want to activate. The filename entry is the name of the file or files
whose permissions you want to change. You may also use pattern-matching
characters to specify files. See Section 5.4.1.3 for more information.

User classes, operations and permissions are defined as follows:

• Use one or more of these letters to represent the userclass:

u User (owner)

g Group

o All others (besides owner and group)

a All (user, group and all others)

• Use one of these symbols to represent the operation:

+ Add permission

− Remove permission

= Assign permission regardless of previous setting

• Use one or more of these letters to represent the type of permission:

r Read

s Set user or group ID: This permission bit sets the effective user ID
or group ID to that of the owner or group owner of file whenever the file
is run. Use this permission setting in combination with the u or g option
to allow temporary or restricted access to files not normally accessible to
other users. An s appears in the user or group execute position of a long
listing (see ls) to show that the file runs with set-user-ID or set-group-ID
permission.

w Write

x Execute

5.4.1.1 Changing File Permissions

In the following example, first enter the ls −l command to display the
permissions for the file1 file:

$ ls −l file1
-rw-r--r-- 1 larry system 101 Jun 5 10:03 file1
$

The owner (larry) has read/write permissions while the group and others
have only read permissions.

Now, enter the chmod command with the flags go+w. This command expands
the permissions for both the group (g) and for others (o) by giving them write
access (+w) to file1 in addition to the read access they already have:

Controlling Access to Your Files and Directories 5–9

$ chmod go+w file1
$

Next, list the new permissions for the file:

$ ls −l file1
-rw-rw-rw- 1 larry system 101 Jun 5 10:03 file1
$

You have given your group and all other system users write permission to
file1.

5.4.1.2 Changing Directory Permissions

The procedure for changing directory permissions is the same as that for
changing file permissions. However, to list the information about a directory,
you use the ls −ld command:

$ ls −ld project
drwxr-xr-x 2 larry system 32 Jun 5 10:07 project
$

Now change the permissions with the chmod g+w command so that the
group (g) has write permission (+w) for the directory project:

$ chmod g+w project
$ ls −ld project
drwxrwxr-x 2 larry system 32 Jun 5 10:07 project
$

5.4.1.3 Using Pattern-Matching Characters

If you want to make the same change to the permissions of all entries in
a directory, you can use the pattern-matching character asterisk (*) with
the chmod command. For information on pattern-matching characters, see
Chapter 2.

In the following example, the command chmod g+x * gives execute (x)
permission to the group (g) for all files (*) in the current directory:

$ chmod g+x *
$

Now enter the ls −l command to show that the group now has execute (x)
permission for all files in the current directory:

$ ls −l
total 7
-rw-rwxrw- 1 larry system 101 Jun 5 10:03 file1
-rw-r-xr-- 1 larry system 171 Jun 5 10:03 file2
-rw-r-xr-- 1 larry system 130 Jun 5 10:06 file3
drwxrwxr-x 2 larry system 32 Jun 5 10:07 project
-rw-r-xr-- 1 larry system 0 Jun 5 11:03 record1

5–10 Controlling Access to Your Files and Directories

-rw-r-xr-- 1 larry system 0 Jun 5 11:03 record6
drwxr-xr-x 2 larry system 32 Jun 5 10:31 reports
$

5.4.1.4 Setting Absolute Permissions

An absolute permission assignment (=) resets all permissions for a file or
files, regardless of how the permissions were set previously.

In Example 5–1, the ls −l command lists the permissions for the file3
file. Then the chmod a=rwx command gives all three permissions (rwx)
to all users (a).

Example 5–1: Setting Absolute Permissions

$ ls −l file3
-rw-r-x-r-- 1 larry system 130 Jun 5 10:06 file3
$ chmod a=rwx file3
$ ls −l file3
-rwxrwxrwx 1 larry system 130 Jun 5 10:06 file3
$

You can also use an absolute assignment to remove permissions. In
Example 5–2, the chmod a=rw newfile command removes the execute
permission (x) for all groups (a) from the file3 file:

Example 5–2: Removing Absolute Permissions

$ chmod a=rw file3
$ ls −l file3
-rw-rw-rw- 1 larry system 130 Jun 5 10:06 file3
$

5.4.2 Specifying Permissions with Octal Numbers

You can also use octal numbers to change file and directory permissions.

To use octal number permission codes with the chmod command, enter the
command in the following form:

chmod octalnumber filename

The octalnumber entry is a 3-digit octal number that specifies the
permissions for owner, group and others. The filename entry is the name
of the file whose permissions you want to change. It can be the name
of the file or a list of file names separated by spaces. You may also use
pattern-matching characters to specify files. See Section 5.4.1.3 for more
information.

Controlling Access to Your Files and Directories 5–11

An octal number corresponds to each type of permission:

4 = read
2 = write
1 = execute

To specify a group of permissions (a permissions field), add together the
appropriate octal numbers (r, w and x denote read, write and execute
respectively):

3 = -wx (2 + 1)
6 = rw- (4 + 2)
7 = rwx (4 + 2 + 1)
0 = --- (no permissions)

Table 5–2 lists the eight possible permission combinations.

Table 5–2: Permission Combinations

Octal
Number

Binary
Number

Permissions Description

0 000 None No permissions granted

1 001 --x Execute

2 010 -w- Write

3 011 -wx Write/execute

4 100 r-- Read

5 101 r-x Read/execute

6 110 rw- Read/write

7 111 rwx Read/write/execute

The entire permission code for a file or directory is specified with a 3-digit
octal number, one digit each for owner, group and others. Table 5–3 shows
some typical permission codes and how they relate to the permission fields.

Table 5–3: How Octal Numbers Relate to Permission Fields
Octal Number Owner Field Group Field Others Field Complete Code

777 rwx rwx rwx rwxrwxrwx

755 rwx r-x r-x rwxr-xr-x

700 rwx --- --- rwx------

666 rw- rw- rw- rw-rw-rw-

For example, you could use the following commands to change the permission
of file3 using octal numbers:

5–12 Controlling Access to Your Files and Directories

$ ls −l file3
-rw-rw-rw- 1 larry system 130 Jun 5 10:06 file3
$ chmod 754 file3
$ ls −l file3
-rwxr-xr-- 1 larry system 130 Jun 5 10:06 file3
$

5.5 Setting Default Permissions with the User Mask

Every time you create a file or a directory, default permissions are
established for it. These default permissions are initially established either
by the operating system or the program you are running (both will be
considered to be the creating program in the umask description that follows).
Setting default permissions relieves you of the task of specifying permission
codes explicitly every time you create a file or directory. The operating
system assigns the default permission values of 777 for executable files
and 666 for all other files.

If you want to further restrict the permissions established by a program
when it creates a file or directory, you must specify a user mask with the
umask command.

The user mask is a numeric value that determines the access permissions
when a file or directory is created. As a result, when you create a file or
directory, its permissions are set to what the creating program specifies,
minus what the umask value forbids.

The umask command has the following format:

umask octalnumber

The octalnumber entry is a 3-digit octal number that specifies the
permissions to be subtracted from the default permissions (777 or 666).

Setting the user mask is very similar to setting the permission bits discussed
in Section 5.4.2. The permission code for a file or directory is specified with
a 3-digit octal number. Each digit represents a type of permission. The
position of each digit (first, second or third) represents 3 bits that correspond
to the following:

• The first digit is for the owner of the file (you).

• The second digit is for the group of the file.

• The third digit is for others.

When you set the umask, you actually are specifying which permissions
are not to be granted, regardless of the permissions requested by the file
creating program.

Controlling Access to Your Files and Directories 5–13

Table 5–4 lists the eight possible umask permission combinations for easy
reference. The umask permission values are the inverse of those specified
for regular permission codes. These permission values are applied to those
set by the creating program.

Table 5–4: The umask Permission Combinations
Column Head Allowed Permissions Description

0 rwx Read/write/execute

1 rw- Read/write

2 r-x Read/execute

3 r— Read

4 -wx Write/execute

5 -w- Write

6 —x Execute

7 --- No permissions granted

For example, if you specify a user mask of 027 (and the file is executable):

• The owner is allowed all permissions requested by the program creating
the file.

• The group is not allowed write permission.

• The others are not allowed any permissions.

A good user mask value to set for your own files and directories depends
upon how freely information resources are shared on your system. The
following guidelines may be useful:

• In a very open computing environment, you might specify 000 as a user
mask value, which allows no restrictions on file/directory access. As a
result, when a program creates a file and specifies permission codes for
it, the user mask imposes no restrictions on what the creating program
has specified.

• In a more secure computing environment, you might specify 066 as a
user mask value, which allows you total access but prevents all others
from being able to read or write to your files. As a result, when a file is
created, its permissions are set to what the creating program specifies,
minus the user mask restrictions that prevent read/write access for
everyone but you.

• In a very secure computing environment, you might specify 077 as a user
mask value, which means that only you have access to your files. As a
result, when a file is created, its permissions are set to what the creating

5–14 Controlling Access to Your Files and Directories

program specifies, minus the user mask restrictions that prevent anyone
else from reading, writing or executing your files.

To understand how umask works, assume that you have entered the
following command:

$ umask 037

This command establishes a permission code of 740 (if the file is executable)
and produces the following results:

• You (the owner) are allowed all permissions.

• Members of your group are not allowed write and execute permissions.

• All others are not allowed any permissions.

Further more, assume that you have just created a file. By default, your
editor always assigns the following default permissions: owners are allowed
all permissions and all others only read and execute permissions. However,
since you have previously set a user mask of 037, it further restricts the file
permissions. As a result, the owner still has all permissions, but the group
cannot execute the file and all others have no permissions.

5.5.1 Setting the umask

You may activate the umask command in two ways:

• Include the umask command in your login script. This is the most
common and efficient way to specify your user mask because the specified
value is set automatically for you whenever you log in. For a discussion
of login scripts, see Chapter 7. For examples of umask commands in
login scripts, see Chapter 8.

• Enter the umask command at the shell prompt during a login session.
The user mask value you set is in effect for that login session only.

For a more detailed example of how the user mask works in restricting
permissions for files you create with a text editor, follow the steps in this
procedure:

1. Enter the following command to find out what the current value of
your user mask is:

$ umask

If the user mask value is 000, there are no restrictions on the
permissions established by file-creating programs. Go to step 3.

If the user mask value is set, write it down. Go to step 2.

Controlling Access to Your Files and Directories 5–15

2. Set the user mask value to 000 so that there will be no restrictions on
the permissions established by file-creating programs. Before resetting
the user mask, make sure you have written down the current value in
case you need to reset it.

Enter the following command:

$ umask 000

3. Create a file, save it and then exit your editor.

4. Display the permissions of the file by using the ls −l command. We
will assume that read/write permissions are granted for all users:

$ ls -l
-rw-rw-rw- 1 user-name 15 Oct 27 14:42 yourfile
$

5. Reset the user mask to 022 by entering the following command:

$ umask 022

A user mask of 022 establishes the following permission restrictions:
owners are allowed all permissions and all others are allowed only read
and execute permissions.

6. Create another file, save it and then exit your editor.

7. Display the permissions of the file by entering the ls −l command:

$ ls −l
-rw-r--r-- 1 user-name 15 Oct 27 14:45 yourfile2
$

The write permissions for the group and all others have been removed
in accordance with the user mask value of 022.

8. Reset the user mask to its original value or to another value (if you
choose).

______________________ Note _______________________

A user with superuser privileges can override whatever access
restrictions you impose on files and directories. For more
information on this topic, see Section 5.7.

On occasion, the results you obtain when specifying a user mask may vary
from what you intended. If so, see your system administrator.

The operating system provides a default user mask value of 022, which
gives you, the owner, all the permissions. But, it prevents members of your
group or any other users from writing to your files. However, your system’s
user mask default may vary.

5–16 Controlling Access to Your Files and Directories

5.6 Changing Your Identity to Access Files

The su command lets you alter your identity during a login session. A reason
for altering your identity is to be able to access files that you do not own. To
protect system security, you should not assume another identity without the
owner’s or the system administrator’s permission.

The su command lets you log in to another user’s account only if you know
that user’s password. The su command authenticates you and then resets
both the process’s user ID and the effective user ID to the value of the newly
specified user ID. The effective user ID is the user ID currently in effect for
the process, although it may not be the user ID of the person logged in.

The format of the su command is:

su username

The username entry is the user name whose identity you want to assume.

If, after altering your identity, you want to confirm the identity you have
assumed, use the whoami command. This command displays the user name
of the identity you have assumed.

After completing your work under a new identity, you should return to your
own login identity. To do so, press Ctrl/D or enter the exit command.

Example 5–3 shows how Juan assumes Lucy’s identity, confirms it, removes
a file and then returns to his own login identity.

Example 5–3: Using the su Command

$ whoami 1
juan
$ su lucy 2
Password: … 3
$ whoami 4
lucy
$ rm file9 5
$ exit 6
$ whoami 1
juan
$

The following list items correspond to the numbers in the example:

1 Juan verifies his current identity with the whoami command.

2 Juan uses the su command to assume the identity lucy.

3 For security reasons, any display of the password is suppressed.

Controlling Access to Your Files and Directories 5–17

4 Juan verifies that he has assumed the identity lucy.

5 Juan removes a file.

6 Juan uses the exit command to return to his own identity.

For more information, see the su(1) and whoami(1) reference pages.

5.7 Superuser Concepts

Every system has a superuser who has permissions that supercede those of
ordinary users. This superuser is often referred to as root.

The root user has absolute power over the running of the system. This user
has access to all files and all devices and can make any changes to the
system. The root user is said to have superuser privileges.

The following is a list of tasks ordinarily performed by root users:

• Edit files not usually changeable by ordinary users (for example,
/etc/passwd)

• Change ownership and permissions of all files

• Execute restricted commands like mount or reboot

• Kill any process running on your system

• Add and remove user accounts

• Boot and shut down the system

• Back up the system

Many of the preceding tasks are performed by system administrators who
require superuser privileges. The system administrator’s job is to manage
the system by performing the preceding tasks, installing new software,
analyzing system performance and reporting hardware failures.

Depending upon your computing environment, you may or may not be
the system administrator for your system or have root privileges. Your
site configuration as well as your job responsibilities will determine your
privileges.

If you work from a terminal or workstation that accesses a centralized
system, you will probably not be the system administrator or have root
privileges. In this situation, the system administrator, who is in charge
of maintaining, configuring and upgrading the system, will be the person
who has root privileges.

If you perform your tasks from a workstation that is either independent
or networked to other workstations or systems, you may indeed have root
privileges for your own workstation, but not be the system administrator of

5–18 Controlling Access to Your Files and Directories

your site. In this situation, you would maintain your own workstation only.
However, the system administrator would still maintain shared machines
and networks.

To become a root user, use the su command. You must also know the
password for the root user. The format of the su command is:

su

The following example shows how Juan becomes a root user to perform an
administrative task:

$ su
Password: ...
#

The new prompt, a number sign (#), indicates that Juan has become a root
user and that a shell has been created for his use. The root user shell is
defined in the /etc/passwd file. Juan now may perform the administrative
task.

_____________________ Caution _____________________

Because the root user has absolute power over the system, the
password should be carefully protected. Otherwise, unauthorized
use of the system may result in corruption or destruction of data.

After completing your work as the root user, you should return to your own
login identity. To do so, press Ctrl/D or enter the exit command. You are
then returned to the system prompt.

5.8 Changing Owners and Groups (chown and chgrp)
In addition to setting permissions, you can control how a file or directory is
used by changing its owner or group. Use the chown command to change the
owner and the chgrp command to change the group.

______________________ Note _______________________

In order to use the chown command, you must have superuser
privileges. For more information on this topic, see Section 5.7.

Enter the chown command in the following form:

chown owner filename
The owner entry is the user name of the new owner of the file. The
filename entry is a list of one or more files whose ownership you want to
change. You may also use pattern-matching characters to specify files. See
Section 5.4.1.3 for more information.

Controlling Access to Your Files and Directories 5–19

Enter the chgrp command in the following form:

chgrp group file

The group entry is the group ID or group name of the new group. To change
the group ownership of a file, you must be a member of the group to which
you are changing the file. The file entry is a list of one or more files whose
ownership you want to change.

For more information, see the chown(1) and chgrp(1) reference pages.

5.9 Additional Security Considerations

The security guidelines enforced at your site protect your files from
unauthorized access. See your system administrator for complete
information about security guidelines.

In addition, it is wise to avoid running untrusted software (software that is
from an unknown source or that has not been validated for system security).
When you run a program, that program has all of your access rights and
nothing prevents the program from being used to illicitly access, observe or
alter sensitive files.

You should be aware of three types of programs that compromise security:

• Trojan horse

A Trojan horse is a program that performs or appears to perform, its
defined task properly; however, it also performs hidden functions that
may be malicious. A Trojan horse program emulates the program that
you intended to run, but may perform an unwanted action. It might
vandalize your files by altering or deleting them or compromise the files
by making illegal copies of them.

A typical Trojan horse is the login Trojan horse, which mimics the
system’s login prompt on the display and waits for you to enter a user
name and password. The program mails or copies this information to
the user responsible for the Trojan horse. As the Trojan horse exits, it
displays Login incorrect. The real login program then runs. Most
users assume they typed the password incorrectly and are unaware that
they were deceived.

• Computer worm

A computer worm is a program that moves around a computer network,
making copies of itself. For example, a login computer worm can log in
to a system, copy itself onto the system, start running, log in to another
system and then continue this process indefinitely.

• Computer virus

5–20 Controlling Access to Your Files and Directories

A computer virus program is really a type of Trojan horse. Usually,
a Trojan horse waits passively for the right user to run it (usually
a privileged user). Viruses spread by inserting themselves in other
executable files, thus increasing the threat and extent of compromise of
privacy or integrity.

Be cautious of programs that were not installed by the person who
administers your system. Programs that are obtained from bulletin boards
and other unknown origins are particularly suspect. Even if the program
includes source code, it is not always possible to examine the program
carefully enough to determine if it is trustworthy.

Controlling Access to Your Files and Directories 5–21

6
Using Processes

This chapter explains the operating system processes. After completing this
chapter, you will be able to:

• Understand programs and processes (Section 6.1)

• Redirect process input, output and errors (Section 6.2)

• Run processes in the foreground and background (Section 6.3)

• Check the status of processes (Section 6.4.1)

• Cancel processes (Section 6.4.2)

• Display information about users and their processes (Section 6.5)

A good way to learn about the preceding topics is to try the examples in this
chapter. You should do each example so that the information on your screen
is consistent with the information in this manual.

6.1 Understanding Programs and Processes

A program is a set of instructions that a computer can interpret and run.
You may think of most programs as belonging to one of two categories:

• Application programs such as text editors, accounting packages or
electronic spreadsheets

• Programs that are components of the operating system such as
commands, the shell (or shells) and your login procedure

While a program is running, it is called a process. The operating system
assigns every process a unique number known as a process identifier (PID).

The operating system can run a number of different processes at the same
time. When more than one process is running, a scheduler built into the
operating system gives each process its fair share of the computer’s time,
based on established priorities.

6.2 Understanding Standard Input, Output and Error

When a process begins executing, the operating system opens three files for
the process: stdin (standard input), stdout (standard output) and stderr
(standard error). Programs use these files as follows:

Using Processes 6–1

• Standard input is the place from which the program expects to read its
input. By default, processes read stdin from the keyboard.

• Standard output is the place to which the program writes its output. By
default, processes write stdout to the screen.

• Standard error is the place to which the program writes its error
messages. By default, processes write stderr to the screen.

In most cases, the default standard input, output and error mechanisms will
serve you well. However, there are times when it is useful to redirect the
standard input, output and error. The following sections describe these
procedures.

6.2.1 Redirecting Input and Output

A command usually reads its input from the keyboard (standard input) and
writes its output to the display (standard output). You may want a command
to read its input from a file, write its output to a file or do both. You can
select input and output files for a command with the shell notation shown in
Table 6–1. This notation can be used in all shells.

Table 6–1: Shell Notation for Reading Input and Redirecting Output
Notation Action Example

< Reads standard input from a file wc < file3

> Writes standard output to a file ls > file3

>> Appends (adds) standard output to the end of a file ls >> file3

The following sections explain how to read input from a file and how to
write output to a file.

6.2.1.1 Reading Input from a File

All shells let you redirect the standard input of a process so that input is
read from a file, instead of from the keyboard.

You can use input redirection with any command that accepts input from
stdin (your keyboard). You cannot use input redirection with commands,
such as who, that do not accept input. To redirect input, use the left-angle
bracket (<), as the following example shows:

$ wc < file3
3 27 129

$

The wc (word count) command counts the number of lines, words and bytes in
the named file. So file3 contains 3 lines, 27 words and 129 bytes. If you do

6–2 Using Processes

not supply an argument, the wc command reads its input from the keyboard.
In this example, however, input for wc comes from the file named file3.

In the preceding example, you could have entered the following and
displayed the same output:

wc file3

This is because most commands allow the input file to be specified without
the left-angle bracket (<).

However, there are a few commands like mail that require the use of the
left-angle bracket (<) for special functions. For example, note the following
command:

$ mail juan < report

This command mails to the user juan the file report. For more information
about mail, see the mail(1) reference page.

6.2.1.2 Redirecting Output

All shells let you redirect the standard output of a process from the screen
(the default) to a file. As a result, you can store the text generated by a
command into a new or existing file.

To send output to a file, use either a right-angle bracket (>) or two right-angle
brackets (>>).

The right-angle bracket (>) causes the shell to:

• Replace the contents of the file with the output of the command, if the
file exists.

• Create the file, if the file does not exist, and place the output of the
command into the file.

Two right-angle brackets (>>) add (append) the output of the command to
the end of a file that exists. If you use two right-angle brackets (>>) to write
output to a file that does not exist, the shell creates the file containing the
output of the command.

In the next example, the output of ls goes to the file named file:

$ ls > file
$

If the file already exists, the shell replaces its contents with the output of ls.
If file does not exist, the shell creates it.

In the following example, the shell adds the output of ls to the end of the
file named file:

Using Processes 6–3

$ ls >> file
$

If file does not exist, the shell creates it.

In addition to their standard output, processes often produce error or status
messages known as diagnostic output. For information about redirecting
diagnostic output, see the following section.

6.2.2 Redirecting Standard Error to a File

When a command executes successfully, it displays the results on the
standard output. When a command executes unsuccessfully, it displays error
messages on the default standard error file, the screen. However, the shell
lets you redirect the standard error of a process from the screen to a file.

Redirection symbols and syntax vary among shells. The following sections
describe standard error redirection for the Korn and POSIX shells and the
C shell.

6.2.2.1 Bourne, Korn and POSIX Shell Error Redirection

The general format for Bourne, Korn, or POSIX shell standard error
redirection is the following:

command 2> errorfile

The command entry is an operating system command. The errorfile entry
is the name of the file to which the process writes the standard error. The 2>
is a file descriptor digit combined with the right-angle bracket (>), the output
redirection symbol. The file descriptor digit tells the shell what standard file
to access so that its contents may be redirected. The file descriptor digit 2
indicates that the standard error file is being redirected.

In fact, for the Bourne, Korn, and POSIX shells, a file descriptor digit is
associated with each of the files a command ordinarily uses:

• File descriptor 0 (same as the left-angle bracket [<]) specifies standard
input (the keyboard).

• File descriptor 1 (same as the right-angle bracket [>]) specifies standard
output (the screen).

• File descriptor 2 specifies standard error (the screen).

In the following example, an error is redirected to the error file when
the ls command attempts to display the nonexistent file, reportx. The
contents of error file are then displayed:

$ ls reportx 2> error
$ cat error
reportx not found

6–4 Using Processes

$

Although only standard error is redirected to a file in the preceding example,
typically you would redirect both standard error and standard output. See
Section 6.2.3 for more information.

For many commands, the difference between standard output and standard
error is difficult to see. For instance, if you use the ls command to display a
nonexistent file, an error message displays on the screen. If you redirect the
error message to a file as in the previous example, the output is identical.

6.2.2.2 C Shell Error Redirection

The general format for C shell standard error redirection is the following:

((command > outfile))>& errorfile

The command entry is any operating system command. The outfile entry
is the name of the file to which the process writes the standard output. The
right-angle bracket (>) redirects the standard error to a file. The errorfile
entry is the name of the file to which the process writes the standard error.
In this command format, the parentheses are mandatory.

6.2.3 Redirecting Both Standard Error and Standard Output

In the preceding sections, you learned how to redirect standard output
and standard error separately. Usually, however, you would redirect both
standard output and standard error at the same time. Standard output and
standard error can be written to different files or to the same file.

For the Bourne, Korn, and POSIX shells, the general format for redirecting
both standard output and standard error to different files is the following:

command > outfile 2> errorfile

The command entry is an operating system command. The outfile entry
is the file to which the process writes the standard output. The 2> symbol
redirects the error output. The errorfile entry is the file where the process
writes the standard error. For the C shell, the general format for redirecting
both standard output and standard error to different files is the following:

(command > outfile)>& errorfile

The command entry is an operating system command. The outfile entry
is the file to which the process writes the standard output. The right-angle
bracket and ampersand symbol placed alonside (>&) redirects the error
output. The errorfile entry is the file where the process writes the
standard error. In this command format, the parentheses are mandatory.
See Section 6.2.2.2 for more information.

Using Processes 6–5

For the Bourne, Korn, and POSIX shells, the general format for redirecting
both standard output and standard error to the same file is the following:

command1 > outfile 2>&1 errorfile

The command entry is an operating system command. The 1> symbol
redirects the standard output. The outfile entry is the file to which the
process writes the standard output. The 2>&1 symbol tells the shell to write
the standard error (file descriptor 2) in the file associated with the standard
output (>&1), outfile.

For the C shell, the general format for redirecting both standard output and
standard error to the same file is the following:

command >& outfile

The command entry is an operating system command. The outfile entry
is the file to which the process writes the standard output. The right-angle
bracket and ampersand (>&) symbol tells the shell to write the standard
output and standard error to the same file specified by outfile.

6.3 Running Several Processes Simultaneously
The operating system can run a number of different processes at the same
time. This capability makes it a multitasking operating system, which
means that the processes of several users can run at the same time.

These different processes can be from one or multiple users. As a result, you
do not have to enter commands, one at a time, at the shell prompt. Instead,
you can run both foreground and background processes simultaneously. The
following sections describe both foreground and background processes.

6.3.1 Running Foreground Processes

Usually, when you enter a command on the command line, you wait for the
results to display on your screen. Commands entered singly at the shell
prompt are called foreground processes.

Most commands take a short time to execute − perhaps a second or two.
However, some commands require longer execution times. If a long-duration
command runs as a foreground process, you cannot execute other commands
until the current one finishes. As a result, you may want to run a
long-duration command as a background process. The following section
describes background processes.

6.3.2 Running Background Processes

Generally, background processes are most useful with commands that
take a long time to run. Instead of tying up your screen by entering a

6–6 Using Processes

long-duration command as a foreground process, you can execute a command
as a background process. You can then continue with other work in the
foreground.

To run a background process, you end the command with an ampersand (&).
After initiating a process in the background, you can perform additional
tasks by entering other commands at your workstation.

After you create a background process:

• The Process Identification Number (PID) is displayed. The operating
system creates and assigns PIDs so that all processes currently running
on the system can be tracked. (In the Korn and POSIX shells or the C
shell, job numbers are assigned as well.)

• The prompt returns so that you can enter another command.

• In the C shell, a message is displayed when the background process
is complete.

When you create a background process, note its PID number. The PID
number helps you to monitor or terminate the process. See Section 6.4 for
more information.

Because background processes increase the total amount of work the system
is doing, they may also slow down the rest of the system. This may or may
not be a problem, depending on the extent to which the system slows down.
This in turn depends on the nature of work being done by the users and the
number of background processes being executed.

Most processes direct their output to standard output, even when they
run in the background. Unless redirected, standard output goes to your
workstation. Because the output from a background process may interfere
with your other work on the system, it is usually good practice to redirect the
output of a background process to a file or to a printer. Then you can look at
the output whenever you are ready. For more information about redirecting
output, see the examples later in this chapter as well as Section 6.2.

The examples in the remainder of this chapter use a command that takes
more than a few seconds to run:

$ find / −type f −print

This command displays the pathnames for all files on your system. You do
not need to study the find command in order to complete this chapter − it is
used here simply to demonstrate how to work with processes. However, if you
want to learn more about the find command, see the find(1) reference page.

In the following example, the find command runs in the background
(by entering an ampersand [&]) and redirects its output to a file named
dir.paths (by using the right-angle bracket [>] operator):

Using Processes 6–7

$ find / −type f −print > dir.paths &
24
$

When the background process starts, the system assigns it a PID (Process
Identification) number (24 in this example), displays it and then prompts
you for another command. Your process number will be different from the
one shown in this example and the one that follows.

If you use the Korn or POSIX shell or the C shell, job numbers are assigned
as well. In the C shell, the preceding example looks like this:

% find / −type f −print > dir.paths &
[1] 24
%

The job number [1] is displayed to the left of the PID number.

You can check the status of the process with the ps (process status) or the
jobs command (C shell, Korn and POSIX shells). You can also terminate
a process with the kill command. See Section 6.4 for more information
about these commands.

In the C shell, when the background process is completed, a message is
displayed:

[1] 24 Done find / −type f −print > dir.paths

The completion message displays the job number and the PID, the status
Done and the command executed.

6.4 Monitoring and Terminating Processes
Use the ps (process status) command to find out which processes are
running and to display information about those processes. In the Korn and
POSIX shells and C shell, you also can use the jobs command to monitor
background processes.

If you need to stop a process before it is finished, use the kill command.

The following sections describe how to monitor and terminate processes.

6.4.1 Checking Process Status

The ps command lets you monitor the status of all active processes, both
foreground and background. In the Korn and POSIX shells and C shell, you
also can use the jobs command to monitor background processes only. The
following sections describe the ps and the jobs command.

6.4.1.1 The ps Command

The ps command has the following form:

6–8 Using Processes

ps

In Example 6–1, the ps command displays the status of all processes
associated with your workstation.

Example 6–1: Output from the ps Command

$ ps
PID TTY STAT TIME CMD
29670 p4 I 0:00.00 -csh (csh)
515 p5 S 0:00.00 -csh (csh)

28476 p5 R 0:00.00 ps
790 p6 I 0:00.00 -csh (csh)

$
You interpret the display under these entry headings as follows:

PID Process identification. The system assigns a process identification number (PID number)
to each process when that process starts. There is no relationship between a process and
a particular PID number; that is, if you start the same process several times, it will
have a different PID number each time.

TTY Controlling terminal device name. On a system with more than one workstation, this field
tells you which workstation started the process. On a system with only one workstation,
this field can contain the designation console or the designation for one or more virtual
terminals.

STAT Symbolic process status. The system displays the state of the process, with a sequence of
up to four alphanumeric characters. For more information, see the ps(1) reference page.

TIME Time devoted to this process by the computer is displayed in minutes, seconds and
hundredths of seconds starting when you enter ps.

CMD The name of the command (or program) that started the process.

You can also check the status of a particular process by using the −p flag and
the PID number with the ps command. The general format for checking the
status of a particular process is the following:

ps −p PIDnumber

The ps command also displays the status of background processes. If there
are any background processes running, they will be displayed along with the
foreground processes. The following example shows how to start a find
background process and then check its status:

$ find / −type f −print > dir.paths &
25
$ ps −p25
PID TTY TIME CMD
25 console 0:40.00 find
$

Using Processes 6–9

You can check background process status as often as you like while the
process runs. In the following example, the ps command displays the status
of the preceding find process five times:

$ ps −p25
PID TTY TIME COMMAND
25 console 0:18:00 find
$ ps −p25
PID TTY TIME COMMAND
25 console 0:29:00 find
$ ps −p25
PID TTY TIME COMMAND
25 console 0:49:00 find
$ ps −p25
PID TTY TIME COMMAND
25 console 0:58:00 find
$ ps −p25
PID TTY TIME COMMAND
25 console 1:02:00 find
$ ps −p25
PID TTY TIME COMMAND
$

The sixth ps command returns no status information because the find
process ended before the last ps command was entered.

Generally, the simple ps command described here tells you all you need to
know about processes. However, you can control the type of information that
the ps command displays by using more of its flags. One of the most useful
ps flags is −e, which causes ps to return information about all processes, not
just those associated with your terminal or workstation. For an explanation
of all ps command flags, see the ps(1) reference page.

6.4.1.2 The jobs Command

The Korn and POSIX shells and the C shell display both a job and a PID
when a background process is created. The jobs command reports the
status of all background processes only, based upon the job number.

The jobs command has the following form:

jobs

Adding the −l flag displays both the job number and the PID.

The following example shows how to start a find process and then check its
status in the C shell with the jobs −l command:

% find / −type f −print > dir.paths &
[2] 26
% jobs −l
[2] +26 Running find / −type f −print > dir.paths &

6–10 Using Processes

%

The status message displays both the job ([2]) and the PID number (26),
the status Running and the command executed.

6.4.2 Canceling a Foreground Process (Ctrl/C)

To cancel a foreground process (stop an executing command), press Ctrl/C.
The command stops executing and the system displays the shell prompt.
Canceling a foreground process is the same as stopping command execution
(described in Chapter 1).

Most simple operating system commands are not good examples for
demonstrating how to cancel a process − they run so quickly that they
finish before you have time to cancel them. However, the following find
command runs long enough for you to cancel it (after the process runs for a
few seconds, you can cancel it by pressing Ctrl/C):

$ find / −type f −print
/usr/sbin/acct/acctcms
/usr/sbin/acct/acctcoN1
/usr/sbin/acct/acctcon2
/usr/sbin/acct/acctdisk
/usr/sbin/acct/acctmerg
/usr/sbin/acct/accton
/usr/sbin/acct/acctprc1
/usr/sbin/acct/acctprc2
/usr/sbin/acct/acctwtmp
/usr/sbin/acct/chargefee
/usr/sbin/acct/ckpacct
/usr/sbin/acct/dodisk
Ctrl/C
$

The system returns the shell prompt to the screen. Now you can enter
another command.

6.4.3 Canceling a Background Process (kill)

If you decide, after starting a background process, that you do not want
the process to finish, you can cancel the process with the kill command.
Before you can cancel a background process, however, you must know its
PID number.

If you have forgotten the PID number of that process, you can use the ps
command to list the PID numbers of all processes. If you are a C shell or
Korn or POSIX shell user, it is more efficient to use the jobs command to
list background processes only.

The general format for terminating a particular process is the following:

Using Processes 6–11

kill PIDnumber

If you want to end all the processes you have started since login, use the
kill 0 command. You do not have to know the PID numbers to use kill
0. Because this command deletes all of your processes, use this command
carefully.

The following example shows how to start another find process, check its
status and then terminate it:

$ find / −type f −print > dir.paths &
38
$ ps
PID TT STAT TIME COMMAND
520 p4 I 0:11:10 sh
38 p5 I 0:10:33 find
1216 p6 S 0:01:14 qdaemon
839 p7 R 0:03:55 ps
$ kill 38
$ ps
38 Terminated
PID TT STAT TIME COMMAND
520 p4 I 0:11:35 sh
1216 p6 S 0:01:11 qdaemon
839 p7 R 0:03:27 ps
$

The command kill 38 stops the background find process and the second
ps command returns no status information about PID number 38. The
system does not display the termination message until you enter your next
command.

In the previous example, kill 38 and kill 0 have the same effect because
only one process was started from this terminal or workstation.

In the C shell, the kill command has the following format:

kill % jobnumber

The following example uses the C shell to start another find process, to
check its status with the jobs command and then to terminate it:

% find / −type f −print > dir.paths &
[3] 40
% jobs −l
[3] +40 Running find / −type f −print > dir.paths &
% kill %3
% jobs −l
[3] +Terminated find / −type f −print > dir.paths
%

6–12 Using Processes

6.4.4 Suspending and Resuming a Foreground Process (C Shell
Only)

Stopping a foreground process and resuming it can be helpful when you
have long-duration process absorbing system resources and you need to
do something else quickly.

Rather than waiting for process completion, you can stop the process
temporarily (suspend it), perform your more critical task and then resume
the process. Suspending a process is available for C shell users only.

To suspend a process, press Ctrl/Z. A message will display listing the job
number, the status suspended and the command executed.

After you are ready to resume the process, as a foreground task, enter the
job number n in the following format::

% n

To resume the process in the background, enter the job number n in the
following format:

% n &

The following example starts a find process, suspends it, checks its status,
resumes it and then terminates it:

% find / −type f −print > dir.paths &
[4] 41
% jobs −l
[4] +41 Running find / −type f −print > dir.paths &
% Ctrl/Z
Suspended
% jobs −l
[4] +Stopped find / −type f −print > dir.paths
% 4 &
[4] find / −type f −print > dir.paths &
% kill %4
[4] +Terminated find / −type f −print > dir.paths

You may resume a suspended process by entering the fg command. If
a currently running process is taking too long to run and is tying up
your keyboard, you can use the bg command to place the process in the
background and enter other commands.

The following example starts a find process, suspends it, puts the process in
the background, copies a file and then resumes the process in the foreground:

% find / −type f −print > dir.paths
Ctrl/Z
Suspended
% bg
[5] find / −type f −print > dir.paths &

Using Processes 6–13

% cp salary1 salary2
% fg
find / −type f −print > dir.paths
%

6.5 Displaying Information About Users and Their
Processes

The operating system provides the following commands that can tell you
who is using the system and what they are doing:

who Displays information about currently logged in users.

w Displays information about currently logged in users and what
they are currently running on their workstations.

ps au Displays information about currently logged in users and the
processes they are running.

The who command lets you determine who is logged into the system. It may
be especially useful, for example, when you want to send a message and
want to know whether the person is currently available.

In Example 6–2, information about all currently logged in users is displayed:

Example 6–2: Output from the who Command

$ who
juan tty01 Jan 15 08:33
chang tty05 Jan 15 08:45
larry tty07 Jan 15 08:55
tony tty09 Jan 15 07:53
lucy pts/2 Jan 15 11:24 (boston)
$

The who command lists the user name of each user on the system, the
workstation being used and when the person logged in. In addition, if a user
is logged in from a remote system, the name of the system is listed. For
example, lucy logged in remotely from the system boston on Jan 15 at
11:24.

The actual display format of who varies according to your current locale. See
Appendix C for more information about locales.

The who −u command gives all the information of the who command and
also displays the PID of each user and the number of hours and minutes

6–14 Using Processes

since there was activity at a workstation. Activity for less than a minute is
indicated by a dot (.).

In Example 6–3, all currently logged in users are displayed:

Example 6–3: Output from the who -u Command

$ who −u
juan tty01 Jan 15 08:33 01:02 50
chang tty05 Jan 15 08:45 . 52
larry tty07 Jan 15 08:55 . 58
tony tty09 Jan 15 07:53 01:20 60
lucy pts/5 Jan 15 11:24 . 65 (boston)
$

In Example 6–3, juan and tony have been inactive for over an hour, while
chang, larry and lucy have been inactive for less than a minute.

Now that you know how to find out who is active on your system, you may
want to find out what command each person is currently executing. The w
command displays the command that is currently running at each user’s
workstation.

In Example 6–4, information about all users (the User column) and their
current commands (the what column) is displayed:

Example 6–4: Output from the w Command

$ w
11:02 up 3 days, 2:40, 5 users, load average: 0.32, 0.20, 0.00
User tty login@ idle JCPU PCPU what
juan tty01 8:33am 12 54 14 −csh
chang tty05 8:45am 6:20 26 mail
larry tty07 8:55 1:58 8 −csh
tony tty09 7:53 3:10 22 4 mail
lucy tty02 11:24 1:40 18 4 −csh
$
The w command displays the following information:

• The tty column: user’s workstation

• The login@ column: user’s login time

• The idle column: amount of time since the user entered a command

• The JCPU column: total CPU time used during the current login session

• The PCPU column: CPU time used by the command that is currently executing

• The what column: The command that the user is currently executing

On certain occasions, you may want to have a detailed listing of current
processes (both foreground and background) and the users who are running

Using Processes 6–15

them. To get such a listing, use the ps au command. In Example 6–5,
information about five users and their active processes is displayed:

Example 6–5: Output from the ps au Command

$ ps au
USER PID %CPU %MEM VSZ RSS TTY S STARTED TIME COMMAND
juan 26300 16.5 0.8 441 327 p3 R 0:02:01 ps au
chang 25821 7.0 0.2 149 64 p4 R 0:12:23 mail −n
larry 25121 6.1 0.2 107 83 p22 R 26:25:07 lpstat
tony 11240 4.5 0.6 741 225 p1 R 1:57:46 vi
lucy 26287 0.5 0.1 61 28 p1 S 0:00:00 more
$

The most important fields for the general user are the USER, PID, TIME
and COMMAND fields. For information on the remaining fields, see the ps(1)
reference page.

6–16 Using Processes

7
Shell Overview

This chapter introduces you to the operating system shells. After completing
this chapter, you will be able to:

• Understand the purpose and general features of the C shell and the
Bourne, Korn, and POSIX shells (Section 7.1)

• Change your shell (Section 7.3)

• Use command entry aids common to all shells (Section 7.4)

• Understand your shell environment as well as the role of login scripts,
environment variables and shell variables (Section 7.5)

• Set and clear environment and shell variables (Section 7.7)

• Understand how the shell finds commands on your system (Section 7.8)

• Write logout scripts (Section 7.9)

• Write and run basic shell procedures (Section 7.10.1)

This chapter covers features common to all operating system shells, with
some descriptions of shell differences. For detailed information on specific C
shell and Bourne, Korn, or POSIX shell features, see Chapter 8.

7.1 Purpose of Shells

The user interfaces to the operating system are called shells. The shells are
programs that interpret the commands you enter, run the programs you
have asked for and send the results to your screen.

The operating system provides the following shells:

• The Bourne shell (system default)

• The C shell

• The Korn shell

• The POSIX shell

You may access any shell, depending upon the security restrictions in effect
on your system as well as the licensing restrictions of the Korn shell. In any
case, all shells perform the same basic function: they let you perform work
on your system by executing commands.

Shell Overview 7–1

In addition to interpreting commands, the shell also can be used as a
programming language. You can create shell procedures that contain
commands. Shell procedures are executed in the same way that you execute
a program — on the command line after the shell prompt.

When you run a shell procedure, your current shell creates or spawns a
subshell. A subshell is a new shell your current shell creates to run a
program. Thus, any command the shell procedure executes (for example, cd)
leaves the invoking shell unaffected.

Shell procedures provide a means of carrying out tedious commands, large
or complicated sequences of commands and routine or repetitive tasks.

See Section 7.10 for more information on shell programming.

7.2 Summary of C, Bourne, Korn and POSIX Shell Features

The operating system provides the following shells that have both command
execution and programming capabilities:

• The Bourne shell (sh)

This is a simple shell that is easily used in programming. It usually is
represented by a dollar sign ($) prompt. This shell does not provide either
the interactive features or the complex programming constructs (arrays
and integer arithmetic) of the C shell or the Korn and POSIX shells.

The Bourne shell also provides a restricted shell (Rsh). For more
information, see Section 7.2.2.

• The C shell (csh)

This shell is designed for interactive use. It usually is represented by a
percent sign (%) system prompt. The C shell provides some features for
entering commands interactively:

– A command history buffer

– Command aliases

– File name completion

– Command line editing
For more information on these features, see Section 7.2.1.

• The Korn shell (ksh)

This shell combines the ease of use of the C shell and the ease of
programming of the Bourne shell. The system prompt is usually a dollar
sign ($) prompt. The Korn shell provides these features:

– The interactive features of the C shell

– The simple programming syntax of the Bourne shell

7–2 Shell Overview

– Command line editing

– The fastest execution time

– Upward compatibility with the Bourne shell (that is, most Bourne
shell programs will run under the Korn shell)

For more information on these features, see Section 7.2.1.

• The POSIX shell (sh)

This shell conforms to the IEEE POSIX standard. It is very similar to
the Korn shell. In this manual, the discussion of the Korn shell and
the POSIX shell are combined. See the sh(1p) and the standards(5)
reference pages for information on this standard.

The POSIX shell is another designator for the Korn shell.

7.2.1 More Information on C and Korn or POSIX Shell Features

The C shell and the Korn or POSIX shells offer the following interactive
features:

• Command history

The command history buffer stores the commands you enter and lets you
display them at any time. As a result, you can select a previous command
or parts of previous commands and then reexecute them. This feature
may save you time because it lets you reuse long commands without
retyping them. In the C shell, this feature requires some setup in the
.cshrc file; in the Korn and POSIX shells this feature is automatically
provided.

• Command aliases

The command aliases feature lets you abbreviate long command lines
or rename commands. You do this by creating aliases for long command
lines that you frequently use. For example, assume that you often need
to move to the directory /usr/chang/reports/status. You could
create an alias status that could take you to that directory whenever
you enter status on the command line. In addition, aliases let you
make up more descriptive names for operating system commands. For
example, you could define an alias named rename for the mv command.

• File name completion

In the C shell, the file name completion feature saves typing by allowing
you to enter a portion of the file name. When you press the Escape key,
the shell will complete the file name for you. See Section 8.2.4 for more
information about file name completion in the C shell.

In the Korn or POSIX shell, you can ask the shell to display a list of file
names that match the partial name you entered. You then may choose

Shell Overview 7–3

among the displayed file names. See Section 8.4.5 for more information
about file name completion in the Korn or POSIX shell.

The Korn and POSIX shells provide an inline editing feature that allows you
to retrieve a previously entered command and edit it. To use this feature,
you must know how to use a text editor such as vi or emacs.

For more information about these shell features, see Chapter 8.

7.2.2 The Restricted Bourne Shell

The operating system enhances system security by providing specified users
a limited set of functions with a restricted version of the Bourne shell (Rsh).
When these specified users log in to the system, they are given access to the
Restricted Bourne shell only. Your system administrator determines who
has access to the Restricted Bourne shell.

A restricted shell is useful for installations that require a more controlled
shell environment. As a result, the system administrator can create user
environments that have a limited set of privileges and capabilities. For
example, all users that are guests to your system might be allowed access
under the user name guest. When logging in to your system, user guest
would be assigned a restricted shell.

The actions of Rsh are identical to those of sh, except that the following
actions are not allowed:

• Changing directories. The cd command is deactivated.

• Specifying pathnames or command names containing a slash (/).

• Setting the value of the PATH or the SHELL variables. For more
information on these variables, see Section 7.5.2.

• Redirecting output with the right-angle brackets (> and >>).

For more detailed information on Rsh, see the sh(1b) reference page. For
information on how system administrators create restricted shells, see your
system administrator.

7.3 Changing Your Shell
Whenever you log in, you automatically are placed in a shell specified by
your system administrator. However, depending upon the security features
in effect on your system, you can enter commands that will let you do the
following:

• Determine which shell you are running

• Temporarily change your shell

• Permanently change your shell

7–4 Shell Overview

The following sections describe these operations.

7.3.1 Determining What Shell You Are Running

To determine what shell you currently are running, enter the following
command:

echo $SHELL

The file name of the shell you are running will display.

In the following example, assume that you are running the Bourne shell (sh):

$ echo $SHELL
/usr/bin/sh
$

Table 7–1 lists the file name that displays for each shell as well as the default
system prompt for users other than root (your system prompt may vary).

Table 7–1: Shell Names and Default Prompts
Shell Shell Name Default Prompt

Bourne sh $

Restricted Bourne Rsh $

C csh %

Korn ksh $

POSIX sh $

7.3.2 Temporarily Changing Your Shell

You may experiment with using other shells if the security features on your
system allow it.

To temporarily change your shell, enter the following command:

shellname

The shellname is the file name of the shell you want to use. See Table 7–1
for valid shell file names to enter on the command line. After the shell is
invoked, the correct shell prompt is displayed.

After you complete your work in the the new shell, you can return to your
default shell by entering exit or by pressing Ctrl/D.

For example, assume that the Korn shell is your default shell. To change to
the C shell and then back to the Korn shell, enter the following commands:

$ /usr/bin/csh
% exit

Shell Overview 7–5

$

______________________ Note _______________________

If you are using the Restricted Bourne shell, you cannot change
to another shell.

7.3.3 Permanently Changing Your Shell

You may permanently change your default shell if the security features
on your system allow it. If your current shell is the C shell, use the chsh
command to change your default shell. If you do not use the C shell, change
your default shell by contacting your system administrator.

In the C shell, enter the following command to change the default shell:

% chsh
Changing login shell for user.
Old shell: /usr/bin/csh
New shell:

Enter the name of the new shell. See Table 7–1 for valid shell names to
enter on the command line.

After entering the chsh command, you must log out and log in again for the
change to take effect.

7.4 Command Entry Aids

The following features of all operating system shells help you do your work:

• The ability to enter multiple commands and command lists

• Pipes and filters

• The ability to group commands

• Quoting

7.4.1 Using Multiple Commands and Command Lists

The shell usually takes the first word on a command line as the name of a
command and then takes any other words as arguments to that command.
The shell usually considers each command line as a single command.
However, you can use the operators in Table 7–2 to execute multiple
commands on a single command line.

7–6 Shell Overview

Table 7–2: Multiple Command Operators
Operator Action Example

; Causes commands to run in sequence. cmd1 ; cmd2

&& Runs the next command if the current
command succeeds.

cmd1 && cmd2

|| Runs the next command if the current
command fails.

cmd1 || cmd2

| Creates a pipeline. cmd1 | cmd2

The following sections describe running commands in sequence (;), running
commands conditionally (|| and &&) and using pipelines (|).

7.4.1.1 Running Commands in Sequence with a Semicolon (;)

You can enter more than one command on a line if you separate commands
with the semicolon (;).

In the following example, the shell runs ls and waits for it to finish. When
ls is finished, the shell runs who and so on through the last command:

$ ls ; who ; date ; pwd
change file3 newfile
amy console/1 Jun 4 14:41
Tue Jun 4 14:42:51 CDT 1999
/u/amy
$

If any one command fails, the others still execute.

To make the command line easier to read, separate commands from the
semicolon (;) with blanks or tabs. The shell ignores blanks and tabs used
in this way.

7.4.1.2 Running Commands Conditionally

When you connect commands with two ampersands (&&) or vertical bars (||),
the shell runs the first command and then runs the remaining commands
only under the following conditions:

&& The shell runs the next command only if the current command
completes (a command indicates successful completion when it
returns a value of zero).

|| The shell runs the next command only if the current command
does not complete.

The syntax for the two-ampersand (&&) operator follows:

Shell Overview 7–7

cmd1 && cmd2 && cmd3 && cmd4 && cmd5

If cmd1 succeeds, the shell runs cmd2. If cmd2 succeeds, the shell runs cmd3
and on through the series until a command fails or the last command ends.
(If any command fails, the shell stops executing the command line).

The syntax for the two-vertical-bar (||) operator follows:

cmd1 || cmd2

If cmd1 fails, then the shell runs cmd2. If cmd1 succeeds, the shell stops
executing the command line.

For example, suppose that the command mysort is a sorting program that
creates a temporary file (mysort.tmp) in the course of its sorting process.
When the sorting program finishes successfully, it cleans up after itself,
deleting the temporary file. If, on the other hand, the program fails, it may
neglect to clean up. To ensure deletion of mysort.tmp, enter the following
command line:

$ mysort || rm mysort.tmp
$

The second command executes only if the first command fails.

7.4.2 Using Pipes and Filters

A pipe is a one-way connection between two related commands. One
command writes its output to the pipe and the other process reads its input
from the pipe. When two or more commands are connected by the pipe (|)
operator, they form a pipeline.

Figure 7–1 shows the flow of input and output through a pipeline. The output
of the first command (cmd1) is the input for the second command (cmd2); the
output of the second command is the input for the third command (cmd3).

Figure 7–1: Flow Through a Pipeline

ZK-0537U-AI

Cmd2
(filter)

Cmd3
(filter)Cmd1

A filter is a command that reads its standard input, transforms that input
and then writes the transformed input to standard output. Filters are
used typically as intermediate commands in pipelines − that is, they are
connected by a pipe (|) operator. For example, to cause the ls command
to list recursively the contents of all directories from the current directory
to the bottom of the hierarchy and then to display the results, enter the
following command:

7–8 Shell Overview

$ ls −R | pg

In this example, the pg command is the filter because it transforms the
output from the ls −R command and displays it one screen at a time.

Certain commands that are not filters have a flag that causes them to act
like filters. For example, the diff (compare files) command ordinarily
compares two files and writes their differences to standard output. The
usual format for diff follows:

diff file1 file2

However, if you use the dash (–) flag in place of one of the file names, diff
reads standard input and compares it to the named file.

In the following pipeline, ls writes the contents of the current directory to
standard output. The diff command compares the output of ls with the
contents of a file named dirfile and writes the differences to standard
output one page at a time (with the pg command):

$ ls | diff − dirfile | pg

In the following example, another kind of filter program (grep) is used:

$ ls −l | grep r-x | wc −l
12

$

In this example, the following takes place:

• The ls −l command lists in long format the contents of the current
directory.

• The output of ls −l becomes the standard input to grep r-x, a
filter that searches for the files in its standard input for patterns with
permissions of r-x and writes all lines that contain the pattern to its
standard output.

• The standard output of grep r-x becomes the standard input to wc −l,
which displays the number of files matching the grep criteria in the
standard input.

To get the same results without using a pipeline, you would have to do the
following:

1. Direct the output of ls −l /user to a file. For example:

$ ls −l > file1

2. Use file1 as input for grep r-x and redirect the output of grep to
another file. For example:

$ grep r-x file1 > file2

3. Use the output file of grep as input for wc −l. For example:

Shell Overview 7–9

$ wc −l file2

As the preceding procedure demonstrates, using a pipeline is a much easier
way to perform the same operations.

Each command in a pipeline runs as a separate process. Pipelines operate
in one direction only (left to right) and all processes in a pipeline can run
at the same time. A process pauses when it has no input to read or when
the pipe to the next process is full.

7.4.3 Grouping Commands

The shell provides two ways to group commands, as shown in Table 7–3.

Table 7–3: Command Grouping Symbols
Symbols Action

(commands) The shell creates a subshell to run the grouped
commands as a separate process.

{commands} The shell runs the grouped commands as a
unit. Braces can only be used in the Bourne,
Korn, and POSIX shells.

The following sections describe the command grouping symbols of Table 7–3
in greater detail.

7.4.3.1 Using Parentheses ()

In the following command grouping, the shell runs the commands enclosed
in parentheses as a separate process:

$ (cd reports;ls);ls

The shell creates a subshell (a separate shell program) that moves to the
reports directory and lists the files in that directory. After the subshell
process is complete, the shell lists the files in the current directory (ls).

If this command were written without the parentheses, the original shell
would move to the reports directory, list the files in that directory and then
list the files in that directory again. There would be no subshell and no
separate process for the cd reports;ls command.

The shell recognizes the parentheses wherever they occur in the command
line. To use parentheses literally (that is, without their command-grouping
action), quote them by placing a backslash (\) immediately before either the
open parenthesis [(] or the close parenthesis [)], for example, \(.

For more information on quoting in the shell, see Section 7.4.4.

7–10 Shell Overview

7.4.3.2 Using Braces { }

Using braces is valid only in the Bourne, Korn, and POSIX shells.

When commands are grouped in braces, the shell executes them without
creating a subshell. In the following example, the shell runs the date
command, writing its output to the today.grp file and then runs the who
command, writing its output to today.grp:

$ { date; who ;} > today.grp
$

If the commands were not grouped together with braces, the shell would
write the output of the date command to the display and the output of the
who command to the file.

The shell recognizes braces in pipelines and command lists, but only if the
left brace is the first character on a command line.

7.4.4 Quoting

Reserved characters are characters such as the left-angle bracket (<), the
right-angle bracket (.), the pipe (|), the ampersand (&), the asterisk (*)
and the question mark (?) that have a special meaning to the shell. See
Chapter 8 for lists of reserved characters for each operating system shell.

To use a reserved character literally (that is, without its special meaning),
quote it with one of the three shell quoting conventions, as shown in
Table 7–4.

Table 7–4: Shell Quoting Conventions
Quoting
Convention

Action

\ Backslash − Quotes a single character.

’ ’ Single quotes − Quotes a string of characters (except the
single quotation marks themselves).

" " Double quotes − Quotes a string of characters (except $, ‘ and \).

The following sections describe the quoting conventions of Table 7–4 in
greater detail.

7.4.4.1 Using the Backslash (\)

To quote a single character, place a backslash (\) immediately before that
character, as in the following:

$ echo \?
?

Shell Overview 7–11

$

This command displays a single question mark (?) character.

7.4.4.2 Using Single Quotes (’ ’)

When you enclose a string of characters in single quotes, the shell takes
every character in the string (except the ’ itself) literally. Single quotes are
useful when you do not want the shell to interpret:

• Reserved characters such as the dollar sign ($), the grave accent ()`
and the backslash (\)

• Variable names

The following example shows how single quotes are used when you want to
display a variable name without having it being interpreted by the shell:

$ echo ’The value of $USER is’ $USER
The value of $USER is amy
$

The echo command displays the variable name $USER when it appears
within single quotes, but interprets the value of $USER when it appears
outside the single quotes.

For information on variable assignments, see Section 7.7.1.

7.4.4.3 Using Double Quotes (" ")

Double quotes (" ") provide a special form of quoting. Within double quotes,
the reserved characters dollar sign ($), grave accent ()` and backslash (\)
keep their special meanings. The shell takes literally all other characters
within the double quotes. Double quotes are most frequently used in variable
assignments.

The following example shows how double quotes are used when you want to
display brackets (usually reserved characters) in a message containing the
value of the shell variable:

echo "<<Current shell is $SHELL>>"
<<Current shell is /usr/bin/csh>>
$

For information on variable assignments, see Section 7.7.1.

7.5 The Shell Environment
Whenever you log in, your default shell defines and maintains a unique
working environment for you. Your environment defines such characteristics
as your user identity, where you are working on the system and what
commands you are running.

7–12 Shell Overview

Your working environment is defined by both environment variables and
shell variables. Your default login shell uses environment variables and
passes them to all processes and subshells that you create. Shell variables
are valid only for your current shell and are not passed to subshells.

The following sections discuss the shell environment, how it is configured
and how you can tailor it.

7.5.1 The login Program

Whenever you log in, the login program is run. This program actually
begins your login session using data stored in the /etc/passwd file,
which contains one line of information about each system user. The
/etc/password file contains your user name, your password (in encrypted
form), your home directory and your default shell. For more information on
the /etc/passwd file, see Chapter 5.

The login program runs after you enter your user name at the login:
prompt. It performs the following functions:

• Displays the Password: prompt (if you have a password).

• Verifies the user name and password you entered against what is
contained in the /etc/passwd file.

• Assigns default values to the shell environment.

• Starts running the shell process.

• Runs system login scripts and your personal login scripts. See Section 7.6
for more information.

7.5.2 Environment Variables

Your shell environment defines and maintains a unique working
environment for you. Most of the characteristics of your working
environment are defined by environment variables.

Environment variables consist of a name and a value. For example, the
environment variable for your login directory is named HOME and its value is
defined automatically when you log in.

Some environment variables are set by the login program and some can be
defined in the login script that is appropriate for your shell. For example,
if you use the C shell, environment variables typically will be set in the
.cshrc login script. For more information on login scripts, see Section 7.6.

Table 7–5 lists selected environment variables that can be used by all
operating system shells. Most of the values of these variables are set during
the login process and are then passed to each process that you create during
your session.

Shell Overview 7–13

Table 7–5: Selected Shell Environment Variables
Environment Variable Description

HOME Specifies the name of your login directory, the directory
that becomes the current directory upon completion of
a login. The cd command uses the value of HOME as its
default value. The login program sets this variable and
it cannot be changed by the individual user.

LOGNAME Specifies your login name.

MAIL Specifies the pathname of the file used by the mail system
to detect the arrival of new mail. The login program
sets this variable based upon your user name.

PATH Specifies the directories and the directory order that your
system uses to search for, find and execute commands.
This variable is set by your login scripts.

SHELL Specifies your default shell. This variable is set
by login using the shell specified in your entry
in the /etc/passwd file.

TERM Specifies the type of terminal you are using. This
variable usually is set by your login script.

TZ Specifies the current time zone and difference
from Greenwich mean time. This variable is set
by the system login script.

LANG Specifies the locale of your system, which is comprised
of three parts: language, territory and character code
set. The default value is the C locale, which implies
English for language, U.S. for territory and ASCII for
code set. LANG can be set in a login script.

LC_COLLATE Specifies the collating sequence to use when sorting
names and when character ranges occur in patterns.
The default value is the ASCII collating sequence. The
LC_COLLATE variable can be set in a login script.

LC_CTYPE Specifies the character classification rules used in the
ctype functions for the current locale. The default
value is the classification for ASCII characters. The
LC_TYPE variable can be set in a login script.

LC_MESSAGES Specifies the language used for yes/no prompts. The
default value is American English, but your system
may specify another language.

LC_MONETARY Specifies the monetary format for your system. The default
value is the American format for monetary figures. The
LC_MONETARY variable can be set in a login script.

7–14 Shell Overview

Table 7–5: Selected Shell Environment Variables (cont.)

Environment Variable Description

LC_NUMERIC Specifies the numeric format for your system. The default
value is the American format for numeric quantities. The
LC_NUMERIC variable can be set in a login script.

LC_TIME Specifies the date and time format for your system. The
default value is the American format for dates and times.
The LC_TIME variable can be set in a login script.

Many of these environment variables can be set during the login process by
the appropriate login script (see Section 7.6). However, you may reset them
as well as set those for which no default values have been provided. See
Section 7.7.1 for more information.

For more information on the LANG, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC and LC_TIME variables, see Appendix C which
explains the variables in the context of other system features that support
the languages and customs of different countries.

You may also create your own environment variables. For example, some
systems have more than one mail program available to users. Assume
that mail and mh are available on your system and that each has its own
pathname. As a result, you could define a variable for the pathname of each
mail program.

For more information about environment variables specific to each operating
system shell, see Chapter 8. For a complete list of operating system shell
environment variables, see the sh(1b), sh(1p), csh(1) and ksh(1) reference
pages.

7.5.3 Shell Variables

Shell variables are valid only for your current shell and are not passed to
subshells. Consequently, they can be used only in the shell in which they are
defined. In other words, they may be thought of as local variables.

Shell variables can be accessed outside of the current shell by becoming
environment variables. For more information about environment variables,
see Section 7.7.1.

You may also create your own shell variables. For example, some mail
programs use the PAGER variable to define the program that displays mail.
Suppose that your mail program is mailx. You could define the PAGER
variable to use the more program to display your mail.

For information on how to set shell variables, see Section 7.7.1.

Shell Overview 7–15

7.6 Login Scripts and Your Environment

A login script is a file that contains commands that set up your user
environment. There are two kinds of login scripts:

• System login scripts for all users of a particular shell

These scripts create a default environment for all users and are
maintained by your system administrator. The Bourne, Korn, and
POSIX shells use a system login script called /etc/profile. The
C shell uses a script called /etc/csh.login. See Table 7–6 for the
pathnames of system login scripts.

When you log in, the commands in this file are executed first.

• Local login scripts in your default login directory

These scripts let you tailor your environment and you maintain the
appropriate file. For example, you could change the default search path
or shell prompt. If your default shell (see Section 7.3) is the Bourne,
Korn, or POSIX shell, the login script file is called .profile. The C
shell uses the file called .login. A local login script is executed after the
system login script.

If the C shell is your default, your environment can be further tailored with
the .cshrc file. It executes when you log in (before .login) and whenever
you spawn a subshell. The .cshrc file is the C shell mechanism that
automatically makes variables available to subshells.

On startup, the Korn and POSIX shells will also execute any file pointed
to by the ENV environment variable. This variable is typically set in the
.profile file and is set to another file, usually in the $HOME directory.
Some users prefer to call this file .kshrc or .envfile. To use such a file,
place a line like this in your .profile file:

ENV= ~ /.kshrc

Such a file typically contains shell variables, alias definitions and function
definitions. This file will be referred to as .kshrc for the remainder of this
document.

Creating your own login script is not mandatory as the system login script
for your shell provides a basic environment. Your system administrator may
have created a local login script that you can modify with a text editor.

When you are new to the system, you may want to use the default
environment established for you. However, as you become more familiar
with the system, you may want to create or modify your own login script.

Table 7–6 lists the system login and local login scripts for each operating
system shell. All scripts for a given shell run whenever you log in to your

7–16 Shell Overview

system. In addition, when you enter csh at any shell prompt or execute
a C shell script, the .cshrc file executes and creates an environment for
the C subshell.

Table 7–6: System and Local Login Scripts
Shell Pathname System Login Script Local Login Script

Bourne /usr/bin/sh /etc/profile .profile

Korn /usr/bin/ksh /etc/profile .profile
ENV

POSIX /usr/bin/posix/sh /etc/profile .profile
ENV

C shell /usr/bin/csh /etc/csh.login .login
.cshrc

To determine if you have any local login scripts in your home directory, use
the ls −a command. This command displays all files that begin with a
dot (.) as well as all other entries.

The following customization features are commonly set in the local login
scripts:

• Terminal characteristics

• Search path and other environment variables

• Shell variables

• Maximum permissions for new files with umask (see Chapter 5)

• Allowing or stopping messages to your workstation

• The trap command (Bourne, Korn, and POSIX shells only)

• Command aliases, history variables (C shell and Korn or POSIX shells
only)

• Displaying system status information and other messages

• Checking for mail

• Checking for news

It is a good idea to check the contents of your system login script so that you
can avoid duplication in your local login script. For example, if your system
login script checks for news, there is no need to do the same in your local
login script.

See Chapter 8 for specific examples of login scripts.

Shell Overview 7–17

7.7 Using Variables

All operating system shells use environment and shell variables to define
user environment characteristics. As part of the set-up process, your system
administrator has provided default environment and shell variable values in
the appropriate login scripts.

For most users, the default environment and shell variable values are
sufficient. As you become more familiar with the system, however, you
may want to modify some values. For example, you may want to reset the
variable that defines your shell prompt so that it is more personalized. You
also may want to set a shell variable that specifies a very long directory
pathname so that you can save time keying commands that use the directory
(see the examples in Section 7.7.1). You also may find setting variables
useful when writing shell procedures. You will find that you may use
variables creatively to enhance your work environment.

Some environment variables may be reset and some are read-only and
cannot be reset. That is, these variables can be used, but not modified. For
more information on this topic, see the appropriate shell reference page;
sh(1b), sh(1p), csh(1) or ksh(1).

To reset environment variables as well as define your own shell variables, do
one of the following:

• Edit the appropriate local login script if you want these values set for
you whenever you log in. For more information, see Section 7.6.

• Set the environment variables on the command line if you want these
values set only for the current login session.

At any time, you may reference the value of any variable as well as display
its value. You also may clear the value of any variable.

7.7.1 Setting Variables

The following sections describe how to set, reference, display and clear
variable values.

7.7.1.1 Bourne, Korn and Posix Shell Variables

In the Bourne, Korn, and POSIX shells, you set variables with an assignment
statement. The general format for setting variables is the following:

name = value

The name entry specifies the variable name. The value entry specifies the
value assigned to the variable. Be sure you do not enter spaces on the
command line.

7–18 Shell Overview

If you want to make the shell variable available to subshells, enter the
export command:

export name

When you export a shell variable, it becomes an environment variable.

With the Bourne shell, two statements are required. The Korn and POSIX
shells allow the two statements to be combined into one command, as follows:

export name = value

For example, you can create a variable called place by assigning it a value
of U. S. A. with the following statement:

$ place=’U. S. A.’
$

From then on, you can use the variable place just as you would use its value.

For a more useful example, assume that you are using the Bourne shell and
that you temporarily want to personalize your shell prompt. The default
Bourne shell prompt is a dollar sign ($) set by the PS1 environment variable.
To set it to What Shall I Do Next? >, enter the following command:

$ PS1=’What Shall I Do Next? >’
What Shall I Do Next? >

If you want to make the shell prompt available to subshells, enter the
following command:

$ export PS1

This What Shall I Do Next? > prompt will be in effect throughout your
session. If you want to make the new prompt more permanent, enter the
same assignment statement and the export command in your .profile
file.

As another example, to save keying time you want to define a variable for
a long pathname that you use often. To define the variable reports for
the directory /usr/sales/shoes/women/retail/reports, enter the
following:

$ reports=/usr/sales/shoes/women/retail/reports

To reference the variable after setting it, enter a dollar sign ($) before
the variable name. For more information on referencing variables, see
Section 7.7.2.

You now can use the variable reports in any commands you enter during
this session. If you want to make this variable permanent, enter the same
assignment statement in your .profile file.

Shell Overview 7–19

7.7.1.2 C Shell Variables

In the C shell, you set environment variables with the setenv command.
The general format of the setenv command is the following:

setenv name value

The name entry specifies the variable name. The value entry specifies the
value assigned to the variable.

For an example of setting the PATH environment variable, see Section 7.8.

You set shell variables with the set command. The format of the set
command is:

set name = value

The name entry specifies the variable name. The value entry specifies the
value assigned to the variable. If the value entry contains more than one
part (has spaces), enclose the whole expression in single quotes (’).

For example, assume that you want to change your prompt. The default
C shell prompt is a percent sign (%). To set it to Ready? >, enter the
following on the command line:

% set prompt=’Ready? >’
Ready? >

The Ready? > prompt will be in effect throughout your session. If you
execute another shell from the Ready? > prompt, you will get the new
shell’s prompt. To make the new prompt permanent, enter the same
command in your .cshrc file.

7.7.1.3 Setting Variables in All Shells

To set or reset environment or shell variables in any operating system shell,
do one of the following:

• Edit the appropriate local login script if you want these values set for
you whenever you log in. For more information about login scripts, see
Section 7.6.

• Set them on the command line if you want these values set only for the
current login session.

7.7.2 Referencing Variables (Parameter Substitution)

To reference the value of a variable in a command line, enter a dollar sign
($) before the variable name. The dollar sign ($) causes the shell you are
using to substitute the value of the variable for the variable name. This is
known as parameter substitution.

7–20 Shell Overview

For example, assume that you have previously defined the variable sales
for the long pathname /user/reports/Q1/march/sales and that you
want to use this variable with the cd command. To do so, enter the cd
command with the sales variable:

$ cd $sales
$

Then, enter the pwd command to verify that the directory is changed:

$ pwd
/user/reports/Q1/march/sales
$

In this example, the shell substitutes the actual pathname of the directory
/user/reports/Q1/march/sales for the variable name sales.

7.7.3 Displaying the Values of Variables

You can display the value of any variable currently set in your shell. Variable
values can be displayed either singly or as a group.

To display the value of a single variable, use the echo command in the
following general format:

echo $ variable

The variable entry identifies the variable you want to display.

For example, assume that you use the Korn shell and want to display the
value of the SHELL environment variable. To do so, enter the following
command:

$ echo $SHELL
/usr/bin/ksh
$

For the Bourne, Korn, and POSIX shells to display the value of all currently
set variables, use the set command without any options. For example, the
following example lists the currently set values in the Bourne shell (your
output will vary):

$ set
EDITOR=emacs
HOME=/users/chang
LOGNAME=chang
MAIL=/usr/mail/chang
PATH=:/usr/bin:/usr/bin/X11
PS1=$
SHELL=/usr/bin/sh
TERM=xterm
$

Shell Overview 7–21

For the C shell, to display the value of all currently set shell variables, use
the set command without any options. To display the value of all currently
set environment variables, use the setenv command or the printenv
command without any options.

7.7.4 Clearing the Values of Variables

You may remove the value of most of the current variables. Please note,
however, that the following variables cannot be cleared:

• PATH

• PS1 (Bourne, Korn, and POSIX shells)

• PS2 (Bourne, Korn, and POSIX shells)

• MAILCHECK (Bourne, Korn, and POSIX shells)

• IFS (Bourne, Korn, and POSIX shells)

For more information on these variables, see the appropriate shell reference
pages; sh(1b), sh(1p), csh(1) or ksh(1).

In the Bourne, Korn, and POSIX shells, you can clear both environment
and shell variables with the unset command. The format of the unset
command is:

unset name

The name entry specifies the variable name.

In the C shell, you clear environment variables with the unsetenv
command. The format of the unsetenv command is:

unsetenv name

The name entry specifies the variable name.

You clear shell variables with the unset command. The format of the unset
command is:

unset name

The name entry specifies the variable name.

For an example, assume that you use the Korn shell and have created a
variable called place and have assigned it a value of U. S. A.. To clear
the variable, enter the following:

$ unset place
$

For more detailed information about setting and referencing variables, see
the appropriate shell reference page.

7–22 Shell Overview

7.8 How the Shell Finds Commands
Every time you enter a command, your shell searches through a list of
directories to find the command. This list of directories is specified by the
PATH environment variable.

At many installations, system administrators specify default PATH
directories for new users. However, more experienced users may need to
change these PATH directories.

The PATH variable contains a list of directories to search, separated by colons
(:). The order in which the directories are listed is the search order that the
shell uses to search for the commands that you enter.

To determine the value of PATH, use the echo command. For example,
assume that you are using the C shell and have entered the following:

% echo $PATH
/usr/bin:/usr/bin/X11
%

This output from the echo command (your output may vary) tells you that
the search order of the preceding example is the following:

• The /usr/bin directory is searched first.

• The /usr/bin/X11 directory is searched next.

Typically, PATH is set as an environment variable in the appropriate login
script. In the Bourne, Korn, and POSIX shells, the PATH variable usually is
set in the .profile script. In the C shell, it usually is set in the .login
script.

If you want to change the search path, you can assign a new value to the
PATH variable. For example, assume that you use the Bourne shell and
that you have decided to use your own versions of some operating system
commands. As a result, you want to add $HOME/usr/bin/ to the search
path. To do so, enter the following on the command line if you want the new
PATH variable value to be in effect for the current login session:

$ export PATH=$HOME/usr/bin:/usr/bin:/usr/bin/X11
$

If you want this new PATH variable value to be in effect for all future sessions,
modify the PATH variable in your .profile script. The changes you have
made in your .profile script will take effect the next time you log in.

7.9 Using Logout Scripts
You can create a logout script that automatically runs every time you end
your session. Just like login scripts, the .logout file must reside in your
home directory.

Shell Overview 7–23

You can use logout scripts for the following purposes:

• To clear your screen

• To display a logout message

• To run long background processes after you log out

• To run a file cleanup routine

To create a logout script, do the following:

1. Create a file called .logout in your home directory with a text editor.

2. Place the commands you want in the file. See Section 1.2 for ideas.

3. Save the text and exit the editor.

4. Enter the following command to ensure that the .logout file has the
appropriate executable permissions:

$ chmod u+x .logout
$

Using a .logout file is not mandatory; it is a convenience that may enhance
your work environment.

7.9.1 Logout Scripts and the Shell

If you are using the C shell, the .logout script executes automatically
when you log out.

If you are using the Korn or POSIX shell and want to use a logout script,
you must ensure that a special trap is set in your .profile script. A trap is
a command sequence that looks for a specified signal from a terminal and
then runs a specified command or set of commands.

If the following line is not set in your .profile script, you must add it
with a text editor:

trap $HOME/.logout 0

This statement tells your system to run the .logout script whenever it
receives a zero (0) signal, which occurs automatically when you log out.

7.9.2 A Sample .logout File

The following example .logout file does the following:

• Clears the screen

• Displays a logout message that provides the name of your system, your
user name and the logout time

• Displays a parting message

7–24 Shell Overview

• Runs a file cleanup routine in the background after you log out

Lines beginning with the number sign (#) are comment lines that describe
the commands below them.

Clear the screen
clear

Display the name of your system, your user name,
and the time and date that you logged out
echo ‘hostname‘ : ‘whoami‘ logged out on ‘date‘

Run the find command in the background. This command
searches your login directory hierarchy for all
temporary files that have not been accessed in
7 days and then deletes them.
find ~ −name ’*.tmp’ −atime +7 −exec rm {} \; &

A parting message
echo "Good Day. Come Back Soon"

7.10 Using Shell Procedures (Scripts)

In addition to running commands from the command line, the shell can
read and run commands contained in a file. Such a file is called a shell
procedure or shell script.

Shell procedures are easy to develop and using them can help you work more
efficiently. For example, you may find shell procedures useful because you
can place frequently used commands in one file and then execute them by
entering only the name of the procedure. As a result, they are useful for
doing repetitious tasks that would usually require entering many commands
on the command line.

Because shell procedures are text files that do not have to be compiled, they
are easy to create and to maintain.

Each shell has its own native programming language. The following are
some programming language features that apply to all shells:

• Storing values in variables

• Testing for predefined conditions

• Executing commands repeatedly

• Passing arguments to a program

For more information on specific programming features of your shell, see
Chapter 8.

Shell Overview 7–25

7.10.1 Writing and Running Shell Procedures

To write and run a shell procedure, do the following:

1. Create a file of the commands you need to accomplish a task. Create
this file as you would any text file: with vi or another editing program.
The file can contain any system command or shell command (described
in the sh(1b), sh(1p), csh(1) or ksh(1) reference pages).

2. Use the chmod +x command to give the file x (execute) status. For
example, the command chmod g+x reserve gives execute status to
the file named reserve for any user in your group (g). See Chapter 5
for information on using the chmod command.

3. Run the procedure by entering its name. Enter the pathname if the
procedure file is not in your current directory.

The following example shows a simple shell procedure named lss that sorts
ls −l command output by file size:

#! /usr/bin/csh
lss: sort and list
ls −l | sort −n +4

Table 7–7 describes each line in lss.

Table 7–7: Description of Example Shell Script
Shell Command Description

#! /usr/bin/csh Specifies the shell where the shell
procedure should run.a

#lss: list and sort Comment line that describes the purpose
of the shell procedure.

ls −l | sort −n +4 These are the commands in the shell
procedure. This procedure lists the files
in a directory (ls −l). Output from the
ls −l command is then piped to the sort
command (| sort −n +4). This command
skips over the first four columns of the
ls −l output, sorts the fifth column (the
file size column) numerically and writes
the lines to the standard output.

a See Section 7.10.2 for more information.

To run the lss procedure, enter lss. Sample system output looks similar
to the following:

$ lss
-rw-rw-rw- 1 larry system 65 Mar 13 14:46 file3
-rw-rw-rw- 1 larry system 75 Mar 13 14:45 file2
-rw-rw-rw- 1 larry system 101 Mar 13 14:44 file1
$

7–26 Shell Overview

7.10.2 Specifying a Run Shell

At times, you may want to specify the shell where a shell procedure should
run. This is because of possible syntactic differences between the shells, but
is especially true of differences between the C shell and the other shells.

By default, the operating system assumes that any shell procedure you run
should be executed in the same shell as your login shell. For example, if your
login shell is the Korn shell, by default your shell procedures will run in
that same shell.

The ability to override the default is very useful for shell procedures that
many users run because it ensures that the procedure executes in the correct
shell, regardless of the user’s login shell. To change this default run shell,
include the following command as the first line of the shell procedure:

#!shell_path

The shell_path entry specifies the full pathname of shell where you want
the procedure to run.

For example, if you want a shell procedure to run under the C shell, the first
line of the procedure should be the following:

#!/usr/bin/csh

Shell Overview 7–27

8
Shell Features

This chapter functions as a reference source for C shell and Bourne, Korn,
or POSIX shell features. Unlike other chapters of this guide that present
conceptual or tutorial information, or both, the purpose of this chapter is to
provide very brief reference information about each shell.

To get the most out this chapter, you already should be familiar with the
introductory shell overview information in Chapter 7.

After completing this chapter, you should be able to:

• Understand the main differences between operating system shells
(Section 8.1)

• Understand specific features of each operating system shell (Section 8.2)

• Understand the specifics of local login scripts for each shell (Section 8.2.1)

8.1 Comparison of C, Bourne, Korn and POSIX Shell
Features

Table 8–1 compares selected features of the C shell and the Bourne, Korn,
and POSIX shells.

Table 8–1: C, Bourne, Korn and POSIX Shell Features
Feature Description C Bourne Korn

or
POSIX

Shell
programming

A programming language that includes
features such as loops, condition
statements and variables.

Yes Yes Yes

Signal
trapping

Mechanisms for trapping interruptions
and other signals sent by the
operating system.

Yes Yes Yes

Restricted
shells

A security feature that provides a
controlled shell environment with
limited features.

No Yes No

Command
aliases

A feature that lets you abbreviate long
command lines or to rename commands.

Yes No Yes

Shell Features 8–1

Table 8–1: C, Bourne, Korn and POSIX Shell Features (cont.)

Feature Description C Bourne Korn
or

POSIX

Command
history

A feature that stores commands and
lets you edit and reuse them.

Yes No Yes

File name
completion

A feature that lets you enter a
portion of a file name and the system
automatically completes it or suggests
a list of possible choices.

Yes No Yes

Command line
editing

A feature that lets you edit a current or
previously entered command line.

Yes No Yes

Array The ability to group data and call
it by a name.

Yes No Yes

Integer
arithmetic

The ability to perform arithmetic
functions within the shell.

Yes No Yes

Job control Facilities for monitoring and accessing
background processes.

Yes No Yes

For detailed information on shell features, see the appropriate shell
reference pages sh(1b), sh(1p), csh(1) or ksh(1).

8.2 C Shell Features

This section describes the following C shell features:

• Sample .cshrc and .login scripts

• Metacharacters

• Command history and aliases

• Built-in variables and commands

8.2.1 Sample .cshrc and .login Scripts

The .cshrc login script sets up your C shell environment by defining
variables and operating parameters for the local shell process. The .login
script defines variables and operating parameters that you want executed
at the beginning of your session and that you want to be valid for all shell
processes during the current login session.

When you log in, the operating system executes the .cshrc file in your
home directory first and the .login file next. The .login script is executed
only when you log in. However, the .cshrc file is executed each time you
create a subshell.

8–2 Shell Features

In the following .cshrc script, shell variables, command aliases and
command history variables are set. Table 8–2 explains each part of the script.

Set shell variables
set noclobber
set ignoreeof
set notify

Set command aliases
alias h ’history \!* | more’
alias l ’ls −l’
alias c clear

Set history variables
set history=40
set savehist=40

Set prompt
set prompt = "\! % "

Table 8–2: Example .cshrc Script
Command Description

Shell Variables

set noclobber Stops files from being overwritten. If set,
places restrictions on output redirection
> to ensure that files are not accidentally
destroyed and that >> redirections
refer to existing files.

set ignoreeof Specifies that you cannot use Ctrl/D to end
your login session. Instead, you must use
either the exit or the logout commands.

set notify Informs you when background processes
have been completed.

Command Aliases

alias h ’history \!* | more’ Defines the contents of the command history
buffer through the more command. The
\!* string specifies that all the history
buffer should be piped.

alias l ’ls −l’ Defines a short name, l, for the ls
−l command that lists directory files
in the long format.

alias c clear Defines a short name, c, for the clear
command that clears your screen.

History Variables

Shell Features 8–3

Table 8–2: Example .cshrc Script (cont.)

Command Description

history=40 Instructs the shell to store the last 40
commands in the history buffer.

savehist=40 Instructs the shell to store the last 40
commands and use them as the starting
history for the next login session.

Prompt Variable

set prompt = "\! % " Changes your prompt so that it tells you the
command number of the current command.

In the following .login script, the permissions for file creation are set, the
PATH environment variable is set and the editor and printer are specified.
Table 8–3 explains each part of the script.

Set file creation permissions
umask 027

Set environment variables
set path=/usr/bin:/usr/local/bin:
set cdpath=.:..:$HOME
setenv EDITOR emacs
setenv MAILHOST boston
setenv PRINTER sales

Table 8–3: Example .login Script
Command Description

File Permissions

umask 027 Specifies the permissions to be subtracted
from the default permissions set by the
creating program, for all new files created.
The umask value is subtracted from 777 (for
executable programs) or from 666. For an
executable program, a umask value of 027
results in all permissions for the owner, read
and execute permissions for members of the
same group and no permissions for all others.

Environment Variables

set path \ /usr/bin:/usr/lo-
cal/bin:

Specifies the search path. In this
case, /usr/bin is searched first and
/usr/local/bin is searched next.

8–4 Shell Features

Table 8–3: Example .login Script (cont.)

Command Description

set cdpath=.:..:$HOME The cdpath variable sets the search path for
the cd command. This variable assignment
specifies that the cd command should search
for the named directory in the following
order: current directory (.), parent directory
(..) and the home directory ($HOME).

setenv EDITOR emacs Specifies the emacs editor as the default
editor when running a program that lets
you edit a file. For example, various
mail programs let you use an editor to
compose and edit messages.

setenv MAILHOST boston Specifies boston as your mail
handling system.

setenv PRINTER sales Specifies the printer sales as your
default printer.

8.2.2 Metacharacters

Table 8–4 describes C shell metacharacters (characters that have special
meaning to the shell). The meaning of these metacharacters are grouped by
interpretation when they appear in a shell script, in a Filename specification,
when used to quote other characters, in an Input/Output specification or
when used to indicate variable substitution.

Table 8–4: C Shell Metacharacters
Metacharacter Description

Syntactic

; Separates commands that should be
executed sequentially.

| Separates commands that are part of a pipeline.

&& Runs the next command if the current
command succeeds.

| | Runs the next command if the current
command fails.

() Groups commands to run as a separate
process in a subshell.

& Runs commands in the background.

File Name

/ Separates the parts of a file’s pathname.

Shell Features 8–5

Table 8–4: C Shell Metacharacters (cont.)

Metacharacter Description

? Matches any single character except a
leading dot (.).

* Matches any sequence of characters except
a leading dot (.).

[] Matches any of the enclosed characters.

~ Specifies a home directory when used at
the beginning of pathnames.

Quotation

’…’ Specifies that any of the enclosed characters
should be interpreted literally; that is, without
their special meaning to the shell.

"…" Provides a special form of quoting. Specifies
that the $ (dollar sign), ‘ (grave accent) and
\ (backslash) characters keep their special
meaning, while all other enclosed characters
are interpreted literally; that is, without their
special meaning to the shell. Double quotes are
useful in making variable assignments.

Input/Output

< Redirects input.

> Redirects output to a specified file.

<< Redirects input and specifies that the shell
should read input up to a specified line.

>> Redirects output and specifies that the shell
should add output to the end of a file.

>& Redirects both diagnostic and standard output
and appends them to a file.

>>& Redirects both diagnostic and standard output
to the end of an existing file.

>! Redirects ouput. It also specifies that if
the noclobber variable is set (prevents
overwriting of files), it should be ignored, so
that the file can be overwritten.

Substitution

$ Specifies variable substitution.

! Specifies history substitution.

: Precedes substitution modifiers.

8–6 Shell Features

Table 8–4: C Shell Metacharacters (cont.)

Metacharacter Description

^ Used in special kinds of history substitution.

‘ Specifies command substitution.

8.2.3 Command History

The command history buffer stores the commands you enter and lets you
display them at any time. As a result, you can select a previous command or
parts of previous commands and then reexecute them. This feature may save
you time because it lets you reuse long commands instead of reentering them.

You may want to enter the following three commands in your .cshrc file:

• set history=n

Creates a history buffer that stores the command lines you enter. The n
entry specifies the number of command lines you want to store in the
history buffer.

• set savehist=n

Saves the command lines you entered during the current login session
and makes them available for the next login session. The n entry
specifies the number of command lines you want to store in the history
buffer when you log out.

• set prompt=[\!] %

Causes your C shell prompt to display the number of each command line.

To see the contents of the history buffer, use the history command. The
displayed output will be similar to the following (your output will vary):

[18] % history
3 set history=15
4 pwd
5 cd /usr/sales
6 ls −l
7 cp report report5
8 mv /usr/accounts/new .
9 cd /usr/accounts/new
10 mkdir june
11 cd june
12 mv /usr/accounts/new/june .
13 ls −l
14 cd /usr/sales/Q1
15 vi earnings
16 cd /usr/chang
17 vi status

Shell Features 8–7

18 history
[19] %

To reexecute any command in the command history buffer, use the commands
listed in Table 8–5. Each command starts with an exclamation point (!),
which tells the C shell that you are using commands in the history buffer.

Table 8–5: Reexecuting History Buffer Commands
Command Description

!! Reexecutes the previous command.

!n Reexecutes the command specified by n. For example, using
the history buffer shown in the previous display, !5 reexecutes
the cd /usr/sales command.

!−n Reexecutes a previous command relative to the current command.
For example, using the history buffer shown in the previous display,
!-2 invokes command number 17, vi status.

!string Reexecutes the most recent command that has first characters
matching those specified by string. For example, using the
history buffer shown in the previous display, !cp invokes
command number 7, cp report report5.

!?string Reexecutes the most recent command line that has any characters
matching those specified by string. For example, using the
history buffer shown in the previous display, !?Q1 invokes
command number 14, cd /usr/sales/Q1.

The command history buffer also lets you reuse previous command
arguments as well as modify previous command lines. For information on
these features, see the csh(1) reference page.

8.2.4 File Name Completion

The C shell lets you enter a portion of a file name or pathname at the shell
prompt and the shell automatically will match and complete the name. This
feature saves you time when you are trying to display long, unique file
names.

For example, assume that you have the file meetings_sales_status
in your current directory. To display a long listing of the file, enter the
following command:

% ls −l meetings Escape

The system displays the following on the same command line:

% ls −l meetings_sales_status

You can now execute the command by pressing Return.

8–8 Shell Features

For more detailed information on file name completion, see the csh(1)
reference page.

8.2.5 Aliases

The command aliases feature lets you abbreviate long command lines or
rename commands. You do this by creating aliases for long command
lines that you frequently use.

For example, assume that you often need to move to the directory
/usr/chang/reports/status. You can create an alias status, which will
take you to that directory whenever you enter it on the command line.

In addition, aliases let you make up more descriptive names for commands.
For example, you could define an alias named rename for the mv command.

To create aliases, use the alias command. The format of the alias
command is:

alias aliasname command

The aliasname entry specifies the name you want to use. The command
entry specifies either the original command or a series of commands. If the
command has more than one part (has spaces), enclose the whole expression
in single quotes (’ ’).

For example, to create the alias status that moves you to the directory
/usr/chang/reports/status, enter the following command:

% alias status ’cd /usr/chang/reports/status’

The usual way to define aliases is to make them a permanent part of your
environment by including them in your .cshrc file. As a result, you can
use the aliases whenever you log in or start a new shell. See Section 8.2.1
for an example.

To display all alias definitions, enter the following command:

% alias

To display the definition of a particular alias, enter the following command:

% alias aliasname

The aliasname entry specifies the particular alias for which you are
requesting a definition.

To remove an alias for the current login session, use the unalias command.
The general format of the unalias command is the following:

unalias aliasname

The aliasname entry specifies the alias you want to remove.

Shell Features 8–9

To remove an alias for the current and all future login sessions, do the
following:

1. Enter the following command:

% unalias aliasname

The aliasname entry specifies the alias you want to remove.

2. Edit the .cshrc file and remove the alias definition. Then, save the file.

3. Enter the following command to reexecute the .cshrc file:

% source .cshrc

For complete information on using aliases with the C shell, see the csh(1)
reference page.

8.2.6 Built-In Variables

The C shell provides variables that can be assigned values. These variables
can be very useful for storing values that can be used later in commands. In
addition, you can affect directly shell behavior by setting those variables to
which the shell itself refers.

Table 8–6 describes selected C shell built-in variables that are of the most
interest to general users. For a complete list of C shell built-in variables, see
the csh(1) reference page.

Table 8–6: C Shell Built-In Variables
Variable Description

argv Contains a value or values that can be used by the shell or shell
scripts.

cwd Contains the pathname to your current directory. The value of this
variable changes every time you use the cd command.

home Contains the pathname of your home directory. The default value for
this variable is specified in the /etc/passwd file.

ignoreeof Specifies whether Ctrl/D can be used to log out from the system. If
set, you must use either logout or exit to log out. If unset, you may
use Ctrl/D to log out. This variable is usually set in the .cshrc file.

cdpath Specifies alternative directories to be searched by the system when
locating subdirectories with the cd, chdir or pushd commands. This
variable is usually set in the .login file.

noclobber Specifies whether a file can be overwritten. If set, places restrictions
on output redirection > to ensure that files are not accidentally
destroyed and that >> redirections refer to existing files. If set, a file
cannot be overwritten. This variable is usually set in the .cshrc file.

8–10 Shell Features

Table 8–6: C Shell Built-In Variables (cont.)

Variable Description

notify Specifies whether you want to be notified when a background process
has completed. If set, you are notified; if unset, you are not notified.
This variable is usually set in the .cshrc file.

path Specifies the search path that the shell uses to find commands. This
variable is usually set in the .login file.

prompt Can be used to customize your C shell prompt. This variable is
usually set in the .cshrc file.

shell Specifies the shell to be created whenever a program creates a new
subshell. This variable is usually set in the .login file.

status Specifies whether the most recently executed command
completed without error (a value of zero is returned) or with
an error (a nonzero value is returned).

8.2.7 Built-In Commands

Table 8–7 describes C shell commands that are of most interest to general
users. For a complete list of C shell built-in commands or for more
information on the commands listed here, see the csh(1) reference page.

Table 8–7: Built-In C Shell Commands
Command Description

alias Assigns and displays alias definitions.a

bg Puts a suspended process in the background.b

echo Writes arguments to the shell’s standard output.

fg Puts a currently running background process in the foreground.b

history Displays the contents of the command history buffer.c

jobs Displays the job number and the PID number of current background
processes.b

logout Terminates the login session.

rehash Tells the shell to recompute the hash table of command locations.
Use this command if you add a command to a directory in the shell’s
search path and want the shell to be able to find it. If you do not use
rehash, the command cannot be executed because it was not in the
directory when the hash table was originally created.

repeat Repeats a command a specified number of times.

set Assigns and displays shell variable values.d

setenv Assigns environment variable values.d

Shell Features 8–11

Table 8–7: Built-In C Shell Commands (cont.)

Command Description

source Executes commands in a file. This can be used to update the current
shell environment.e

time Displays the execution time of a specified command.

unalias Removes alias definitions.a

unset Removes values that have been assigned to variables.d

unsetenv Removes values that have been assigned to environment variables.d
a For more information about the alias and unalias commands, see Section 8.2.5.
b For more information about the bg, fg and jobs commands, see Chapter 6.
c For more information about the history command, see Section 8.2.3.
d For more information about the set, setenv, unset and unsetenv commands, see Chapter 7.
e For more information about the source command, see Section 8.2.5.

8.3 Bourne Shell Features
This section describes the following Bourne shell features:

• A sample .profile login script

• Metacharacters

• Built-in variables

• Built-in commands

8.3.1 Sample .profile Login Script

If your login shell is the Bourne shell, the operating system executes the
.profile login script to set up your environment.

The .profile login script variables that are exported are passed to any
subshells and subprocesses that are created. Variables that are not exported
are used only by the login shell.

In the following .profile login script, shell variables are set and exported,
a trap is set for the logout script and the system is instructed to display
information. Table 8–8 explains each part of the script.

Set PATH
PATH=/usr/bin:/usr/local/bin:
Export global variables
export PATH
Set shell variables
PS1=’$LOGNAME $ ’
CDPATH=.:..:$HOME
Set up for logout script
trap "echo logout; $HOME/.logout" 0
Display status information

8–12 Shell Features

date
echo "Currently logged in users:" ; users

Table 8–8: Example Bourne Shell .profile Script
Command Description

Set Search Path

PATH=/usr/bin:/usr/local/bin: Specifies the search path. In this
case, /usr/bin is searched first and
/usr/local/bin searched next.

Export Search Path

export PATH Specifies that the search path is to be
passed to all commands that you execute.

Set Shell Variables

PS1=’$LOGNAME $ ’ The PS1 variable specifies the Bourne shell
prompt and its default value is $. However,
this variable assignment specifies that
your prompt should be changed to the
following: username $. For example, if
your user name were amy, your prompt
would be the following: amy $.

CDPATH=.:..:$HOME The CDPATH variable sets the search
path for the cd command. This variable
assignment specifies that the cd command
should search for the named directory
in the current directory (.), the parent
directory (..) and the home directory
($HOME) (in that order).

Set Up Logout Script

trap "echo logout;
$HOME/.logout" 0

Specifies that your shell should display
logout and execute your .logout
script when the trap command captures
the exit signal (0).a

Display Status Information

date Displays the date and time.
a For more information about the trap command, see Section 7.9.1.

8.3.2 Metacharacters

Table 8–9 describes Bourne shell metacharacters (characters that have
special meaning to the shell). The meaning of these metacharacters are
grouped by interpretation when they appear in a shell script, in a Filename
specification when used to quote other characters, in an Input/Output
specification, or when used to indicate variable substitution.

Shell Features 8–13

Table 8–9: Bourne Shell Metacharacters
Metacharacter Description

Syntactic

| Separates commands that are part of a pipeline.

&& Runs the next command if current command succeeds.

| | Runs the next command if the current command fails.

; Separates commands that should be executed sequentially.

;; Separates elements of a case construct.

& Runs commands in the background.

() Groups commands to run as a separate process in a subshell.

File Name

/ Separates the parts of a file’s pathname.

? Matches any single character except a leading dot (.).

* Matches any sequence of characters except a leading dot (.).

[] Matches any of the enclosed characters.

Quotation

\ Specifies that the following character should be interpreted
literally; that is, without its special meaning to the shell.

’…’ Specifies that any of the enclosed characters (except for the ’
quote character) should be interpreted literally; that is, without
their special meaning to the shell.

"…" Provides a special form of quoting. Specifies that the $ (dollar
sign), ‘ (grave accent) and \(backslash) characters keep their
special meaning, while all other enclosed characters are
interpreted literally; that is, without their special meaning to the
shell. Double quotes are useful in making variable assignments.

Input/Output

< Redirects input.

> Redirects output to a specified file.

<< Redirects input and specifies that the shell should read input up
to a specified line.

>> Redirects output and specifies that the shell should add output
to the end of a file.

2> Redirects diagnostic output to a specified file.

Substitution

8–14 Shell Features

Table 8–9: Bourne Shell Metacharacters (cont.)

Metacharacter Description

${…} Specifies variable substitution.

‘…‘ Specifies command output substitution.

8.3.3 Built-In Variables

The Bourne shell provides variables that can be assigned values. The shell
sets some of these variables and you can set or reset all of them.

Table 8–10 describes selected Bourne shell built-in variables that are of
most interest to general users. For complete information on all Bourne shell
built-in variables, see the sh(1b) reference page.

Table 8–10: Bourne Shell Built-In Variables
Variable Description

HOME Specifies the name of your login directory, the directory that
becomes the current directory upon completion of a login. The cd
command uses the value of HOME as its default value. HOME is set
by the login command.

PATH Specifies the directories through which your system should search
to find and execute commands. The shell searches these directories
in the order specified here. Usually, The PATH variable is set in
the .profile file.

CDPATH Specifies the directories that the cd command will search to find
the specified argument to cd. If the cd command argument is null
or if it begins with a slash (/), dot (.) or dot dot (..), then CDPATH is
ignored. Usually, CDPATH is set in your .profile file.

MAIL The pathname of the file where your mail is deposited. You must
set MAIL. This is usually done in your .profile file.

MAILCHECK Specifies in seconds how often the shell checks for mail (600
seconds is the default). If the value of this variable is set to 0,
the shell checks for mail before displaying each prompt. Usually
MAILCHECK is set in your .profile file.

SHELL Specifies your default shell. This variable should be set and
exported by your .profile file.

Shell Features 8–15

Table 8–10: Bourne Shell Built-In Variables (cont.)

Variable Description

PS1 Specifies the default Bourne shell prompt. Its default value is $.
Usually PS1 is set in your .profile file. If PS1 is not set, the shell
uses the standard primary prompt string.

PS2 Specifies the secondary prompt string — the string that the shell
displays when it requires more input after you enter a command
line. The standard secondary prompt string is a > symbol followed
by a space. Usually PS2 is set in your .profile file. If PS2 is not
set, the shell uses the standard secondary prompt string.

8.3.4 Built-In Commands

Table 8–11 describes selected Bourne shell commands that are of the
most interest to general users. For a complete list of Bourne shell built-in
commands, see the sh(1b) reference page.

Table 8–11: Bourne Shell Built-In Commands
Command Description

cd Lets you change directories. If no directory is specified, the value of
the HOME shell variable is used. The CDPATH shell variable defines
the search path for this command.a

echo Writes arguments to the standard output.b

export Marks the specified variable for automatic export to the
environments of subsequently executed commands.

pwd Displays the current directory.c

set Assigns and displays variable values.d

times Displays the accumulated user and system times for processes
run from the shell.

trap Runs a specified command when the shell receives a specified
signal.d

umask Specifies the permissions to be subtracted for all new files created.e

unset Removes values that have been assigned to variables.d
a For more information about the cd command, see Chapter 4 and the sh(1) reference page.
b For more information about the echo command, see Section 8.3.1 and the sh(1b) reference page.
c For more information about the pwd command, see Chapter 2.
d For more information about the set, trap and unset commands, see Chapter 7.
e For more information about the umask command, see Chapter 5 and Section 8.2.1.

8–16 Shell Features

8.4 Korn or POSIX Shell Features

The POSIX shell is another designator for the Korn shell that signifies
compliance with the IEEE POSIX.2 standard. This section describes the
following Korn or POSIX shell features:

• Sample .profile and .kshrc login scripts

• Metacharacters

• Command history

• Editing command lines

• File name completion

• Aliases

• Built-in variables and commands

8.4.1 Sample .profile and .kshrc Login Scripts

If your login shell is the Korn or POSIX shell, the operating system processes
the .profile login script in your home directory. The .profile login script
defines environment variables. These variables are used by your login shell
as well as any subshells and subprocess that are created. The .profile
login script is executed only when you log in.

The .kshrc login script sets up your Korn or POSIX shell environment by
defining variables and operating parameters for the local shell process. It is
executed each time you create a subshell.

______________________ Note _______________________

Before creating a .kshrc file in your home directory, make
sure that the ENV=$HOME/.kshrc environment variable is set
and exported in your .profile. Once this is done, the .kshrc
login script will execute each time you log in and each time you
create a subshell.

In the following .profile login script, global environment variables are set
and exported and shell variables are set. Table 8–12 explains each part
of the script.

Set environment variables
PATH=/usr/bin:/usr/local/bin:
ENV=$HOME/.kshrc
EDITOR=vi
FCEDIT=vi
PS1="’hostname’ [!] $ "

Shell Features 8–17

Export global variables
export PATH ENV EDITOR FCEDIT PS1

Set mail variables
MAIL=/usr/spool/mail/$LOGNAME
MAILCHECK=300

Table 8–12: Example Korn or POSIX Shell .profile Script
Command Description

Set Environment Variables

PATH=/usr/bin:/usr/local/bin Specifies the search path. In this
case, /usr/bin is searched first and
/usr/local/bin is searched next.

ENV=$HOME/.kshrc Specifies $HOME/.kshrc as the
login script.

EDITOR=vi Specifies vi as the default editor for
command line editing at the shell prompt
and for file name completion.

FCEDIT=vi Specifies vi as the default editor
for the fc command.a

PS1="‘hostname‘ [!] $ " The PS1 variable specifies the Korn
or POSIX shell prompt. Its default
value is $. This variable assignment
specifies that your prompt should be
changed to the following: the output of
the hostname command, followed by
the command number of the current
command, followed by the dollar sign ($).
For example, if the name of your system
is boston and the current command is
numbered 30, your prompt would be
the following: boston[30] $.

Export Global Variables

export PATH ENV EDITOR
FCEDIT PS1

Specifies that the values of the PATH,
ENV, EDITOR, FCEDIT and PS1 variables
should be exported to all subshells.

Set Mail Variables

MAIL=/usr/spool/mail/$LOGNAME Specifies the pathname of the file used by
the mail system to detect the arrival of
new mail. In this case, the mail system
would look in your user name subdirectory
under the /usr/spool/mail directory.

MAILCHECK=300 Specifies that the shell should check for
mail every 300 seconds (5 minutes).

a For information on the fc command, see Section 8.4.4.

8–18 Shell Features

In the following .kshrc login script, shell variables, command aliases
and command history variables are set, as well as the permissions for file
creation. Table 8–13 explains each part of the script.

Set shell variables
set −o monitor
set −o trackall

Set command aliases
alias rm=’rm −i ’
alias rename=’mv ’
alias l ’ls −l’
alias c clear

Set history variables
HISTSIZE=40

Set file creation permissions
umask 027

Table 8–13: Example .kshrc Script
Command Description

Shell Variables

set −o monitor Specifies that the shell should monitor all
background processes and display a completion
message when the process finishes.

set −o trackall Specifies that the shell should track all
commands that you execute. Once a command
is tracked, the shell stores the location of
the command and finds the command more
quickly the next time you enter it.

Command Aliases

alias rm=’rm −i’ Specifies the use of the −i option (which prompts
you for file deletion) with the rm command.

alias rename=’mv’ Specifies rename as a new name for the
mv command.

alias l=’ls −l’ Defines a short name for the ls −l command
that lists directory files in the long format.

alias c=’clear’ Defines a short name for the clear command
that clears your screen.

History Variables

HISTSIZE=40 Instructs the shell to store the last 40
commands in the history buffer.

Shell Features 8–19

Table 8–13: Example .kshrc Script (cont.)

Command Description

Set File Creation Permissions

umask 027 Specifies the maximum permissions for all
new files created. This command provides all
permissions for the owner, read and execute
permissions for members of the same group
and no permissions for all others. The umask
is not inherited by subshells.

8.4.2 Metacharacters

Table 8–14 describes Korn or POSIX shell metacharacters (characters that
have special meaning to the shell). The meaning of these metacharacters are
grouped by interpretation when they appear in a shell script, in a Filename
specification, when used to quote other characters, in an Input/Output
specification or when used to indicate variable substitution.

Table 8–14: Korn or POSIX Shell Metacharacters
Metacharacter Description

Syntactic

| Separates commands that are part of a pipeline.

&& Runs the next command if the current command
succeeds.

| | Runs the next command if the current command
fails.

; Separates commands that should be executed
sequentially.

;; Separates elements of a case construct.

& Runs commands in the background.

() Groups commands in a subshell as a separate
process.

{ } Groups commands without creating a subshell.

File Name

/ Separates the parts of a file’s pathname.

? Matches any single character except a leading dot
(.).

* Matches any character sequence except a leading
dot (.).

8–20 Shell Features

Table 8–14: Korn or POSIX Shell Metacharacters (cont.)

Metacharacter Description

[] Matches any of the enclosed characters.

~ Specifies a home directory when it begins a file
name.

Quotation

\ Specifies that the following character should be
interpreted literally; that is, without its special
meaning to the shell.

’…’ Specifies that any of the enclosed characters
(except for the ’) should be interpreted literally;
that is, without their special meaning to the shell.

"…" Provides a special form of quoting. Specifies
that the dollar sign ($), ‘ (grave accent), \
(backslash) and) (close parenthesis) characters
keep their special meaning, while all other
enclosed characters are interpreted literally; that
is, without their special meaning to the shell.
Double quotes (" ") are useful in making variable
assignments.

Input/Output

< Redirects input.

> Redirects output to a specified file.

<< Redirects input and specifies that the shell should
read input up to a specified line.

>> Redirects output and specifies that the shell
should add output to the end of a file.

>& Redirects both diagnostic and standard output
and appends them to a file.

Substitution

${…} Specifies variable substitution.

% Specifies job number substitution.

‘…‘ Specifies command output substitution.

8.4.3 Command History

The command history buffer stores the commands you enter and lets you
display them at any time. As a result, you can select a previous command or
parts of previous commands and then reexecute them. This feature may save
you time because it lets you reuse long commands instead of reentering them.

Shell Features 8–21

To see the contents of the history buffer, use the history command. The
displayed output will be similar to Example 8–1 (your output will vary).

Example 8–1: Sample ksh history Output

[18] $ history
3 ls −l
4 pwd
5 cd /usr/sales
6 ls −l
7 cp report report5
8 mv /usr/accounts/new .
9 cd /usr/accounts/new
10 mkdir june
11 cd june
12 mv /usr/accounts/new/june .
13 ls −l
14 cd /usr/sales/Q1
15 vi earnings
16 cd /usr/chang
17 vi status

[19] $

To reexecute any command in the command history buffer, use the commands
listed in Table 8–15. Each command starts with the letter r.

Table 8–15: Reexecuting History Buffer Commands
Command Description

r Reexecutes the previous command.

r n Reexecutes the command specified by n. For example,
using the history buffer shown in the previous display, r 5
reexecutes the cd /usr/sales command.

r −n Reexecutes a previous command relative to the current command.
For example, using the history buffer shown in the previous
display, r-2 invokes command number 16, cd /usr/chang.

r string Reexecutes the most recent command that has first characters
matching those specified by string. For example, using the
history buffer shown in the previous display, r cp invokes
command number 7, cp report report5.

For more information on reexecuting history buffer commands, see the
ksh(1) reference page.

If you want to increase or decrease the number of commands stored in
your history buffer, set the HISTSIZE variable in your .profile file. This
variable has the following format:

8–22 Shell Features

HISTSIZE= n

The n entry specifies the number of command lines you want to store in
the history buffer.

For example, to store 15 commands in the history buffer, use the following
command:

HISTSIZE=15

The Korn or POSIX shell also lets you edit current command lines as well
as reuse those already entered in the command history buffer. To use this
feature, you must know how to use a text editor such as vi or emacs. For
information on these features, see the following section.

8.4.4 Command Line Editing Using the fc Command

The Korn or POSIX shell lets you list or edit (or do both) the command lines
in your command history buffer. As a result, you may modify any element of
a previous command line and then reexecute the command line.

The command line editing functions for the Korn or POSIX shell are
extensive. This section covers only the most basic functions. For more
detailed information, see the ksh(1) or sh(1p) manpages.

To display the command history buffer or to edit its contents (or do both),
use the built-in command fc (fix command). The fc command has the
following two formats:

fc [-e editor] [-nlr] [first] [last]

This command format lets you display and edit any number of command
lines in your buffer.

• The −e editor entry specifies the editor (usually vi or emacs) you
want to use in editing the command line. If you do not specify −e, the fc
command displays the lines, but does not let you edit them.

• The −n flag specifies that you want to list the command lines in the buffer
without numbers. The −l flag specifies that you want to list the command
lines in the buffer with numbers. If you do not specify a line number or a
range of line numbers, the last 16 lines you entered will be listed.

• The −r flag specifies that you want to list the command in the buffer
in reverse order.

• The first and last entries specify a range of command lines in the
buffer. You may specify them either with numbers or with strings.

If you want to specify a default editor for the −e flag, define the FCEDIT
variable in your .profile script. For example, if you want to make emacs
your default editor, enter the following variable definition:

Shell Features 8–23

FCEDIT=emacs

fc -e - [old=new] [string]

This command lets you immediately replace an old string with a new string
within any previous command line.

• The −e − entry specifies that you want to make a replacement.

• The old=new entry specifies that you want to replace the old string
with the new string.

• The string entry specifies that the Korn or POSIX shell should make
the edit to the most recent command line in the buffer containing the
string.

The following section contains some examples of fc use.

The Korn or POSIX shell also lets you edit individual command lines at the
shell prompt by using a command set similar to the vi or the emacs editors.
For more information on this feature, see the ksh(1) or sh(1p) reference
pages.

8.4.4.1 Examples of Command Line Editing

To display command lines 15 to 18, enter the following command:

$ fc −l 15 18
15 ls −la
16 pwd
17 cd /u/ben/reports
18 more sales
$

You also may list the same command lines by specifying command strings
instead of line numbers, as in the following example:

$ fc −l ls more
15 ls −la
16 pwd
17 cd /u/ben/reports
18 more sales
$

To display and edit command lines 15 to 18 with the vi editor, enter the
following command:

$ fc −e vi 15 18
ls −la
pwd
cd /u/ben/reports
more sales
~
~

8–24 Shell Features

~
~

After making your edits, write and exit the file with the :wq! command.
The command lines in the file are then reexecuted.

Assume that you have just entered the echo hello command and now
want to replace hello with goodbye. To do the replacement and reexecute
the command line, enter the following command:

$ echo hello
hello
$ fc −e − hello=goodbye echo
echo goodbye
goodbye

For more detailed information on the fc command and command line
editing, see the ksh(1) reference page.

8.4.5 File Name Completion

The Korn or POSIX shell lets you enter a portion of a file name or pathname
at the shell prompt and the shell automatically will match and complete the
name. If there is more than one file name or pathname that matches the
criterion, the shell will provide you with a list of possible matches.

To activate the file name completion mechanism, define the EDITOR variable
in your .profile file. For example, if you want to use the vi editor, enter
the following variable definition in your .profile file:

EDITOR=vi

To demonstrate how file name completion works, assume that your
editor is vi and that you have the salesreport1, salesreport2 and
salesreport3 files in your current directory. To display a long listing and
to activate file name completion, enter the following command:

$ ls −l salesreport Escape =
1) salesreportfeb
2) salesreportjan
3) salesreportmar
$ ls −l salesreport

The system redisplays your command and the cursor is now at the end
of salesreport. If you want to choose salesreportjan, type a (the
vi append command) followed by jan, then press Return. The listing for
salesreportjan will be displayed.

For more detailed information on file name completion, see the ksh(1) and
sh(1p) reference page.

Shell Features 8–25

8.4.6 Aliases

The command aliases feature lets you abbreviate command lines or rename
commands. You do this by creating aliases for command lines that you
frequently use.

For example, assume that you often need to move to the directory
/usr/chang/reports/status. You can create an alias status, which will
move you to that directory whenever you enter it on the command line.

In addition, aliases let you make up more descriptive names for commands.
For example, you could define an alias named rename for the mv command.

To create aliases, use the alias command. The general format of the alias
command is the following:

alias aliasname= command

The aliasname entry specifies the name you want to use. The command
entry specifies either the original command or a series of commands. If the
command has more than one part (has spaces), enclose the whole expression
in single quotes.

For example, to create the alias status that moves you to the directory
/usr/chang/reports/status, enter the following command:

alias status=’cd /usr/chang/reports/status’

The usual way to define aliases is to place them in your .kshrc file so that
you can use them whenever you log in or start a new shell. See Section 8.4.1
for an example.

To display all alias definitions, enter the following command:

$ alias

To display the definition of a particular alias, enter the following command:

$ alias aliasname

The aliasname entry specifies the particular alias for which you are
requesting a definition.

The Korn or POSIX shell lets you export the aliases you create. Aliases that
are exported are passed to any subshells that are created so that when you
execute a shell procedure or new shell, the alias remains defined. (Aliases
that are not exported are used only by the login shell.)

8–26 Shell Features

To export an alias, use the following form of the alias command:

alias −x aliasname= command

The −x flag specifies that you want to export the alias. The aliasname entry
specifies the name you want to use. The command entry specifies either the
original command or a series of commands. If the command has more than
one part, enclose the whole expression in single quotes.

For example, to export an alias definition for the rm command, enter the
following:

alias −x rm=’rm −i ’

You can enter the preceding command in one of the two ways:

• Edit the .kshrc or .profile file if you want an alias exported
whenever you log in

• Export an alias on the command line if you want the alias exported only
for the current login session

To remove an alias for the current login session, use the unalias command.
The general format of the unalias command is the following:

unalias aliasname

The aliasname entry specifies the alias you want to remove.

To remove an alias for the current and all future login sessions, do the
following:

1. Enter the following command:

$ unalias aliasname

The aliasname entry specifies the alias you want to remove.

2. Edit the .kshrc file (or the file on your system that contains alias
definitions) and remove the alias definition. Then, save the file.

3. Enter the following command to reexecute the .kshrc file:

$. ./.kshrc

The Korn or POSIX shell provides additional aliasing features. For complete
information on using aliases with the Korn or POSIX shell, see the ksh(1) or
sh(1p) reference pages.

8.4.7 Built-In Variables

The Korn and POSIX shells provide variables that can be assigned values.
The shell sets some of these variables and you can set or reset all of them.

Shell Features 8–27

Table 8–16 describes Korn or POSIX shell built-in variables that are of most
interest to general users. For complete information on all Korn or POSIX
shell built-in variables, see the ksh(1) or sh(1p) reference pages.

Table 8–16: Built-In Korn or POSIX Shell Variables
Variable Description

HOME Specifies the name of your login directory. The cd command uses
the value of HOME as its default value. In Korn or POSIX shell
procedures, use HOME to avoid having to use full pathnames —
something that is especially helpful if the pathname of your login
directory changes. The HOME variable is set by the login command.

PATH Specifies the directories through which your system should search to
find and execute commands. The shell searches these directories in
the order specified here. Usually, PATH is set in the .profile file.

CDPATH Specifies the directories that the cd command will search to find
the specified argument to cd. If the cd argument is null or if
it begins with a slash (/), dot (.) or dot dot (..), then CDPATH is
ignored. Usually, CDPATH is set in your .profile file.

MAIL The pathname of the file where your mail is deposited.
Usually, MAIL is set in your .profile file.

MAILCHECK Specifies in seconds how often the shell checks for mail (600
seconds is the default). If the value of this variable is set to
0, the shell checks for mail before displaying each prompt.
Usually, MAILCHECK is set in your .profile file.

SHELL Specifies your default shell. This variable should be set
and exported by your .profile file.

PS1 Specifies the Korn or POSIX shell prompt. Its default value is the
dollar sign ($). The PS1 variable is usually set in your .profile file.

PS2 Specifies the secondary prompt string − the string that the shell
displays when it requires more input after entering a command
line. The standard secondary prompt string is a > symbol followed
by a space. The variable PS2 is usually set in your .profile file.

HISTFILE Specifies the pathname of the file that will be used to store the
command history. This variable is usually set in your .profile file.

EDITOR Specifies the default editor for command line editing at the
shell prompt and for file name completion. This variable
is usually set in your .profile file.

FCEDIT Specifies the default editor for the fc command. This variable
is usually set in your .profile file.

HISTSIZE Specifies the number of previously entered commands that
are accessible by this shell. The default is 128. This variable
is usually set in your .kshrc file.

8–28 Shell Features

8.4.8 Built-In Commands

Table 8–17 describes Korn or POSIX shell commands that are of most
interest to general users. For a complete list of shell built-in commands
or for more information on the commands listed, see the ksh(1) or sh(1p)
reference pages. Most of these commands also have a reference page that
you can access as described in Section 1.6.1.

Table 8–17: Korn or POSIX Shell Built-In Commands
Command Description

alias Assigns and displays alias definitions. For more information about
the alias, command, see Section 8.4.6.

cd Lets you change directories. If no directory is specified, the value of
the HOME shell variable is used. The CDPATH shell variable defines
the search path for this command. For more information about the
cd command, see Chapter 4 and the csh(1) reference page.

echo Writes arguments to the standard output.

export Marks the specified variable for automatic export to the
environments of subsequently executed commands. For more
information about the export command, see Section 8.4.1.

fc Lets you display, edit and reexecute the contents of the command
history buffer. For more information about the fc command, see
Section 8.4.4.

history Displays the contents of the command history buffer. For more
information about the history command, see Section 8.4.6.

jobs Displays the job number and the PID number of current background
processes. For more information about the jobs command, see
Section 6.4.1.

pwd Displays the current directory. For more information about the
pwd command, see Chapter 2.

set Assigns and displays variable values. For more information about
the set command, see Chapter 7.

times Displays the accumulated user and system times for processes run
from the shell.

trap Runs a specified command when the shell receives a specified
signal. For more information about the trap command, see
Chapter 7.

umask Specifies the permissions to be subtracted from the default
permissions set by the creating program for all new files created.
For more information about the umask command, see Chapter 5
and Section 8.4.1.

Shell Features 8–29

Table 8–17: Korn or POSIX Shell Built-In Commands (cont.)

Command Description

unalias Removes alias definitions. For more information about the
unalias command, see Section 8.4.6.

unset Removes values that have been assigned to variables. For more
information about the unset command, see Chapter 7.

8–30 Shell Features

9
Using the System V Habitat

This chapter describes the System V habitat, commands, subroutines and
system calls. The commands described in this chapter will enable you to:

• Set up your System V habitat environment (Section 9.1)

• Access the System V habitat (Section 9.2)

• Use System V habitat commands (Section 9.4)

The System V habitat consists of alternate versions of commands,
subroutines and system calls that support the source code interfaces
and runtime behavior for all components of the Base System and Kernel
Extension as defined in the System V Interface Definition (SVID). This
implementation of the System V habitat supports all SVID 2 functions and
SVID 3 functions. The System V habitat does not contain alternate versions
of default system commands, subroutines and system calls that already
meet the SVID requirement.

Using the System V habitat lets you override the default system commands
and functions with corresponding System V commands and functions
(system calls and subroutines). You can access the habitat in two ways:

• Specify the absolute paths of the System V commands and libraries.

• Define the PATH environment variable to search the System V habitat
for commands before it searches the default system locations. To set
your PATH environment variable, modify your .profile or .login and
.cshrc files as described in Section 9.1.

Because the System V system calls are not layered over the system calls in
the default system, applications that are built using the system calls in the
System V habitat run with virtually no performance overhead. Figure 9–1
shows the System V habitat placement within the default operating system
and shows that the System V system calls reside at the kernel level.

Using the System V Habitat 9–1

Figure 9–1: System V Habitat

User
Level

Kernel
Level

defau l t sys tem
calls

o the r
hab i ta ts

s tanda rd C
library

other app l ica t ions
a n d c o m m a n d s

SVID
system

calls

SVID
library

SVID
commands

ZK-0849U-AI

The following sections describe how to set up your environment to access the
System V habitat and how it works.

9.1 Setting Up Your Environment

To automatically access the System V habitat when you log on, you must
add a command line to your .profile file if you use the Bourne, Korn, or
POSIX shell, or to your .login and .cshrc files if you use the C shell. The
command line modifies the PATH environment variable, which causes the
System V habitat to be searched even before the standard default locations
on the system are searched, such as /bin or /usr/bin. The System V
habitat scripts are available as follows:

• Files /etc/svid2_profile (for the Bourne, Korn, or POSIX shell) and
/etc/svid2_login (for the C shell)

9–2 Using the System V Habitat

Specifies SVID 2 behavior when placed in either your .profile or
.login and .cshrc files, respectively.

• Files /etc/svid3_login (for the Bourne, Korn, or POSIX shell) and
/etc/svid3_profile (for the C shell)

Specifies SVID 3 behavior when placed in either your .profile or
.login and .cshrc files, respectively.

For example, if you use the Bourne, Korn, or POSIX shell and you want
to specify SVID 2 behavior, edit the .profile file and add the following
command line:

if [-f /etc/svid2_profile]
then

. /etc/svid2_profile
fi

If you use the C shell and you want to specify SVID 2 behavior, edit the
.login and .cshrc files and add the following command line:

if (-e /etc/svid2_login) then
source /etc/svid2_login

endif

The dot (.) and source commands are shell specific. See the appropriate
reference page for more information.

9.2 How the System V Habitat Access Works

Whether you choose the script that specifies SVID 2 behavior or the script
that specifies SVID 3 behavior, both establish the System V habitat as
follows:

• Defines SVID2PATH, a System V only variable, to be the contents of
/etc/svid2path or /etc/svid3path. The /etc/svid2path and
/etc/svid3path files contain the path definition for SVID 2 and
SVID 3, respectively.

• Adds SVID2PATH/bin and SVID2PATH/sbin to the beginning of your
current PATH.

• Exports both SVID2PATH and PATH.

• Sets the TZ variable to the appropriate value. If you select SVID 2
behavior, it also sets the TZC variable to the appropriate value. See
System Administration for more information on time zone formats.

Hence, if you need to determine the location of the System V habitat
on your system, run the cat(1) command on the /etc/svid2path or
/etc/svid3path file.

Using the System V Habitat 9–3

By using the System V habitat scripts to alter the PATH environment
variable, the System V habitat path can be changed without an administrator
updating each user’s .profile or .login and .cshrc files. The
administrator simply updates the /etc/svid2path and /etc/svid3path
files to enable global definitions.

To further illustrate how the System V habitat script sets a PATH, look at
the following .profile file which specifies the System V habitat script
for SVID 2:

stty erase DEL kill ^U intr ^C quit ^X echo
TERM=vt100
PATH=:$HOME/bin:/usr/lib:/bin
MAIL=/usr/mail/$LOGNAME
EDITOR=vi
export MAIL PATH TERM EDITOR
if [-f /etc/svid2_profile]
then

. /etc/svid2_profile
fi

In this example, assume that the path of the System V habitat is
/usr/opt/s5 as reflected by the contents of /etc/svid2path and that
your login directory is /usr/users/xxx. When you display the PATH after
logging in with the preceding .profile file, the result would show that the
path to the System V habitat has been added (in the beginning) to the PATH
set in the third line of the .profile file as follows:

% echo $PATH Return
/usr/opt/s5/bin:/usr/opt/s5/sbin:/usr/users/xxx/bin:/usr/lib:/bin

Hence, when you issue a shell command, the System V habitat is searched
first. If the command is not found, the specified paths are searched later.

9.3 Compatibility for Shell Scripts
Compatibility for your shell scripts is achieved by altering your shell’s
PATH environment variable (as explained in Section 9.1). Therefore, the
System V habitat is searched before the default system locations. If your
PATH variable is set for the System V habitat, your scripts are System V
compatible regardless of whether you use the C shell or the Bourne, Korn,
or POSIX shell.

9.4 System V Habitat Command Summary
Table 9–1 summarizes the behavior of user commands in the System V
habitat that have options or features that differ from the default system
versions. For a complete explanation of the commands in the habitat, refer
to the reference page for each command.

9–4 Using the System V Habitat

Table 9–1: User Commands Summary
Command System V Behavior

chmod(1) Ignores the umask value when the who string is omitted,
behaving as though a is the who value when you use
the symbolic form of this command.

df(1) Accepts the -t option, which prints space totals and accepts
an optional file system name or device name.

ln(1) Accepts the -f option, which removes existing destination
pathnames before creating the specified link.

ls(1) Produces multicolumn output only if the -C option is
specified. Also, the -s option causes file sizes to be reported
in 512 byte units instead of 1024 byte units.

mailx(1) and
Mail(1)

Includes the capabilities of the System V mailx command.

sum(1) Uses the word-by-word algorithm by default; uses the
byte-by-byte algorithm if the -r option is specified.
The default use of the checksum algorithms for the
System V sum command is the reverse of the default
system version of the sum command.

tr(1) Includes the -A option whenever you specify the -c
option. The -A option causes only the characters in the
octal range of 1 to 377 to be complemented.

Using the System V Habitat 9–5

10
Obtaining Information About Network

Users and Hosts

This chapter describes how to find information about local and remote
users and hosts before you begin communication or file transfer tasks. The
commands described in this chapter will enable you to:

• Learn about your own network connection (who am i command,
Section 10.1)

• Determine who are all currently logged in to the local system and from
where they are logged in (who command, Section 10.1)

• Find additional information about another user, if available; for example,
full name, office location, phone number, projects or plans (finger
command, Section 10.2.1)

• Determine whether a user can be reached using either the talk or
write commands (finger command, Section 10.2.1 and Section 10.2.2)

• Analyze and sort information about remote host usage (ruptime
command, Section 10.3)

• Determine who is currently logged in to a remote host (rwho command,
Section 10.4)

• Determine whether a remote host is online (ping command, Section 10.5)

______________________ Note _______________________

The commands described in this chapter are, like all TCP/IP
operations, subject to the security features on the local and
remote hosts. If they do not work as stated here or in the related
reference pages, see your system administrator.

10.1 Identifying Users on the Local Host

When you log in to a host computer by providing a user name and password,
you have a unique identity. To verify this information for your own network
connection, you can use a version of the who command called who am i to
display the following information about you:

• Login name

Obtaining Information About Network Users and Hosts 10–1

• Terminal name (line)

• Time of login

• Computer from which the network connection came

For example, user lennon might enter the who am i command at the
system prompt (%) and read the following output:

% who -M am i
lennon ttyp0 Jul 15 14:17 (walrus)

In this example, user lennon logged in from host walrus at 2:17 in the
afternoon of July 15. The line is ttyp0 and walrus is the name for this line,
from which the network connection was established.

The who am i command can help you keep track of the sessions you have
running on your workstation. Some sessions may be remote logins to another
host by yourself or by someone with whom you are working. See the who(1)
reference page for more information about the who am i command.

To find out if other users are logged in to the same local host, use the who
command. In the following example, lennon enters the who command at the
prompt of local host london and learns that three other users are currently
logged in to london from different nodes:

london% who -M
lennon ttyp0 Jul 15 08:17 (walrus)
elvis ttyp2 Jul 15 07:55 (velvet)
burdon ttyp1 Jul 15 09:02 (animal)
sarjan ttyp4 Jul 14 16:47 (pepper)

The output from the who command is the same as that from the who am
i command.

10.2 Obtaining Information About Network Users

The finger command and its options enable you to display information
about users with accounts on local or remote hosts. The specified host must
be running a fingerd daemon server or have the inetd daemon configured
to start fingerd. See your system administrator if the finger command
does not work as described in the finger(1) reference page.

The finger command has the following syntax:

finger [[option …] [user …] [user@ host_name …]]

If you use the finger command without specifying an option or a user name,
it lists the following information about all users on the local host where you
are logged in, if the information is in the /etc/passwd file for a given user:

• Login name

10–2 Obtaining Information About Network Users and Hosts

• Full name

• Terminal line name and whether it can receive messages from other
users through write (see Section 11.8) or talk (see Section 11.9)

• Idle time

• Login time

• User’s office location

10.2.1 Obtaining Information About a Specific User

If you specify the login name of a user on your local host, the finger
command displays more information than if you entered the finger
command without specifying a user name. The following additional
information about the user is displayed:

• User’s home directory and login shell

• Contents (if any) of the .plan and .project files in the user’s home
directory

The following example shows how to use the finger command to find
information about user smith, who has an account on your local host:

% finger smith
Login name: smith (messages off) In real life: John Smith
Office: LV05-3/T24
Directory: /usr/netd/r2/smith Shell: /bin/csh
On since Apr 9 16:20:56 on ttypb from wombat.lv5.dec.c
18 seconds Idle Time
Project: manual, "Communicating with Network Users"
Plan:

In the first line of output, messages off means that user smith has put
the mesg n command in his .login file to prevent his terminal from
receiving messages from other users through the write or talk commands,
which can be distracting.

The preceding example also displays the contents of the .project file and
the .plan file that user smith created in his home directory. The .project
file can contain only one line. The .plan file can contain as many lines as
the file system allows; finger will print all the lines until the end-of-file
(EOF) is reached.

10.2.2 Obtaining Information About Users on a Remote Host

In the following example, the finger command displays information about
users on the remote host boston:

Obtaining Information About Network Users and Hosts 10–3

% finger @boston
[boston]
Login Name TTY Idle When Office
amy Amy Wilson p0 4 Thu 10:00 345
chang Peter Chang *p1 2:58 Thu 10:16 103

The first output line lists the remote host name, boston and the second line
describes the type of information in each column of the remaining output,
each line allocated to one user. The asterisk (*) indicates that user chang has
put the command, mesg n in his .login file to prevent his terminal from
receiving messages from other users through the write or talk commands.

10.2.3 Obtaining Information About an Individual User on a Remote
Host

To display information about user luis on remote host havana use the
following finger command:

% finger luis@havana
Login name: luis In real life: Luis Aguilera
Directory: /users/luis Shell: /bin/csh
On since May 24 10:16:07 on ttyp2 from :0.0
58 minutes Idle Time
Project: baseball game simulation software
Plan:
Distribute with linked statistics module.

10.2.4 Customizing Output from the finger Command

There are several options to the finger command that enable you to modify
the output according to the data you need. Table 10–1 lists and describes
each option.

Table 10–1: Options to the finger Command
Option Description

−b Produces a brief version of output

−f Suppresses display of titles of each field

−h Suppresses printing of users’ .project files

−i Displays list of users with idle times

−l Produces long format of output despite other options

−m Assumes that user is an account name

−p Suppresses printing of users’ .plan files

−q Displays only users’ login and terminal names and login time

10–4 Obtaining Information About Network Users and Hosts

Table 10–1: Options to the finger Command (cont.)

Option Description

−s Produces brief format of output despite other options

−w Produces narrow, brief format of output despite other options

For more information on the finger command, see the finger(1) reference
page.

10.3 Obtaining Information About Remote Hosts and Users

Before you send messages or transfer files over the network using the
commands described in this manual, you should know whether or not the
recipient host is currently on line. To do this, use the ruptime command
which works for hosts that are running the rwhod daemon on the local
network.

The ruptime command displays the following information:

• Host name

• Online status (up for on line or down for off line)

• The length of time the host has been on line (or off line) in days (if more
than one whole day), hours and minutes

• The number of users currently logged in to the host (optionally including
those whose sessions have been idle for an hour or longer)

• Load average statistics in 5-, 10- and 15-minute intervals prior to the
ruptime request

The syntax of the ruptime command is:

ruptime [[option …] [sort_option]]

If you use the ruptime command without options, a status report about the
hosts on your local network, sorted alphabetically by host name, is displayed.
In this report, the length of time the host has been on line (or off line) is
shown in the format hours;minutes. If a plus sign (+) is included, the time
exceeds one day (24 hours). For example:

Obtaining Information About Network Users and Hosts 10–5

% ruptime
apple up 102+05:07 4 users, load 0.09, 0.04, 0.04
byblos up 3+03:17, 3 users, load 0.08, 0.07, 0.04
carpal up 2:28, 0 users, load 7.01, 5.02, 3.03
dull down 9+21:59
eager down 23+22:45
foobar up 3+01:44, 9 users, load 0.01, 0.02, 0.03
garlic up 14+01:35, 1 user, load 0.06, 0.12, 0.11
hiccup up 4+22:14, 19 users, load 6.37, 3.90, 2.71
jackal up 13+10:32, 26 users, load 0.70, 0.92, 0.95
starry up 16+21:08, 1 user, load 0.22, 0.14, 0.07
travel up 13+23:44, 7 users, load 1.01, 1.19, 0.5
trekky down 23+03:53
tribbl up 8+21:43, 0 users, load 0.00, 0.00, 0.00
trubbl up 14+02:34, 0 users, load 0.00, 0.00, 0.00
tunnel down 14+02:34
warp9 up 8+01:24, 9 users, load 0.01, 0.02, 0.03

Often, you need to determine only whether a single host is currently on line.
To do this, enter the ruptime command with the host name, as shown in the
following example, for host trekky:

% ruptime trekky
trekky down 23+03:53

This output shows that host trekky is not currently on line.

You can also determine whether a host is on line by using the ping command
described in Section 10.5; ping works for any host in a TCP/IP network
configuration.

If you plan to run commands on a remote host (as described in Chapter 13),
use the ruptime command with the -l option to determine whether the host
resources will be adequate. This command sorts the hosts by load average
in descending order. The following example shows partial output from the
ruptime -l command:

% ruptime -l
carpal up 2:28, 0 users, load 7.01, 5.02, 3.03
hiccup up 4+22:14, 19 users, load 6.37, 3.90, 2.71
travel up 13+23:44, 7 users, load 1.01, 1.19, 0.5
jackal up 13+10:32, 26 users, load 0.70, 0.92, 0.95

...

In this example, usage is low on all hosts except carpal and hiccup.
Therefore, you may decide to log in remotely to either travel or jackal, if
either host is suitable for your purpose.

If you need to use a remote host for a long period of time, you should know
the total number of users there, not just the number of users whose sessions
have been active for an hour or longer. Use the ruptime command with

10–6 Obtaining Information About Network Users and Hosts

the -a option to display the total number of users on a remote host. The
following two examples use the ruptime -a command to determine the
total number of users first on host travel and then on host jackal:

% ruptime -a travel
travel up 13+23:44, 32 users, load 1.01, 1.19, 0.5

% ruptime -a jackal
jackal up 13+10:32, 29 users, load 0.70, 0.92, 0.95

From the results of the ruptime command using the -a and -l options (in
the preceding example), you can determine that both hosts have nearly the
same number of users, but the current usage on host travel is calculated
from only the 7 (from a total of 32) users whose sessions have been active in
the last hour. By contrast, usage on host jackal is less, but is calculated
from 26 of the total of 29 users. You could conclude that, over a period of
time, usage on host travel may increase as more users become active, but
that usage on host jackal may either decrease or stay nearly the same,
because most of its users are currently active.

The remaining options (except for -r) sort by different output fields and
in descending alphabetical order. To reverse this order, put the -r option
after the other option on the command line. You should not combine other
ruptime command options; if you do, only the last option on the command
line will be used. Table 10–2 describes each option.

Table 10–2: Options to the ruptime Command
Option Description

−a Provides information for all users, including those whose
sessions have been idle for an hour or longer

−l Sorts output by load average over 5-, 10- and 15-minute intervals

−r Reverses the sort order

−t Sorts output by length of time host is on line

−u Sorts output by number of users

For more information, see the ruptime(1) reference page.

10.4 Obtaining Information About Users on Remote Hosts

Before using a command that sends a message or transfers a file, you often
need to know if the recipient user is logged in. To determine whether a user
is logged in to a remote host on the local network, you can use the rwho
command, specifying the name of one or more users. The rwho command
operates only for hosts running the rwhod daemon. See your system
administrator if necessary.

Obtaining Information About Network Users and Hosts 10–7

The rwho command displays the following information:

• User name

• Host name

• Start date and time

• Number of minutes a user’s session has been inactive.

The rwho command has the following syntax:

rwho [[-a] [user …]]

Without options, the rwho command lists all users currently logged in to
hosts on the local network, except those who have been idle for an hour or
longer. A typical local network has several dozen users, so you should specify
only the users about whom you need information.

Although the -a option displays all users, including those idle for more than
an hour, you can still use it while specifying only certain users. This enables
you to determine whether or not a remote user is logged in, regardless of
whether that user has been inactive for an hour or longer. The following
example uses rwho with the -a option to determine this information for
users wally, becky and smith:

% rwho -a wally becky smith
becky cygnus:pts0 Jan 17 11:20 :12
smith aquila:ttyp0 Jan 15 09:52 :22
wally lyra:pts7 Jan 17 13:15 1:32
wally lyra:pts8 Jan 17 14:15 1:01

As shown, the output from the rwho command displays in alphabetical order
by user name, then by host name. The amount of idle time greater than one
hour is shown in the last column, after the starting time and date of each
session. Because the -a flag was specified, the output also includes users
idle for more than one hour. Without the -a flag, the information for user
wally would not have displayed.

For more information on the rwho command, see the rwho(1) reference page.

10–8 Obtaining Information About Network Users and Hosts

10.5 Determining Whether a Remote Host Is On Line

The ping command is used by system administrators to fix network
transmission problems and works for any host configured in a TCP/IP
network. As a network user, you can use it to determine whether a remote
host is currently on line. For example, to determine whether remote host
moon is on line, enter the ping command at your local system prompt. The
output, which verifies that the remote host is on line, will continue to display
until you press Ctrl/C, as shown in the following example:

% ping moon
PING moon (130.180.4.108): 56 data bytes
64 bytes from 130.180.4.108: icmp_seq=0 ttl=255 time=42 ms
64 bytes from 130.180.4.108: icmp_seq=1 ttl=255 time=0 ms
64 bytes from 130.180.4.108: icmp_seq=2 ttl=255 time=0 ms
64 bytes from 130.180.4.108: icmp_seq=3 ttl=255 time=0 ms
Ctrl/C
----moon PING Statistics----
4 packets transmitted, 4 packets received, 0% packet loss
round-trip (ms) min/avg/max = 0/11/42 ms

Obtaining Information About Network Users and Hosts 10–9

11
Sending and Receiving Messages

This chapter describes how to send or receive messages over the network by
using one of the following commands:

• mailx or Mail (Section 11.2)

• write (Section 11.8)

• Message Handling (MH) program (Section 11.7)

• talk (Section 11.9)

Examples in this chapter use the mailx program rather than Mail. Using
mailx, you can do the following tasks:

• Send a message to a user

• Edit a message before sending it

• Include files within messages

• Save or organize incoming messages

Using mailx you can also send entire files, a task described in Chapter 12.

The Tru64 UNIX mailx or Mail command accesses the same mail program
as the ULTRIX mail (that is, /usr/ucb/mail) command. See Chapter 2 of
the ULTRIX to DIGITAL UNIX Migration Guide for more information.

The write and talk commands work interactively; the recipient must be
logged in. Before using these interactive commands, you can verify the name
and availability of a user or host by using the following commands described
in Chapter 10:

• finger or who to find a user on the local host

• finger, rhwo or ruptime to find a user on a remote host

• ping or ruptime to find a currently reachable host

11.1 Addressing Mail Messages

Using mailx, you can send a message to one or more users at the following
locations:

• On your local host

• On a remote host connected to your local host through TCP/IP

Sending and Receiving Messages 11–1

• On a host in another network, through either TCP/IP, DECnet or UUCP
addressing

Use the following syntax for the mailx command:

mailx user [@ { host | domain | host.domain}] …

To send mail to users on the local host, enter the mailx command and specify
a user parameter for each user. For users on remote hosts, you must specify
additional information about the location of the host after the “at sign” (@).

For example, to send mail from host orange to users smith and jones on
the same local host, you would enter the following command:

orange% mailx smith jones

To send mail to user hobbes on a different host, pluto, in the same domain,
you would enter the following command:

orange% mailx hobbes@pluto

In the preceding example, if user hobbes was in another domain called
planets, you would add the name of the remote network domain, as shown
in the following command:

orange% mailx hobbes@pluto.planets

The domain is sometimes split into further subdivisions with the name of
each separated by a period (.) in the destination name. Depending on how
the network has been configured by the network administrator, you can
address a user on a remote host in another domain by specifying only the
domain name, as in the following command:

orange% mailx hobbes@planets

If necessary, see your system administrator for help, while addressing a
mail message.

11.2 Sending a Mail Message Using mailx
This section explains how to use mailx to send a message to a user on a local
host and a copy of the message to other users. To begin the example, user
Jones enters the mailx command at the local system prompt, orange%:

orange% mailx suzuki Return

After pressing the Return key, the Subject: prompt is displayed. Pressing
the Return key again immediately would leave the subject blank. Instead,
user Jones enters the subject of the message before pressing the Return key
and then begins writing the message:

Subject: Baseball question Return

11–2 Sending and Receiving Messages

Are there any Japanese baseball simulation games?
I want to compare Sadharu Oh’s hitting statistics
to those of Hank Aaron. To do this, I need to set
up a simulated baseball season having each hitter
play for one year in the other player’s league.

User Jones ends the message by typing a period (.) on a blank line, followed
by the Return key, as shown:

...
play for one year in the other player’s league.
. Return
Cc:

In this example, the message has not yet been sent; instead the Cc: (that is,
“carbon copy”) prompt appears because user Jones has customized his mail
session by adding set askcc to the .mailrc file in his home directory. (See
Section 11.6 and Appendix D on customizing your mail session.)

The Cc: prompt enables you to send copies to other users. If you choose not
to, press the Return key to exit mailx and send the message; the end-of-text
message (EOT), then appears followed by the system prompt.

In this example, user Jones sends copies to local user cranton and remote
users gillis and vincep by entering the appropriate address for each
at the Cc: prompt and pressing the Return key to exit mailx and send
the message:

...
Cc: cranton gillis@strato vincep@mlb.bbs.com Return
EOT
orange%

The mailx program enables you to recover from addressing errors. For
example, if your intended recipient on the local host is cranton, but you
mistakenly type crantom, the following message appears immediately on
your screen:

crantom… User unknown

The message is mailed back to you. You can then save and resend it to the
right person.

If you send a message to an unknown person on a remote host, it may take
as long as three days before mailx sends it back to you. Section 11.3.3.1
explains how to save and resend a returned message.

Sending and Receiving Messages 11–3

11.2.1 Editing a Message

To edit a mail message before sending it, after replying to the Subject:
prompt, enter one of the following escape commands to activate an editor
within mailx:

• Enter ~v to activate the screen editor that you set with the set VISUAL
entry in your .mailrc file.

• Enter ~e to activate the text editor that you set with the set EDITOR
entry in your .mailrc file.

To use the ~e command from within mailx to activate a text editor, enter ~e
as the first two characters on a new line — you may need to type the tilde
(~) a few times before it is displayed. For example:

Subject: network documentation meeting at 2 PM
Everyone, please bring the Table of Contents
for your manual so that we can look for areas
of overlapping subject matter and
~e

If your .mailrc file contains set EDITOR=/usr/ucb/vi, you can now
use the vi editor to correct the spelling mistake in the first line and finish
writing the message. When you end the editing session, you are back
in mailx. You can end the message and exit mailx or reinvoke vi and
continue writing.

11.2.2 Aborting a Message

You may decide not to send a message that you have started on. There are
two ways to abort a message before sending it.

11.2.2.1 Aborting a Message with Ctrl/C

You can abort a mail message by pressing Ctrl/C twice, anywhere within a
message. When you first press Ctrl/C, the following message is displayed:

(Interrupt -- one more to kill letter)

You can now reconsider your decision to abort the message. If you decide not
to abort it, continue entering text. If you decide to abort the message, press
Ctrl/C again and the following message will be displayed:

(Last Interrupt -- letter saved in dead.letter)

The message is aborted, you exit mailx and the system prompt is displayed.

By default, the aborted message is saved in the dead.letter file in your
home directory. If you choose not to save aborted messages, you can enter

11–4 Sending and Receiving Messages

set nosave in your .mailrc file. See Section 11.6 and Appendix D for
more information.

Only the most-recently aborted message is saved in the dead.letter file.
You can edit and resend it by including it within a mail message. (See
Section 11.2.3 for information on including files within messages.)

The following example shows how to abort a mail message by pressing Ctrl/C:

orange% mailx sally
Subject: Update to reference page files
What should the mailx(1) reference page include
about sending to remote users? Ctrl/C
(Interrupt -- one more to kill letter)
Ctrl/C
(Last Interrupt -- letter saved in dead.letter)
orange%

11.2.2.2 Aborting a Message with an Escape Command

You can abort a mail message by entering either the ~q or the ~x escape
command on a blank line. Unlike aborting a message by pressing Ctrl/C,
these commands abort the message immediately, without prompting you
to reconsider. The ~q escape command saves the aborted text in the
dead.letter file in your home directory, but ~x does not, even if you have
set save in your .mailrc file.

The following example shows how to abort a mail message by using the
~x escape command:

orange% mailx sally
Subject: Update to reference page files
What should the mailx(1) reference page include
~x
orange%

You may need to enter the beginning tilde character (~) a few times before it
appears.

11.2.3 Including a File Within a Message

You can include any file (except an unconverted binary file) within a
mail message. You will do this often when you save and resend any
incorrectly-addressed mail that is returned to you (See Section 11.3.3.1) or
when you edit and resend an aborted message saved in the dead.letter
file in your home directory.

From an example in the previous section, the dead.letter file contains
the following text:

Sending and Receiving Messages 11–5

What should the mailx(1) reference page include
about sending to remote users?

Suppose that you want to resend this file to user sally after adding
additional information. While in mailx, use the ~d escape command to
automatically add the text of dead.letter to the mail message, regardless
of the current working directory.

Example 11–1 starts a message to user sally before adding the text of
dead.letter through the ~d command:

Example 11–1: Including the dead.letter File

orange% mailx sally
Subject: the mailx(1) reference page
The uucp(1) reference page has formatting
information for sending to remote users.
~d
"/usr/staff/r2/sally/dead.letter" 2/76

After including the file, its full pathname is displayed, with the number of
lines (2) and characters (76) that the file contains (including the Return
key or a control character at the end of each line). After the display, you
can exit or continue writing your message, but you may want to look at the
included file, which is not displayed otherwise, with the ~p escape command
or you may want to enter a text editor (for example, by typing ~v for vi) to
modify the file.

______________________ Note _______________________

The dead.letter file contains only the most recently aborted
mail message. You may want to ensure that it contains the text
that you want to send.

To include a file (including dead.letter) within a mail message, you can
use either of two escape commands, ~< or ~r followed by the file name.
These commands work in the same way. If the file is not in the same
directory from which you entered mailx, you must precede the file name
with a full path name or one that is relative to the current directory.

Example 11–2 uses the ~< escape command to include a file called
strato_prob from the environ directory below the current working
directory.

11–6 Sending and Receiving Messages

Example 11–2: Including a File with the mailx Command

orange%
mailx sally
Subject: Dan, here’s the stratosphere data file
~< environ/strato_prob
"environ/strato_prob" 41/1309

See Section 12.1.3 for information about transferring a file noninteractively
through the mailx utility.

11.3 Receiving a Mail Message

When you receive a mail message, you have the following options:

• Delete or read any message.

• Reply to the sender and any other recipients to whom the mail was sent.

• Save the message in a file.

• Organize the message by topic in a file of saved messages called a folder.

The mailx program notifies you of new mail whenever you log in, enter any
operating system command or press the Return key. You can also enter the
mailx command at the system prompt to see if you have new mail.

In Example 11–3 user Jones on host orange enters mailx and finds two
messages waiting.

Example 11–3: Entering the mailx Environment

orange% mailx
Mail $Revision: 1.1.4.7 $ Type ? for help.
"/usr/spool/mail/jones": 2 messages 1 new 1 unread
U 1 root Mon Jul 20 10:39 14/438 "System news"
>N 2 root Mon Jul 20 11:30 11/292 "Welcome"
?

In this example, two messages are waiting from the system administrator
(root); one is unread (denoted by U in column 1) from a previous mailx
session and the other is new (denoted by N). The question-mark (?) at the end
of the message is the mailx prompt. You can type another question-mark at
this prompt to display a list of available mailx commands, as indicated in
the header and as described in Section 11.4.

Sending and Receiving Messages 11–7

You can press the Return key at the mailx prompt to read message 2, which
is indicated by the right-angle bracket (>), in the list of waiting messages.
Example 11–4 shows this message being read.

Example 11–4: Reading a mailx Message

? Return
Message 2:
From root Wed Aug 4 11:17:36 1999
Date: Wed, 4 Aug 1999 11:17:29 -0400
From: root (system administrator)
To: jones
Subject: Welcome

Welcome to the company computer network. I’m the
person who manages this system. If you have
questions or problems, send mail to root. You
can also send mail to manager or admin; messages
will be forwarded to me.

I will be on vacation for the next two weeks after
this week... starting Monday, August 10. I’ll be
stdin Space
back on Monday, August 24.
?

In Example 11–4, stdin displays because the PAGER variable has been
set to more (the default). If the PAGER variable had been set to pg nothing
would have been displayed. Also, stdin appears after the 15th line of the
message because user Jones has customized the mailx environment by
adding set crt=15 to the .mailrc file. In the .mailrc file, set crt=
specifies the number of lines to display at one time before invoking the pager
(either pg or more) to display the remainder of the message. As shown in the
example, because the message is more than 15 lines long, set crt instructs
mailx to invoke the pager after 15 lines. By pressing the Space bar, the
next 15 lines are displayed. You should customize your mailx environment
by using set crt=. Otherwise, long mail messages will scroll rapidly,
requiring you to quickly press the Hold Screen key. See Section 11.6.2 and
Appendix D for more information on customizing mailx.

To read another message, enter the message number at the mailx prompt.
To list the messages again, enter h at the mailx prompt. In Example 11–5,
user Jones uses the h command to list the mail messages, sees that the first
message is still unread and enters a 1 at the ? prompt to read it.

11–8 Sending and Receiving Messages

Example 11–5: Reading Another mailx Message

? h
U 1 root Mon Jul 20 10:39 14/438 "System news"
> 2 root Mon Jul 20 11:30 11/292 "Welcome"
? 1
Message 1:
From root Mon Jul 20 11:30:07 1999
Date: Mon, 20 Jul 1999 11:30:04 -0400
From: root (system administrator)
To: jones
Subject: System news

The newest release of the text processing
software will be installed after 5 o’clock
today. Send mail if you have questions or
concerns before or after the installation.

?

The message you are reading is called the current message. To reread the
message, press the Return key. To read the next message, press n. This
message becomes the current message. You can read all your messages
in succession by pressing n after each message. You may change this by
modifying the variable gonext as described in Appendix D.

11.3.1 Deleting a Message

Your messages stay in mailx until you delete them before or after storing
them in a file or in a folder. To delete the current message after reading it,
enter the d (delete) command at the mailx prompt. To delete a different
message, enter the d command at the mailx prompt, followed by the
message number. You can delete several messages by listing their numbers
after the d command. For example, enter the following command at the
mailx prompt to delete messages 7 and 9:

? d 7 9

You can also delete a range of messages by using a hyphen between the first
and last message. For example, to delete messages 7 through 11, enter the
following command at the mailx prompt:

? d 7-11

If you accidentally delete a message, you can recover it with the u (undelete)
command. For example, to undelete message 7, enter the following command
at the mailx prompt:

? u 7

Sending and Receiving Messages 11–9

If you exit mailx by entering q or quit instead of x, any previously read
messages that you do not delete are added to the end of a file of hitherto
undeleted messages named mbox, in your home directory.

11.3.2 Replying to a Message

Replying to a mail message is similar to sending a mail message. You have
the same options to edit, abort or include a file in a message, as described
in Section 11.2.

To reply to the sender of a message that you have just finished reading,
enter an uppercase R (reply) command at the mail prompt, as shown in
Example 11–6.

Example 11–6: Replying to a Message

Message 3:
From deedee Mon Jul 20 14:13:32 1999
Date: Mon, 20 Jul 1999 14:13:05 -0400
From: deedee (DeeDee Smith)
To: jones, mays@sf24.usernet, susannah@artwrk
Subject: Testing text-processing software

I think we should test the new text processing
software on the older machines as well as the
newer. Remember that many customers still have
the older models.

? R
To: deedee
Subject: Re: Testing text-processing software

I agree. Also, we should test different machine
configurations to determine if, for example,
it performs satisfactorily when run remotely.
.
EOT
?

After you enter R, the recipient and subject line display, enabling you to
verify that you are replying to the intended recipient.

If you enter a lowercase r, the reply will be sent to the recipients
of the original mail as well as to the sender; in Example 11–6, to
mays@sf24.usernet and susannah@artwrk, as well as to deedee.

11–10 Sending and Receiving Messages

______________________ Note _______________________

To reply only to the sender of a mail message, enter an uppercase
R at the mail prompt. To reply to the sender and all recipients of a
mail message, enter a lowercase r at the prompt.

In Example 11–6, the Cc: prompt does not appear because user jones’
.mailrc file does not contain the set askcc command.

11.3.3 Saving a Message

If you leave mailx by entering the q command (instead of the x or exit
command), the messages that you have just read are stored in the mbox
file in your home directory.

To store mail messages in a more useful way, you can save them in
individually-named files or in folders, as described in the following sections.

11.3.3.1 Saving a Message in a File

There are several kinds of mail that you might want to save in a file:

• A brief but important message that you read

• An incorrectly-addressed mail message that mailx returns to you

• A long message that you want to print and read later

To save a brief message that you read or a mail message that mailx
returned to you, enter the s command at the mailx prompt and supply a
name for the file.

A returned message is shown in the second item in the following output
from the mailx command:

orange% mailx
Mail $Revision: 1.1.4.7 $ Type ? for help.
"/usr/spool/mail/jones": 2 messages 1 new 1 unread
U 1 root Mon Jul 20 10:39 14/438 "System news"
>N 2 MAILER-DAEMON Wed Aug 5 09:39 19/498 "Returned mail: User unknown"
?

As shown in the following example, user Jones decides to save the returned
message from the previous example in the file, verify-resend, as a
reminder to find the correct address before resending it.

.

.

.
>N 2 MAILER-DAEMON Wed Aug 5 09:39 19/498 "Returned mail: User unknown"
? s verify-resend

Sending and Receiving Messages 11–11

The file, verify-resend, is saved in the current directory unless an explicit
pathname is specified. For example, user Jones could have saved it in a
subdirectory called fix-later by entering the following command:

? s fix-later/verify-resend

To save a long message without reading the entire text on line, press Ctrl/C
to stop the message from scrolling and to display the mailx prompt. You
can now save (or delete) the message. In the following example, user Jones
receives a 20-page report in message 1 and presses Ctrl/C to access the
mailx prompt where a command is entered for saving the file:

? 1
Message 1:
From smith Wed Aug 5 16:43:42 1999
Date: Wed, 5 Aug 1999 16:43:41 -0400
From: smith (Cassandra Smith)
To: jones
Subject: 20-page report: host configuration results

Mortimer,

Here’s the report on host configuration that the
Ctrl/C
Interrupt
?s sys-config-report
"sys-config-report" [New file] 2147/48353
?dp

...

In the previous example, after creating the file, user Jones enters dp (that is,
delete-proceed) at the mailx prompt to prevent the large 20-page file from
being saved in mbox and to start reading the next mail message. Otherwise,
the mailx command, d (delete) followed by the Return key could have
done the same.

11.3.3.2 Saving a Message in a Folder

To organize messages by reference and to minimize the size of the mbox
file (which is a folder itself) you can save messages in files called folders.
Before using a folder other than mbox, you must create a folder sub-directory
in your home directory and add a pointer to the folder in your .mailrc
file. For example, if you make a directory named sys-config in your
home directory, you must add the following line to your .mailrc file:
set folder=sys-config.

To add a message to a folder, use the mailx command, s and the folder
name. For example, to save a message about host configuration with other
messages on that topic, write it to a folder named sys-config, as follows:

11–12 Sending and Receiving Messages

Message 7:
From smith Thu Aug 6 09:32:09 1999
Date: Thu, 6 Aug 1999 09:32:08 -0400
From: smith (Cassandra Smith)
To: jones
Subject: host configuration testing

According to the report that each LAN ...
? s sys-config
"sys-config [New file] 11/235

When you save the first message in a folder, mailx stores it and displays
the message, New file. If you save more messages in that folder, mailx
appends them to the end of the file and displays the message, Appended.

There are two ways to read messages stored in a folder other than mbox:

• From the shell prompt you can start mailx with the -f option and the
folder name. For example, to read the sys-config folder, enter the
following command:

orange% mailx -f sys-config

• If you are already in mailx, use the folder command to switch to a
different folder. For example, if you are reading the sys-config folder
and you want to read the meetings folder, enter the following command:

? folder meetings

When you switch folders, mailx makes any changes to the folder you are
closing, before it opens the new folder.

You can use the folder command without arguments to find out what
folder you are in. For example:

? folder
"sys-config": 17 messages

11.3.4 Forwarding a Message

Example 11–7 shows how to use the m command and the ~f escape command
in mailx to forward message number 3 to user deedee and include a subject
line and introductory note.

Example 11–7: Forwarding a Message

? m deedee 1
Subject: forwarding a message 2
I received this note from Gary. Do you agree? 3
~f 3 4
Interpolating: 3 5

Sending and Receiving Messages 11–13

Example 11–7: Forwarding a Message (cont.)

(continue)
~p 6

Message contains:
To: deedee
Subject: forwarding a message

I received this note from Gary. Do you agree?

From gary Wed Mar 4 16:10:48 1999
Date: Wed, 4 Mar 1999 16:10:48 -0500
From: To: csug@myhost.mydomain
Subject: Forwarding
Cc: smith
I think forwarding should be tomorrow’s topic.

Gary
(continue)
.
EOT
1 Use the m command to initiate message composition.

2 Enter the subject for the new message.

3 Enter new text.

4 The ~f escape command in mailx to forward message number 3

5 The mailx command indicates that the message is currently being read, then displays a prompt when
it is ready to accept additional input.

6 Use the ~p escape command to verify that the message to be forwarded is properly included.

As shown, after you enter the ~f and ~p commands, you can continue
writing or end the message. To forward the current message, do not enter a
number after the ~f.

11.4 Getting Help from mailx

When you enter mailx and you have mail, the following line is displayed at
the top of the header:

Mail $Revision: 1.1.4.7 $ Type ? for help.

This is a reminder that you can type a question mark (?) at the mailx
prompt to display a brief description of available mailx commands, as
shown in Example 11–8.

11–14 Sending and Receiving Messages

Example 11–8: Output from mailx Help Command

? ?
Control Commands:

q Quit - apply mailbox commands entered this session.
x Quit - restore mailbox to original state.
! <cmd> Start a shell, run <cmd> and return to mailbox.
cd [<dir>] Change directory to <dir> or $HOME.

Display Commands:
t [<msg_list>] Display messages in <msg_list> or current message.
n Display next message.
f [<msg_list>] Display headings of messages.
h [<num>] Display headings of group containing message <num>.

Message Handling:
e [<num>] Edit message <num> (default editor is e).
d [<msg_list>] Delete messages in <msg_list> or current message.
u [<msg_list>] Recall deleted messages.
s [<msg_list>] <file> Append messages (with headings) to <file>.
w [<msg_list>] <file> Append messages (text only) to <file>.
pre [<msg_list>] Keep messages in system mailbox.

Creating New Mail:
m <addrlist> Create/send new message to addresses in <addrlist>.
r [<msg_list>] Send reply to senders and recipients of messages.
R [<msg_list>] Send reply only to senders of messages.
a Display list of aliases and their addresses.

============================ Mailbox Commands ==========================

11.5 Exiting Mail

There are three commands you can use to exit from mailx:

• The q command returns you to the shell prompt and saves in the mbox
file in your home directory, any messages you read but did not delete.

• The x and exit commands are the same. Each returns you to the shell
prompt without changing your mailbox.

11.6 Customizing Mail Sessions

The system manager defines certain mailx default settings in the
/usr/share/lib/Mail.rc file, while setting up an account for a new user.
As supplied by the operating system, this file contains the following mailx
settings, which a user can override:

• The set ask setting activates the Subject: prompt.

• The set noaskcc setting deactivates the Cc: prompt.

• The set dot setting means that a single dot on a blank line (.)
terminates the mail message.

• The set nokeep setting means that the system mailbox is deleted when
it becomes empty. This setting is unimportant to most users.

Sending and Receiving Messages 11–15

• The set save setting means that aborted messages are saved in the
dead.letter file.

You can customize your mailx session by defining aliases and setting
variables in the .mailrc file in your home directory. Example 11–9 shows a
sample .mailrc file:

Example 11–9: Sample .mailrc File

alias sue susannah
alias wombats tom, jeff, craig, jim, ken
set ask
set askcc
set prompt=>
unset dot
set record=/usr/users/hale/outgoing
set folder=folder
set crt=20

11.6.1 Creating Mail Aliases

You can use the alias command in mailx to create alternate names for
users or user groups.

______________________ Note _______________________

The mailx alias is not the same alias command used by the
shell; you cannot use it to modify mail commands.

To define a permanent mail alias, enter the alias command in the .mailrc
file, specifying the alias name and one or more login names. The following
.mailrc file defines two aliases:

alias sue susannah
alias wombats tom, jeff, craig, jim, ken

The first alias defines the name sue to mean user susannah. This enables
you to send mail to susannah by using the name sue. The second alias
enables you to send mail to members of a team called the Wombats − tom,
jeff, craig, jim and ken, by addressing your message to wombats.
Another way to enter this line in .mailrc is:

alias wombats tom,\
jeff,\
craig,\
jim,\
ken

11–16 Sending and Receiving Messages

The backslash (\) enables you to write a single long command on several
lines.

While in mailx, you can see what aliases are defined by using the alias
command without arguments. You can also define temporary aliases at the
mailx prompt that are in effect during that mailx session.

11.6.2 Setting Mail Variables

Mail variables are similar to variables in your .login file. They can be
binary, string or numeric.

To set a binary mail variable in your .mailrc file, enter the set command
followed by the option name. The sample .mailrc file includes these binary
variables:

set ask
set askcc
unset dot

• Setting ask makes mailx prompt you for the subject line of messages
you send.

• Setting askcc allows mailx to prompt you for carbon-copy recipients.

• Unsetting dot prevents mailx from ending a message when you type
a line with just a period on it; you would have to end a message by
pressing Ctrl/D instead.

String mail variables accept characters or numbers as values. The sample
.mailrc file includes the following three string variables:

set folder=folder
set record=/usr/users/hale/folder/outgoing
set crt=20

• The folder variable defines a subdirectory to contain your mail folders.
If you set this variable, the mailx utility creates folders as files in this
directory when you save messages using the save folder command.
The mailx utility interprets the file name as a subdirectory of your
home directory.

• The record variable tells mailx to put a copy of each message you send
in the file you specify. If you do not set this variable, no automatic record
is kept. This example specifies a file that will be treated as an ordinary
folder by mailx. To select the record file, use the following command:

orange% mail -f outgoing

• The crt variable tells mailx how many lines of a message should be
displayed before invoking the pager program.

Sending and Receiving Messages 11–17

11.7 The Message Handling (MH) Program
An alternative to the mailx program is the Message Handling program
(MH). The MH program is a set of small mail-handling programs that you
use by entering the command you want to execute from the shell prompt.

The MH program is optional; it may not be installed on your host. To
determine if MH is available, look for the /usr/bin/mh directory.

To use MH, you must add the /usr/bin/mh directory to your path by
editing the set path line in your .cshrc or .login file. Then, notify the
shell about the change in your path by logging out and logging back in or by
entering the following command (for the C shell):

orange% source .login

If your path is set in .cshrc, use .cshrc instead of .login in this
command.

For either the Bourne, Korn, or POSIX shell, you would add this information
to the .profile file and notify the shell by entering the following command:

orange$. .profile

With the MH program, folders are organized differently from mailx folders.
New and unread mail is kept in a folder called inbox, into which the mail
that arrives in your system mailbox is moved by using the inc command.
You must enter the inc command every time you want to include new mail.

You select a folder using the folder command. If you enter it without giving
a folder name, folder displays the currently selected folder.

You can enter the folder command with the -all option to display a list of
your folders and the number of messages in each folder.

You use the show, prev and next commands to read the current, previous
and next messages in your current folder. If you enter a message number
with the show command, that message becomes your current message. For
example:

orange% show 7
Message 7:
From deedee Mon Jul 23 10:02:10 1999
Date: Mon, 23 Jul 1999 10:01:25 edt
To: hale
Subject: Cafeteria hours
Cc:
Status: R

I’m sorry you didn’t ask that sooner. The cafeteria
closes its breakfast service at 10. Lunch starts
at 11:30.

11–18 Sending and Receiving Messages

The rmm command removes messages from your current folder. If you use
the rmm command with no argument, it deletes the current message. If you
specify one or more message numbers, the messages you specify are removed.
For example, to remove messages 2, 5 and 7, enter the following command:

orange% rmm 2 5 7

Table 11–1 lists most of the MH commands. For a complete list, see the mh(1)
reference page. For more information about each MH command, see the
reference page for each command.

Table 11–1: Commands for the MH Message-Handling Program
Command Description

ali Searches the specified alias files and displays the
addresses corresponding to the aliases.

anno Annotates messages to keep track of distribution,
forwarding and replies for your messages.

burst Extracts the original messages from a forwarded message,
discards the forwarding header and places the original
messages at the end of the current folder.

comp Creates a new mail message, providing a template for you to
fill in and invoking an editor to finish the message.

dist Redistributes the current message to addresses that
are not on its original distribution list.

folder Selects a folder or displays the contents of your current folder.

folders Lists all your folders and the number of mes-
sages each one contains.

forw Forwards messages to recipients who were not the original
addressees. The message is encapsulated (included with a
Forwarded Message notice) and a header is added.

inc Incorporates mail from your system mailbox into
your inbox folder.

mark Assigns a name to a sequence of messages in your
current folder. You can then use the pick command to
select messages marked in this way.

mhl Lists formatted MH messages. You can use this command as a
replacement for the more command to display messages.

mhmail Sends mail to the specified users. If you do not specify any
users, mhmail works like the inc command.

msgchk Checks your system mailbox and any other files that can
receive new mail for you, looking for new messages. If any
new messages are found, msgchk reports.

Sending and Receiving Messages 11–19

Table 11–1: Commands for the MH Message-Handling Program (cont.)

Command Description

next Displays the next message in the current folder
or in the specified folder.

packf Compresses a folder into a single file. (Each message
is usually stored as a separate file.) Do not confuse the
packf command with the pack command.

pick Selects messages based on content, sequence
name or other criteria.

prev Displays the previous message in the current folder.

prompter Invokes a simple editor designed for composing messages.
The prompter command is invoked by comp, dist, forw
and repl; you do not need to call prompter directly.

rcvstore Incorporates a message from the standard input
directly into a folder.

refile Moves messages from the current folder to one or more folders.

repl Replies to either the current message or the mes-
sage you specify.

rmf Removes all of the messages in a folder and then
removes the folder itself.

rmm Removes messages from a folder. The message files are not
actually destroyed; instead, rmm renames them by inserting
a number sign (#) as the first character of the file names.
On most hosts, files whose names begin with a number sign
are deleted once a day by an automatic process. Until they
are actually deleted, you can recover removed messages by
using the mv command to rename the files.

scan Displays a list of the messages in a folder.

send Sends a message that you have created by using
comp, prompter or another editor.

show Displays the contents of a message.

sortm Sorts messages in a folder into chronological order according
to the Date: field of the message header.

whatnow Prompts you for what to do with a message you have just
composed. You can reexamine an original message to which
you are replying, resume editing the new message or do
other tasks associated with sending the message.

whom Expands the header of a message into a set of addresses
and optionally checks to see that the message can
be delivered to those addresses.

11–20 Sending and Receiving Messages

The following example shows how the MH msgchk command reports new
messages:

orange% msgchk
You have new mail waiting, last read on date

You can tailor the features of MH by creating a .mh_profile file in your
top-level directory. The MH reference pages describe the features that you
can modify.

11.8 Sending and Receiving Messages with write

The write command enables two users on the same or different hosts to
communicate on either a video display terminal or on nonvideo devices (for
example, a teletypewriter) that print messages on paper.

You can use write to send a message immediately to someone who you
cannot reach by telephone, especially if you do not require a reply. (See also
the talk command in Section 11.9.)

The write command displays a message on the terminal screen of the
recipient. You can prevent users from communicating with you through
write and talk by entering the mesg n command in the .login file in
your home directory. You cannot disable incoming messages from those
with superuser privileges.

To determine whether a user on a local host has disabled messages from
write and talk, use the finger command and look at the first line of
output for the phrase messages off. For example:

Login name: smith (messages off) In real life: John Smith
...

For users on a remote host, the disabling of write and talk is denoted by
an asterisk (*) in the TTY field of the output line, for example:

...
Login Name TTY Idle When Office
chang Peter Chang *p1 2:58 Thu 10:16 103

See Section 10.2.2 and the finger(1) reference page for more information.

Your intended recipient may be running a command that temporarily
disables write to prevent its interference. If so, the sender would receive
the following message just as if the recipient had explicitly disabled write.

Write: Permission denied

You can use the write command only when the recipient is logged in. Use
the who command, as described in Section 10.1, to list current users. If, for

Sending and Receiving Messages 11–21

example, user smith is not logged on when you send a message through
write, the following message is displayed on your terminal screen:

smith is not logged on

The following steps show how user wang sends a message to user chung,
both of whom are logged in on local host dancer:

1. User wang enters the write command at the system prompt:

dancer% write chung

The write program rings a bell and sends the following message to the
terminal screen of chung:

message from wang tty04 Feb 14 10:32:45

A bell rings at user wang’s terminal when the connection is made.

2. User wang types the message, pressing the Return key after each line
and ends the message by pressing Ctrl/D. For example, wang sends the
following message in two lines to user chung:

The double-sided lab printer is working. Return
Re-send your job and I’ll check it. Return
Ctrl/D

3. After wang presses Ctrl/D, the EOF (end of file) signal is displayed on
the screen of user chung to indicate the end of the message.

____________________ Note _____________________

See your system administrator if Ctrl/D does not produce the
end-of-file (EOF) signal on the recipient’s screen or if a bell
does not ring on the sender’s terminal.

You can use the exclamation point (!) at the beginning of a new message
line to access the shell prompt and execute any operating system command
(including write). For example, if wang forgot the name of the current
directory from which chung is to retrieve certain files, wang can enter the
!pwd command to remind himself, as shown:

dancer% write chung
You can copy the network user files from: Return
!pwd Return
/ufs/usr/staff/r0/net-dir/network_comm
!
/ufs/usr/staff/r0/net-dir/network_comm
Ctrl/D
dancer%

11–22 Sending and Receiving Messages

The write command can be used interactively, but it is difficult for both
sender and receiver to determine when the other has finished and is waiting
for a reply. For example, wang can enter the following command:

dancer% write chung

Wang will then wait for chung to reply, but chung might also wait, thinking
that wang intends to continue the message.

To minimize problems, it is a good idea to establish a simple, temporary
protocol each time you want to use write interactively. For example, user
wang can start his message to chung as follows:

dancer% write chung
I’ll mark the end of each message with ’ZZZ’ Return
and wait for a reply. Please do the same. Return
I’ll install a driver for the new printer. Return
Do you want to test it? ZZZ Return

For more information, see the write(1) reference page.

11.9 Sending and Receiving Messages with talk
The talk command enables a user to send a message to another user on the
same or on a remote host, interactively and more easily than through write.
However, talk works only on video display terminals.

Like write, you can use talk to send a message immediately to someone
who you cannot reach by telephone. Also, like write, the talk command
may disrupt the receiver because it sends a notification message directly to a
terminal and continues doing so until a reply is entered.

To disable incoming messages (except from those with superuser privileges)
from talk (and from write, as described earlier) you can put the command,
mesg n in your .login file. To determine whether a user has done this, use
the finger command as described in Section 10.2.1 or in the finger(1)
reference page.

During an online talk session, a send window and a receive window are
opened on each user’s terminal. Each user can type into the send window
while talk displays in the receive window what the other user is typing.

For example, to send a message to user hoover on the same local host
apple, user coolidge enters the following talk command:

apple% talk hoover

The program then divides the terminal screen of coolidge into two parts;
the top half assigned to coolidge and the bottom half assigned to hoover.

Next, the following message is displayed in the top of the screen:

Sending and Receiving Messages 11–23

[No connection yet]

When the connection is established, the following message is displayed:

[Waiting for your party to respond]

After this message, a bell rings on hoover’s terminal and the following
message is displayed:

Message from Talk_Daemon@apple at 16:18 ...
talk: connection requested by coolidge@apple
talk: respond with: talk coolidge@apple

If hoover does not respond quickly, the following message is displayed on
coolidge’s screen:

[Ringing your party again]

When hoover responds, a message about the established connection appears
on coolidge’s screen. Each user can now enter text. If the screen fills
up, talk overwrites the text at the beginning of the screen. Either user
can end the conversation by pressing Ctrl/C. The end of the talk session
is marked as follows:

[Connection closing. Exiting]

11–24 Sending and Receiving Messages

12
Copying Files to Another Host

This chapter explains how to use operating system commands to perform the
following tasks:

• Copy files between a local and a remote host (Section 12.1)

• Copy entire directories (including subdirectories) of files between a local
and a remote host (Section 12.2)

• Copy files between two remote hosts (Section 12.3)

To determine the host name or online status of a remote host before copying
files, use the finger, who, rwho, ping or ruptime commands described in
Chapter 10.

In addition to the information in this chapter, Chapter 14 provides
information on using the UNIX-to-UNIX Copy Program (UUCP) to copy files
to and from remote systems.

______________________ Note _______________________

The security features on the remote host determine whether
you can copy a file or not. See your system administrator if you
cannot copy a file.

12.1 Copying Files Between a Local and a Remote Host

You can use the following commands to copy files between a local and a
remote host:

• rcp, described in Section 12.1.1; see Section 12.2 to copy entire
directories of files. A host running the operating system can use rcp
with a host running any other UNIX based operating system.

• ftp, described in Section 12.1.2. You can use ftp to copy files between
hosts using operating systems that also support ftp.

• mailx, described in Section 12.1.3.

• write, described in Section 12.1.4.

Copying Files to Another Host 12–1

12.1.1 Using rcp to Copy Files Between Local and Remote Hosts

While using rcp to copy files from a local to a remote host or from a remote
to a local host, name the file to be copied first, followed by the destination
file, as shown in this rcp syntax statement:

rcp [option…] localfile hostname:file

The localfile variable identifies the local file you want to copy. The
hostname:file variable identifies the remote host (hostname) followed by
a colon (:) and the name of the file (file) to which the local file is copied.

The following example uses rcp to copy the local file, YTD_sum from the
directory /usr/reports on the local host to the file year-end in the
directory /usr/acct on the remote host moon:

% rcp /usr/reports/YTD_sum moon:/usr/acct/year-end

You can also send a file on the local host to a user at a remote host. The
following example shows how to copy the file YTD_sum from the directory
/usr/reports on the local host to the file acct_summaries in the home
directory of user jones on the remote host moon:

% rcp /usr/reports/YTD_sum jones@moon:acct_summaries

As used in the preceding examples, the rcp command assigns a new
creation date and time to the file created from the original. It also assigns
file read-write-execute permissions according to the host or user directory
containing the newly created file.

You may need to preserve the original creation date and access permission
mode of the copied file in the new file. As shown in the following example,
the -p option enables you to preserve the original creation date and time
and file access permission of YTD_sum in the file, year-end:

% rcp -p /usr/reports/YTD_sum moon:/usr/acct/year-end

If the -p option was not entered, a new date and time would have been
assigned and the file access permission would be set to the default assigned
by the system administrator for remote host, moon.

In the next example, the -p option preserves the same file creation and
access permissions in the file acct_summaries as in the original file,
YTD_sum:

% rcp -p /usr/reports/YTD_sum jones@moon:acct_summaries

If the -p option was not entered, a new date and time would have been
assigned, but unlike the previous example, the file access permission would
be the default set by user jones through the umask command (if any) in the
.login or .profile file. If the umask is not set in the .login or .profile

12–2 Copying Files to Another Host

file, the default for remote host moon determines the file access permission
mode. See umask(1) for more information about setting umask.

To copy a file from a remote host to a local host, follow the following rcp
syntax statement. The command syntax is the same as copying a local file to
a remote host, with the exception that localfile is the destination file.
Therefore, it is placed last on the command line:

rcp [option…] hostname:file localfile

12.1.2 Using ftp to Copy Files Between Local and Remote Hosts

The ftp command is the interface to the File Transfer Protocol (FTP) and
has an extensive set of subcommands (described in Table 12–1, Table 12–2
and Table 12–3) that support the main task of copying files. You can use the
ftp command to copy files between any two hosts that support ftp.

See the ftp(1) reference page for a description of the ftp command options,
which are used primarily for network administration tasks.

Copying files through FTP consists of the following steps:

1. Establishing a session on the remote host

2. Copying the files

3. Disconnecting the session

The ftp command has the following syntax:

ftp host_name

The host_name variable specifies the name of the host you want to reach. If
you do not specify a host_name on the command line, you must use the ftp
subcommand, open (described in Table 12–1) to connect with a remote host.

After you type ftp, the ftp> prompt is displayed and you are logged in
to the remote host. You can then use ftp subcommands to perform the
following tasks:

• Copy files (See Table 12–1)

• Append a local file to a remote file (See Table 12–1)

• Copy multiple files (See Table 12–1)

• List the contents of a remote directory (See Table 12–2)

• Change the current directory on the remote host (See Table 12–2)

• Delete files on remote hosts (See Table 12–2)

• Escape to the local shell to run commands (See Table 12–3)

Copying Files to Another Host 12–3

Example 12–1 shows how user alice on local host earth logs on to remote
host moon and uses ftp subcommands to check the current working
directory, list its contents, copy a binary file and end the session.

Example 12–1: Using ftp to Copy a File

earth% ftp moon 1
Connected to moon
220 moon FTP server (Version . . .) ready 2
Name(moon:alice): Return 3
Password: 4
230 User alice logged in 5
ftp> binary 6
200 Type set to I
ftp> pwd 7
257 "u/alice" is current directory
ftp> ls -l 8
200 PORT command successful.
150 Opening data connection for /bin/ls (192.9.200.1,1026) (0 bytes)
total 2

-rw-r--r-- 1 alice system 101 Jun 5 10:03 file1

-rw-r--r-- 1 alice system 171 Jun 5 10:03 file2

-rw-r--r-- 1 alice system 1201 Jun 5 10:03 sales
ftp> get sales newsales 9
200 PORT command successful.
150 Opening data connection for sales (192.9.200.1,1029) (1201 bytes)
226 Transfer complete.
local:sales remote:newsales
ftp> quit10
221 Goodbye.
earth%

1 User alice enters the ftp command at the prompt of local host, earth
to begin an ftp session with remote host, moon.

2 A message verifying the connection is displayed on the local host.

3 User alice presses Return at the prompt because her login name is the
same on the remote host.

4 At the Password: prompt, user alice enters a valid password that is
not displayed.

5 The login to the remote host is verified and the ftp> prompt appears,
establishing the ftp session with the remote host.

6 User alice enters the binary subcommand at the ftp> prompt to set
the file transfer type to binary and FTP verifies it with the message
200 Type set to I.

7 User alice enters the pwd subcommand to identify the current working
directory and FTP verifies it with the message u/alice is current
directory.

12–4 Copying Files to Another Host

8 User alice enters the ls -l subcommand to list the contents of the
current working directory, file1, file2 and sales.

9 User alice copies the file sales from the remote host to a file called
newsales on the local host through the get subcommand.

10 User alice enters the quit subcommand to end the ftp session and
returns to the local system prompt.

______________________ Note _______________________

File transfers are subject to the security features on the remote
host. If you cannot copy a file, see your system administrator.

Table 12–1 describes the ftp subcommands that copy files and exit ftp. The
binary, get and quit subcommands were used in Example 12–1.

Table 12–1: The ftp Subcommands for Connecting to a Host and Copying
Files
Subcommand Description

account [password] Sends a supplemental password that
a remote host may require before
granting access to its resources. If the
password is not specified, the user is
prompted for it. The password does
not appear on the screen.

ascii Sets the file transfer type to network
ASCII, which is the default. For example,
a PostScript file is an ASCII file.

binary Sets the file transfer type to binary
image. This is required when copying
non-ASCII files. For example, an
executable file is non-ASCII.

bye Ends the file copying session and
exits FTP; same as quit.

get remfile locfile Copies the remote file, remfile to
the file, locfile on the local host. If
locfile is not specified, the remote
file name is used locally. See also the
runique subcommand.

mget remfile [locfile] Copies one or more specified files
(remfile) from the remote host to
locfile in the current directory
on the local host (supports wildcard
or pattern-matching metacharacter
expansion).

Copying Files to Another Host 12–5

Table 12–1: The ftp Subcommands for Connecting to a Host and Copying
Files (cont.)

Subcommand Description

mput locfile [remfile] Copies one or more specified files
(locfile) from the local host
to remfile on the remote host
(supports wildcard or pattern-matching
metacharacter expansion).

open host [port] Establishes a connection with the
specified host, if you did not specify it on
the command line. If port is specified,
FTP attempts to connect to a server at
that port. If the autologin feature is
set (the default), FTP tries to log the
user in to the remote host.

put locfile [remfile] Stores a file, locfile on the local host,
in the file remfile on the remote host.
If you do not specify remfile, FTP uses
the local file name to name the remote
file. See also the sunique subcommand.

quit Ends the file copying session and
exits FTP; same as bye.

recv remfile [locfile] Copies the remote host file, remfile
to the file, locfile on the local host;
recv works like get.

runique Toggles, creating unique file names
for local destination files during get
operations. If the unique local file
name feature is off (the default), FTP
overwrites local files. Otherwise, if a local
file has the same name as one specified
for a local destination file, FTP appends
a .1 extension to the specified name of
the local destination file.
If a local file already has the new name,
FTP appends a .2 extension to the
specified name and so on up to a value
of 99. If FTP still cannot find a unique
name, it reports an error and the file is
not copied. Note that runique does not
affect local file names generated from a
shell command.

12–6 Copying Files to Another Host

Table 12–1: The ftp Subcommands for Connecting to a Host and Copying
Files (cont.)

Subcommand Description

send locfile [remfile] Stores a local file, locfile in the
file, remfile on the remote host;
send works like put.

sunique Toggles, creating unique file names for
remote destination files during put
operations. If the unique remote file
name feature is off (the default), FTP
overwrites remote files. Otherwise, if
a remote file has the same name as
specified for a remote destination file, the
remote FTP server modifies the name
of the remote destination file in the same
way that runique does and it must be
supported on the remote host.

Table 12–2 describes the ftp subcommands that enable you to verify, change
or create the current directory and list its contents before you copy files, if
necessary. The pwd and ls subcommands were used in Example 12–1.

Table 12–2: The ftp Subcommands for Directory and File Modification
Subcommand Description

cd remotedir Changes the working directory on the remote
host to remotedir.

cdup Changes the working directory on the remote host
to the parent of the current directory.

delete remfile Deletes the specified remote file.

dir [remdir]
[locfile]

Lists the contents of remote directory remdir to
the file, locfile on the local host.

lcd [directory] Changes the working directory on the local host. If you do
not specify a directory, FTP uses your home directory.

ls [remdir]
[locfile]

Writes an abbreviated file listing of a remote directory,
remdir to a local host file, locfile.

mkdir [remdir] Creates specified directory on remote host.

pwd Displays the name of the current directory
on the remote host.

rename from to Renames a file on the remote host.

rmdir remdir Removes the remote directory remdir from
the remote host.

Copying Files to Another Host 12–7

Table 12–3 describes the ftp subcommands that provide help or status
information directly or by invoking the shell from within ftp.

Table 12–3: The ftp Subcommands for Help and Status Information
Subcommand Description

!command [option] Invokes an interactive shell on the local host.

? Displays a help message describing the
subcommand. If you do not specify subcommand,
FTP displays a list of known subcommands.
See also the help subcommand.

help [subcommand] Displays help information. See also the
? subcommand.

status Displays current status of ftp, including the
current transfer mode (ASCII or binary), connection
status, time-out value and so on.

verbose Toggles verbose mode. When verbose mode is on
(the default), FTP displays all responses from the
remote FTP server. Also, FTP displays statistics
on all completed file transfers.

The tftp command, which is the interface to the Trivial File Transfer
Protocol (TFTP), provides another way of copying files. Unlike ftp, it does
not provide subcommands for any other tasks and is recommended only for
tasks performed by the superuser or the installer of the operating system
(for example, copying the operating system kernel). Limited file access
privileges are given to the remote tftp server daemon, tftpd. See the
tftp(1) reference page for more information.

12.1.3 Using mailx to Copy ASCII Files Between Local and Remote
Hosts

The mailx command copies ASCII files to a local or remote host, although
mailx is most often used to send and receive mail messages as described
in Chapter 11. You can copy an ASCII file to one or more users through
mailx by using the left-angle bracket redirection symbol (<) as shown in
the following syntax:

mailx [option…] recipient… < filename

The recipient variable specifies one or more user names or a mailx alias
to whom you want to send the file, filename.

For example, to send the file schedule to several users, you could use the
mailx command, as shown with its -s option that indicates the subject
of the message:
% mailx -s "games" tom jeff craig jim ken < schedule

12–8 Copying Files to Another Host

If you create a mail alias of wombats (See Section 11.6.1) for these five
members of a team called Wombats, you can send the file to that alias, as
shown:

% mailx -s "games" wombats < schedule

12.1.4 Using write to Copy Files Between Local and Remote Hosts

The write command copies files to a local or remote host, although write
is most often used to write messages to other users as tasks described in
Section 11.8. After you type write, enter the user name of the recipient, a
left-angle bracket redirection symbol (<) and the name of the file you want
to send. For example, to send a file named letter in your current directory
to user maria, enter the following command at the host prompt:

% write maria < letter

12.2 Copying Directories of Files Between a Local and a
Remote Host

The -r option of the rcp command enables you to copy entire directories
of files recursively (that is, including files and directories within any
subdirectories) between a local and a remote host.

To copy a directory recursively from your local host to a remote host, use
the following syntax:

rcp -r localdirectory hostname:directory

The localdirectory variable identifies the local directory that you want
to copy recursively. The hostname:directory variable identifies the
remote host (hostname) followed by a colon (:) and the name of the remote
directory (directory) to which the local directory is copied.

The following example uses rcp -r to copy recursively the directory
/usr/reports from the local host to the directory /user/status/newdata
on remote host moon:

% rcp -r /usr/reports moon:/user/status/newdata

You can also copy recursively a directory on your local host to a user at
a remote host. The following example shows how to copy the directory
/usr/reports on the local host to the directory /user/status/newdata
in the home directory of user smith on the remote host moon. This example
also uses the -p option, as explained in Section 12.1.1, to preserve the
original creation date and access permission mode of the directory and files
that are copied in the new directory:

% rcp -p -r /usr/reports smith@moon:/user/status/newdata

Copying Files to Another Host 12–9

To copy a directory recursively from a remote host to your local host, follow
the rcp syntax statement shown below. The command syntax is the same
as copying a directory recursively from a local to a remote host with the
exception that localdirectory is the destination file, so it is placed last
on the command line:

rcp -r hostname:directory localdirectory

12.3 Copying Files Between Two Remote Hosts

From your local host, rcp can copy a file on one remote host to a file on
another remote host. To do this, use the following rcp syntax:

rcp remhost1:filesend remhost2:file-recv

The remhost1 variable identifies the remote host containing the file you
want to send, followed by a colon (:) and the file, filesend that you want
to send. The last part of the statement identifies the second remote host,
remhost2 and the file name, file-recv, to which the file from remhost1
will be copied. If only a directory name is given in file-recv (as in the
example below), filesend will be copied there with the same file name.

The following example uses rcp to copy the file spark from the directory
/u/cave/fred on remote host flint to the directory /u/hut/barney
on remote host stone:

% rcp flint:/u/cave/fred/spark stone:/u/hut/barney

12–10 Copying Files to Another Host

13
Working on a Remote Host

The chapter explains how to use commands which enable you to:

• Log in to a remote host from your local terminal (Section 13.1).

• Execute a specified command at a remote host (Section 13.2).

• Log in to a remote host using the Telnet protocol (Section 13.3). If
rlogin is not supported, use telnet as an alternative.

______________________ Note _______________________

Any remote login is subject to the security features on the remote
host. If you have difficulty logging in to a remote host, see your
system administrator.

Before using any of these commands you might need to know the correct
host name or whether a remote host is currently reachable. Use the finger,
who, rwho, ruptime and ping commands, described in Chapter 10 to find
this information.

13.1 Using rlogin to Log in to a Remote Host
You can log in to a remote host with rlogin, using the following command
syntax:

rlogin [-l user] host_name

The -l option enables you to specify a remote user name other than your
local user name. The host_name variable specifies the remote host.

The following steps show how to log in to a remote host boston where the
login name is the same as that on the local host:

1. Enter the following rlogin command followed by the name of the
remote host. For example:

% rlogin boston
Password:

2. Enter your password.

When the system prompt is displayed, you are logged in to the remote
host and can enter any command.

Working on a Remote Host 13–1

3. Press Ctrl/D to close the connection and return to your local host.

If you have an account on a remote host where your login name is different
from that on the local host, you should use the -l option to log in to the
remote host, as shown in the following steps.

1. Enter the rlogin -l command followed by the remote login name and
the name of the remote host. For example:

% rlogin -l celtic boston
Password:

2. Enter the password corresponding to the login name, celtic.

When the system prompt is displayed, you are logged in to the remote
host and can enter any command.

3. Press Ctrl/D to close the connection and return to your local host.

In the following situations, rlogin will not prompt for a password:

• If your local host is listed in the /etc/hosts.equiv file on the remote
host

• If the name of your host (and optionally, your user name) is listed in the
.rhosts file in your home directory on the remote host

For more information on rlogin, see the rlogin(1) reference page.

13.2 Using rsh to Run Commands on a Remote Host

The rsh command enables you to run a single command on a remote UNIX
based host without logging in there. If you need to run several commands
successively, you must log in to the remote host using either rlogin or
telnet.

The rsh command has the following syntax:

rsh [-l user] host_name command

The -l option enables you to log in to a remote host where your login name,
user, is different from that on the local host. If you do not specify the -l
option, rsh assumes that your login name is the same on both the local and
remote hosts. The host_name variable specifies the name of the remote
host. The command variable specifies the command you want to run.

______________________ Note _______________________

If you do not specify a command to run remotely, rsh prompts you
for login information to the remote host.

13–2 Working on a Remote Host

To use rsh, one of the following must be true:

• Your local host is listed in the /etc/hosts.equiv file on the remote
host.

• Your host is listed in the .rhosts file in your home directory on the
remote host.

In the following example, rsh appends a file located on a remote host to
a file on the local host. The remote file, remfile2, on host remhost2 is
appended to a local file called locfile:

% rsh remhost2 cat remfile2 >> locfile

13.3 Using telnet to Log in to a Remote Host

You can log in to a remote host by using the telnet command, which
implements the Telnet protocol.

Using telnet you can:

• Log in to a remote host

• Execute any operating system command on the remote host

• Enter telnet subcommands (see Table 13–1) for managing the remote
session

The telnet command has the following syntax:

telnet [host_name [port]]

The host_name variable specifies the remote host. If you omit the host
name, you can use the open subcommand to create a connection after
you activate the Telnet utility. Example 13–1 shows how to use the
telnet command to log in to a remote host named star, use the telnet
subcommand status and close the connection.

If you do not specify a port, the Telnet protocol attempts to contact a Telnet
server at the default port.

Working on a Remote Host 13–3

Example 13–1: Using the telnet Command

% telnet star 1
Trying 16.69.224.1... 2
Connected to star.milkyway.galaxy.com. 3
Escape character is ’^]’.

(star.milkyway.galaxy.com) (ttyra) 4

login: username 4 5
Password: 6 7

% ^] 8
telnet> status 8 9
Connected to star.milkyway.galaxy.com. 10
Operating in single character mode
Catching signals locally
Remote character echo
Local flow control
Escape character is ’^]’.
11
% ^D 12
Connection closed by foreign host. 13
% telnet star 1 14
Trying 16.69.224.1...
Connected to star.milkyway.galaxy.com.
Escape character is ’^]’.

(star.milkyway.galaxy.com) (ttyra)

login: username
Password:

% ^] 8
telnet> q 15
Connection closed. 16

1 The telnet command is entered specifying the host_name as stor. The default port is used.

2 The telnet utility identifies the address it is trying to connect with.

3 The telnet utility completes the connection and identifies the host it is connected with.

4 The remote host system identifies itself and prompts for the user’s login.

5 The user name on the host system is entered.

6 The remote system prompts for the user’s password.

7 The user’s password on the host system is entered. For security reasons, the password display is
suppressed.

8 The default escape sequence Ctrl/] is pressed to access the telnet subcommand prompt, telnet>.

9 The status subcommand is entered at the prompt.

10 Several lines of status information are displayed. The exact display depends on system configuration.

11 The Return key is pressed to display the remote host prompt.

12 Ctrl/D is entered to quit the Telnet session from the host prompt.

13 The connection is closed by the remote host.

14 The connection and login procedure is repeated.

13–4 Working on a Remote Host

Example 13–1: Using the telnet Command (cont.)

15 The q subcommand is entered to quit the Telnet session from the telnet> subcommand prompt.
Pressing Ctrl/D could also have been used.

16 The local telnet utility closes the connection.

You can enter the telnet command without any arguments to access the
telnet subcommand mode, indicated by the telnet> prompt.

The telnet subcommands are described in Table 13–1. Before entering a
subcommand, you must enter the escape sequence, Ctrl/]. This sequence
notifies the telnet program that the following information is not text;
otherwise, telnet would interpret subcommands as text.

For each subcommand, you only need to type enough letters to uniquely
identify the command. For example, q is sufficient for the quit command.
For a complete list of telnet subcommands, see the telnet(1) reference
page.

Table 13–1: The telnet Subcommands
Subcommand Description

? [subcommand] Displays help information. If a
subcommand is specified, information
about that subcommand is displayed.

close Closes the connection and returns to
telnet command mode.

displa [argument] Displays all of the set and toggle values if
no argument is specified; otherwise, lists
only those values that match argument.

open host [port] Opens a connection to the specified host.
The host specification can be either a
host name or an Internet address in
dotted decimal form. If no port is given,
telnet attempts to contact a telnet
server at the default port.

quit Closes a connection and exits the telnet
program. Pressing a Ctrl/D in command
mode also closes the connection and exits.

Working on a Remote Host 13–5

Table 13–1: The telnet Subcommands (cont.)

Subcommand Description

status Shows the status of telnet, including
the current mode and the currently
connected remote host.

z Opens a shell on the local host as specified
by the SHELL environment variable. When
you exit the shell by pressing Ctrl/D,
telnet returns to the remote session.

13–6 Working on a Remote Host

14
The UUCP Networking Commands

This chapter describes the UNIX-to-UNIX Copy Program (UUCP). Using
UUCP enables you to:

• Perform tasks on a remote host (Section 14.3.2.3)

• Transfer files between a local and remote host (Section 14.5)

• Work in background mode

• Switch back and forth between the local and remote host, performing
tasks on either or both, concurrently

For additional information on UUCP, see the uucp_intro(7) reference page.
For an overview of UUCP system management and tasks, see Network
Administration.

With UUCP, you can connect over a hardwired asynchronous line, a network
or a telephone line (using modems at both ends) to:

• Another workstation

• Another computer running a UNIX based operating system

• A computer running an operating system that is not UNIX based (this
requires certain hardware and software)

14.1 UUCP Pathname Conventions

UUCP pathnames follow the same conventions as the operating system
with the following exceptions:

• Relative pathnames may not work with all UUCP commands. In such a
case, reenter the command and use the full pathname.

• On hosts that support UUCP, the /usr/spool/uucppublic directory is
set up for transferring data among other hosts. The brief form of this
directory is ~uucp.

• The pathname for a file on a remote host requires an exclamation point,
(!) after the host name. For example, sea!/research/new specifies
the file new in the directory /research on host sea.

• Sometimes to specify a file, you must provide the names of the remote
hosts along the network path. To do so in the Bourne, Korn, or POSIX
shell, put an exclamation point (!) after each host name. For example,

The UUCP Networking Commands 14–1

gem!car!sea!/research/cells specifies the file cells in directory
/research on host sea, which is reachable through host car; car is
reachable through host gem. In the C shell, the exclamation point (!) will
be mistranslated unless you precede it with a backslash (\), for example:

gem\!car\!sea\!/research/cells

14.2 Finding Hosts that Support UUCP

To communicate with a remote host by using UUCP commands from your
local host, you must determine which other hosts support the UUCP
protocol. The UUCP uuname utility displays a list of all hosts with which
you can communicate using UUCP from your local host. The following
example shows the uuname command with output.

% uuname
elvis
fab4
Y107

This example shows that three remote hosts are accessible to the local host
through UUCP. To identify the local host, use the -l option to the uuname
command. For example:

% uuname -l
music

By using UUCP commands among compatible hosts, a user on host music
can send to or receive files from hosts elvis, fab4 or Y107.

For more information, see the uuname(1) reference page.

14.3 Connecting to a Remote Host

Before you can use UUCP commands, you must connect your local host to
the remote host. There are three commands you can use to connect to a
remote host:

• The cu and tip commands establish a full-duplex connection, giving
the appearance of being directly logged in to the remote host. This
connection enables the simultaneous transfer of data between the hosts.

• The ct command establishes a remote connection by letting you dial an
attached terminal and log in through a modem and telephone line.

14–2 The UUCP Networking Commands

______________________ Note _______________________

A remote connection is subject to the security features on the
local and remote host. See your system administrator for more
information.

14.3.1 Using cu to Connect to a Remote Host

The cu command and its options enable you to connect to a remote host,
log in to it and perform tasks there from your local host. You can perform
tasks on each host by switching back and forth between the two. If both
hosts use the operating system, you can enter commands on the remote host
from your local host.

14.3.1.1 Using cu to Connect by Name to a Remote Host

The following steps show how to use the cu command to connect from local
host earth to remote host moon, log in to moon and enter a command there:

1. Enter the following cu command at the local system prompt; a message
verifies the connection:

earth% cu moon
Connected

The login prompt for the remote host will be displayed.

When connecting to some remote hosts, you may need to press the
Return key several times before a login prompt is displayed.

2. Log in to host moon at the login prompt. The system prompt for host
moon is displayed.

3. Enter any command that host moon supports. For example, to list the
contents of the /usr/geog/crater/earthside directory, enter the
following command at the system prompt:

moon% ls /usr/geog/crater/earthside
copernicus.dat
tycho.dat
moon%

______________________ Note _______________________

The preceding example may not work for all cu connections.
It is used here as a brief, general example. See your system
administrator for more information.

The UUCP Networking Commands 14–3

After logging in to the remote host, you can switch back and forth between
it and the local host because they run concurrently. To return to your local
host and enter a command there, type a tilde and an exclamation point (~!)
followed directly by the command, or wait for the local host prompt to display
and then enter the command. To return to the remote host, press Ctrl/D.

14.3.1.2 Using cu to Specify a Directly-Connected Remote Host

To connect to a directly-connected remote host, use the cu command with
the -l option to name the hardwired line that connects the two computers.
Most of these communication lines have names that are variations of the
standard device name, tty.

To use the cu command with the -l option to connect to a remote host with
an unknown name (but which uses hardwired device ttyd0), enter the
following command:

earth% cu -lttyd0
Connected

After the connection is made, you can log in to and execute commands on
remote host moon. Refer to the steps in Section 14.3.1.1.

To return to the local host, type a tilde and an exclamation point (~!)
followed directly by the command, or wait for the local system prompt to
be displayed before entering the command. To return to the remote host,
press Ctrl/D.

______________________ Note _______________________

If you use the -l option, but still enter the name of a remote
host, no error message will be generated. Instead, cu will try to
connect to the first available line for the requested host name,
ignoring the specified line. If it makes the connection, it may not
be the one you wanted.

14.3.1.3 Using cu to Connect by Telephone to a Remote Host

You can use cu to connect to a remote host, by telephone, whenever the
remote host has not been set up to communicate with the local host through
UUCP. To do so, the following conditions must be met with:

• Both the local and the remote host are connected to modems.

• You know the telephone number of the remote modem and have a valid
login on that host.

The following example shows how to use the cu command to connect to a
remote host that has a long-distance telephone number of 1-612-555-6789.

14–4 The UUCP Networking Commands

The -s option specifies a transmission rate of 300 baud. Assuming that
dialing 9 is necessary for an outside dial tone, enter the following cu
command at the local system prompt:

earth% cu -s300 9=16125556789
Connected

After the connection is made, you can log in to and execute commands on the
remote host. (Refer to the steps in Section 14.3.1.1).

To return to the local host, type a tilde and an exclamation point (~!) followed
directly by the command, or wait for the local system prompt to display
before entering the command. To return to the remote host, press Ctrl/D.

If you do not use the -s option to specify a transmission speed, an appropriate
rate is selected by default from data in /usr/lib/uucp/Devices.

For added security use the -n option, which prompts you for the telephone
number. This suppresses the display of the phone number with the ps
command, which would otherwise display the number with the cu command
that you enter.

Table 14–1 summarizes the cu command options and entries. See the cu(1)
reference page for more information.

Table 14–1: Options to the cu Command
Option Description

−sspeed Specifies the rate at which data is transmitted to the remote
host. The default rate, set during UUCP installation and based
on data in /usr/lib/uucp/Devices, should be sufficient
for most of your work.

−e | −o Specify -e for even or -o for odd parity for data
sent to the remote host.

−h Specify -h to emulate local echoing, to support calls to other
hosts that expect terminals to be set to half-duplex mode.

−d Specify -d to print diagnostic traces.

−n Specify -n to have cu prompt for a telephone
number (for added security)

The UUCP Networking Commands 14–5

Table 14–1: Options to the cu Command (cont.)

Option Description

−lline Specifies the name of a device (line) for the communication
between two computers. The default is either a hardwired
asynchronous line or a telephone line with an automatic dialer
such as a modem. If your site has several communication lines,
you may want to specify a particular line for your cu link.
Usually, you do not have to specify a line or device; the default
established during UUCP installation should be sufficient. If
you want to connect to a remote computer but do not know
its name, you can enter the cu command with the -l option
and a variation of the standard device name tty (for example,
-ltty1). Ask your system administrator for the device names
at your site.

−t Dials a terminal that has been set to auto-answer and maps
carriage return to carriage return/linefeed.

host_name Specifies the name of the remote host with which you
want to establish a connection.

telno Specifies the telephone number in a remote con-
nection using a modem.

14.3.1.4 Local cu Commands

While connected by cu to a remote host, you can use local cu commands to
perform the following tasks:

• Go back and forth between the local and remote hosts

• Change directories on the local host

• Copy files between local and remote hosts

• Terminate a remote connection

To return temporarily to the local host to work, type a tilde and an
exclamation point (~!) at the remote system prompt; wait for the local
system prompt to be displayed in the following form, where local is the
name of the local host:

~ [local] !

Instead of waiting for the local system prompt to be displayed, you can enter
the command immediately after typing the ~! that accesses the local host.
For example, while connected by cu to remote host moon, you can enter the
following command to return to local host earth and use the cat command
to read the /usr/crew/r2/asimov/AI file:

moon% ~!cat /usr/crew/r2/asimov/AI

14–6 The UUCP Networking Commands

There are three cu local commands for tasks that are performed very often.
You enter these commands from the remote host to perform tasks on the
local host while you continue working on the remote host. These commands
are preceded by a tilde and a percent symbol:

~%cd directory_name Changes the directory on the local host

~%take from [to] Copies a file from the remote host
to the local host

~%put to [from] Copies a file from the local host to
the remote host

For example, while connected by cu to remote host moon, you can change
the current directory on local host earth from /usr/geog/ocean to
/usr/geog/ocean/pacific by entering the following command:

moon% ~%cd pacific

While connected by cu to remote host moon, you can copy the file,
/usr/ETI/clavius to the file /usr/NASA/decode on local host earth by
entering the ~%take local command at the remote system prompt:

moon% ~%take /usr/ETI/clavius /usr/NASA/decode

While connected by cu to remote host moon, you can copy the local file
/usr/NASA/jupiter to the file, /usr/ETI/clavius/hal9 on the remote
host by entering the ~%put local command at the remote system prompt:

moon% ~%put /usr/NASA/jupiter /usr/ETI/clavius/hal9

______________________ Note _______________________

Before using the ~%take and ~%put commands, ensure that the
destination directory exists. Unlike the uucp command, these cu
local commands do not create intermediate directories during
file transfers.

You can transfer only ASCII files with ~%take and ~%put. (For example, a
PostScript file is an ASCII file, but an executable file is not.)

14.3.1.5 Using cu to Connect a Local Host to Several Remote Hosts

You can enter the cu command to connect host X to host Y, log on to host Y
and then enter the cu command there to connect to host Z. You then have
one local host, X and two remote hosts, Y and Z.

You can run an operating system command on host Z after you log in there.
Then, from Z, you can run commands on the other hosts as follows:

• To run a command on host X, prefix the command with a single tilde (~)

The UUCP Networking Commands 14–7

• To run a command on host Y, prefix the command with two tildes (~~)

Table 14–2 summarizes the most common cu local commands. For
information about other cu local commands, see the cu(1) reference page.

Table 14–2: Local cu Commands
Command Description

~. Logs you off the remote host and terminates the remote
connection.
When connected to the remote host over a telephone
line using a modem, this command does not always
work. In such cases, press Ctrl/D to log off; then type
a tilde and a period (~.) at the prompt and press the
Return key to terminate the remote connection.

~! Returns the session from the remote host to the local
host. Type a tilde and an exclamation point (~!) at
the prompt and enter any command. To return to the
remote host, press Ctrl/D.
After establishing the cu connection, you can go back
and forth between the two hosts by typing ~! (to go
from remote to local) and pressing Ctrl/D (to go from
local to remote).

~%cd directory_name Changes the current directory on the local host to
that specified by the directory_name variable.
If no directory name is specified, cu changes
it to your home directory.

~%take source [dest] Copies a file from the remote to the local host. If you
do not specify a dest destination file on the local
host, the ~%take command copies the remote file to
the local host and assigns the same file name.

~%put source [dest] Copies a file from the local to the remote host. If you
do not specify a dest destination file on the remote
host, the ~%put command copies the local file to the
remote host and assigns the same file name.

~$cmd Executes the cmd command on the local host
and sends the output to the remote host for
execution by the remote shell.

14.3.2 Using tip to Connect to a Remote Host

The tip command and its options enable you to connect to a remote host,
log in to it and perform tasks there from your local host. You can do tasks
on each by switching back and forth between the two hosts. If both hosts
use the operating system, you can enter commands on the remote host from
your local host.

14–8 The UUCP Networking Commands

14.3.2.1 Using tip to Connect by Name to a Remote Host

The following steps show how to use the tip command to connect from local
host earth to remote host moon, log in to moon and enter a command there:

1. Enter the following tip command at the local system prompt; a message
verifies the connection:

earth% tip moon
Connected

The login prompt for the remote host will be displayed.

When connecting to some remote hosts, you may need to press the
Return key several times before a login prompt is displayed.

2. Log in to host moon at the login prompt. The system prompt for host
moon is displayed.

3. Wait for the system prompt, then enter any command that
host moon supports. For example, to list the contents of the
/usr/geog/crater/darkside directory, enter the following command
at the system prompt:

moon% ls /usr/geog/crater/darkside
copernicus.dat
tycho.dat
moon%

______________________ Note _______________________

The preceding example may not work for all tip connections.
It is used here as a brief, general example. See your system
administrator if necessary.

After logging in to the remote host, you can switch back and forth between
it and the local host because they run concurrently. To return to your local
host and enter a command there, type a tilde and an exclamation point (~!)
followed directly by the command or wait for the local host prompt to display
and then enter the command. To return to the remote host, press Ctrl/D.

14.3.2.2 Using tip to Connect by Telephone to a Remote Host

You can use the tip command to connect by telephone to a remote host if the
following conditions are met with:

• Both the local and the remote host are connected to modems.

• You know the telephone number of the remote modem or there is an
entry for the remote host in /etc/remote.

The UUCP Networking Commands 14–9

The following steps show how to use the tip command to connect to a remote
host that has the local telephone number 555-1234, using a transmission
rate of 300 baud:

1. Enter the following tip command at the local prompt, jupiter; a
message verifies the connection:

jupiter% tip -300 5551234
Connected

2. Press the Return key. When connecting to some remote hosts, you may
need to press the Return key several times before the remote host’s
login prompt is displayed.

3. Log in at the remote host login prompt. The connection to your local
host is still open, so you can work on the local or remote host.

______________________ Note _______________________

If you do not specify a transmission speed, the tip command uses
a 1200-baud rate by default.

The following steps show how to use the tip command to connect, using
a 300-baud transmission rate, to a remote host that has a long-distance
telephone number of 1-612-555-9876.

1. Assuming that you must dial 9 for an outside dial tone, enter the
following tip command at the prompt of local host earth; a message
verifies the connection:

earth% tip -300 9,16125559876
Connected

2. Press the Return key. When connecting to some remote hosts, you may
need to press the Return key several times before the remote host’s
login prompt is displayed.

3. Log in at the remote host login prompt. The connection to your local
host is still open, so you can work on the local or remote host.

For information about customizing the /etc/remote and /etc/phones
files, see Network Administration and the remote(4) and phones(4)
reference pages.

Table 14–3 summarizes the tip command options and entries. See the
tip(1) reference page for more information.

14–10 The UUCP Networking Commands

Table 14–3: Options to the tip Command
Option Description

-baud_rate Specifies data transmission rate to the remote host. The
default rate is 1200 baud.
The baud rate, set when UUCP is installed and customized
for your site, is configured according to the hardware used to
establish connections.

−v Displays any variables as they are read (verbose)
from the .tiprc file.

host_name Specifies the remote host to which you want to connect;
the tip command connects over a hardwired line or a
telephone line using a modem, depending on how your system
communication is set up between the local and remote hosts.

telno Specifies the telephone number in a remote connection,
using a modem. Use this method when the remote
host name is not recognized by tip (that is, there is
no entry in the /etc/remote file).

14.3.2.3 Local tip Commands

While connected by tip to a remote host, you can use local commands to
perform the following tasks:

• Go back and forth between the local and the remote host

• Change directory on the local host from the remote host

• Copy files between local and remote hosts

• Terminate a remote connection

To return temporarily to the local host and enter commands there, type a
tilde and exclamation point (~!) at the remote system prompt. The local
system prompt will display in the following form, where shell is the name
of the local shell and pmt is the prompt for the local shell, either % for the C
shell or $ for the Bourne, Korn, or POSIX shell:

~ [shell] pmt!

To return to the remote host, press Ctrl/D at the local system prompt. To
terminate the tip process, type a tilde and press Ctrl/D (~^D).

You can use the following tip commands from the remote host to perform
tasks on the local host while you continue working on the remote host. These
commands are preceded by a tilde:

The UUCP Networking Commands 14–11

~c directory_name Changes the local directory

~t from [to] Copies- a file from the remote host to a
file on the local host

~< Copies a file from the remote host to a
file on the local host

~p from [to] Copies a file from the local host to a file
on the remote host

~> Copies a file from the local host to a file
on the remote host

For example, while connected by tip to remote host moon, you can change
the current directory on local host earth, from /usr/geog/polar to
/usr/geog/polar/arctic by entering the following command:

moon% ~c arctic

While connected by tip to remote host moon, you can copy the
/usr/darkside/temp/dat file to the /usr/NASA/bios/temp file on local
host earth by entering the following command:

moon% ~t /usr/darkside/temp/dat /usr/NASA/bios/temp

While connected by tip to remote host moon, you can copy the local
/usr/NASA/bios/warn file to the /usr/darkside/temp/change file on
the remote host by entering the following command:

moon% ~p /usr/NASA/bios/warn /usr/darkside/temp/change

______________________ Note _______________________

You can only transfer ASCII files with the ~t and ~p commands.
(For example, a PostScript file is an ASCII file, but an object
(code) file is not.)

Neither ~t nor ~p checks for file transfer errors; the uucp
command provides this verification.

14.3.2.4 Using tip to Connect a Local Host to Several Remote Hosts

You can enter the tip command to connect host X to host Y, log on to host Y
and then enter the tip command there (if Y supports tip) to connect to host
Z. You then have one local host, X and two remote hosts, Y and Z.

You can run an operating system command on host Z (if Z is a host) after
you log in there. Then, from Z, you can run commands on the other hosts as
follows:

• To run a command on host X, prefix the command with a single tilde (~).

14–12 The UUCP Networking Commands

• To run a command on host Y, prefix the command with two tildes (~~).

______________________ Note _______________________

A command sequence that begins with a tilde (~) can be
interpreted by tip only if it is at the beginning of the command
line.

Table 14–4 summarizes the most common tip local commands. For
information about other tip local commands, see the tip(1) reference page.

Table 14–4: Local tip Commands
Command Description

~Ctrl/D
~.

Logs you off the remote host and terminates the
remote connection.
When connected to the remote host over a
telephone line using a modem, this does not
always work. In such cases, press Ctrl/D to log
off; then enter ~Ctrl/D or ~. at the prompt and
press the Return key to terminate the remote
connection.

~! Returns the session from the remote host to a shell
on the local host. Type a tilde and an exclamation
point (~!) at the prompt to enter any command.
To return to the remote host, press Ctrl/D.
After establishing the tip connection, you can go
back and forth between the two hosts by typing ~!
(to go from remote to local) and press Ctrl/D (to
go from local to remote).

~c directory_name Changes the current directory on the local
host to that specified by the directory_name
variable. If no directory name is specified, tip
changes it to your home directory.

~t source [dest] Copies a file from the remote to the local host. If
you do not specify a dest destination file on the
local host, the ~t command copies the remote file
to the local host and assigns the same file name.

~p source [dest] Copies a file from the local to the remote host. If
you do not specify a dest destination file on the
remote host, the ~p command copies the local file
to the remote host and assigns the same file name.

The UUCP Networking Commands 14–13

Table 14–4: Local tip Commands (cont.)

Command Description

~< Copies a file from the remote to the local host;
the tip command prompts for the command
string that will be used on the remote host to
display the remote file and the name of the
local file, for example, cat filename.

~> Copies a file from the local to the remote host;
the tip command prompts for the name of the
local file and sends the file to the remote host as
if it were standard input. You should set up a
command on the remote host to accept this input
before executing the ~> command. For example,
remote% cat > destination-file.

______________________ Note _______________________

The tip command uses system prompts and character sequences
that match a system’s interrupt sequence to signal the end of
file transfers through the ~< or ~> command. These values are
configured in the /etc/remote file. See the remote(4) reference
page for more information.

14.3.3 Using ct to Connect to a Remote Terminal with a Modem

The ct command enables a user on a remote ASCII terminal with a modem
to communicate with a local host with a modem over a telephone line. The
remote terminal user can then log in and work on the local host. If there are
no available telephone lines, the ct command displays a message and asks
if you want to wait for one.

The ct command is useful:

• When secure communications are needed.

Because the local host contacts the remote terminal, the remote user
does not need to know the telephone number of the local host. The local
user entering ct can monitor the work of the remote user.

• When the cost for the telephone connection should be charged either
to the local site or to a specific account on the remote terminal (like a
collect call).

The -h option can be omitted to emulate making a collect call. The user
on a remote terminal enters the ct command without the -h option.

The following ct features are useful under certain circumstances:

14–14 The UUCP Networking Commands

• You can instruct ct to continue dialing a number until the connection is
established or until a set length of time has elapsed.

• You can specify more than one telephone number and ct can dial each
modem until a connection is established.

______________________ Note _______________________

Usually, a user on the remote terminal calls the user on the local
host to request a ct session. If such connections occur often,
your system manager may want to set up UUCP so that a local
host automatically enters ct to one or more specified terminals
at a designated time. For information about customizing UUCP,
see your system administrator.

For example, to connect to a remote terminal modem at the same site as
yours, enter the following command. The remote modem has a telephone
number of 7-6092:

earth% ct 76092
Allocated dialer at 1200 baud
Confirm hang_up? (y to hang_up)

After entering the command, a message verifies the connection and prompts
you to either hang up any other phone lines currently in use or cancel the
command.

The following example shows how to use the ct command to connect to
a remote terminal modem with a local telephone number of 555-0043,
specifying 9 for an outside line and the -w option for a 2-minute wait for
the modem line:

earth% ct -w2 9=5550043
Allocated dialer at 1200 baud
Confirm hang_up? (y to hang_up)

As before, you are prompted to either hang up any other phone lines
currently in use or cancel the command.

The following example shows how to use the ct command to connect from
local host earth, to a remote terminal modem with a long-distance number
of 1-201-555-7824, specifying 9 for an outside line and the -w option for a
5-minute wait for the modem line:

earth% ct -w5 9=12015557824
Allocated dialer at 1200 baud
Confirm hang_up? (y to hang_up)

You are prompted to either hang up any other phone lines currently in use or
cancel the command.

The UUCP Networking Commands 14–15

See the ct(1) reference page for more information.

Table 14–5 summarizes ct command options and required entries.

Table 14–5: Options to the ct Command
Option Description

−wminutes Specifies the maximum length of time in minutes that the ct
command waits for a line. The ct command dials the remote
modem at one-minute intervals until the connection is established
or the specified number of minutes has elapsed.
Using the -w option suppresses the messages that ct usually
displays if it cannot make the connection.

−xnumber Produces detailed information about the command’s execution
on standard error output on the local host, to be used for
debugging. The debugging level, number, is a single digit in
the range from 0-9; the recommended default is 9.

−v Enables the ct command to send a running narrative
to standard error output.

−h Prevents ct from breaking the current connection.

−sspeed Specifies the data transmission rate of ct; the default
is 1200-baud. Set the baud rate to the baud rate of the
terminal to which you are connecting.

telno Specifies the phone number of the remote modem. You can enter a
local or a long-distance number and specify secondary dial tones
such as 9 for an outside line or an access code.
Use an equal sign (=) following a secondary dial tone (9=) and a
hyphen (-) for delays, as in 555-5092. Telephone numbers may
contain up to 31 characters, including any of the following:

The digits 0-9
A hyphen or dash (-)
An equal sign (=)
An asterisk (*)
A number or pound sign (#)

14.4 Using uux to Run Commands on Remote Hosts

The uux command enables you to run commands on a remote host while you
work on your local host. If these commands do not exist on the remote host,
uux does not execute and the remote host will notify you of this by mail. If
the command executes and produces output (for example, cat or diff), you
can program uux to place that output in a file on any particular host.

14–16 The UUCP Networking Commands

______________________ Note _______________________

For security reasons, certain sites may restrict the use of some
commands through uux. Also, enhanced security features on
the local host may affect the execution of certain commands on
remote hosts through uux. See your system administrator for
more information.

The uux command syntax depends on how the command interpreter of a
given shell treats special characters. The syntax is the same for the Bourne,
Korn, and POSIX shells, but different for the C shell.

Regardless of the shell from which you use uux, there are two ways to
specify the destination:

uux [option…] " commandstring > destination"

uux [option…] commandstring \{ destination \}

In the first syntax statement, the right-angle bracket (the redirection
symbol) (>) directs the output of the remote command to a destination
directory or file. A pair of double quotation marks (" ") encloses the entire
command because the redirection symbol, the right-angle bracket (>), is
a special character. Whenever you use any of the following characters in a
command line, you must enclose that character or the entire command in
double quotation (" ") marks:

• Left-angle bracket (<)

• Right-angle bracket (>)

• Semi-colon (;)

• Vertical bar or pipe (|)

• Plus sign (+)

• Left-bracket ([)

• Right-bracket (])

• Question-mark (?)

In the second syntax statement, enclose the destination name within braces
({ }). You must type a backslash (\) before each brace because braces are
special characters to the shell command interpreter. Without backslashes,
the braces would be misinterpreted.

When specifying the pathname of a destination file, you can use a full name
or a pathname preceded by ~user where user is the name of the user’s
login directory.

The UUCP Networking Commands 14–17

The output files must have ’write’ permission status. If you are uncertain
about the permission status of a specific target output file, direct the results
of the command to the /usr/spool/uucppublic directory; ~uucp is a brief
way of specifying this directory from a shell.

14.4.1 Using uux from the Bourne, Korn or POSIX Shells

The following example shows how the uux command uses the operating
system cat command to concatenate the /u/doc/F1 file located on host
gem, with the /usr/doc/F2 file located on host sky. The result is placed
in the /u/doc/F3 file on host gem.

uux "gem!cat gem!/u/doc/F1 sky!/usr/doc/F2 > gem!/u/doc/F3"

In the following example, the task is the same as in the previous command,
but braces ({ }) are used instead of the redirection symbol to specify the
destination in the uux command line. The task is the same as in the previous
command, but the destination output is implicit:

uux gem!cat gem!/u/doc/F1 sky!/usr/doc/F2 \{gem!/u/doc/F3\}

14.4.2 Using uux from the C Shell

To perform the same operation as in the previous section, but in the C shell,
enter one of the following uux commands:

uux "gem\!cat gem\!/u/doc/F1 sky\!/usr/doc/F2 > gem\!/u/doc/F3"

The following example uses an implicit destination output file:

uux gem\!cat gem\!/u/doc/F1 sky\!/usr/doc/F2 \{gem\!/u/doc/F3\}

In the two following examples, uux uses the cat command to send the
acct6 file from remote host boston, as output to the acct6 file in the
public directory on your local host:

uux "cat boston\!/reports/acct6 > ~uucp/acct6"

The following example uses an implicit destination output file:

uux cat boston\!/reports/acct6 \{~uucp/acct6\}

14.4.3 Other uux Features and Suggestions

The uux command assumes that your local host is the default, so you do
not need to specify it in the command line. For example, to run the diff
command to compare the /u/F1 file on host car with the /u/F2 file on
host sea and place the result in the /u/F3 file on the local host, use the
following command:

uux "diff car!/u/F1 sea!/u/F2 > /u/F3"

14–18 The UUCP Networking Commands

You can also represent the local host by using just an exclamation point,
as in the following example:

uux "!diff car!/u/F1 sea!/u/F2 > !/u/F3"

When you specify the pathname source file in commands such as diff or
cat, you can include the following shell pattern-matching characters which
the remote host will interpret:

Question-mark (?)
Asterisk (*)
Left-bracket ([)
Right bracket (])

Enclose these characters either within two backslashes (\ … \) or within
quotation marks (" … ") so that the local shell does not interpret the
characters before uux sends the command to the remote host. Do not use
pattern-matching characters in destination names.

If you use the left-angle bracket (<), the right angle-bracket (>), the
semi-colon (;) and the pipe (|) shell characters, place them within
backslashes (\ … \), quotation marks (" … ") or place the entire command
line within backslashes or quotation marks.

______________________ Note _______________________

The shell redirection characters, two left-angle brackets (<<) and
two right-angle brackets (>>), do not work in UUCP.

Table 14–6 summarizes uux command options and required entries. See the
uux(1) reference page for more information.

Table 14–6: Options to the uux Command
Option Description

−n Cancels notification through mailx that usually occurs when
a command fails to execute on the designated host.
The -n and -z options are mutually exclusive.

−z Sends a message through mailx when command execution
fails on the designated host.
The -n and -z options are mutually exclusive.

−j Displays the job identification number of the uux request
that runs the remote command; use this number with the
uustat command. See Section 13.8.1 for more information.

The UUCP Networking Commands 14–19

Table 14–6: Options to the uux Command (cont.)

Option Description

cmd_string Specifies any command accepted by the designated host. For
more information on the command formats, see Section 13.4.

dest_name Specifies the host and file for storing the output of the
command run on a remote host. For example, if you want to
list all the files in a directory on a remote host, you can use
uux to place the listing in a file on your own host by entering
the appropriate destination name. For more information
on the destination formats, see Section 13.4.

14.5 Using UUCP to Send and Receive Files
On UNIX-based computers that support the UUCP protocol, you can use the
uucp command to copy one or more files from one computer to another. You
can use uucp to copy files as follows:

• Between local and remote hosts

• Between two remote hosts

• Between two hosts through an intermediate host

• Within your local host

To facilitate file transfers, many sites make the public UUCP directory,
/usr/spool/uucppublic, available. This directory provides read and
write access to all users and bypasses security restrictions. The brief way to
specify this directory is ~uucp or ~/ in a uucp command.

______________________ Note _______________________

File transfer through uucp is subject to security features on
either host. The uucp utility does not display error messages
for failed file transfers. For more information, see your system
administrator.

The system administrator defines security restrictions to prevent
unwarranted use by remote users. Therefore only certain
directories and files are accessible for transfer.

14.5.1 Using UUCP to Copy Files in the Bourne, Korn and POSIX
Shells

From the Bourne, Korn, or POSIX shell, you can specify uucp file names
without using a backslash (\) before the exclamation point (!) that precedes
the host name of the destination file. For example, to copy the star file

14–20 The UUCP Networking Commands

from local host earth to the /sun/stats file in the public directory on the
remote host sky, enter the following command:

earth% uucp star sky!~/sun/stats

To copy the same file and explicitly identify the /usr/spool/uucppublic
directory, enter the following command:

earth% uucp star sky!/usr/spool/uucppublic/sun/stats

If you need to copy a file to a remote host whose address is unknown to
your local host, you can do so by means of another host that knows the
remote host’s address. You can copy a local file to a remote host by first
sending it to one or more intermediate hosts, separating each host name by
an exclamation point (!). For example, to copy the local file star to the
/sun/stats file on the remote host sky by first sending it through the
intermediate host, mlkway, enter the following command:

earth% uucp star mlkway!sky!~uucp/sun/stats

You can use uucp from your local host to copy a file from a remote host
to your local host. For example, to copy the /cells/type1 file from
remote host biochem to the local file, /dna/sequence, enter the following
command from local host earth:

earth% uucp biochem!/cells/type1 /dna/sequence

You can copy multiple files from a remote host to a local host by using a
pattern-matching character to specify files. For example, to copy all files
with names beginning with report from the /geog/survey directory on
remote host moon to the ~uucp public directory on local host earth, enter
the following command:

earth% uucp moon\!/geog/survey/report* ~uucp

14.5.2 Using UUCP to Copy Files in the C Shell

In the C shell, the exclamation point (!) has a special meaning. To prevent
the command interpreter from mistranslating it, you must precede it with a
backslash (\) in a pathname.

For example, to copy the /usr/NASA/ctrl-specs file from local host earth
to the ~uucp public directory on remote host luna7, enter the following
command from the local host:

earth% uucp /usr/NASA/ctrl-specs luna7\!~uucp

To copy the plan9 file from the /usr/reports/exobio directory on remote
host luna7 to the ~uucp public directory on local host earth, enter the
following command:

earth% uucp luna7\!/usr/reports/exobio/plan9 ~uucp

The UUCP Networking Commands 14–21

To copy all files with names beginning with msg from the
/sensory/visual/earthrise directory on the remote host luna7 to the
~uucp public directory on local host earth, you can enter the following
command:

earth% uucp luna7\!/sensory/visual/earthrise/msg’*’ ~uucp

Here, the pattern-matching character, the asterisk (*) in the source
file names is enclosed within single quotation marks to prevent
misinterpretation.

In the next example, the same files are copied to ~uucp, but the entire
pathname of the source files is enclosed in double quotation marks to
prevent misinterpretation:

earth% uucp "luna7\!/sensory/visual/earthrise/msg*" ~uucp

Table 14–7 summarizes uucp command options and required entries. See
the uucp(1) reference page for more information.

Table 14–7: Options to the UUCP Command
Option Description

−d Creates intermediate directories needed when
copying a source file to a destination file on a
remote host. Entering uucp with the destination
pathname creates the required directory. The
-d option is the default.

−f Prevents creating intermediate directories
during the file transfer.

−j Displays the job identification number of
the transfer operation; use with the uustat
command to check transfer status or with
uustat -k to terminate the transfer. See
Section 13.8.1 for more information.

−m Specifies that uucp send mail to the requester
to verify copying of destination file on a remote
host; no mail is sent for a local transfer.

−nusername Notifies the recipient, username on the remote
host, that a file has been sent; no mail is
sent for a local transfer.

source_file Specifies the pathname of the file that you want
to send or receive. For more information about
UUCP pathnames, see Section 13.1.

destination_name Specifies the pathname of the file (or directory)
that receives the copy. For more information
about destination file pathnames, see Section
13.5.1 and Section 13.5.2.

14–22 The UUCP Networking Commands

14.6 Using uuto with uupick to Copy Files
The uuto command copies the file you specify to the public directory on the
destination host where it is obtained by the recipient through uupick. The
rmail program notifies the recipient when the file arrives.

______________________ Note _______________________

Any file transfer is subject to the security features on the local
and remote hosts. See your system administrator for more
information.

For example, to send the /usr/bin/data/junk file from local host moe to
user curly on remote host stooge, enter the following command:

moe% uuto /usr/bin/data/junk stooge!curly

The uuto command copies the file to the /usr/spool/uucppublic/re-
ceive/curly/moe file on host stooge. Next, the rmail utility sends user
curly a mail message stating that the file has arrived. User curly can
then enter the uupick command to access the file and save, move or delete
it. In the following example, user curly enters the uupick command on
host stooge; the response from uupick follows:

stooge% uupick
from system moe: file junk
?

At the uupick question mark (?) prompt, user curly enters the d and q
options to delete the file and exit from uupick:

? d
? q

Table 14–8 summarizes the uupick file handling options, entered at the ?
prompt.

Table 14–8: Options to the uupick Command
Option Description

* Displays available uupick file-handling options.

Return Signals uupick to get the next file.

a [dir] Moves all uuto files from the public directory to the specified
directory on the local host; specify the directory by using a full
or relative pathname. The default is the current directory.

d The d option deletes the current file obtained by uupick.

m [dir] Moves a file to a directory specified by either full or relative
pathname; the default is the current directory.

The UUCP Networking Commands 14–23

Table 14–8: Options to the uupick Command (cont.)

Option Description

p Displays the file.

q
Ctrl/D

Exits uupick without displaying, moving or deleting any file
in the public directory. You can also press Ctrl/D to quit.

!command Returns to the operating system to run a command. After
command executes, control returns to uupick.

See the uupick(1) reference page for more information.

14.7 Using uuto to Send a File Locally

You can also use uuto to send a file to another user on your local
host. However, the recipient does not receive a mail message
indicating the file transfer. For example, user shemp can send the file
/usr/bin/data/status to user larry on local host stooge, where each
is logged in:

stooge% uuto /usr/bin/data/status larry

Table 14–9 summarizes uuto command options and required entries. See
the uuto(1) reference page for more information.

Table 14–9: Options to the uuto Command
Option Description

−m Notifies sender when uuto copies a source file to the specified
user name and host

−p Usually, uuto copies the source file to:

/usr/spool/uucppublic/receive
/username/host/file

The -p option sends the source file to the spool directory on
the local host before transferring a copy of it to the public
directory on the specified host.

file_name The pathname of the source file.

destination_name The pathname to the location where you want to copy
the source file. The destination_name must include
the user name of the person receiving the file and has
the form, host!username, where host is the name of
the remote computer and username is the user name of
the recipient. When copying a file on your local host, the
destination_name can be simply the name of the user to
whom you are sending the file.

14–24 The UUCP Networking Commands

14.8 Displaying Job Status of UUCP Utilities

The UUCP utilities include three commands viz., uustat, uulog and
uumonitor. These commands display status information about UUCP jobs
and are described in the following sections.

14.8.1 The uustat Command

The uustat command supports UUCP jobs by providing the following:

• Status information of file transfers requested by uucp and uuto

• Status information of command executions requested by uux

• Limited control of jobs queued to run on a remote computer

• Cancellation of copy requests from uucp

Status reports from uustat are displayed on your workstation screen in this
basic form; variations depend on the uustat option.

jobid date/time status system_name username size file

______________________ Note _______________________

Any status display operation is subject to the security features
on the local and remote hosts. See your system administrator for
more information.

Entering uustat without options displays the status information for all the
UUCP commands that you have entered since the last time the holding
queue was cleaned up.

To report the status of jobs requested by a specific user, use the -u option, as
shown here, for user hugh:

% uustat -u hugh

Two types of information, each produced by a uustat option, are the current
queue and the holding queue. Output of the uustat -q command is the
current queue, which lists the UUCP jobs either queued to run or being
currently executed on one or more remote hosts. The output of the uustat
-a command is the holding queue, which lists all jobs that have not been
executed during a set period of time.

______________________ Note _______________________

After the set time period has elapsed, delete the entries
in the holding queue manually with the uucleanup
command or automatically through the uudemon.cleanu

The UUCP Networking Commands 14–25

script. The uudemon.cleanu script has an entry in
/usr/spool/cron/crontabs/uucp which is activated by the
/etc/cron daemon. For more information about cleaning up
UUCP queues, see the uucleanup(8) reference page or your
system administrator.

14.8.1.1 Displaying the Holding Queue Output with a uustat Option

To examine the status of all UUCP jobs in the holding queue, enter the
uustat -a command as shown here with example output:

% uustat -a
sunC3113 Thu Jun 04 17:47:25 1999 S sun doc 289 D.car471afd8
gemN3130 Thu Jun 04 09:14:30 1999 R gem geo 338 D.car471bc0a
seaC3120 Wed Jun 03 16:02:33 1999 S sea doc 828 /u/doc/tt
seaC3119 Wed Jun 03 12:32:01 1999 S sea msg rmail doc

This example output consists of the following seven fields:

• Field 1 − job ID of the operation; if you need to cancel a process that
is still on the local computer, you would use this field as input to the
uustat command with the -k option, for example:

% uustat -k seaC3119

• Field 2 − date and time that the UUCP command was entered

• Field 3 − S or an R, depending on whether the job sends or receives a file

• Field 4 − name of the hosts where the command was entered

• Field 5 − user name of the person who entered the command

• Field 6 − file size or, in the case of remote execution (as in the last output
line), the name of the remote command (rmail)

• Field 7 − when the size is given in field 6 (as in the first three output
lines), the file name is displayed in this field

The file name can be either the name given by the user, such as
/u/doc/tt or a name that UUCP assigns internally to data files
associated with remote executions, such as D.car471afd8

To report the status of all UUCP jobs in the holding queue requested by a
specific host, enter the uustat -s command as shown here with example
output, for host sky:

% uustat -s sky
skyNlbd7 Wed Jun 03 12:09:30 1999 S sky doc 522 /user/doc/A
skyClbd8 Wed Jun 03 12:10:15 1999 S sky doc 59 D.3b2a12ce4924
skyC3119 Wed Jun 03 12:11:18 1999 S sky doc rmail msg

14–26 The UUCP Networking Commands

This output is the same as the output produced by the command
uustat -a -s sky.

14.8.1.2 Displaying the Current Queue Output with uustat Options

To examine the status of all UUCP jobs currently being executed or queued
to run on each host, enter the uustat -q command as shown here with
example output:

% uustat -q
sea 3C Mon Jul 13 09:14:35 1999 NO DEVICES AVAILABLE
sun 2C Mon Jul 13 10:02:22 1999 SUCCESSFUL
gem 1C (2) Mon Jul 13 10:12:48 1999 CAN’T ACCESS DEVICE

This example output consists of the following five fields:

• Field 1 − host name

• Field 2 − number of files, either command (C) or executable (X), in the
holding queue for that host

• Field 3 − number of days (if one or more) that the file has been in the
holding queue

• Field 4 − date and time when UUCP last tried to communicate with
the host in field 1

• Field 5 − status message of the interaction

See the uustat(1) reference page for more information.

Table 14–10 summarizes uustat command options and required entries.

Table 14–10: Options to the uustat Command
Option Description

−a Displays information for all jobs in the holding queue,
regardless of the user who entered the original UUCP
command.

−k jobid Cancels the UUCP process specified by jobid. You can cancel
a job only if you entered the UUCP command specified by
jobid. Anyone with superuser privileges also can cancel
UUCP requests.

−m Reports the status of your most recent attempt to communicate
with another computer through UUCP. For example, status is
reported as successful if the UUCP request was executed. If
the job was not completed, UUCP reports an error message,
such as Login failed.

−p Runs a ps -flp (process status: a full, long list of specified
process IDs) command for all PID numbers in the lock files.
You must have superuser privileges to use this option.

The UUCP Networking Commands 14–27

Table 14–10: Options to the uustat Command (cont.)

Option Description

−q Lists the jobs currently queued for each host. These jobs are
either waiting to be executed or in the process of executing. If
a status file exists for the host, UUCP reports its date, time
and the status information. After the process is completed,
UUCP removes the job from the current queue.

−r jobid Rejuvenates the UUCP process specified by the job
identification number. This option enables you to mark files in
the holding queue with the current date and time, to ensure
that the cleanup operation does not delete these files until the
allotted job modification time is over.

−shost Reports the status of all UUCP requests that users have
entered to run on the specified host.

−uusername Reports the status of all UUCP requests entered by the user
username.
You can use both the -shost and the -uusername options
with the uustat command to get a status report on all UUCP
requests entered by a particular user on a particular host.

14.8.2 Using the uulog Command to Display UUCP Log Files

Whenever the local host uses the uucp, uuto or uux commands, UUCP
log files are created. There is a log file for each remote host and for each
daemon. The uulog command displays these log files. Use uulog to display
a summary of uucp, uuto and uux command requests by the host.

The uulog command displays the contents of the log file activity of either of
the following daemons:

• The uucico daemon, called by uucp and uuto

The activity of this daemon is logged in /usr/spool/uucp/.Log/uu-
cico/host.

• The uuxqt daemon, called by uux

The activity of this daemon is logged in
/usr/spool/uucp/.Log/uuxqt/host.

To display just the uuxqt log file, use the -x option of uulog, as follows:

% /usr/lib/uucp/uulog -x

The uulog command also enables you to display the uucico log file or the
file transfer log for any host or only a specified number of lines at the end
of either log file. For example, to display the uucico log file for host sky,
use the -s option as follows:

14–28 The UUCP Networking Commands

% /usr/lib/uucp/uulog -s sky

To display the last 40 lines of the file transfer log for host sky, use the -f
option and the number option as shown:

% /usr/lib/uucp/uulog -f sky -40

Table 14–11 summarizes uulog command options and required entries.

Table 14–11: Options to the uulog Command

Option Description

−f host Performs a tail -f on the file transfer log for the specified host,
displaying the end of the log file. Use the Interrupt key sequence
to leave the file and return to the prompt.

−s[host] Prints information about copy requests involving the specified host.
If no host is specified, information is displayed for all hosts.

−x[host] Displays the uuxqt log file for the the specified host. If no host is
specified, information is displayed for all hosts.

−number Displays the last number lines of the log file. See the tail(1)
reference page for the application of this parameter.

14.8.3 Monitoring UUCP Status

The uumonitor command is helpful for detecting a host whose status has
changed due to a backlog of jobs, a temporary shutdown or a change of either
the phone number or login password.

The uumonitor output consists of the following six fields:

• Field 1 − host name

• Field 2 − number of command files queued for the remote host; if too
large (for example, 100-1000, depending on the host), then the cause of
the backlog should be determined

• Field 3 − number of requests for remote execution from the remote host

• Field 4 − result of the most recent attempt to connect to the remote host

• Field 5 − number of remote host login failures, not including failed dial
attempts; if greater than 20, no further attempts are made

• Field 6 − time of last status entry

For more information, see the uumonitor(8) reference page.

The UUCP Networking Commands 14–29

A
A Beginner’s Guide to Using vi

This appendix only provides an introduction to the features of vi. If you
want to learn more, see the vi(1) reference page. You may also read one of
the many books in the market that describe the advanced features of vi.

This appendix is divided into three sections. The first section gets you
started with vi. The second section shows you some advanced techniques for
speeding up your work. The third section shows you how to take advantage
of the power of the underlying ex commands.

Whether you are writing memos or modifying C programs, editing text files
is one of the most common uses of any computer system. The vi text editor
(hereafter known as vi) is particularly well-suited for the day-to-day text
editing tasks of most computer users. You can open a file quickly and easily,
edit it and save the results using vi.

The vi text editor is a full-featured text editor with the following major
features:

• Fast processing, especially on startup and global operations

• Full screen editing and scrolling capability

• Separate text entry and edit modes

• Global substitution and complex editing commands using the underlying
ex editor commands

• Access to operating system level commands

• Ability to customize system parameters and keyboard mappings

This appendix shows you how to use the basic features of vi. After
completing the exercises in this appendix, you will be able to:

• Create and save a new file (Section A.1.1) and (Section A.1.3)

• Access (open) an existing file (Section A.1.2)

• Move the cursor within the file (Section A.1.4)

• Enter new text (Section A.1.5)

• Change existing text (Section A.1.6)

• Search for strings (Section A.2)

• Move and copy text Section A.2)

A Beginner’s Guide to Using vi A–1

• Make global substitutions (Section A.3.1)

• Write all or part of the text to a file (Section A.3.2)

• Delete, move or copy blocks of text (Section A.2.2) and (Section A.3.3)

• Customize your editing environment (Section A.3.4)

A.1 Getting Started

This section shows you how to create a file with vi, save the file, move the
cursor around in the file, add text, delete text and modify text.

A.1.1 Creating a File

To create the file, my.file, that will be used in the examples throughout
this appendix, enter the vi command as shown below:

$ vi my.file Return

Your screen will look like this:

~
~
~
~
~
~
~
~
~
"my.file" [New file]

The lines beginning with tildes (~) represent the blank lines in the file.
Because my.file is empty, all lines in the file begin with a tilde (~).

The vi editor has two modes: command mode and input mode. Command
mode is the mode vi is in when it is started. In command mode, the
characters you enter are interpreted as commands for manipulating the text.
When vi is in input mode, the characters you enter are interpreted as text.

When you create a new file with the vi command, the vi editor is in the
command mode. That is, vi is waiting for you to enter a command. However,
at this point you want vi to be in the input mode so that you can insert
text into my.file, which is empty.

Put vi into the input mode by typing:

i

The i command will not be displayed on the screen. The vi editor is now in
the input mode and vi will interpret all characters that you type to be text.

A–2 A Beginner’s Guide to Using vi

In the sample text below, notice the use of the Escape key on the last line
of input and the use of the :wq command to save the file and exit the vi
editor. Type the sample text exactly as shown. If you make a mistake, use
the Backspace key to correct it; press the Return key where indicated to
move to the next line of text:

You can use this text file Return
to experiment with vi. Return
The examples shown here Return
will teach you the basics of vi. Escape
~
~
~
~
~
:wq

"my.file" 4 lines, 108 characters
$

______________________ Note _______________________

Depending upon how your terminal or workstation is set up, the
Escape key may be programmed to perform a different function.
It is possible that one of the function keys on your keyboard
(possibly F11) may have been set up to perform the escape
function. See your system administrator if your Escape key does
not operate properly.

Pressing the Escape key while vi is in the input mode puts vi back into the
command mode. Once in the command mode, vi interprets anything you
type to be a command. The :wq command writes (saves) the file with the
name my.file into your current directory and quits the vi editor.

The format of the :wq command is much different from other vi commands
because :wq is not a vi command; it is an ex command. When you type a
colon (:) when vi is in the command mode, notice that it appears at the
bottom of the screen. The colon (:) begins all ex commands from within
vi. All ex commands are executed when vi is in the command mode. You
must press the Return key after the command to signify to ex that you have
finished entering the command. See Section A.3 to learn more about ex
commands.

If you lose track of which mode vi is in, press the Escape key a few times
to make sure vi is in the command mode. If your system is so configured,
you will hear a bell when you press the Escape key, which indicates that
vi is indeed in the command mode.

A Beginner’s Guide to Using vi A–3

Further details on use of the Escape key in vi and exiting vi using different
methods are described later in this appendix.

The text you had entered in my.file will be used in the remaining examples
in this appendix.

A.1.2 Opening an Existing File

Whether you are creating a new file or opening an existing file, the syntax
for using vi is the same:

vi filename

To open the my.file file, enter the vi command as follows:

$ vi my.file

Your screen should look like this:

You can use this text file
to experiment with vi.
The examples shown here
will teach you the basics of vi.

~
~
~
~
~
~
"my.file" 4 lines, 108 characters

The text you entered in the file will be displayed at the top of the screen. The
lines beginning with tildes (~) represent the blank lines in your file. The
text at the bottom of the screen shows the name of the file, the number of
lines in the file and the number of characters in the file.

A.1.3 Saving a File and Quitting vi

In the previous example, you learned that the :wq command saved the file
and quit the vi editor. However, other options available to save and quit a
file are:

• Save a file and continue working in it

• Save the file and quit (exit) vi

• Quit vi without saving the changes made to the file

If you are working on a large text file and have been adding, changing and
deleting a lot of information, it is suggested to save the file often (perhaps
every 10 minutes) to prevent loss of valuable data. The write command is

A–4 A Beginner’s Guide to Using vi

used to save an entire file to the current directory. The format of the write
command is:

:w filename

The entry of filename is optional and is used only when you want to save
a file under a different file name. Omitting filename from the command
automatically saves a file to its current file name. When you enter the :w
command, the current file name, number of lines and number of characters
is displayed at the bottom of your screen. If you have entered a new file
name, the new file name will be displayed.

______________________ Note _______________________

If you specify a new file name with the :w command, you will
have two files saved in your directory: the new file name you just
entered and the original file name.

If you have finished making changes to a file, you can save the file and quit
vi at the same time. The format of the write and quit command is:

:wq

The :wq command saves a file to the same file name, quits vi and brings
you back to your shell prompt.

You also have the option to quit a file and vi simultaneously without saving
the changes you may have made. This option is useful if, for example, you
have deleted many lines of information by mistake and you want to start all
over again. Quitting vi will restore your file to its original state. However,
quitting vi to restore a file to its original state will only work if you have not
saved the file previously during the current editing session. To quit your file
and vi without saving your changes enter:

:q!

Quitting a file with the :q! command will not delete the file from your
directory. Your file will still reside in the directory, but it will not contain any
of the changes you may have made.

Table A–1 summarizes the commands used to save files and quit the vi
editor.

A Beginner’s Guide to Using vi A–5

Table A–1: Write and Quit Command Summary
Command Result

:w Saves the entire file to the current file name;
does not exit the vi editor.

:w filename Saves the entire file to the new file name; does
not exit the vi editor. The new file name and
original file name reside in the directory.

:wq Saves the entire file to the current file name
and exits the vi editor simultaneously.

:q! Quits the file; exits the vi editor; does not
save any changes made to the file since the
last time the file was saved.

A.1.4 Moving Within a File

If you have closed my.file, reopen it by using the command:

$ vi my.file

The cursor should be on the first character in the file: the Y in the word You.

As mentioned earlier in this appendix, vi is in command mode at start up.
In command mode, the characters you enter are treated as commands rather
than as text input to the file.

A.1.4.1 Moving the Cursor Up, Down, Left and Right

Certain keys on the keyboard have been designated to be movement keys
when vi is in the command mode. The following letters on the keyboard
control cursor movement:

• h (move the cursor one character to the right)

• j (move the cursor down one line staying in the same position)

• k (move the cursor up one line staying in the same position)

• l (move the cursor one character to the left)
Using the movement keys, move the cursor to the first letter of the word
experiment by typing:

lllj

If your keyboard is equipped with arrow keys, you may be able to use the
arrow keys to move left, right, up or down as well. However, using the h, j, k
and l keys lets you keep your fingers on the main section of the keyboard
for faster typing. On some keyboards, the h, j, k and l keys are repetitive
keys. That is, holding the key down will repeat the key action until you
release the key. For instance, holding down the j key will scroll rapidly
through the lines in a file.

A–6 A Beginner’s Guide to Using vi

In the command mode, the Return key acts as a cursor movement key.
Pressing the Return key moves the cursor to the first character of the next
line. This movement differs from the j movement key because the Return
key positions the cursor at the first character of the next line whereas the j
moves the cursor to the same character position on the next line.

In the command mode, the hyphen (−) moves the cursor to the first character
of the previous line. This feature is useful for scrolling backwards in a file.
This movement differs from the k movement key because the hyphen (−)
positions the cursor at the first character of the previous line whereas the k
moves the cursor to the same character position on the previous line.

If you have tested any of the cursor movement keys described above, make
sure your cursor is positioned at the first letter of the word experiment
before continuing to the next section.

A.1.4.2 Moving the Cursor by Word, Line, Sentence and Paragraph

You can use the w command to move the cursor by whole word boundaries.
The w command moves the cursor forward to the beginning of the next word.
Move the cursor to the beginning of the word with by typing:

w

You can use the b command, to move backward to the beginning of the
previous word. For example, move to the beginning of the word experiment
by typing:

b

Now see what happens when you do not use the b command from the
beginning of a word by typing:

llllb

The cursor returns to the beginning of the word experiment.

The word motion commands will wrap to the next or previous text line when
appropriate. Move the cursor to the beginning of the word text by typing:

bbb

Notice how the cursor moved backward and wrapped around to the previous
line.

There are a few other interesting movement commands: the zero (0) moves
the cursor to the beginning of the current line and the dollar sign ($) moves
the cursor to the end of the current line.

The close parenthesis [)] moves the cursor to the beginning of the next
sentence and the open parenthesis [(] moves the cursor to the beginning of
the previous sentence.

A Beginner’s Guide to Using vi A–7

The right brace (}) moves the cursor to the beginning of the next paragraph
and the left brace ({) moves the cursor to the beginning of the previous
paragraph.

A.1.4.3 Moving and Scrolling the Cursor Forward and Backward Through a File

In larger files, you can move the cursor by whole screen by pressing certain
control keys:

• Ctrl/F moves the cursor one full screen forward

• Ctrl/B moves the cursor one full screen backward

• Ctrl/D moves the cursor and scrolls down (forward) a half screen

• Ctrl/U moves the cursor and scrolls up (backward) a half screen

The following uppercase letters also designate cursor movement over large
boundaries of text:

• The H command moves the cursor Home; that is, to the first character in
the file

• The G command instructs the cursor to Go to the last line in the file

A.1.4.4 Movement Command Summary

The vi text editor has many more cursor movement commands. When you
have learned the basics documented in this appendix, see the vi(1) manpage
for more information.

Table A–2 summarizes the cursor movement commands. The cursor
movement keys are in effect only when vi is in the command mode.

Table A–2: Cursor Movement Command Summary
Command Result

h Moves the cursor one character to the right.

j Moves the cursor down one line in the same position.

k Moves the cursor up one line in the same position.

l Moves the cursor one character to the left.

Return key Moves the cursor to the beginning of the next line.

− Moves the cursor to the beginning of the previous line.

w Moves the cursor forward to the beginning
of the next word.

b Moves the cursor backward to the beginning
of the previous word.

A–8 A Beginner’s Guide to Using vi

Table A–2: Cursor Movement Command Summary (cont.)

Command Result

0 Moves the cursor to the beginning of the current line.

$ Moves the cursor to the end of the current line.

) Moves the cursor to the beginning of the next sentence.

(Moves the cursor to the beginning of the previous sentence.

} Moves the cursor to the beginning of the next paragraph.

{ Moves the cursor to the beginning of the
previous paragraph.

Ctrl/D Scroll down (forward) a half screen.

Ctrl/F Moves the cursor forward one screen.

Ctrl/B Moves the cursor backward one screen.

Ctrl/U Scroll up (backward) a half screen.

H Moves the cursor home (to the first character in the file).

G Moves the cursor to the last line of the file.

A.1.5 Entering New Text

To enter new text into a file, vi must be in the input mode. In input mode,
the characters you enter are inserted as text directly into the file. Remember
that when vi is in the input mode, you can return vi to the command mode
by pressing the Escape key once.

There are several different commands used to insert text and all of the
commands that are used to insert text automatically place vi in the input
mode as soon as the command is typed.

To begin this exercise, open my.file and make sure the cursor is positioned
at the word text in the first line of the file.

As you did initially to insert text into my.file, you will use the insert
command to insert the word new just before the word text. With the cursor
positioned on the first t in the word text, put vi into the input mode
command by typing the insert command:

i

Next, enter the word new and press the space bar once:

new Space

Exit the input mode by pressing the Escape key:

Escape

A Beginner’s Guide to Using vi A–9

The cursor should now be positioned on the space between the words new
and text.

The i command starts inserting text at the character just before the cursor.
That is why you have to remember to press the Space bar to insert a space
between words if the cursor was positioned at the first character in a word
when you started to insert text.

Another command that is used to insert text is the append (a) command.
In contrast to the insert command, the a command adds (or appends) the
characters you type just after the cursor position. To see how the a command
works, use the cursor movement keys to move to the letter u in the word
You and type:

a
, too, Escape

The vi text editor appended the text you typed to the end of the word You.
The cursor should now be positioned on the second comma.

The o command opens a new line below the line with the cursor and lets you
insert text at the start of that new line. To add a sentence to the end of
this file, move the cursor to the last line of the file by pressing the Return
key three times:

Return
Return
Return

The cursor should be positioned at the word will. To open a new line below
the current line and automatically put vi into the input mode, type:

o

Enter the sample text shown below (including pressing the Return key
where indicated) and press the Escape key to return to command mode when
you are finished.

New text can be easily entered Return
while in input mode. Escape

Your screen should now look like this:

You, too, can use this new text file
to experiment with vi.
The examples shown here
will teach you the basics of vi.
New text can be easily entered
while in input mode.
~

A–10 A Beginner’s Guide to Using vi

~
~
~
~
~

The O command opens a new line above the current line and starts inserting
text at the start of the new line. This command is most useful for adding
new text to the top of an existing file, but can be used anywhere in a file.
To practice using this command to open a line and insert text, move the
cursor to the first line in the file (using the cursor movement command H
perhaps) and type:

O
Opening a new line is easy. Escape

The vi text editor is back in the command mode once the Escape key is
pressed.

There are two other commands that put vi in the input mode: the I and A
commands. The I command inserts text at the beginning of the current
line. The A command appends text after the last character at the end of
the current line.

Practice inserting text to the beginning of a line, by typing:

I
Inserting text is easy. Space Escape

Practice appending text to the end of a line by typing:

A
Really! Escape

Your screen should now look like this:

Inserting a line is easy. Opening a new line is easy. Really!
You, too, can use this new text file
to experiment with vi.
The examples shown here
will teach you the basics of vi.
New text can be easily entered
while in input mode.
~
~
~
~
~
~

A Beginner’s Guide to Using vi A–11

Table A–3 summarizes the commands used to insert and append text
to a file. These commands are executed from the command mode and
automatically put vi into the input mode.

Table A–3: Text Insertion Command Summary
Command Result

i Inserts text immediately before the current cursor position.

a Appends text immediately after the current cursor position.

I Inserts text at the beginning of the current line.

A Appends text to the end of the current line.

o Opens a new line directly below the current line.

O Opens a new line directly above the current line.

A.1.6 Editing Text

Up to this point you only have learned how to add new text to the file, but
what if you need to change some text? The vi text editor provides commands
for deleting and changing text. For example, to remove the word easily,
from the sixth line in my.file, move the cursor to the first character of
the word and enter:

dw

This command is a combination of the delete command d and the motion
command w. In fact, many vi commands can be combined with motion
commands to specify the duration of the action. The general form of a vi
command follows:

[number][command]motion

The command entry represents an action command, motion represents a
motion command and number optionally represents the number of times to
perform the command. You also can use this general form to move the cursor
in larger steps.

To illustrate this concept, move the cursor to the beginning of my.file by
typing H. Now, to move the cursor forward four words, enter:

4w

The cursor has moved four entire words and is positioned at the first letter
of the fifth word, easy.

A–12 A Beginner’s Guide to Using vi

A.1.6.1 Deleting Words

Using the general form of commands, you can delete the last five words of
this text file. Move the cursor to the beginning of the last line by pressing
the Return key several times and enter:

5dw
:w

It takes five words to delete the whole line rather than four because the
period at the end of the line counts as a word. Every punctuation mark is
considered as a word when you are using the delete word command. As a
reminder that you should save a file often, this example also had you write
the file (save it) using the :w command.

To delete only a portion of the word, use the x command. The x command
deletes one character at a time. To see how this command works, move the
cursor to the letter s in the word examples. Press the x key once to delete
the letter s.

A.1.6.2 Deleting Lines

The dd command is a shortcut for deleting an entire line at once. The dd
command can be used with a number to delete multiple lines as well. For
example, position the cursor at the sixth line in the file (at the line beginning
with the word New) and type:

2dd

The sixth and seventh lines (even though the seventh line is empty) of
the file are deleted simultaneously. The dd command can be used without
specifying a number to delete one line at a time.

The D command clears the current line of text from the current cursor
position to the end of the line but does not delete the line itself. If the cursor
is positioned at the beginning of the line, the entire line is cleared. This
command speeds up your work because you do not have to know how many
words are in the line to be able to delete them (as you would, for example, if
you were using the dw command). This command is useful if you want to
rewrite an entire line. With the cursor positioned at the beginning of the
line, the D command followed by one of the text insertion commands (i,
I, a or A) lets you clear the current line of text and reenter new text with
a minimum of keystrokes.

A.1.6.3 Changing Text

The command for changing text, c, can be used to combine the actions of
deleting and returning to input mode. It follows the same general form as

A Beginner’s Guide to Using vi A–13

the d command. To change the text new text to almost new demo, move
the cursor to the first character in the word new and enter the command:

2cw

The text will not disappear immediately. Instead, a dollar sign ($) is placed
at the end of the change range (the last t in text) and vi is placed in input
mode automatically. The text you enter will overwrite the existing text up
to the dollar sign and then extend the text range as needed. Enter the new
text by typing:

almost new demo Escape

A.1.6.4 Text Editing Command Summary

As discussed in the previous sections, the text editing commands can be used
together with the motion commands to give you more editing power. The
text editing commands can be combined with a number to change or delete
large blocks of words or lines simultaneously. Table A–4 summarizes the
commands used to edit text.

Table A–4: Text Editing Command Summary

Command Result

cw Changes the current word to the new text you type. You
may change the word with as much new text as necessary.
The Escape key signals the end of the change.

ncw Changes n number of words to the new text you type.
The new text is not limited to just n words. You may
change n words with as much new text as necessary. The
Escape key signals the end of the change.

D Clears the text from the current cursor position to the
end of the line. Does not delete the space used by the
line thereby letting you add more text.

dd Deletes the current line.

ndd Deletes n number of lines beginning with the current line.

dw Deletes the current word.

ndw Deletes n number of words beginning with the current word.

x Deletes the current character.

A.1.7 Undoing a Command

If you make a change and then realize it was in error, you still may be able
to correct it if you have not executed another command. Use the u command
to undo the last command entered. Undo the last command, 2cw, by typing:

A–14 A Beginner’s Guide to Using vi

u

The text string almost new demo will be changed back to new text if you
did not execute any other commands since you executed the 2cw command.

Use the uppercase U command to ’Undo’ all changes to the current line and
restore it to its original state. The U command works only if you have not
moved the cursor to another line.

A.1.8 Finishing Your Edit Session

After you finish the exercises in this appendix, you should save the file and
quit vi. To save your changes and quit vi, enter:

:wq Return

If you want to quit vi without saving your changes, you can do so by entering:

:q! Return

You have now learned enough about vi to edit any file. The following
sections show you some advanced techniques that can improve your
productivity and let you customize your environment.

A.2 Using Advanced Techniques

This section explains the procedure to search for text strings, move text and
copy and paste text. As you work with larger documents, all these tasks
increase your ability to work efficiently.

A.2.1 Searching for Strings

In a large document, searching for a particular text string can be very time
consuming. The slash (/) command is used to search for a string. When you
enter the slash (/), you are prompted for a text string as the target of the
search. When you press the Return key, vi searches the file for the first
occurrence of the text string you entered.

If you do not have it open, reopen the my.file file. Move to the top of the
document using one of the cursor movement keys you learned earlier in this
appendix. To search for the text string th, enter the following:

/th Return

As soon as you enter the slash (/) command, the slash (/) is displayed at the
bottom of the screen (similar to the way in which the colon (:) works). When
you entered the text string th, it was echoed (displayed) at the bottom of
the screen. You can use the Backspace key to fix mistakes when you enter
the search string.

A Beginner’s Guide to Using vi A–15

After you press the Return key, the cursor moves to the first occurrence of
the string (the th in the word this). The n (next) command continues the
search for the next occurrence of the last string you searched for. Enter:

n

The cursor should move to the next occurrence of the string, which is the
th in the word with.

Similarly, the N command searches for the next occurrence of the search
string, but it searches in the opposite direction of the n command. The N
finds the previous occurence of the string.

The question mark (?) command is also used to initiate a search for text
strings, but the question mark (?) initiates a backward search through the
file. When you search backward, the n command moves the cursor backward
to the previous occurrence of the string and the N command moves the
cursor forward (exactly the opposite of the way in which they work with a
slash (/) search).

A.2.2 Deleting and Moving Text

To move a block of text, you must first select the text to move. You already
know how to do this. The delete (d) command not only deletes a line of text
but also copies it to a paste buffer. Once in the paste buffer, the text can be
moved (or pasted) by repositioning the cursor and then using the lowercase p
command to paste the text on the line after the current cursor position.

Move the cursor to the first line in the file and type:

dd

The line is deleted and copied into the paste buffer and the cursor is located
on the next line in the file. To paste the line in the buffer back into the file,
after the line on which the cursor is positioned, enter:

p

The uppercase letter P (Paste) command is used to paste text on the line
above the cursor rather than below it.

If you delete a letter or block of words, the deleted text will be pasted into
the new position within the current line. For example, to move the word
can to just before the word with, use the following command sequence
(remember to use an uppercase P):

/
can Return
dw
/
with Return

A–16 A Beginner’s Guide to Using vi

P

A.2.3 Yanking and Moving Text

You copy text in the same manner as you move it, except that instead of
using the delete text command d, you use the yank text command, y. The y
command copies (or yanks) the specified text into the paste buffer without
deleting it from the text. It follows the same syntax as the d command.
You can also use the yy command to yank an entire text line into the paste
buffer, in the same way as dd.

For example, to copy the first two lines of the file to a position immediately
underneath them, enter the following command sequence from the first
line of the file:

2yy
j
p

You must move the cursor down one line using j or the two lines will be
pasted after the first line rather than after the second.

A.2.4 Other vi Features

You may want to try some of the other features of vi. The vi(1) reference
page lists all of the available commands. You may want to pay particular
attention to the following:

J Joins the next line of text to the current line of text.

.
Repeats the last command.

s Substitutes the current character with the text
that follows.

x Deletes the current character.

~ Changes the alphabetic case of the current character.

! Executes an operating system command on the
current line of text and replaces the text with the
output.

Ctrl/L Refreshes the screen when problems with the screen
display occur. Any time your screen is displaying
confusing output, press Ctrl/L.

A Beginner’s Guide to Using vi A–17

A.3 Using the Underlying ex Commands

The vi text editor is based upon the ex line editor. The underlying ex line
editor can bring the power of global changes to your entire text file or any
large piece of it. You can access ex commands from within vi by using the
colon (:) command. You were introduced to ex commands earlier in this
appendix with the :wq and :q! commands for writing and quitting an
editing session.

The colon (:) command causes ex to prompt for a command line at the
bottom of the editor screen with a colon (:). Each ex command is ended by
pressing the Return key. You can also enter ex more permanently with
the vi command Q. This command turns processing over to ex until you
explicitly return to vi. This often happens accidentally. If it should happen
to you, you can return to vi by typing vi at the colon (:) prompt followed by
the Return key as follows:

:vi Return

An ex command acts on a block of lines in your text file according to the
following general syntax:

: [address [, address]] command

The command, along with any of its arguments, acts on the lines between
and including the first and second address. If one address is specified,
the command acts only on the specified line. If no address is specified, the
command acts only on the current line. Addresses can be specified in a
number of ways. Some commonly used address specifications are:

line number Address by absolute line number.

/pattern/ Next line that contains the pattern.

.
Line that the cursor is on.

$ Last line of the file.

address±lines Relative offset from the addressed line.

% All the lines in the file and is used once
in place of both addresses.

The following sections show some of the most generally useful ex commands
and some of the customization features offered by ex. You should read the
ex(1) reference page for a more detailed list of commands.

A–18 A Beginner’s Guide to Using vi

A.3.1 Making Substitutions

The most common substitution task, possibly the most common ex task, is a
global substitution of one word or phrase for another. You can do this with
the s command. If you have closed the my.file file, reopen it. To change
every occurrence of "is" to "was", use the following command:

:%s/is/was/g Return

This substitution command is applied to all lines in the file by the % address.
The slash (/) is used as a separator. The g argument at the end of the
command causes the substitution to occur globally, that is, on each instance
of the pattern within each line. Without the g argument, substitution occurs
only once on each line.

You should be careful when making substitutions to ensure that you get
what you want. In the previous command line, the word this has changed
to thwas because every occurrence of is was changed to was.

You can add a c argument along with the g argument to prompt for
confirmation before each substitution. The format of the confirmation is a
bit complex; however, it is well worth using when you want to be scrupulous
about making global changes.

As an example of confirming a substitution, change the word thwas back to
this by issuing the following command:

:%s/thwas/this/gc Return

The following prompt appears at the bottom of the screen:

You, too, use thwas new text file
^^^^^

As shown in the next example, type y and press the Return key. You are then
prompted for the second substitution:

You, too, use thwas new text file
^^^^^y Return

You, too, use thwas new text file
^^^^^

Type y and press the Return key and in response to the Hit return to
continue prompt, press the Return key once again as follows:

You, too, use thwas new text file
^^^^^y

You, too, use thwas new text file
^^^^^y Return

[Hit return to continue] Return

You will find that the two occurrences of the word thwas have been changed
back to this. In addition, vi is back in the command mode with the cursor
positioned at the first character of the line with the last substitution.

A Beginner’s Guide to Using vi A–19

Now try another substitution on your example file. Add three lines of new
text to the file by using the $ (go to beginning of last line), o (create new
line), yy (yank) and p (paste) commands as follows:

:$ Return
o
Some new text with a mispelling. Escape
yy
p
p
p

You should now have four lines of new text, all containing the incorrectly
spelled word mispelling.

To fix the spelling error, enter one of the following commands:

:1,$s/mispelling/misspelling/ Return

or

:5,8s/mispelling/misspelling/ Return

In the first example, the address 1,$ indicates that the substitution should
begin on line one (1) and end at the last line of the file ($). In the second
example, 5,8 indicates that the substitution should begin on line 5 and end
on line 8. You do not need to use the g operator in either case because the
change is only necessary once on each line.

A.3.2 Writing a Whole File or Parts of a File

The :wq command is a special ex command that writes the whole file. It
combines the features of the write command w and the quit command q. The
only argument that the quit command can take is the exclamation point (!).
It forces the session to quit even if changes made to the file would be lost
by quitting.

The w command can also take addresses and a file name argument, which
lets you save part of your text to another file. For example, to save the first
three lines of your text to the new file my.new.file, use the following
command:

:1,3w my.new.file Return

"my.new.file" [New file] 3 lines, 130 characters

A.3.3 Deleting a Block of Text

The delete command in ex is d, just as in vi. To delete from the current line
to the end of the file, use the following command:

A–20 A Beginner’s Guide to Using vi

:.,$d Return

A.3.4 Customizing Your Environment

The ex editor provides two mechanisms for customizing your vi
environment. You can use the :set command to set environment variables
and the :map command to map a key sequence to a vi command key.

Environment variables are set either by assigning them as option or no
option for Boolean variables or by assigning them as option=value. The
full set of environment variables is described in the ex(1) reference page.
Table A–5 lists some common variables.

Table A–5: Selected vi Environment Variables
Variable Description

errorbells Specifies that when an error is made, a bell
sounds. This is the default setting.

ignorecase Specifies that when performing searches, the
case of characters should be ignored. The default
variable setting is noignorecase.

number Specifies that line numbers are to be displayed
at the left margin. The default variable
setting is nonumber.

showmatch Specifies that when you enter a matching
parenthesis or brace, the cursor moves to the
matching character and then returns. The default
variable setting is noshowmatch.

tabstop Specifies the amount of space between tab stops.
The default setting is tabstop=8.

A Beginner’s Guide to Using vi A–21

Table A–5: Selected vi Environment Variables (cont.)

Variable Description

wrapscan Specifies that searches should wrap around
the beginning or end of the file. The default
variable setting is wrapscan.

wrapmargin Creates an automatic right margin located a
specified number of characters from the right side
of your screen. Whenever your cursor reaches
the specified right margin, an automatic new
line is generated and the word you are typing is
brought to the next line. The default setting is
wrapmargin=0

You should set the wrapmargin variable to a value
with which you are comfortable. Otherwise, vi
will use the default setting of 0. Using the default
setting means that your cursor jumps to the
next line when it reaches the end of your screen;
however, parts of the word you are keying in may
be on separate lines.

To display the line numbers of your example file, enter the following
command:

:set number Return

To remove the line numbers, enter the following command:

:set nonumber Return

The :map command sets a single vi command key to a vi command
sequence. The syntax for the :map command follows:

:map key sequence Return

This command sequence replaces any existing command for that key. The
command sequence should be identical to the keystrokes you want to map,
except that special keys such as the Return key, the Escape key and keys
modified with the Ctrl key must be quoted first with Ctrl/V. Because the q
and v keys do not have commands associated with them, they are good keys
to map.

For example, to map a key sequence that inserts a line into your text that
says "This space held for new text", you could use the following command:

:map q oThis space held for new text Ctrl/V Escape Return

Note the use of Ctrl/V to quote the Escape character.

A–22 A Beginner’s Guide to Using vi

A.3.5 Saving Your Customizations

You can make your environment customizations permanent by placing the
appropriate ex commands in a file named .exrc in your home directory.
Commands in this file will take effect every time you enter vi or ex. In this
file, you do not need to use the vi command :, because these commands are
read directly by the underlying ex editor.

For example, to customize your environment to always display line numbers
for your files, to use the map sequence shown in the previous section and to
set an automatic right margin of five spaces, you would first open the .exrc
file with vi in your home directory and add the following lines of text:

set number
map q oThis space held for new text Ctrl/V Escape
set wrapmargin=5

After you write this file, verify that it works by opening your example file.

A Beginner’s Guide to Using vi A–23

B
Creating and Editing Files with ed

This appendix explains how to create, edit (modify), display and save text
files with ed, a line editing program. If your system has another editing
program, you may want to learn how to do these tasks with that program.

A good way to learn how ed works is to try the examples in this appendix on
your system. Since the examples build upon each other, it is important for
you to work through them in sequence. Also, to make what you see on the
screen consistent with what you see in this guide, it is important to practice
the examples just as they are given.

In the examples, everything you should enter is printed in boldface. When
you are told in the text to enter something, you should enter all the
information for that line and then press Return.

Because ed is a line editor, you can work with the contents of a file only one
line at a time. Regardless of what text is on the screen, you can edit only
the current line. If you have experience with a screen editing program, you
should pay careful attention to the differences between that program and
ed. For example, with the ed program, you cannot use the Cursor Up and
Cursor Down keys to change your current line.

B.1 Understanding Text Files and the Edit Buffer

A file is a collection of data stored together in the computer under an
assigned name. You can think of a file as the computer equivalent of an
ordinary file folder − it may contain the text of a letter, a report or some
other document or the source code for a computer program.

The edit buffer is a temporary storage area that holds a file while you work
with it − the computer equivalent of the top of your desk. When you work
with a text file, you place it in the edit buffer, make your changes to the file
(edit it) and then transfer (copy) the contents of the buffer to a permanent
storage area.

The rest of this appendix explains how to create, display, save and edit
(modify) text files with the ed editor.

Creating and Editing Files with ed B–1

B.2 Creating and Saving Text Files

To create and save a text file, perform the following steps. The following
sections describe these steps in detail.

1. At the shell prompt, enter the following command:

$ ed filename

The filename argument is the name of the file you want to create
or edit.

2. When you receive the ? filename message, enter the following
append command:

a

3. Enter your text.

4. Enter a dot (.) at the start of a new line to stop adding text.

5. Enter the following command to copy the contents of the edit buffer into
the filename file:

w

6. Enter the following command to end the ed program:

q

B.2.1 Starting the ed Program

To start the ed program, enter a command of the form ed filename after
the shell prompt ($).

In the following example, the ed afile command starts the ed program
and indicates that you want to work with a file named afile:

$ ed afile
?afile
_

The ed program responds with the message ?afile, which means that the
file does not exist. You can now use the a (append) subcommand (described
in the next section) to create afile and put text into it.

B.2.2 Entering Text − The a (append) Subcommand

To add text to your file, enter a. The a subcommand tells ed to add or append,
the text you enter to the edit buffer. If your file had already contained text,
the a subcommand would add the new text to the end of the file.

Type your text, pressing Return at the end of each line. When you finish
entering the complete text, enter a dot (.) at the start of a new line.

B–2 Creating and Editing Files with ed

______________________ Note _______________________

If you do not press Return at the end of each line, the ed program
automatically moves your cursor to the next line after you fill a
line with characters. However, ed treats everything you enter
before you press Return as one line, regardless of how many lines
it takes up on the screen; that is, the line wraps around to the
beginning of the next line (based upon your workstation display
settings).

The following example shows how to enter text into the afile file:

a
The only way to stop
appending is to enter a
line that contains only
a dot.
.
_

If you stop adding text to the buffer and then decide to add some more, enter
another a subcommand. Type the text and then enter a dot at the start of a
new line to stop adding text to the buffer.

If you make errors as you enter your text, you can correct them before you
press Return. Use the Backspace key to erase the incorrect characters. Then
enter the correct characters in their place.

B.2.3 Displaying Text − The p (print) Subcommand

Use the p (print) subcommand to display the contents of the edit buffer.

To display a single line, use the np subcommand, where n is the number of
the line. For example:

2p
appending is to enter a
_

To display a series of lines, use the n,mp subcommand, where n is the
starting line number and m is the ending line number. For example:

1,3p
The only way to stop
appending is to enter a
line that contains only
_

To display everything from a specific line to the end of the buffer, use the
n,$p subcommand, where n is the starting line number and $ stands for the

Creating and Editing Files with ed B–3

last line of the buffer. In the following example, 1,$p displays everything
in the buffer:

1,$p
The only way to stop
appending is to enter a
line that contains only
a dot.
_

______________________ Note _______________________

Many examples in the rest of this appendix use 1,$p to display
the buffer’s contents. In these examples, the 1,$p subcommand is
optional and convenient − it lets you verify that the subcommands
in examples work as they should. Another convenient ed
convention is ,p, which is equivalent to 1,$p − that is, it displays
the contents of the buffer.

B.2.4 Saving Text − The w (write) Subcommand

The w (write) subcommand writes or copies the contents of the buffer into
a file. You can save all or part of a file under its original name or under a
different name. In either case, ed replaces the original contents of the file
you specify with the data copied from the buffer.

B.2.4.1 Saving Text Under the Same File Name

To save the contents of the buffer under the original name for the file, enter
the w subcommand. For example:

w
78
_

The ed program copies the contents of the buffer into the file named afile
and displays the number of characters copied into the file (78). This number
includes blanks and characters such as Return (sometimes called newline),
which are not visible on the screen.

The w subcommand does not affect the contents of the edit buffer. You can
save a copy of the file and then continue to work with the contents of the
buffer.

The stored file is not changed until the next time you use the w subcommand
to copy the contents of the buffer into it. As a safety measure, it is a good
practice to save a file periodically while you work on it. Then, if you make

B–4 Creating and Editing Files with ed

changes (or mistakes) that you do not want to save, you can start over with
the most recently saved version of the file.

______________________ Note _______________________

The u (undo) subcommand restores the buffer to the state it
was in before it was last modified by an ed subcommand. The
subcommands that u can reverse are a, c, d, g, G, i, j, m, r, s,
t, v and V.

B.2.4.2 Saving Text Under a Different File Name

Often, you may need more than one copy of the same file. For example,
you could have the original text of a letter in two files − one to keep as it is
and the other to be revised.

If you have followed the previous examples, you have a file named afile
that contains the original text of your document. To create another copy of
the file (while its contents are still in the buffer), use a subcommand of the
form w filename, as the following example shows:

w bfile
78
_

At this point, afile and bfile have the same contents, since each is a
copy of the same buffer contents. However, because afile and bfile are
separate files, you can change the contents of one without affecting the
contents of the other.

B.2.4.3 Saving Part of a File

To save part of a file, use a subcommand of the form n,mw filename. In
this subcommand, the variables are used as follows:

n Specifies the beginning line number of the
part of the file you want to save.

m Specifies the ending line number of the
part of the file you want to save (or the
number of a single line, if that is all you
want to save).

filename Specifies the name of a different file
(optional).

Creating and Editing Files with ed B–5

In the following example, the w subcommand copies lines 1 and 2 from the
buffer into a new file named cfile:

1,2w cfile
44
_

Then ed displays the number of characters written into cfile (44).

B.2.5 Leaving the ed Program − The q (quit) Subcommand

To leave the ed program, enter the q (quit) subcommand. For example:

q
$

_____________________ Caution _____________________

The contents of the buffer are lost when you leave the ed program.
To save a copy of the data in the buffer, use the w subcommand to
copy the buffer into a file before you leave the ed program.

The q subcommand returns you to the shell prompt ($).

If you have changed the buffer but have not saved a copy of its contents, the
q subcommand responds with ?, an error message. At that point, you can
either save a copy of the buffer with the w subcommand or enter q again to
leave the ed program without saving a copy of the buffer.

B.3 Loading Files into the Edit Buffer

Before you can edit a file, you must load it into the edit buffer. You can
load a file either at the time you start the ed program or while the program
is running.

To load a file into the edit buffer when you start the ed program, enter the
following command:

ed filename

This command starts ed and loads the filename file into the edit buffer.

To load a file into the edit buffer while ed is running, you can enter one
of the following commands:

• e filename

This loads the filename file into the buffer, erasing any previous
contents of the buffer.

• nr filename

B–6 Creating and Editing Files with ed

This reads the filename file into the buffer after line n. If you do not
specify n, ed adds the file to the end of the buffer.

B.3.1 Using the ed (edit) Command

To load a file into the edit buffer when you start the ed program, enter the
name of the file after the ed command. The ed command in the following
example invokes the ed program and loads the file afile into the edit buffer:

$ ed afile
78
_

The ed program displays the number of characters that it read into the
edit buffer (78).

If ed cannot find the file, it displays ?filename. To create that file, use
the a (append) subcommand (described in Section B.2.2) and the w (write)
subcommand (described in Section B.2.4).

B.3.2 Using the e (edit) Subcommand

After you start the ed program, you can use the e (edit) subcommand to load
a file into the buffer. The e subcommand replaces the contents of the buffer
with the new file. (Compare the e subcommand with the r subcommand,
described next in Section B.3.3, which adds the new file to the buffer.)

_____________________ Caution _____________________

When you load a new file into the buffer, the new file replaces the
buffer’s previous contents. Save a copy of the buffer with the w
subcommand before you read a new file into the buffer.

In the following example, the e cfile subcommand reads the cfile file
into the edit buffer, replacing afile. The e afile subcommand then
loads afile back into the buffer, deleting cfile. The ed program returns
the number of characters read into the buffer after each e subcommand
(44 and 78):

e cfile
44
e afile
78
_

If ed cannot find the file, it returns ? filename. To create that file, use
the a (append) subcommand, described in Section B.2.2 and the w (write)
subcommand, described in Section B.2.4.

Creating and Editing Files with ed B–7

You can edit any number of files, one at a time, without leaving the ed
program. Use the e subcommand to load a file into the buffer, make your
changes to the file and use the w subcommand to save a copy of the revised
file. (See Section B.2.4 for information about the w subcommand.) Then use
the e subcommand again to load another file into the buffer.

B.3.3 Using the r (read) Subcommand

After you have started the ed program, you can use the r (read) subcommand
to read a file into the buffer. The r subcommand adds the contents of the
file to the contents of the buffer. The r subcommand does not delete the
buffer. (Compare the r subcommand with the e subcommand, described in
Section B.3.2, which deletes the buffer before it reads in another file.)

With the r subcommand, you can read a file into the buffer at a particular
place. For example, the 4r cfile subcommand reads the file cfile into
the buffer following line 4. The ed program then renumbers all of the lines
in the buffer. If you do not use a line number, the r subcommand adds the
new file to the end of the buffer’s contents.

The following example shows how to use the r subcommand with a line
number:

1,$p
The only way to stop
appending is to enter a
line that contains only
a dot.
3r cfile
44
1,$p
The only way to stop
appending is to enter a
line that contains only
The only way to stop
appending is to enter a
a dot.
_

The 1,$p subcommand displays the four lines of afile. Next, the 3r
cfile subcommand loads the contents of cfile into the buffer, following
line 3 and shows that it read 44 characters into the buffer. The next 1,$p
subcommand displays the buffer’s contents again, letting you verify that the
r subcommand read cfile into the buffer after line 3.

If you are working the examples on your system, complete the following
steps before you go to the next section:

1. Save the contents of the buffer in the cfile file:

B–8 Creating and Editing Files with ed

w cfile

2. Load afile into the buffer:

e afile

B.4 Displaying and Changing the Current Line
The ed program is a line editor. This means that ed lets you work with the
contents of the buffer, one line at a time. The line you can work with at any
given time is called the current line and it is represented by the dot (.). To
work with different parts of a file, you must change the current line.

To display the current line, enter the following subcommand:

p

To display the line number of the current line, enter the following
subcommand:

.=

______________________ Note _______________________

You cannot use the Cursor Up and Cursor Down keys to
change the current line. To change the current line, use the ed
subcommands described in the following sections.

To change your position in the buffer, do one of the following. These steps
are described in detail in the following sections.

1. To set your current line to line number n, enter the following
subcommand:

n

2. To move the current line forward through the buffer one line at a time,
press Return.

3. To move the current line backward through the buffer one line at a
time, enter a dash (−) character.

4. To move the current line n lines forward through the buffer, enter the
following subcommand:

.+n

5. To move the current line n lines backward through the buffer, enter
the following subcommand:

.-n

Creating and Editing Files with ed B–9

B.4.1 Finding Your Position in the Buffer

When you first load a file into the buffer, the last line of the file is the current
line. As you work with the file, you usually change the current line many
times. You can display the current line or its line number at any time.

To display the current line, enter p:

p
a dot.
_

The p subcommand displays the current line (a dot.). Because the current
line has not been changed since you read afile into the buffer, the current
line is the last line of the buffer.

Enter .= to display the line number of the current line:

.=
4
_

Since afile has four lines and the current line is the last line in the buffer,
the .= subcommand displays 4.

You also can use the dollar sign (the symbol that stands for the last line in
the buffer) with the = subcommand to determine the number of the last
line in the buffer:

$=
4
_

The $= subcommand is an easy way to find out how many lines are in the
buffer. The ed $ symbol has no relationship to the shell prompt ($).

B.4.2 Changing Your Position in the Buffer

You can change your position in the buffer (change your current line) in
one of two ways:

• Specify a line number (an absolute position)

• Move forward or backward relative to your current line

To move the current line to a specific line, enter the line number; ed displays
the new current line. In the following example, the first line of afile
becomes the current line:

1
The only way to stop
_

B–10 Creating and Editing Files with ed

Pressing Return advances one line through the buffer and displays the new
current line, as the following example shows:

appending is to enter a

line that contains only

a dot.

?
_

When you try to move beyond the last line of the buffer, ed returns ?, an
error message. You cannot move beyond the end of the buffer.

To set the current line to the last line of the buffer, enter $.

To move the current line backward through the buffer one line at a time,
enter minus signs (−) one after the other, as the following example shows:

-
line that contains only
-
appending is to enter a
-
The only way to stop
-
?_

When you try to move beyond the first line in the buffer, you receive the ?
message. You cannot move beyond the top of the buffer.

To move the current line forward through the buffer more than one line at a
time, enter .n (where n is the number of lines you want to move):

.2
line that contains only
_

Note that .2 is an abbreviation for .+2.

To move the current line backward through the buffer more than one line
at a time, enter the following subcommand:.- n (where n is the number
of lines you want to move):

.-2
The only way to stop
_

B.5 Locating Text

If you do not know the number of the line that contains a particular word or
another string of characters, you can locate the line with a context search.

Creating and Editing Files with ed B–11

To search in context, do one of the following:

• To search forward, enter the following subcommand:

/string to find/

• To search backward, enter the following subcommand:

?string to find?

The following sections describe these methods of searching text in detail.

B.5.1 Searching Forward Through the Buffer

To search forward through the buffer, enter the string enclosed in slashes
(/ /):

/only/
line that contains only
_

The context search (/only/) begins on the first line after the current line,
then locates and displays the next line that contains the string "only". That
line becomes the current line.

If ed does not find the string between the first line of the search and the last
line of the buffer, then it continues the search at line 1 and searches to the
current line. If ed searches the entire buffer without finding the string, it
displays the ? error message:

/random/
?
_

After you have searched for a string, you can search for the same string
again by entering //. The following example shows one search for the string
only and then a second search for the same string:

/only/
The only way to stop
//
line that contains only
_

B.5.2 Searching Backward Through the Buffer

Searching backward through the buffer is much like searching forward,
except that you enclose the string in question marks (?):

?appending?
appending is to enter a
_

B–12 Creating and Editing Files with ed

The context search begins on the first line before the current line and locates
the first line that contains the string appending. That line becomes the
current line. If ed searches the entire buffer without finding the string, it
stops the search at the current line and displays the message ?.

After you have searched backward for a string, you can search backward for
the same string again by entering ??. This is because ed remembers search
strings.

B.5.3 Changing the Direction of a Search

You can change the direction of a search for a particular string by using the
slash (/) and question mark (?) search characters alternately:

/only/
line that contains only
??
The only way to stop
_

If you go too far while searching for a character string, it is convenient to be
able to change the direction of your search.

B.6 Making Substitutions − The s (substitute) Subcommand

Use the s (substitute) subcommand to replace a character string (a group
of one or more characters) with another. The s subcommand works with
one or more lines at a time and is especially useful for correcting typing or
spelling errors.

To make substitutions, do one of the following:

• To substitute newstring for oldstring at the first occurrence of
oldstring in the current line, enter the following subcommand:

s/ oldstring / newstring /

• To substitute newstring for oldstring at the first occurrence of
oldstring on line number n, enter the following subcommand:

n s/ oldstring / newstring /

• To substitute newstring for oldstring at the first occurrence of
oldstring in each of the lines n through m, enter the following
subcommand:

n,m s/ oldstring / newstring /

The following sections describe these methods of substitution in detail.

Creating and Editing Files with ed B–13

B.6.1 Substituting on the Current Line

To make a substitution on the current line, first make sure that the line
you want to change is the current line. In the following example, the
/appending/ (search) subcommand locates the line to be changed. Then
the s/appending/adding text/p (substitute) subcommand substitutes
the string "adding text" for the string "appending" on the current line. The p
(print) subcommand displays the changed line.

/appending/
appending is to enter a
s/appending/adding text/p
adding text is to enter a
_

______________________ Note _______________________

For convenience, you can add the p (print) subcommand to the
s subcommand (for example, s/appending/adding text/p).
This saves you the trouble of entering a separate p subcommand
to see the result of the substitution.

The s subcommand changes only the first occurrence of the string on a
given line. To learn how to change all occurrences of a string on the line,
see Section B.6.4.

B.6.2 Substituting on a Specific Line

To make a substitution on a specific line, use a subcommand of the following
form:

n s/ oldstring / newstring /

Here n is the number of the line on which the substitution is to be made.
In the following example, the s subcommand moves to line number 1 and
replaces the string "stop" with the string "quit" and displays the new line:

1s/stop/quit/p
The only way to quit
_

The s subcommand changes only the first occurrence of the string on a
given line. To learn how to change all occurrences of a string on the line,
see Section B.6.4.

B.6.3 Substituting on Multiple Lines

To make a substitution on multiple lines, use a subcommand of the following
form:

B–14 Creating and Editing Files with ed

n,m s/ oldstring / newstring /

Here n is the first line of the group and m is the last. In the following
example, the s subcommand replaces the first occurrence of the string "to"
with the string "TO" on every line in the buffer:

1,$s/to/TO/
1,$p
The only way TO quit
adding text is TO enter a
line that contains only
a dot.
_

The 1,$p subcommand displays the contents of the buffer, which lets you
verify that the substitutions were made.

B.6.4 Changing Every Occurrence of a String

Ordinarily, the s (substitute) subcommand changes only the first occurrence
of a string on a given line. However, the g (global) operator lets you change
every occurrence of a string on a line or in a group of lines.

To make a global substitution on a single line, use a subcommand of the
following form:

n s/ oldstring / newstring /

In the following example, 3s/on/ON/gp changes each occurrence of the
string "on" to "ON" in line 3 and displays the new line:

3s/on/ON/gp
line that cONtains ONly
_

To make a global substitution on multiple lines, specify the group of lines
with a subcommand of the form:

n,m s/ oldstring / newstring /g

In the following example, 1,$s/TO/to/g changes the string "TO" to the
string "to" in every line in the buffer:

1,$s/TO/to/g
1,$p
The only way to quit
adding text is to enter a
line that cONtains ONly
a dot.
_

Creating and Editing Files with ed B–15

B.6.5 Removing Characters

You can use the s (substitute) subcommand to remove a string of characters
(that is, to replace the string with nothing). To remove characters, use a
subcommand of the form s/oldstring// (with no space between the last
two / characters).

In the following example, ed removes the string "adding" from line number 2
and then displays the changed line:

2s/adding//
text is to enter a
_

B.6.6 Substituting at Line Beginnings and Ends

Two special characters let you make substitutions at the beginning or end
of a line:

^ (circumflex) Makes a substitution at the beginning of
the line.

$ (dollar sign) Makes a substitution at the end of the
line. (In this context, the dollar sign ($)
character does not stand for the last line
in the buffer.)

To make a substitution at the beginning of a line, use the s/newstring/
subcommand. In the following example, one s subcommand adds the string
“Remember” to the start of line number 1. Another s subcommand adds the
string “adding” to the start of line 2:

1s/^/Remember,/p
Remember, The only way to quit
2s/^/adding/p
adding text is to enter a
_

To make a substitution at the end of a line, use a subcommand of the form
s/$/newstring/. In the following example, the s subcommand adds the
string “Then press Enter.” to the end of line number 4:

4s/$/ Then press Enter./p
a dot. Then press Enter.
_

Notice that the substituted string includes two blanks before the word Then
to separate the two sentences.

B–16 Creating and Editing Files with ed

B.6.7 Using a Context Search

If you do not know the number of the line you want to change, you can locate
it with a context search. See Section B.5 for more information on context
searches.

For convenience, you can combine a context search and a substitution into a
single subcommand in the following format:

/ string to find/ s/ oldstring / newstring /

In the following example, ed locates the line that contains the string “, The”
and replaces that string with “, the”:

/, The/s/, The/, the/p
Remember, the only way to quit
_

Also, you can use the search string as the string to be replaced with a
subcommand of the form /string to find /s//newstring /. In the
following example, ed locates the line that contains the string “cONtains
ONly”, replaces that string with “contains only” and prints the changed line:

/cONtains ONly/s//contains only/p
line that contains only
_

B.7 Deleting Lines − The d (delete) Subcommand
Use the d (delete) subcommand to remove one or more lines from the buffer.
The general form of the d subcommand is the following:

starting line,ending line d

After you delete lines, ed sets the current line to the first line following the
lines that were deleted. If you delete the last line from the buffer, the last
remaining line in the buffer becomes the current line. After a deletion, ed
renumbers the remaining lines in the buffer.

To delete lines from the buffer, do the following:

• To delete the current line, enter the following subcommand:

d

• To delete line number n from the buffer, enter the following subcommand:

nd

• To delete lines numbered n through m from the buffer, enter the following
subcommand:

n,md

Creating and Editing Files with ed B–17

The following sections describe these methods of deleting lines in detail.

B.7.1 Deleting the Current Line

If you want to delete the current line, enter d. In the following example,
the 1,$p subcommand displays the entire contents of the buffer and the $
subcommand makes the last line of the buffer the current line:

1,$p
Remember, the only way to quit
adding is to enter a
line that contains only
a dot. Then press Enter.
$
a dot. Then press Enter
d
_

The d subcommand then deletes the current line (in this case, the last line in
the buffer).

B.7.2 Deleting a Specific Line

If you know the number of the line you want to delete, use a subcommand
of the form nd to make the deletion. In the following example, the 2d
subcommand deletes line 2 from the buffer:

2d
1,$p
Remember, the only way to quit
line that contains only
_

The 1,$p subcommand displays the contents of the buffer, showing that
the line was deleted.

B.7.3 Deleting Multiple Lines

To delete a group of lines from the buffer, use a subcommand of the form
n,md, where n is the starting line number and m is the ending line number
of the group to be deleted.

In the following example, the 1,2d subcommand deletes lines 1 and 2:

1,2d
1,$p
?
_

The 1,$p subcommand displays the ? message, indicating that the buffer
is empty.

B–18 Creating and Editing Files with ed

If you are following the examples on your system, you should restore the
contents of the buffer before you move on to the next section. The following
example shows you how to restore the contents of the buffer:

e afile
?
e afile
78
_

This command sequence reads a copy of the original file afile into the
buffer.

B.8 Moving Text − The m (move) Subcommand

Use the m (move) subcommand to move a group of lines from one place to
another in the buffer. After a move, the last line moved becomes the current
line.

To move text, enter a subcommand of the following form:

x,y m z

The x variable is the first line of the group to be moved. The y variable is
the last line of the group to be moved. The z variable is the line the moved
lines are to follow.

In the following example, the 1,2m4 subcommand moves the first two lines
of the buffer to the position following line 4:

1,2m4
1,$p
line that contains only
a dot.
The only way to stop
appending is to enter a
_

The 1,$p subcommand displays the contents of the buffer, showing that
the move is complete.

To move a group of lines to the top of the buffer, use zero (0) as the line
number for the moved lines to follow. In the next example, the 3,4m0
subcommand moves lines 3 and 4 to the top of the buffer:

3,4m0
1,$p
The only way to stop
appending is to enter a
line that contains only
a dot.
_

Creating and Editing Files with ed B–19

The 1,$p subcommand displays the contents of the buffer, showing that
the move was made.

To move a group of lines to the end of the buffer, use $ as the line number
for the moved lines to follow:

1,2m$
1,$p
line that contains only
a dot.
The only way to stop
appending is to enter a
_

B.9 Changing Lines of Text − The c (change) Subcommand

Use the c (change) subcommand to replace one or more lines with one or
more new lines. The c subcommand first deletes the lines you want to
replace and then lets you enter the new lines, just as if you were using the a
(append) subcommand. When you have entered all of the new text, enter
a dot (.) on a line by itself.

The general form of the c subcommand is:

starting line,ending line c

To change lines of text, do the following:

1. Enter a subcommand of the following form:

n,m c

The n variable specifies the number of the first line of the group to
be deleted. The m variable specifies the number of the last line of the
group (or the only line) to be deleted.

2. Type the new lines, pressing Return at the end of each line.

3. Enter a dot on a line by itself.

The following sections describe these methods of searching text in detail.

B.9.1 Changing a Single Line of Text

To change a single line of text, use only one line number with the c (change)
subcommand. You can replace the single line with as many new lines as
you like.

In the following example, the 2c subcommand deletes line 2 from the buffer
and then you can enter new text:

B–20 Creating and Editing Files with ed

2c
appending new material is to
use the proper keys to create a
.
1,$p
The only way to stop
appending new material is to
use the proper keys to create a
line that contains only
a dot.
_

The dot on a line by itself stops ed from adding text to the buffer. The
1,$p subcommand displays the entire contents of the buffer, showing that
the change was made.

B.9.2 Changing Multiple Lines of Text

To change more than one line of text, give the starting and ending line
numbers of the group of lines to be with the c subcommand. You can replace
the group of lines with one or more new lines. In the following example, the
2,3c subcommand deletes lines 2 and 3 from the buffer and then you can
enter new text:

2,3c
adding text is to enter a
.
1,$p
The only way to stop
adding text is to enter a
line that contains only
a dot.
_

The dot on a line stops ed from adding text to the buffer. The 1,$p
subcommand displays the entire contents of the buffer, showing that the
change was made.

B.10 Inserting Text − The i (insert) Subcommand
Use the i (insert) subcommand to insert one or more new lines of text into
the buffer. To locate the place in the buffer for the lines to be inserted, you
can use either a line number or a context search. The i subcommand inserts
new lines before the specified line. (Compare the i subcommand with the a
subcommand, explained in Section B.2.2, which inserts new lines after the
specified line.) To insert text, do the following:

1. Enter a subcommand of one of the following types:

ni

Creating and Editing Files with ed B–21

The n variable specifies the number of the line the new lines will be
inserted above.

/string/i

The string variable specifies a group of characters contained in the
line the new lines will be inserted above.

2. Enter the new lines.

3. Enter a dot at the start of a new line.

The following sections describe these methods of inserting text in detail.

B.10.1 Using Line Numbers

If you know the number of the line where you want to insert new lines, you
can use an insert subcommand of the form ni (where n is a line number).
The new lines you enter go into the buffer before line number n. To end the i
subcommand, enter a dot (.) on a line by itself.

In the following example, the 1,$p subcommand prints the contents of the
buffer. Then the 4i subcommand inserts new lines before line number 4:

1,$p
The only way to stop
adding text is to enter a
line that contains only
a dot.
4i
--repeat, only--
.
1,$p
The only way to stop
adding text is to enter a
line that contains only
--repeat, only--
a dot.
_

After 4i, you enter the new line of text and enter a dot on the next line to
end the i subcommand. A second 1,$p subcommand displays the contents
of the buffer again, showing that the new text was inserted.

B.10.2 Using a Context Search

Another method to specify where the i subcommand inserts new lines is to
use a context search. With a subcommand of the form /string /i, you can
locate the line that contains string and insert new lines before that line.
When you finish inserting new lines, enter a dot on a line.

B–22 Creating and Editing Files with ed

In the following example, the /dot/i subcommand inserts new text before
the line that contains the string "dot":

/dot/i
and in the first position--
.
1,$p
The only way to stop
adding text is to enter a
line that contains only
--repeat, only--
and in the first position--
a dot.
_

The 1,$p subcommand displays the entire contents of the buffer, showing
the new text.

B.11 Copying Lines − The t (transfer) Subcommand
With the t (transfer) subcommand, you can copy lines from one place in the
buffer and insert the copies elsewhere. The t subcommand does not affect
the original lines.

The general form of the t subcommand is:

starting line,ending line t line to follow

To copy lines, enter a subcommand of the form:

n,m tx

The n variable specifies the first line of the group to be copied. The m variable
specifies the last line of the group to be copied. The x variable specifies the
line, the copied lines are to follow.

To copy lines to the top of the buffer, use zero (0) as the line number, for the
copied lines to follow. To copy lines to the bottom of the buffer, use the dollar
sign ($) as the line number for the copied lines to follow.

In the following example, the 1,3t4 subcommand copies lines 1 through 3
and inserts the copies after line 4:

1,3t4
1,$p
The only way to stop
adding text is to enter a
line that contains only
--repeat, only--
The only way to stop
adding text is to enter a
line that contains only

Creating and Editing Files with ed B–23

and in the first position--
a dot.
_

The 1,$p subcommand displays the entire contents of the buffer, showing
that ed has made and inserted the copies and that the original lines are
not affected.

B.12 Using System Commands from ed
Sometimes you may find it convenient to use a system command without
leaving the ed program. In such cases, you can use the exclamation point (!)
character to leave the ed program temporarily.

To use a system command from ed, enter the following:

!command

In the following example, the !ls command temporarily suspends the ed
program and runs the ls (list) system command (a command that lists the
files in the current directory):

!ls
afile
bfile
cfile
!
_

The ls command displays the names of the files in the current directory
(afile, bfile and cfile) and then displays another ! character. The ls
command is executed and you can continue to use ed.

You can use any system command from within the ed program. You can
even run another ed program, edit a file and then return to the original ed
program. From the second ed program, you can run a third ed program,
use a system command and so forth.

B.13 Ending the ed Program
This completes the introduction to the ed program. To save your file and end
the ed program, follow these steps:

1. Enter the w command, as follows:

w

2. Enter the q command, as follows:

q

For a full discussion of the w and q subcommands, see Section B.2.4 and
Section B.2.5 respectively.

B–24 Creating and Editing Files with ed

For information about other features of ed, see the ed(1) reference page.

For information about printing the files you create with ed, see Chapter 3.

Creating and Editing Files with ed B–25

C
Using Internationalization Features

This appendix describes the internationalization features of the operating
system. These features allow users process data and interact with the
system in a manner appropriate to their native language, customs and
geographic region (their locale).

After reading this appendix, you will be able to do the following:

• Understand the concept of locale (Section C.1)

• Understand what functions are affected by locale (Section C.2)

• Determine whether a locale has been set (if necessary) (Section C.3)

• Set your locale (if necessary) (Section C.4)

• Change your locale or aspects of your locale (if necessary)

If your site is in the United States and you plan to use the American English
language and its conventions, there is no need to set a locale because the
system default is American English.

If your site is outside the United States, the locale will most likely have
already been specified by the system administrator. If the locale has
already been set, you may want to only skim this appendix for background
information on internationalization. If the locale has not been set, the
information in this appendix is essential to you.

C.1 Understanding Locale

Because Tru64 UNIX is an internationalized operating system, it can present
information in a variety of ways. Users tell the operating system how to
process and present information in a way appropriate for their language,
country and cultural customs by specifying a locale. See Section C.4 for
information about how to specify a locale.

A locale generally consists of three parts: language, territory and codeset.
All three are important for specifying how information is processed and
displayed:

• Language specifies the native language (for example, German, French,
English).

Using Internationalization Features C–1

• Territory specifies the geographic area (for example, Germany, France,
Great Britain).

• Codeset specifies the coded character set that is used for the locale (for
example, ISO 8859/1, the ISO Latin-1 codeset).

At this point, some background information about codesets may be helpful.

The ASCII codeset has traditionally been used on UNIX systems to express
American English. Each letter of the English alphabet (A to Z, a to z) as well
as digits, control characters and symbols are uniquely identified using only 7
of the 8 bits in a standard byte. However, the introduction of new codesets or
expansion of old ones has been necessary to include non-English characters.
Because so many programs rely on ASCII characters in one way or another,
the most commonly used codesets begin with ASCII and build from there.

By using all 8 bits of a standard byte, a single codeset can uniquely identify
characters in several alphabetic languages. The most popular codesets are a
series called ISO 8859. The first in the series is called ISO 8859/1, the second
is ISO 8859/2 and so on through ISO 8859/10. The ISO 8859/1 codeset, often
called Latin-1, supports English and other Western European languages.

To identify all ideographic symbols in Asian languages, such as Chinese
and Japanese, character encoding requires more than one byte. Numerous
codesets using multibyte character encoding, which is not supported by the
ISO 8859 series of codesets, have been developed for Asian languages.

The Unicode and ISO/IEC 10646 standards specify the Universal Character
Set (UCS), a character set that allows characters to be processed for all
languages, including Asian languages, by the same set of rules. The UCS-4
encoding format, based on 32-bit values, is gaining in popularity as the
codeset of choice for locales, because it can support almost all languages and
is used on Windows NT as well as UNIX systems.

C.2 How Locale Affects Processing and Display of Data

As previously mentioned, the locale specified on your system influences
how information is processed and displayed. Specifically, locale affects how
the software:

• Collates (sorts) data

• Formats date and time expressions

• Formats monetary and other numeric expressions

C–2 Using Internationalization Features

• Displays messages

• Prompts for yes/no responses

The following sections describe the items in this list.

C.2.1 Collation

Collation is the process of arranging elements of a set into a particular order.
Collation always follows a set of rules. Some languages require collation
rules that are not used in English.

• Multilevel

Some languages include groups of characters that sort to the same
primary location. Additional sort rules apply to order characters within
the same group. For example, the French characters a, á, à and â; all sort
to the same primary location. Words that begin with these characters
collate the same location, at which point words are sorted within the
group. These words are in correct French order:

a
á
abord
âpre
après
âpreté
azur

• One-to-two character mapping

In some languages, certain single characters are treated as if they were
two characters. For example, the German sharp s (ß) is sorted as if it
were “ss”.

• Multiple-to-one character mapping

Some languages treat a string of characters as if it were a single element.
For example, the Spanish ch and ll sequences are treated as unique
characters in the traditional Spanish alphabet. The following words are
in correct Spanish order:

canto
construir
curioso
chapa
chocolate
dama

• Ignored characters

Using Internationalization Features C–3

Some collation rules ignore certain characters. For example, if the
hyphen (-) is defined as a character to be ignored, the strings re-locate
and relocate sort to the same position.

______________________ Note _______________________

This means that you cannot assume that the range (A to Z, a to
z) includes every letter of an alphabet. For example, the Danish
alphabet includes three characters that sort after z.

C.2.2 Date and Time Formats

Users around the world use different formatting conventions for date and
time. When specifying day and month names, people in the United States
generally express dates with an expression like the following one:

Tuesday, May 22, 1996

The French, on the other hand, express dates this way:

mardi, 22 mai 1996

The following examples show alternative formats for the date, March 20,
1996. A given format is not the only way to write the date in the listed
country:

3/20/96 (United States)

20/3/96 (Great Britain)

20.3.96 (France and Germany)

20-III-96 (Italy)

96/3/20 (Japan)

2/3/20 (Japan, Emperor format)

In Japan’s Emperor format, the year (2, in the preceding example) is the
number of years that the current emperor has reigned.

As with dates, there are many conventions for expressing the time of day.
In the United States, people often use the 12-hour clock with its a.m. and
p.m. designations. People in most other countries use the 24-hour clock to
specify the time.

C–4 Using Internationalization Features

In addition to the 12-hour/24-hour clock differences, punctuation for written
time can vary, for example:

3:20 p.m. (United States)

15h20 (France)

15.20 (Germany)

15:20 (Japan)

See the date(1) reference page for a discussion of the date and time formats
available and their usage.

C.2.3 Numeric and Monetary Formats

The characters used to format numeric and monetary values vary from
place to place. In the United States, the convention is to use a period (.)
as the radix character (the character that separates whole and fractional
quantities) and a comma (,) as the thousands separator. In many European
countries, these conventions are reversed. For example:

1,234.56 (United States)

1.234,56 (France)

Here are some sample formats for monetary items:

$1,234.56 (United States, dollars)

kr1.234,56 (Norway, krona)

SFrs.1,234.56 (Switzerland, Swiss francs)

Some formats for monetary amounts include more than two places for
fractional digits.

C.2.4 Messages

Programs are sometimes written with English messages embedded in the
program itself. In an internationalized program, messages are kept in a
separate file and replaced in the program with calls to a messaging system.
Messages kept in a separate file can be translated and made available to the
program. When translated messages are available, users can interact with
the system in their local language.

C.2.5 Yes/No Prompts

Many programs ask questions that need a positive or negative response.
Those programs typically look for the English string literals y or yes, n or
no. An internationalized program lets users enter the characters or words

Using Internationalization Features C–5

that are appropriate to their language. For example, a French user should
be able to enter o or oui.

C.3 Determining Whether a Locale Has Been Set

If your system is functioning in accordance with the language and
conventions of your country, you can assume that the locale has been set
correctly. If you are not sure whether or not your locale has been set, enter
the locale command to display current settings of the locale environment
variables, for example:

% locale
LANG=fr_FR.ISO8859-1
LC_COLLATE="fr_FR.ISO8859-1"
LC_CTYPE="fr_FR.ISO8859-1"
LC_MONETARY="fr_FR.ISO8859-1"
LC_NUMERIC="fr_FR.ISO8859-1"
LC_TIME="fr_FR.ISO8859-1"
LC_MESSAGES="fr_FR.ISO8859-1"
LC_ALL=

The locale environment variables, described in Section C.4.1, define the
locale names used for messages, collation, codeset, numeric formats,
monetary formats, date and time formats and yes/no responses:

LANG
LC_COLLATE
LC_CTYPE
LC_NUMERIC
LC_MONETARY
LC_TIME
LC_MESSAGES
LC_ALL

If only the LANG variable has been set to a locale, then the LANG setting
applies by default to the locale category variables LC_COLLATE, LC_CTYPE,
LC_NUMERIC, LC_MONETARY, LC_TIME and LC_MESSAGES. In this case,
the locale category variables can be set on an individual basis to a locale
different from the one set for LANG. When the LC_ALL variable is set,
however, it overrides the settings of all other locale variables.

C.4 Setting a Locale

When you specify a locale, you specify a locale name that indicates language,
territory and codeset. On systems, locale names adhere to the following
format:

lang_terr.codeset

C–6 Using Internationalization Features

lang

Is a 2-letter, lowercase abbreviation for the language name. The
abbreviations are specified in ISO 639 Code for the Representation
of Names of Languages, for example: en (English), fr (French), de
(German, from German Deutsch), ja (Japanese).

terr

Is a 2-letter, uppercase abbreviation for the territory name. The
abbreviations are specified in ISO 3116 Codes for the Representation
of Names of Countries, for example: US (United States), NL
(the Netherlands), FR (France), DE (Germany, from the German
Deutschland), JP (Japan).

codeset

Is a string that identifies the codeset, for example: ISO8859-1 (ISO
8859/1), SJIS (Shift Japanese Industrial Standard), AJEC (Advanced
Japanese EUC).

Full locale names include: en_US.ISO8859-1 (English, incorporating
customs for the United States), fr_FR.ISO8859-1 (French, incorporating
customs for France), de_DE.ISO8859-1 (German, incorporating customs
for Germany).

A locale can be set by the system administrator or an individual user. If your
system administrator sets the locale at your site, it is likely that a default
locale has been specified for all systems, including yours. You can override
the default locale if you want to.

To set a locale, you assign a locale name to one or more environment
variables. The easiest way to do this is to assign a locale name to the LANG
environment variable because this variable covers all the pieces of a locale
(codeset, collating sequence, numeric, monetary and date and time formats,
messages and so forth).

Table C–1 lists the locales available when you install the subset, Single-byte
European Locales. Additional locales may be available if language-variant
software for the operating system is installed on your system. See the
l10n_intro(5) reference page for the available locales.

Using Internationalization Features C–7

Table C–1: Locale Names
Language Country Codeset Locale Name

− − ASCII C

− − ASCII POSIX

Danish Denmark Latin-1 da_DK.ISO8859-1

German Switzerland Latin-1 de_CH.ISO8859-1

German Germany Latin-1 de_DE.ISO8859-1

Greek Greece Latin-7 el_GR.ISO8859-7

English Great Britain Latin-1 en_GB.ISO8859-1

English United States Latin-1 en_US.ISO8859-1

Spanish Spain Latin-1 es_ES.ISO8859-1

Finnish Finland Latin-1 fi_FI.ISO8859-1

French Belgium Latin-1 fr_BE.ISO8859-1

French Canada Latin-1 fr_CA.ISO8859-1

French Switzerland Latin-1 fr_CH.ISO8859-1

French France Latin-1 fr_FR.ISO8859-1

Italian Italy Latin-1 it_IT.ISO8859-1

Dutch Belgium Latin-1 nl_BE.ISO8859-1

Dutch The Netherlands Latin-1 nl_NL.ISO8859-1

Norwegian Norway Latin-1 no_NO.ISO8859-1

Portuguese Portugal Latin-1 pt_PT.ISO8859-1

Swedish Sweden Latin-1 sv_SE.ISO8859-1

Turkish Turkey Latin-9 tr_TR.ISO8859-9

The C locale is the default, if no locales are set on your system. The POSIX
locale is equivalent to the C locale; only letters in the English alphabet are
included in the ASCII codeset that is specified for the POSIX and C locales.

C.4.1 Locale Categories

Table C–2 describes environment variables that influence locale functions.

C–8 Using Internationalization Features

Table C–2: Environment Variables That Influence Locale Functions
Variable Description

LC_COLLATE Specifies the collating sequence to use when sorting strings
and when character ranges occur in patterns.

LC_CTYPE Specifies the character classification (codeset) information.

LC_MONETARY Specifies monetary formats.

LC_NUMERIC Specifies numeric formats.

LC_MESSAGES Specifies the language in which messages will appear if
translations are available. In addition, this variable specifies
strings for affirmative and negative responses.

LC_TIME Specifies date and time formats.

LC_ALL Overrides all preceding variables and the LANG
environment variable.

As is true for the LANG variable, all of the variables in Table C–2 can be
assigned locale names. Consider the case where your company is located
in the United States but the prevalent language spoken by employees is
Spanish. The LANG environment variable could be set to the name of a
Spanish language locale and the LC_NUMERIC and LC_MONETARY variables
set to the name of a United States English locale. The explicit setting of
the LC_NUMERIC and LC_MONETARY variables overrides what they were
implicitly set to by LANG. The LC_CTYPE, LC_MESSAGES, LC_TIME and
LC_COLLATE variables would still be implicitly set to the Spanish locale.
The following are the variable assignments for the C shell to implement
this example:

setenv LANG es_ES.ISO8859-1
setenv LC_NUMERIC en_US.ISO8859-1
setenv LC_MONETARY en_US.ISO8859-1

The following are the same variable assignments for the Bourne, Korn, and
POSIX shells:

LANG=es_ES.ISO8859-1
export LANG
LC_NUMERIC=en_US.ISO8859-1
export LC_NUMERIC
LC_MONETARY=en_US.ISO8859-1
export LC_MONETARY

At times, different versions of the same locale are available locally to meet
the needs of certain languages or software applications. The names of
such locales end with the at sign (@) plus a modifier field. For example,
the collating sequence used for the telephone book in some languages is
different from the collating sequence used for dictionaries. If the standard
locale for a language defined the dictionary collating sequence, another

Using Internationalization Features C–9

version of the locale might exist to support the telephone book collating
sequence. In this case the alternative locale version might have a name like
en_FR.ISO8859-1@phone.

C.4.2 Limitations of Locale Settings

The ability to set locale lets you tailor your environment, but it does not
protect you from making mistakes. The following sections discuss problems
that can arise when you define locale variables.

C.4.2.1 Locale Settings Are Not Validated

Nothing prevents you from defining implausible combinations of locale
names for different aspects of a locale. For example, you could set the LANG
environment variable to a French locale and the LC_CTYPE variable to a
Norwegian locale. The results would probably be undesirable; for example,
French message translations would likely contain characters not specified in
the Norwegian locale. If you define locale variables in addition to LANG, you
are responsible for ensuring a valid combination of locale settings.

C.4.2.2 File Data Is Not Bound to a Locale

There is no way a system can identify the locale that was set when a file
was created. Therefore, the system cannot prevent you from processing the
file’s data using a different locale. For example, suppose you copy to your
system a file that was created when the LANG variable was set to a German
locale. If, on your system, LANG is set to a French locale and you use the
grep command to search for a string in the file, the grep command will
use French collation and pattern matching rules on the German data. It
is therefore your responsibility to know what kind of language data a file
contains and to set the locale accordingly.

C.4.2.3 Setting LC_ALL Overrides All Other Locale Variables

The LC_ALL variable overrides all other locale-dependent environment
variables, even if you set it before setting category-specific variables, such as
LC_COLLATE. The only way to cancel the influence of LC_ALL is to undefine
the variable. For example, in the C shell, enter the command unsetenv
LC_ALL.

The LC_ALL variable is available for users familiar with the System V
environment. In that environment, users set locale either by setting LC_ALL
or by setting all the locale category variables individually.

C–10 Using Internationalization Features

D
Customizing Your mailx Session

You can customize your mailx session permanently by including, in your
.mailrc file, any of the settings described in Table D–1. See the unset
command in Appendix F for information about temporary settings.

Table D–1: Variables for Customizing Your mailx Session
Variable Type Description

allnet Binary Treats all network names with the same
login name.

append Binary Saves messages in your mbox file in the
order of arrival; the earliest message is
the first message in the file. When this
variable is unset, messages are saved in
reverse order; the first message in the file
is the most recent. The mailx program
runs faster if append is set.

ask Binary Prompts you for a subject line when you
send a message. Enter a blank line to
send a message with no subject.

askcc Binary Prompts you for carbon-copy recipients
for each message you send.

autoprint Binary Automatically displays the next message
when you delete the current message.
When autoprint is unset, mailx does
not display the next message when you
delete a message. In either case, the
next message becomes your new current
message.

bang String Enables the special-case treatment of
the exclamation point (!) in escape
command lines as in vi.

cmd String Lets the user specify the default
command to be used when using the
vertical bar or pipe (|) command.

conv String Lets the user specify how to convert
UUCP style addresses for sendmail.

Customizing Your mailx Session D–1

Table D–1: Variables for Customizing Your mailx Session (cont.)

Variable Type Description

crt Numeric To be used with a video display (CRT)
terminal. Reads your mail one screenful
at a time using the more program. The
value tells mailx how many lines of the
message to display before invoking the
pager.
For example: set crt=20

DEAD String Allows the user to specify a different
location for dead.letter. A dead letter
will be written to $HOME/dead.letter
by default.

debug Binary Displays debugging information.

dot Binary Interprets a period on a line by itself to
be the end of a message. Do not unset
dot and also set ignoreeof.

EDITOR String Specifies the pathname to be used for
the text editor when you use the edit
command or the ~e escape. For example:
set EDITOR=/usr/ucb/ex

If your terminal is a CRT terminal,
you can specify a screen editor for this
variable. See the VISUAL variable later
in this table.

escape String Lets you specify the escape character (the
character that starts an escape command
when you are in the middle of writing a
message). The default is the tilde (~).
You must specify a single character.

excode String Allows the user to specify the locale to be
used when doing character conversion on
outgoing mail messages.

folder String Specifies the directory for storing mail
folders. A name beginning with a
slash, such as /usr/users/hale, is an
absolute pathname. A name without an
initial slash is a pathname relative to
your home directory.
For example, the command set
folder=folder indicates the directory
/usr/users/hale/folder.

D–2 Customizing Your mailx Session

Table D–1: Variables for Customizing Your mailx Session (cont.)

Variable Type Description

gonext Binary If set, entering a Return by itself causes
the next mail message to be displayed. If
not set, the current message is displayed
again.

header Binary Prints the message header of messages
when mailx is invoked.

hold Binary Prevents messages from being moved
to your mbox file after you read them.
Messages you have read are held in your
system mailbox.

ignore Binary Ignores Ctrl/C interrupts, echoing them
as “at” signs (@). This variable is different
from the ignore command described in
Appendix F.

ignoreeof Binary Ignores Ctrl/D as the end of an outgoing
message. Do not set ignoreeof and also
unset dot.

indentprefix String Lets the user to specify a string to be
inserted at the beginning of each line of
text of a mail message that was included
using the ~m command.

keep Binary Lets mailx to truncate your system
mailbox instead of deleting it when it
is empty. This is useful if you have
set special permissions on your system
mailbox for security reasons. If keep is
unset, your system mailbox is deleted
when it becomes empty; the next time
it is created, you must re-establish your
desired permissions.

keepsave Binary Prevents deletion of saved messages
when you quit mail. Usually, the mailx
program marks messages when you
save them in other files or folders and
then deletes them from your system
mailbox when you leave mailx. Setting
keepsave makes mailx leave these
messages in your system mailbox.

lang String Lets the user specify the locale to be used
for displaying the mail message.

Customizing Your mailx Session D–3

Table D–1: Variables for Customizing Your mailx Session (cont.)

Variable Type Description

LISTER String Lets the user specify the command used
by the folders command.

MBOX String Lets the user specify the location for the
mbox folder. The mbox folder will usually
be located in $HOME/mbox.

metoo Binary Includes you in the list of recipients when
you send mail to an alias of which you are
a member. If metoo is unset, you will not
receive copies of messages sent to aliases
of which you are a member.

noheader Binary Inhibits display of the header and version
identification when you invoke mailx.

nosave Binary Prevents mailx from saving aborted
messages as dead.letter in your home
directory.

onehop Binary At times, when responding to a message
that contains other recipients, the
addresses of the recipients are relative
to the originator’s address. The onehop
option forces the delivery not to follow
the path by which the message arrived
and delivers it directly, instead, thereby
improving the performance.

outfolder Binary Causes mailx to save outgoing mail
messages in the directory specified in
folder.

page Binary Causes a form feed to be inserted between
messages that are processed by the pipe
(|) command.

PAGER String Lets the user specify the paging program
to be used when displaying messages.
For example:

PAGER=/usr/bin/more
or
PAGER=/usr/bin/pg

prompt String Lets the user change the mailx prompt
when mailx is invoked. For example:
prompt=>>>

D–4 Customizing Your mailx Session

Table D–1: Variables for Customizing Your mailx Session (cont.)

Variable Type Description

quiet Binary Suppresses printing the version when
first invoked and the message number
when you use the type command.

record String Specifies the name of a file into which
mailx saves copies of all outgoing
messages.

Replayall Binary Reverses the function of the reply and
Reply commands.

save Binary Lets the user save mail messages into
dead.letter.

sendwait Binary Causes mailx to wait until the message
has been processed by the mailer. This
option can cause some performance
degradation from the users’ point of view
since the user will have to wait until the
message has been delivered.

SHELL String Lets the user to specify the shell to use
when invoking the ~ or ~! commands.

screen Numeric Specifies the number of messages to be
displayed in one screenful when you
enter the headers command.

sendmail String Specifies the pathname of the program
to use to send mail messages. If this
variable is not specified, mailx uses the
default delivery system. See your system
administrator for information about
alternate delivery systems.

showto Binary Displays the recipient’s name instead of
the author’s name in message headers.

sign String Lets the user to specify a string that is
to be inserted in the mail message when
using the ~a command.

Sign String Lets the user to specify a string that is
to be inserted in the mail message when
using the ~A command.

toplines Numeric Specifies the number of lines the top
command prints; the default is 5.

Customizing Your mailx Session D–5

Table D–1: Variables for Customizing Your mailx Session (cont.)

Variable Type Description

verbose Binary Invokes mailx in verbose mode. The
actual delivery of messages is displayed
on the terminal. This is the same as using
the -v flag on the command line. This
variable is used mainly for debugging
purposes. Example D–1 shows the use of
the verbose variable.

VISUAL String Specifies the pathname for the screen
editor that will be used when you use the
visual command or the ~v escape. For
example:
set VISUAL=/usr/ucb/vi

If your only terminal is a CRT, you can
specify a screen editor for the EDITOR
variable, too; then either edit (~e)
or visual (~v) will invoke the same
editor.

The following example shows the use of the verbose variable, discussed in
Table D–1, that causes mailx to display expansion of aliases as message
are sent:

Example D–1: The mailx verbose Mode

? set verbose 1
? alias 2
smith csug@solo.my.company.com smith@my.company.com smith
? mailx tg 3
Subject: Conference Room
Starting tomorrow, our weekly meeting will be
moved to Meeting Room 4.

DAL
. 3
EOT
csug@solo.my.company.com... Connecting to (local)...
about to exec
csug@solo.my.company.com... Sent
smith,smith@my.company.com... Connecting to

your.company.com (smtpr)...
220 your.company.com ESMTP Sendmail 8.7.6/UNX 1.7
(1.1.10.5/28Jun99-0151PM) Tue, 25 Nov 1999
09:52:10 -0500 (EST)
>>> HELO solo.my.company.com
250 your.company.com Hello solo.my.company.com

[255.255.255.0],

D–6 Customizing Your mailx Session

Example D–1: The mailx verbose Mode (cont.)

pleased to meet you
>>> MAIL From:250 ... Sender ok
>>> RCPT To:250 Recipient ok
>>> RCPT To:250 Recipient ok
>>> DATA
354 Enter mail, end with "." on a line by itself
>>> .
250 JAA0000022475 Message accepted for delivery
>>> QUIT
221 your.company.com closing connection
smith@my.company.com,smith... Sent 4
? q 5
The following list items correspond to the numbers in the example.

1 The verbose variable is set.

2 The alias command is executed with no parameters to show the contents of the alias.

3 A message is then sent, addressed to the alias tg.

4 The expansion of aliases as messages are sent is displayed.

5 The q command is executed to end the mailx session.

Customizing Your mailx Session D–7

E
Using Escape Commands in Your mailx

Session

There is a special set of commands, called escape commands or escapes, that
perform functions while you are in the process of writing a message.

You can use an escape command by entering it on a line by itself, with a
tilde (~) as the very first character. The tilde is called an escape character
because it signals mailx to escape from the current editing environment to
perform the command that follows. You may change the escape character by
setting the escape mail variable. If you want to type a real tilde as the very
first character on a line in your message, you must type two tildes.

Table E–1 describes the escape commands.

Table E–1: Escape Commands in mailx
Command Description

~~ Enters the tilde (~) character in the body of
the mail message.

~!command Executes the shell command you enter.

~? Prints a brief summary of escape commands.

~:command
~_command

Executes the specified mail command. This
is useful for performing housekeeping tasks
such as redisplaying a message.
For example, entering ~:10 selects and
displays message number 10 just as if you had
entered its number at the mailx prompt.

~a Inserts the string set in sign into the mail
message.

~A Inserts the string set in Sign into the mail
message.

~baddress_list Inserts the specified names in address_list
into the Bcc: (blind carbon copy) list.

~caddress_list Adds the specified names to the Cc (carbon
copy) list.

~C Dumps core.

Using Escape Commands in Your mailx Session E–1

Table E–1: Escape Commands in mailx (cont.)

Command Description

~d Includes the file named dead.letter, in
your home directory, into the message. The
mail variable DEAD may be used to point to a
different file.

~e Invokes the editor specified by the EDITOR
mail variable to edit the message.

~f [msg_list] Reads the current message or the specified
messages into your message.

~F[msg_list] Similar to ~f with the difference that all
headers will be included regardless of any
discard, ignore or retain commands.

~h Edits the message header fields. This
command displays the fields one at a time so
you can alter them by adding text to the end,
by using the Delete key or by pressing Ctrl/U
to erase the entire field and then retyping it.
Use this command with caution.

~i string Inserts the value of the named variable into
the mail message.
For example: the command ~a is equivalent to
the command ~isign to insert your signature
into the message.

~m[msg_list] Includes the current message or the specified
messages, shifted one tab stop to the right. If
the indentprefix mail variable is set, this
value is inserted before the tab stop. This is
useful to set off messages you are forwarding
as part of your new message.

~M[msg_list] Similar to ~m with the difference that all
headers will be included regardless of any
discard, ignore or retain commands.

~p Displays the message you are composing on
your terminal. This is useful to ensure that
the message looks the way you want it to and
that it includes the right subject heading and
lists of recipients.

~q
~Q

Aborts the current message as if you pressed
two Ctrl/C interrupts.

E–2 Using Escape Commands in Your mailx Session

Table E–1: Escape Commands in mailx (cont.)

Command Description

~rfile
~<file
~<!shell_cmd

Reads the named file into the mail message.
If the argument begins with an exclamation
point (!), the rest of the string is taken as an
arbitrary system command and is executed
with the standard output inserted into the
mail message.

~ssubject Makes subject the new subject heading,
replacing the previous heading.

~tname… Adds the names to the To: list of your
message.

~v Invokes the editor specified by the VISUAL
mail variable to edit the message.

~wfile Writes the message to the named file.

~|command
~^command

Pipes the message through the named
command. This is useful to make global
changes in the message; for example, if you
are including a message in your new message
you can use the sed editor to prefix each line
with an angle bracket and a space by using
the following command:
~|sed ’s/^/> /’

You can then add your own text; the result
will look like this:

> This is the text of the message
> you have included.
>
This is the text you add yourself.

Using Escape Commands in Your mailx Session E–3

F
Using the mailx Commands

The mailx program has a large set of commands, some of which are
described in Appendix D and Appendix E. The commands in Table F–1 can
help you to use the mailx environment more effectively. The mailx(1)
reference page lists some other commands that are useful only under special
circumstances.

Table F–1: Commands for the mailx Program
Command Description

= Echoes the number of the current message.

Lets the user write comments in mail script files.

!command Executes the shell command you enter.

-[n] Selects and displays the previous message or the
nth previous message. For example, -4 backs up
four messages. An error message is displayed if
you attempt to move back more messages than
are in the mailbox.

?
help

Displays help information.

alias
alias alias
alias alias name…
group
g

With no arguments, lists the current aliases.
With one argument, displays only that alias.
With two or more arguments, creates an alias
with the first argument as its name and all
subsequent arguments as the members of the
alias. The group command is an alternate for
alias.

alternate[alt_list] Informs mailx that the addresses listed in
alt_list refer to the user. If no alt_list is
specified in the command, the command displays
the current list of alternates.

chdir path cd path Changes your current directory to the pathname
specified, as if you had executed the cd shell
command except that the directory you specify
with chdir prevails only while you are in the
mailx environment.

Using the mailx Commands F–1

Table F–1: Commands for the mailx Program (cont.)

Command Description

copy [msg_list] file
co [msg_list] file
c [msg_list] file

Copies the current message or the specified
messages into a file. If file exists, the messages
are appended. This command works like save
except that it does not mark copied messages for
deletion when you quit from mailx.

Copy [msg_list]
C [msg_list]

Saves the specified messages in a file whose
name is derived from the author of the first
message in the msg_list. This command
will not mark the messages as being saved.
Otherwise equivalent to the Save command.

delete [msg_list]
d [msg_list]

Deletes the current message or the specified
messages. You can use the undelete command
to recover messages you have accidentally
deleted.

discard [field_list] Identical to the ignore subcommand.

dp
dt

Deletes the current message and prints the next
active message.

echo string Echoes the given string. Similar to the shell
echo command.

edit [msg_list]
e [msg_list]

Invokes the editor specified by EDITOR and loads
msg_list into the editor. When you exit, any
changes made are saved back into msg_list.

exit
ex

Exits mailx without updating your system
mailbox.

file [file]
fi [file]
folder [file]
fold [file]

Selects a mail file or folder. If you do not specify
a file, this command prints your current path
and file name and the number of messages in
your current file. If you specify a file or folder,
this command displays any changes you have
made to your current file and switches to the
specified file for reading.

folders Lists the names of the folders in your folder
directory.

followup message
fo message

Responds to a message and records the response
in a file whose name is derived from the author
of the message. This command overrides the
record option if set.

F–2 Using the mailx Commands

Table F–1: Commands for the mailx Program (cont.)

Command Description

Followup [msg_list]
F [msg_list]

Responds to the first message in msg_list and
sends the message to the author of each message
in msg_list. The subject line is taken from the
first message and the response is recorded in a
file whose name is derived from the author of
the first message.

from [login]
f [login]

Prints the active message header. If you specify
a login name, this command prints all the active
messages from the specified name.

headers [n]
h [n]

Lists active message headers, using the value of
the screen variable as the number of headers
to display. See Appendix D for a description of
the screen variable. If you have more than one
screenful of messages, you can move forward or
backward one screenful with the z command.
If you specify a message number, the headers
command displays the screenful that includes
the specified message.

hold [msg_list]
ho [msg_list]
preserve [msg_list]
pre [msg_list]

Holds or preserves, the current message or
the specified messages in your system mailbox
instead of moving them to your mbox file.

if condition
i condition
else
e
endif
en

Construction for conditional execution of mailx
subcommands. Subcommands following if are
executed if condition is True. Subcommands
following else are executed if condition is not
True. An else is not required but the endif
is required. The condition can be send for
sending mail or receive for receiving mail.

ignore [field…] Sets mailx to display messages without the
specified fields of the header when you use the
print or type command. This command is
different from the ignore variable described in
Appendix D. If you enter the ignore command
with no arguments, the current list of ignored
fields is displayed.

list
l

Displays a list of valid mailx subcommands.

local Lists other names for the local host.

mail user_name
m user_name

Sends a message to the specified user.

Using the mailx Commands F–3

Table F–1: Commands for the mailx Program (cont.)

Command Description

mbox [msg_list] Marks the current message or the specified
messages to be moved to your mbox file. This is
helpful if you have set the hold variable in your
.mailrc file.

more [msg_list] Displays the messages in msg_list using the
defined pager program in PAGER. Identical to the
page subcommand.

More [msg_list] Similar to the more subcommand, but also
displays the ignored header fields. See more and
ignore subcommands.

new [msg_list]
New [msg_list]

Marks each message in the msg_list as not
having been read. Identical to the unread and
Unread subcommands.

page [msg_list] Displays the messages in msg_list using the
defined pager program in PAGER. Identical to the
more subcommand.

Page [msg_list] Similar to page but also displays the ignored
header fields. Identical to the More subcommand.

pipe [msg_list] [shell_cmd]
pi [msg_list] [shell_cmd]
| [msg_list] [shell_cmd]

Pipes the msg_list through the shell_cmd.
The message is treated as being read. If no
arguments are given, the current message is
piped through the command given in cmd. If the
page option is set, a formfeed is inserted after
each message.

next
n
+
Return

Displays the next message.

Print [message]
P [message]
Type [message]
T [message]

Displays the current message or the specified
message, including any header fields specified by
the ignore command.

print [message]
p [message]
type [message]
t [message]

Displays the current message or the specified
message without any header fields specified by
the ignore command.

F–4 Using the mailx Commands

Table F–1: Commands for the mailx Program (cont.)

Command Description

quit
q

Leaves the mailx program and updates your
system mailbox. If you do not have the hold
variable set, all messages that you have not
deleted, saved or preserved are moved to your
mbox file. If you do have hold set, all these
messages will be left in your system mailbox
and marked as having been read. Use the exit
subcommand to end the session without saving
messages.

Reply
R
Respond

Replies to a message. If the original message
was addressed to a group of people, replies sent
with the Reply and Respond commands are
sent only to the originator of the message.

reply
r
respond

Replies to a message. If the original message was
addressed to a group of people, replies sent with
the reply and respond commands are sent to
everyone who received the original message.

retain [field_list] Adds the header fields in field_list to the
list of headers to be retained when displaying
message with the print or type subcommands.
Use type and print to view messages in their
entirety, including fields that are not retained. If
retain is executed with no arguments, it lists
the current set of retained fields.

save [msg_list] file
s [msg_list] file

Saves the current message or the specified
messages in the file. The messages are added to
the specified file so that you will not delete the
contents of the file.

Save [msg_list] file
S [msg_list] file

Saves the specified messages in a file whose
name is derived from the author of the first
message. The name of the file is assumed to be
the author’s name with all network addressing
stripped off.

set [variable]
se [variable]

If entered with no variables, the set command
displays all the options you have set. If you
specify a variable, the option will be set.
(Appendix D lists the available variables.)

shell
sh

Invokes the shell interactively.

source file
so file

Reads mail commands from a file
(usually .mailrc).

Using the mailx Commands F–5

Table F–1: Commands for the mailx Program (cont.)

Command Description

size [msg_list]
si [msg_list]

Displays the size in lines and characters of the
messages in msg_list.

top [msg_list]
to [msg_list]

Displays the first several lines in the current
message or each of the specified messages. The
number of lines displayed is specified by the
toplines variable. The default is five.

touch [msg_list] Marks the messages in msg_list to be moved
from your system mailbox to your personal
mbox when you quit the mailx program even
though you have not read the listed messages.
The messages appear in your mbox as unread
messages. When you use touch, the last message
in msg_list becomes the current message.

unalias alias_list Deletes the specified alias names.

undelete msg_list
u msg_list

Undeletes the specified messages.

unread [msg_list]
Unread [msg_list]
U [msg_list]

Marks each message in msg_list as not
having been read. Identical to the new and New
subcommands.

unset [variable]
uns [variable]

Unsets (turns off) options. For example, if your
.mailrc file includes a set hold command,
you can use the unset command to disable the
hold variable for the current mailx session.

version
ve

Displays the version banner for the mailx
command.

visual
v

Invokes the editor specified by the VISUAL mail
variable to edit the current message.

write [msg_list] file
w [msg_list] file

Saves the current message or the specified
messages in the named file. This is similar to
the save command, except that write saves
only the body of each message; the headers are
deleted.

z[+]
z-

Moves forward or backward one screenful
of messages. You can specify the number
of messages in a screenful with the screen
variable. (See Appendix D.) To move forward one
full screen, enter z or z+; to move backward,
enter z-.

F–6 Using the mailx Commands

G
Access Control Lists (ACLs)

This appendix explains how to use Access Control Lists (ACLs) to set file
and directory permissions for a specific user and group of users.

ACLs are an extension of Tru64 UNIX permissions on files and directories.
ACLs can be used to set permissions for specific users and groups on files
and directories. In addition to the permissions normally associated with a
file or directory, an ACL contains a list of users and groups with the specific
permissions for each user or group.

A file can have only one ACL associated with it, an access ACL. A directory
can have three ACLs associated with it: an access ACL, a default access
ACL, and a default directory ACL. The access ACL is used to determine who
has access to the file or directory. The default ACLs are used to determine
what ACLs are inherited by files and directories created in the directory
with the default ACLs.

You can set ACLs at any time, but access checking of ACLs and ACL
inheritance take place only when ACLs are enabled. The ACL commands
will display warning messages if ACLs are disabled on your system. Not all
file systems support ACLs. You can set ACLs only on files and directories
that are on file systems that support ACLs.

______________________ Note _______________________

Your system administrator must enable ACL support before you
can create ACLs. Check with your system administrator to see if
ACL support is enabled on your system.

G.1 ACL Structure

An ACL consists of a list of ACL entries. At a minimum there are three
entries:

• One for the owning user

• One for the owning group

• One for others

Access Control Lists (ACLs) G–1

These entries correspond to the Tru64 UNIX permissions for the file or
directory. Any command that changes these ACL entries will also change
the Tru64 UNIX permissions.

The external (printable) representation of an ACL consists of comma (,) or
newline-separated entries. The fields in the ACL entries are separated by
colons (:). The following example shows typical ACL entries:

user::rwx
user:peter:r-w
user:sam:r-x
group::rwx
other::---

The ACL entry keywords and qualifiers are defined as follows:

user:: A user entry with a NULL qualifier field defines the
permissions of the user who owns the file. This entry
(called an owning-user entry) is always identical to
the UNIX user permission. An ACL must contain
just one user:: entry.

user: A user entry with a non-NULL qualifier field
defines the permissions of the user specified by the
qualifier field. The qualifier field must contain
either a user name or a user identification (UID). An
ACL can contain zero or more user: entries.

group:: A group entry with a NULL qualifier field defines
the permissions of members of the group that owns
the file. This entry (called an owning-group entry) is
always identical to the UNIX group permission. An
ACL must contain just one group:: entry.

group: A group entry with a non-NULL qualifier field
defines the permissions of members of the group
specified in the qualifier field. The qualifier field
must contain either a group name or a group
identification (GID). An ACL can contain zero or
more group: entries.

other:: The other entry is valid only with a NULL qualifier.
This entry defines the permission of all users that
did not match any of the other entries in the ACL.
This entry is always identical to the UNIX other

G–2 Access Control Lists (ACLs)

permission. An ACL must contain just one other::
entry.

The characters in the permissions field are the same as the characters the
ls command displays for the Tru64 UNIX permissions and are in the same
order: r for read access, w for write access, and x for execute or search
access. When a hyphen (−) character is used in place of one of the other
characters, it indicates denial of that access.

ACL user, group, and other entries correspond to the Tru64 UNIX permission
for the file or directory. If ACLs are enabled and you use the chmod command
to change the Tru64 UNIX permission of a file or a directory, chmod also
makes the appropriate changes to the access ACL for the owning user, the
owning group, and the other entry.

Table G–1 describes typical ACL entries.

Table G–1: Example ACL Entries
Entry Matching Criteria

group:acct:r-- Matches all users in group acct and grants
read permission.

user:joe:rw- Matches user joe and grants read and write permission.

user::rwx Matches owning user of object, even if owning user
changes after the file is created, and grants read,
write, and execute permission.

group::r-- Matches owning group of object, even if owning
group changes after the file is created, and
grants read permission.

other::r-- Matches all users and all groups except the owning
user and group and any other users and groups listed
in ACL entries. Grants read permission.

G.2 Access Checking with ACLs

When there is an Access ACL on a file or directory, additional access checking
takes place before someone is allowed access to that file or directory. The
following checks are made in the following order:

1. If the process has the superuser authority, access to the file or directory
is granted. The access ACL and the Tru64 UNIX permissions are not
checked.

2. If ACLs are not enabled, or they are enabled and there is no access
ACL associated with the file or directory, the Tru64 UNIX permissions
are checked.

Access Control Lists (ACLs) G–3

3. The additional entries in the access ACL for the file or directory are
checked as follows:

a. If the user ID (UID) of the process is for the owner of the object,
the permissions in the owning user:: entry are granted. Any
other ACL entries are not checked. This is identical to using the
user Tru64 UNIX permission.

b. If the UID of the process matches a UID listed in a user: entry or
resolves to a user name listed in a user: entry, the permissions in
the entry are granted. Any remaining ACL entries are not checked.

c. If the group ID (GID) of the process matches the GID of the file, or
if one of the supplementary groups of the process matches the GID
of the file, the process is granted the union of the permissions of the
group:: entry and any matching group: entries as described in
the next list item.

d. If the GID of the process matches the GID of any group: entries, or
resolves to a group name listed in any group: entries or if the GID
or group name of any of the supplementary groups of the process
match any group: entries of the ACL, the process is granted the
union of the protections of all matching group entries. For example,
for a user belonging to group sales and group eng, if the access
ACL on a file grants read access to group sales and write access to
group eng, the user is granted read and write access to the file.

e. The permissions in the other:: entry are granted. This is
identical to using the Tru64 UNIX other permission.

______________________ Note _______________________

A file or directory with Tru64 UNIX permission and a file or
directory with an access ACL containing only the three required
entries (user::, group::, and other::) are indistinguishable.

G.3 ACL Inheritance

When a file or directory is created, it might inherit ACLs from its parent
directory. The default ACLs determine what ACLs are inherited by files and
subdirectories created in a parent directory, as follows:

• If a parent directory has no default ACLs:

– A new file created in that directory is given:

G–4 Access Control Lists (ACLs)

ACL Type Status

Access ACL None

– A new subdirectory created in that directory is given:

ACL Type Status

Access ACL None

Default access ACL None

Default directory
ACL

None

Only Tru64 UNIX permissions are used.

• If a parent directory has a default access ACL, but no default directory
ACL:

– A new file created in that directory is given:

ACL Type Status

Access ACL Parent’s default access ACL

– A new subdirectory created in that directory is given:

ACL Type Status

Access ACL Parent’s default access ACL

Default access ACL Parent’s default access ACL

Default directory
ACL

None

• If a parent directory has no default access ACL, but does have a default
directory ACL:

– A new file created in that directory is given:

ACL Type Status

Access ACL None

– A new subdirectory created in that directory is given:

ACL Type Status

Access ACL Parent’s default directory ACL

Default access ACL None

Default directory
ACL

Parent’s default directory ACL

• If a parent directory has both a default access ACL and a default
directory ACL:

Access Control Lists (ACLs) G–5

– A new file created in that directory is given:

ACL Type Status

Access ACL Parent’s default access ACL

– A new subdirectory created in that directory is given:

ACL Type Status

Access ACL Parent’s default directory ACL

Default access ACL Parent’s default access ACL

Default directory
ACL

Parent’s default directory ACL

Setting the default ACLs on a directory does not modify the ACLs on files
and subdirectories that already exist in the directory.

G.3.1 ACL Inheritance Examples

Examples of ACL inheritance follow:

• Assume that the directory temp contains no default ACLs, and the
following command is entered to give the directory temp a default access
ACL:

% setacl −d −u user::rw-,group::r--,other::r--,user:jdoe:rw−\
temp

Any file or directory that is created within the directory temp now
inherits the following ACL as the access ACL:

#
file: temp
owner: smith
group: system
#
user::rw-
user:jdoe:rw-
group::r--
other::r--

• Assume that the directory temp contains no default ACLs, and the
following command is entered to give the directory temp a default
directory ACL:

% setacl −D −u user::rw-,group::r--,other::r--,\
user:jdoe:rwx temp

Any directory that is created within the directory temp now inherits the
following ACL as the access ACL, as well as its default directory ACL:

#
file: temp

G–6 Access Control Lists (ACLs)

owner: smith
group: system
#
user::rw-
user:jdoe:rwx
group::r--
other::r--

• Assume that the directory temp contains no default ACLs, and the
following commands are entered to give the directory temp a default
access ACL and a default directory ACL:

% setacl −D −u user::rw-,group::r--,other::r--,\
user:jdoe:rw− temp

% setacl −d −u user::rw-,group::r--,other::r--,\
user:wilson:rwx temp

Any directory that is created within the directory temp now inherits the
following ACL as the access ACL as well as the default directory ACL:

#
file: temp
owner: smith
group: system
#
user::rw-
user:jdoe:rw-
group::r--
other::r--

The following ACL would be inherited as the default access ACL:

#
file: temp
owner: smith
group: system
#
user::rw-
user:wilson:rwx
group::r--
other::r--

Any file created in the directory temp now inherits the following ACL
as the access ACL:

#
file: temp
owner: smith
group: system
#
user::rw-
user:wilson:rwx
group::r--

Access Control Lists (ACLs) G–7

other::r--

G.4 Managing ACLs
The following commands display and modify ACLs:

dxsetacl A graphical interface that creates, displays, and
changes the ACL for files and directories.

getacl Displays the ACL for files and directories.

setacl Creates, changes, and removes the ACL for files
and directories.

______________________ Note _______________________

You must be the owner of the file or directory (or have superuser
authority) before you can create, change, or remove its ACL. This
means that your user name must be in the third field in an ls −l
listing of that file. For more information on superuser authority,
see Section 5.7

G.4.1 Using the dxsetacl Interface

You can use the dxsetacl graphical interface to create, display, and change
the ACL for a file or directory. The dxsetacl interface is located in the CDE
Desktop Applications under the Applications Manager. Alternatively, you
can open it from the command line by entering the following command:

% /usr/bin/X11/dxsetacl &

See dxsetacl(1) and the dxsetacl online help for more information.

G.4.2 Using the getacl Command

You can use the getacl command to display the ACL for a file or directory.
In Example G–1, the getacl file.txt command displays the ACL for a
file called file.txt:

Example G–1: Displaying the ACL for a File

$ getacl file.txt
#
file: file.txt
owner: peter
group: system
#

G–8 Access Control Lists (ACLs)

Example G–1: Displaying the ACL for a File (cont.)

user::rw-
user:jdoe:rw-
group::r--
other::r--

If you are using the getacl command to display the access ACL of a file or
directory and that file or directory does not have an access ACL, the Tru64
UNIX permissions are shown in ACL format.

See getacl(1) for more information.

G.4.3 Using the setacl Command

You can use the setacl command to create, change, and remove the ACL
for a file or directory. In Example G–2, the getacl file.txt command
displays the ACL for a file called file.txt. The setacl command updates
the ACL:

Example G–2: Setting the ACL for a File

$ getacl file.txt
#
file: file.txt
owner: peter
group: system
#
user::rw-
user:jdoe:rw-
group::r--
other::r--
$ setacl -u group::rw-,user:evan:rw- file.txt
$ getacl file.txt
#
file: file.txt
owner: peter
group: system
#
user::rw-
user:jdoe:rw-
user:evan:rw-
group::rw-
other::r--

Access Control Lists (ACLs) G–9

The owning group entry is updated to include the write permission. The
evan user entry does not match an existing entry and is added with read
and write permission. The other entries remain unchanged.

See setacl(1) for more information.

G.5 ACL Interaction with Commands and Applications
ACLs are a POSIX and System V compatible extension to UNIX based
on POSIX P1003.6 Draft 13. Not all existing commands, utilities, and
applications properly use or propagate ACLs, especially applications that
are not POSIX compliant. If you use any command, utility or application
to access or manipulate a file system object (file or directory) that has an
ACL, you must check the ACL after completion to make sure that the ACL
has not been removed or changed.

Many programs that modify files use the following process:

• Create the new version of the file with a temporary name.

• Delete the existing version of the file.

• Rename the new version from the temporary name to the real name.

When the file being modified has an ACL and the program does not replicate
the ACL when creating the temporary version of the file, the previous
procedure will delete the file’s ACL, or replace it with the default access ACL
of the parent directory (if it has one). If you use such a program on a file with
an ACL, you must restore the ACL afterwards. This procedure also causes
any hard links to be removed from the file. Some common commands that
use this method of modifying files are:

• gzip

• compress

• emacs

A solution is to copy the original file to a temporary file, do any processing on
the temporary file, then use the cp command without the -p option to copy
back. This procedure retains the original ACL.

Any time that you copy a file with an ACL, you should use the cp -p
command to properly copy the ACL and any other extended attribute
(property list).

G.5.1 The pax and tar Commands

Both the pax and tar command archive any ACLs and other extended
attributes on archived files and directories by default when you create an
archive. However, when you use the pax or tar commands to extract

G–10 Access Control Lists (ACLs)

files and directories from an archive, any ACLs on the archived files and
directories are not extracted from the archive by default. In this case, if the
destination directory has default ACLs defined, the files and directories
extracted from the archive inherit the default ACLs (Section G.3).

To restore the ACLs and property list information from the archive, use the
-p option with the tar command and the -p p or -p e options with the
pax command when extracting files and directories from the archive. The
pax and tar commands store the user and group information for ACLs
as UIDs and GIDs. This means that if you use the tar -p, pax -p p or
pax -p e commands to restore an archive on a system that does not share
user and group information with the source system, you might be granting
unintended access to files.

There currently are no formal industry standards for ACLs and extended
attributes (property lists). Thus, the extensions to the pax and tar
commands to support property lists and ACLs are specific to Tru64 UNIX.
Other vendor’s pax and tar implementations should simply ignore the
Tru64 UNIX specific extensions. However, to ensure interoperability with
other vendor’s systems when archiving for multivendor distribution, use
the -V option to prevent ACLs and any other extended attributes from
being archived.

Access Control Lists (ACLs) G–11

Index

Numbers and Special
Characters

; (semicolon)
(See semicolon)

~ (tilde)
(See tilde)

& operator, 6–7, 7–7
! subcommand (ftp), 12–8t
? subcommand (ftp), 12–8t
? subcommand (telnet), 13–5t
|| operator, 7–7

A
absolute pathname, 2–10
absolute permissions

removing, 5–11e
setting, 5–11

access control lists
(See ACL)

accessing
help, 1–13

account subcommand (ftp), 12–5t
ACL

archiving, G–10
command interaction, G–10
listing for files, G–8
permissions, G–1
structure, G–1

ACL entries
adding, G–9
modifying, G–9
removing, G–9

ACLs
changing, G–8

inheriting, G–4
managing, G–8
viewing, G–8

active processes, 6–15
add (a) command (vi editor), A–10
alias command, 8–29
aliases, 8–9

C shell, 8–9, 8–11t
for mail, 11–16
in C shell and Korn or POSIX shells,

7–3
knowing the defined aliases when

in mail, 11–17
ampersand (&) operator

background processes, 6–7
append (a) subcommand

(ed editor), B–2
append text

vi editor A command, A–11
apropos command, 1–13, 1–15
arguments to commands, 1–7
argv, 8–10t
ASCII codeset, C–2
Asian languages

codesets that support, C–2
ask variable in mail, 11–17
askcc variable in mail, 11–17
at (@) extension in locale name,

C–9
authorization list

(See terminal authorization
list)

B
background

Index–1

putting process in, 6–13
background process, 6–6

displaying status for, 6–9
backslash

writing a single long command on
several lines, 11–17

bg command, 6–13, 8–11t
binary numbers

in permissions, 5–12t
binary subcommand (ftp), 12–5t
Bourne shell, 7–1, 8–1, 8–12

built-in commands, 8–16
built-in variables, 8–15t
clearing variable values, 7–22
login script, 8–12
.logout script, 7–24
metacharacters, 8–14t
pattern matching, 2–13
.profile login script, 7–16, 8–12
redirecting errors, 6–4
setting variables, 7–18

breaking remote cu connection
(UUCP), 14–8t

breaking remote tip connection
(UUCP), 14–13t

built-in
commands

C shell, 8–11t
variables, 8–10, 8–27

bye subcommand (ftp), 12–5t

C
C locale, C–8t
C shell, 7–1, 8–1, 8–2

aliases, 7–3, 8–9
built-in commands, 8–11
built-in variables, 8–10t
changing to another shell, 7–6
clearing variable values, 7–22
command history, 7–3, 8–7
.cshrc login script, 7–16, 8–3
displaying value of variables, 7–22

file name completion, 7–3, 8–8
.login script, 7–16, 8–4
.logout script, 7–24
metacharacters, 8–5t
redirecting errors, 6–5
setting environment variable, 7–20

can not remember command
name, 1–15

canceling commands, 1–7
carbon copies in mail, 11–3

getting a prompt for, 11–17
case sensitivity, 2–6n
cat command, 3–5, 3–7
cd command, 3–1, 4–3, 8–16, 8–29,

F–1
cd subcommand (ftp), 12–7t
cdpath, 8–10t
CDPATH shell variable, 8–15
cdup subcommand (ftp), 12–7t
change (c) command (vi editor),

A–13
change (c) subcommand

ed editor, B–20
change word (cw) command (vi

editor), A–13
changing

directories, 3–1, 4–3
directory permissions, 5–10
file permissions, 5–9
group, 5–19
identity, 5–17
name of file during copy command,

3–20
owners of files and directories, 5–19
permissions, 5–4
shell temporarily, 7–5
your password, 1–12
your shell, 7–4

character mapping
multiple-to-one, C–3
one-to-two, C–3

characters
list of pattern matching, 2–13

Index–2

maximum number in file name, 2–7
quoting to make literal, 7–11
upper and lower case, 2–6n

chgrp command, 5–19, 5–20
chmod command, 5–4, 5–8
chown command, 5–19
clearing variable values, 7–22
close subcommand (telnet), 13–5t
codeset

Unicode, C–2
codesets

ASCII, C–2
eight-bit, C–2
ISO, C–2
part of locale, C–2
support for Asian languages in, C–2

collation, C–3
colon

use in vi editor, 2–3, A–3, A–18
command argument

containing more than one word,
1–15

command history, 7–3
C shell, 8–7
Korn shell, 8–21
POSIX shell, 8–21

command mode (vi editor), A–6
command uux, 14–16
commands

alias, 8–11t, 8–29
apropos, 1–13, 1–15
bg, 6–13, 8–11t
can not remember command name,

1–15
cat, 3–5, 3–7
cd, 3–1, 4–3, 8–16, 8–29, F–1
chgrp, 5–19
chmod, 5–8
chown, 5–19
connecting with pipes, 7–8
continuing on the next line, 11–17
cp, 3–18, 3–19

date, 1–6
df, 3–14
diff, 3–23
echo, 7–21, 8–11t, 8–16, 8–29,

F–2
exit, 1–5, 5–17
export, 7–19, 8–16, 8–29
fc, 8–23, 8–29
fg, 6–13, 8–11t
file, 3–28
find, 6–7
flags, 1–7
history, 8–11t, 8–29
in mailx, F–1t
jobs, 6–8, 6–10, 8–11t, 8–29
kill, 6–11
ln, 3–13, 3–15e
login, 1–2
logout, 8–11t
lpq, 3–10, 3–12
lpr, 3–10, 3–11t
lprm, 3–10, 3–13
lpstat, 3–12
ls, 2–12, 3–2, 3–4, 3–17, 3–22,

5–5, 5–6
man, 1–7, 1–13, 1–14e, 1–15
mkdir, 3–1, 4–2
more, 3–5, 3–6, 3–8, 3–15e
mv, 3–21, 3–22, 4–9
options, 1–7
page, 3–5, 3–7
passwd, 1–7, 1–12
pg, 3–5, 3–6
pr, 3–7
ps, 6–8
pwd, 2–7, 8–16, 8–29
redirecting output, 3–26
rehash, 8–11t
repeat, 8–11t
rm, 3–17, 3–18, 3–26, 3–27, 4–12
rmdir, 4–10, 4–11

Index–3

running conditionally, 7–7
running in sequence, 7–7
running multiple, 7–6
set, 8–11t, 8–16, 8–29
setenv, 7–20, 8–11t
sort, 3–25
source, 8–11t
stopping execution, 1–7
su, 5–17
tftp, 12–8
time, 8–11t
times, 8–16, 8–29
touch, 3–27
trap, 8–16, 8–29
umask, 5–13, 8–16, 8–29
unalias, 8–11t, 8–30
unknown state, 1–7
unset, 7–22, 8–11t, 8–16, 8–30
unsetenv, 7–22, 8–11t
use of special characters in, 7–11
using, 1–5
vi, 2–2
w, 6–15
wc, 6–2
who, 6–14
whoami, 5–17
yppasswd, 1–8

communicating with remote host
(UUCP), 14–1

comparing files, 3–23
comparison between shell

features, 8–2
completing file names, 7–3
computer virus, 5–20
concatenate files, 3–7
connecting commands with pipes,

7–8
connecting to an unknown remote

host
via modem (UUCP), 14–10

connecting to an unknown remote
system
via modem (UUCP), 14–4

context searching

ed editor, B–11
vi editor, A–15

controlling access, 5–1
copying

changing file name during, 3–20
files from one directory to another,

3–19
files into other directories, 3–20
lines, ed editor, B–23

copying a directory, 4–8
copying a file, 3–18
copying a file (UUCP), 14–20
copying files, local host control

(UUCP), 14–23
correcting mistakes

in commands, 1–6
when logging in, 1–2

correcting typing errors
ed editor, B–3
vi editor, A–10

cp command, 3–18
creating

directories, 3–1
empty files, 3–27
logout script, 7–24
multiple names for same file, 3–19
symbolic links, 3–15
text files

ed editor, B–2
vi editor, A–4

text files with vi, 2–2
creating a directory, 4–2
CRT screen

use by talk command, 11–24
crt variable

in mail, 11–17
csh.login system login script, 7–16
.cshrc login script

modifying to use MH program,
11–18

.cshrc login script, 7–16, 8–3
modifying for System V Habitat,

9–2
ct command

Index–4

options, connecting to remote host
via modem, 14–13t

cu command
connect local to remote, 14–7
using local commands, 14–6

customizing
login scripts, 7–17

customizing mail environment
setting mail variables, 11–17

customizing mailx, D–1
cwd, 8–10t

D
database security

group, 5–3
date command, 1–6
date format, C–4
dead.letter file, 11–5
default

prompts for shells, 7–5t
default permissions

setting with umask, 5–13
default user mask (umask), 5–16
defining

custom shell variables, 7–18
login account, 5–2
user environment, 7–12

delete (d) subcommand
ed editor, B–17

delete character (x) command (vi
editor), A–14t

delete line (dd) command (vi
editor), A–13

delete subcommand (ftp) , 12–7t
delete word (dw) command (vi

editor), A–12, A–13
deleting

a specific line
ed editor, B–18
vi editor, A–13

clearing a line (D) command, A–13

current line
ed editor, B–18

files, 3–27, 3–28
multiple lines

ed editor, B–18
vi editor, A–13

one character at a time, A–13
print jobs from queue, 3–13

deleting a directory, 4–10
determining file type, 3–28
device name, specifying with cu

command, 14–5t
df command, 3–14
diff command, 3–23
differences between file and

directory permissions, 5–5t
dir subcommand (ftp), 12–7t
directories

changing, 3–1, 4–3
changing permissions, 5–10
copying files from another directory,

3–19
creating, 4–2
definition of, 2–1
deleting, 4–10
displaying, 4–7
displaying current, 2–7
home, 1–3
login, 1–3
managing, 4–1
parent, 2–10
path, 2–10
root, 2–9
search path, 7–23
tree structure, 2–8

directory, 2–7
changing owner of, 5–19
copying, 4–8
removing empty, 4–11
removing more than one, 4–11
renaming, 4–9

Index–5

disk partitions, 3–14
display log of UUCP utilities,

14–28
display subcommand (telnet),

13–5t
displaying

active processes, 6–15
current directory name, 2–7
directory permissions, 5–5
file permissions, 5–5
file type, 3–28
files, 3–5
inactive users, 6–15
inode number of file, 3–16
pathnames for all files, 6–7
print queue status, 3–12
process status, 6–8
user identity, 5–17e
user name, 5–17
value of variables in C shell, 7–22
variable name, 7–12
who is logged on, 1–15
who is on the system, 6–14

displaying a directory, 4–7
displaying information

command status, 6–8
differences between files, 3–23
process information, 6–14
variable values, 7–21

dot notation, 2–10
dot option for mail, 11–17
double quotes, 7–12

E
echo command, 7–21, 8–16, 8–29,

F–2
C shell, 8–11t

ed editor, B–1
append (a) subcommand, B–2
change (c) subcommand, B–20
context searching, B–11
copying lines, B–23

correcting typing errors, B–3
creating and saving text files, B–2
delete (d) subcommand, B–17
deleting a specific line, B–18
deleting current line, B–18
deleting multiple lines, B–18
displaying the current line, B–9
edit (e) subcommand, B–6, B–7
edit (ed) command, B–7
edit buffer, B–1
global (g) operator, B–15
insert (i) subcommand, B–21
locating text, B–11
move (m) subcommand, B–19
moving text, B–19
print (p) subcommand, B–3
quit (q) subcommand, B–6
read (r) subcommand, B–7, B–8
removing characters, B–16
replacing character strings, B–13
saving part of a file, B–5
saving text, B–4, B–5
starting the editor, B–2
substitute (s) subcommand, B–13
substitutions on multiple lines,

B–14
transfer (t) subcommand, B–23
using system commands, B–24
write (w) subcommand, B–4, B–6n

edit (e) subcommand
ed editor, B–6, B–7

edit (ed) command (ed editor),
B–7

editing
linked files, 3–13
mail messages, 11–4

editor
ed, B–1
vi, A–1

end of message/conversation
(local communications), 11–22,
11–23

ending

Index–6

a local message, 11–22
a mail message, 11–3

ending a local message, 11–22
environment variable, 7–13

corresponding to locale categories,
C–8

HOME, 2–7, 7–14t
LANG, 7–14t
LC_ALL, C–9t
LC_COLLATE, 7–14t, C–9t
LC_CTYPE, 7–14t, C–9t
LC_MESSAGES, 7–14t, C–9t
LC_MONETARY, 7–14t, C–9t
LC_NUMERIC, 7–14t, C–9t
LC_TIME, 7–14t, C–9t
LOGNAME, 7–14t
MAIL, 7–14t
PATH, 7–14t
SHELL, 7–14t
TERM, 7–14t
TZ, 7–14t

erasing files
prevention, 3–19n

errors
redirecting output to a file, 6–4

escape character
changing, E–1
including in a mail message, E–1
tilde as in mail, E–1

escape commands in mailx, E–1t
escape key

assignment, A–3
use in vi, A–3

/etc/motd, 1–4
/etc/passwd file, 5–3
/etc/password file, 7–13
ex line editor, A–18
execute permission, 5–5t
exit command, 1–5, 5–17, 5–19
exiting

mail program, 11–15

export command, 7–19, 8–16,
8–29

extension
file name, 2–7n

F
fc

command, 8–23
fc command, 8–29
fg command, 6–13, 8–11t
file

comparing file differences, 3–23
definition of, 2–5
sorting contents of, 3–25

file access, 5–1
file command, 3–28
file manager

tree structure (file system), 2–5
file name

characters restricted in, 2–5
extension, 2–7n

file name completion, 7–3, 8–8
file serial number, 3–16
file system, 2–5
file type

determining, 3–28
files

changing identity to access, 5–17
copying (UUCP), 14–20
creating empty, 3–27
descriptors, 6–4
displaying multiple, 3–6
displaying pathnames for all, 6–7
displaying with formatting, 3–7
inode number, 3–16
introduction to, 2–1
linking, 3–13
mailing to other users, 11–5
maximum length of name, 2–7
moving, 3–21
naming conventions, 2–6

Index–7

noclobber variable to prevent
erasure, 3–19n

protecting, 5–4
reading input from, 6–2
receiving (UUCP), 14–20
redirecting errors to, 6–4
redirecting output, 6–3
removing, 3–26
renaming, 3–21
restricted characters in file name,

2–5
restricting access, 5–14
saving mail messages in, 11–13
security, 5–1
security considerations, 5–20
sending (UUCP), 14–20
specifying with pattern matching,

2–12
used for security control, 5–2
wildcard use, 2–12

filtering standard input, 7–8
find command, 6–7
finger command, 10–2
flags, 1–7
folder command

in mail, 11–13
folder variable for mail, 11–17
folders in mail

listing in MH, 11–18
names of in MH program, 11–18
seeing your current folder, 11–13
setting up to use, 11–12
used by MH program, 11–18

foreground
putting process in, 6–13

foreground processes, 6–6
formatting a file, 3–7
forwarding files (UUCP), 14–13t
forwarding mail messages, 11–13
ftp subcommands, 12–5t, 12–7t,

12–8t
full pathname, 2–10

G
get subcommand (ftp), 12–5t
getting help, 1–13
global (g) operator (ed editor),

B–15
global substitution in vi editor,

A–19
graphical user interface, 1–13
group file, 5–1
grouping commands

with braces, 7–11
with parentheses, 7–10

groups
/etc/group file, 5–3

guidelines
for setting password, 1–11

H
hard links, 3–13
help, 1–13, 11–14
help command

in mail, 11–14
help subcommand (ftp), 12–8t
history command, 8–29

C shell, 8–11t
history of recently used

commands, 8–7, 8–21
home, 8–10t
HOME

environment variable, 2–7
home directory, 2–7
HOME environment variable,

7–14t
HOME shell variable, 8–15

I
I/O, 6–1
ignoreeof, 8–10t
illegal characters

in file name, 2–5

Index–8

inbox folder in MH program,
11–18

inc command in MH, 11–18
inline editing in Korn or POSIX

shell, 7–4
inode number

and symbolic links, 3–16
moving or renaming files, 3–21

input mode (vi editor), A–9
insert (i) subcommand

ed editor, B–21
insert text

vi editor I command, A–11
insert text (i) command (vi editor),

A–9
intermediate hosts used in file

transfers (UUCP), 14–13t
internationalization

LANG environment variable,
7–14t, C–7

LC_ALL environment variable,
C–9t

LC_COLLATE environment
variable, 7–14t, C–9t

LC_CTYPE environment variable,
7–14t, C–9t

LC_MESSAGES environment
variable, 7–14t, C–9t

LC_MONETARY environment
variable, 7–14t, C–9t

LC_NUMERIC environment
variable, 7–14t, C–9t

LC_TIME environment variable,
7–14t, C–9t

pattern matching, 2–13
internationalization features

using, C–1
ISO codesets, C–2

J
jobs command, 6–8, 6–10, 8–29

C shell, 8–11t

K
kill command, 6–11
killing a job or process, 6–11
Korn shell, 7–1, 8–1, 8–17

aliases, 7–3, 8–26
built-in commands, 8–29
built-in variables, 8–27
clearing variable values, 7–22
command history, 7–3, 8–21
editing command lines, 8–23
file name completion, 7–3, 8–25
inline editing, 7–4
.kshrc login script, 7–16, 8–19
login script, 8–17
.logout script, 7–24
metacharacters, 8–20
pattern matching, 2–13
.profile login script, 7–16, 8–17
redirecting errors, 6–4
setting variables, 7–18

.kshrc login script, 7–16, 8–19

L
LANG environment variable,

7–14t, C–7
language

part of locale, C–1
LC_ALL environment variable,

C–9t
dangers of setting, C–10

LC_COLLATE environment
variable, 7–14t, C–9t

LC_CTYPE environment variable,
7–14t, C–9t

LC_MESSAGES environment
variable, 7–14t, C–9t

Index–9

LC_MONETARY environment
variable, 7–14t, C–9t

LC_NUMERIC environment
variable, 7–14t, C–9t

LC_TIME environment variable,
7–14t, C–9t

lcd subcommand (ftp), 12–7t
linking files, 3–13, 3–15
links

hard and soft, 3–13
removing, 3–17
soft, 3–14
symbolic, 3–14

list
of pattern matching characters,

2–13
listing directory contents, 3–2
literal characters, 7–11

using backslash, 7–11
using double quotes, 7–12
using single quotes, 7–12

ln command, 3–13, 3–15
local commands (UUCP), 14–3,

14–6, 14–8, 14–11
local host control of file access

(See UUCP)
local variables, 7–15
locale, C–1

categories of, C–8
determining which locale is set,

C–6
effect on date and time format, C–4
effect on messages, C–5
effect on software, C–2
effect on sort order, C–3
environment variables used with,

C–6
name format for, C–6
names of, C–8t

at (@) modifier in, C–9
numeric and monetary format in,

C–5
setting, C–7

restrictions when, C–10
yes/no response strings, C–5

locale command, C–6
locating command names

apropos, 1–15
locating text

ed editor, B–11
vi editor, A–15

logging in
rejected, 1–3

logging out
of a session, 1–5
script, 7–23

.login file
modifying for System V Habitat,

9–2
with enhanced security system,

1–2n
login account, 5–2
login as root user, 5–19
login date and time, 1–4
login directory, 2–7
.login login script

modifying to use MH program,
11–18

.login login script
modifying for System V Habitat,

9–2
login program, 7–13
login script

activating umask, 5–15
Bourne shell, 8–12
C shell, 8–2, 8–4
csh.login system script, 7–16
.cshrc script, 7–16, 8–3
Korn shell, 8–17
.kshrc script, 7–16, 8–19
.login script, 7–16, 8–4
POSIX shell, 8–17
.profile script, 7–16, 8–12, 8–17

login scripts
customizing, 7–17

LOGNAME environment variable,
7–14t

Index–10

logout command (C shell), 8–11t
logout script, 7–23, 7–24
lpq command, 3–10, 3–12
lpr command, 3–10

flags, 3–11t
printing files, 3–10

lprm command, 3–13
ls command, 3–2

flags used, 3–3
listing directory contents, 3–3
output from -l option, 3–4

ls subcommand (ftp), 12–7t

M
mail

aliases, 11–16
announcement of new messages on

arrival, 11–7
current message, defined, 11–9
customizing mail program, 11–15
deleting messages, 11–9
editing a message, 11–4
ending a message, 11–3
entering a subject for, 11–2, 11–17
exiting from, 11–15
−f option to select a folder, 11–13
folders, 11–12
forwarding messages, 11–13
handling with the MH message

handling program, 11–18
getting help, 11–14
including messages in MH, 11–18
listing folders in MH, 11–18
listing message headers, 11–7,

11–8
mailing files in, 11–5
messages moved to mbox file,

11–10
notification when messages are

waiting for you, 11–7

preventing moving of messages to
mbox file, 11–10

reading messages in, 11–7
replying to messages in, 11–10
saving messages in files, 11–13
saving messages in folders, 11–12
seeing your current folder, 11–13
sending messages, 11–2

by carbon copy, 11–3
sending messages to aliases, 11–16
specifying display length, 11–17
specifying location of folders, 11–17
specifying location of record copies

of outgoing mail, 11–17
the MH program, 11–18
using Mail, 11–1
variables, 11–17

Mail, 11–1
MAIL environment variable,

7–14t
MAIL shell variable, 8–15
MAILCHECK shell variable, 8–15
mailing files, 11–5, 11–6

from the shell, 11–5
.mailrc file

modifying to customize mail, 11–16
.mailrc file, 11–12, D–1
mailx, 11–1

verbose mode, example of, D–6e
mailx command

to enter the mail environment,
11–7

mailx commands, F–1
mailx utility

escape commands, E–1
man command, 1–7, 1–13
managing directories, 4–1
map command (vi editor), A–22
mbox file

preventing moving of messages to,
11–10

message

Index–11

displaying a list of in MH, 11–18
including in MH, 11–18
removing in MH, 11–19
sending, using write command,

11–21
message of the day, 1–4
messages, C–5
messages (local communications)

ending, end-of-file symbol (EOF),
11–22, 11–23

long, in files, 12–9
metacharacters

Bourne shell, 8–13
C shell, 8–5
Korn shell, 8–20t
POSIX shell, 8–20

mget subcommand (ftp), 12–5t
MH message handling program,

11–18
commands used at the shell prompt,

11–18
finding if installed on your host,

11–18
reading messages in, 11–18
removing messages in, 11–19
selecting a folder in, 11–18
tailoring features of, 11–21
uses folders, 11–18

MH Messge Handling commands
ali, 11–19t
anno, 11–19t
burst, 11–19t
comp, 11–19t
dist, 11–19t
folder, 11–19t
folders, 11–19t
forw, 11–19t
inc, 11–19t
mark, 11–19t
mhl, 11–19t
mhmail, 11–19t
msgchk, 11–19t
next, 11–19t

packf, 11–19t
pick, 11–19t
prev, 11–19t
prompter, 11–19t
rcvstore, 11–19t
refile, 11–19t
repl, 11–19t
rmf, 11–19t
rmm, 11–19t
scan, 11–19t
send, 11–19t
show, 11–19t
sortm, 11–19t
whatnow, 11–19t
whom, 11–19t

MH program
modifying path, 11–18

mkdir command, 3–1, 4–2
mkdir subcommand (ftp), 12–7t
monetary formats, C–5

representation of fractions, C–5
monitoring UUCP, 14–29
more command, 3–5, 3–6

used by mail to display messages,
11–8

move (m) subcommand (ed editor),
B–19

moving
files, 3–21, 3–22
text

ed editor, B–19
vi editor, A–16

moving directories, 4–9
mput subcommand (ftp), 12–6t
multibyte characters

support for in codesets, C–2
multitasking, 6–6
mv command, 3–21, 3–22, 4–9

N
noclobber, 8–10t
notify, 8–10t

Index–12

numeric formats, C–5

O
octal numbers

in setting permissions, 5–11
open line (o) command (vi editor),

A–10
open previous line (O) command

(vi editor), A–11
open subcommand (ftp), 12–6t
open subcommand (telnet), 13–5t
options, 1–7
owner

changing for files and directories,
5–19

P
page command, 3–5, 3–7
parameter substitution, 7–20
parent directory, 2–10
passwd command, 1–7, 1–12
password

aging, 1–8
common, 1–4n
expiration, 1–3, 1–8
file, 5–1, 5–2
for logging in, 1–2
forgotten, 1–13n
in networked system, 1–8
not required, 1–4n
one-time, 1–7
random character, 1–10
random letter, 1–10
random pronounceable, 1–10
restrictions, 1–12
security restrictions, 1–12
selecting new, 1–11
setting, 1–7

setting with enhanced security
system, 1–2n

system-generated, 1–10
path, 8–10t
PATH environment variable,

7–14t, 7–23
setting for System V habitat, 9–2

PATH shell variable, 8–15
pathname, 2–8, 2–10

absolute, 2–10
dot notation, 2–10
relative, 2–10
using tilde in, 2–11

pathname conventions (UUCP),
14–1

pattern matching
changing file permissions with,

5–10
files with, 2–12
internationalized, 2–13
list of allowable characters, 2–13
removing multiple files, 3–27

permissions
ACL, G–1
binary numbers, 5–12t
changing, 5–4
combinations, 5–12t
setting file and directory, 5–8
setting with octal numbers, 5–11
specifying with umask, 5–15

pg command, 3–5, 3–6
PID number, 6–7
pipe character, 7–8
pipeline

using, 7–8
pipes and filters

running multiple commands, 7–6
POSIX locale, C–8t
POSIX shell, 7–1, 8–1, 8–17

aliases, 7–3, 8–26
built-in commands, 8–29

Index–13

built-in variables, 8–27
clearing variable values, 7–22
command history, 7–3, 8–21
editing command lines, 8–23
file name completion, 7–3, 8–25
inline editing, 7–4
.kshrc login script, 7–16, 8–19
login script, 8–17
.logout script, 7–24
metacharacters, 8–20
pattern matching, 2–13
.profile login script, 7–16, 8–17
redirecting errors, 6–4
setting variables, 7–18

pr command, 3–7
print

working directory (pwd), 2–7
print (p) subcommand

ed editor, B–3
printer

default, 3–10
specifying in print command, 3–10
specifying name, 3–10

printer queues, 3–12
printing

on a specific printer, 3–11
on default printer, 3–10
options, 3–11
reference pages, 1–14

process, 6–1
Process Identification Number

(PID), 6–7
process identifier, 6–1
processes

displaying active, 6–15
displaying status, 6–8
displaying who is running them,

6–14
grouping commands, 7–10, 7–11
killing, 6–11
resuming, 6–13
running through pipes, 7–10
stopping, 6–11

.profile file
modifying for System V Habitat,

9–2
.profile file, 8–12
.profile login script

modifying to use MH program,
11–18

.profile login script, 7–16, 8–12,
8–17
modifying for System V Habitat,

9–2
programs

types of, 6–1
prompt, 8–10t

question mark as, in the mail
program, 11–7

ps command, 6–8
PS1 shell variable, 8–16
PS2 shell variable, 8–16
public directory (UUCP), 14–1
put subcommand (ftp), 12–6t
pwd command, 2–7, 8–16, 8–29
pwd subcommand (ftp), 12–7t

Q
question mark

as mail prompt, 11–7
quit (q) command

vi editor, A–4, A–15
quit (q) subcommand

ed editor, B–6
quit subcommand (ftp), 12–6t
quit subcommand (telnet), 13–5t
quotes

double, 7–12
single, 7–12

quoting
backslash, 7–11
double quotes, 7–12
single quotes, 7–12
to display variable names, 7–12

quoting conventions, 7–11

Index–14

R
r (read) permission, 5–9
r command in mail, 11–10
R command in mail, 11–10
read (r) subcommand

ed editor, B–7, B–8
read permission, 5–5t
reading input from pipes, 7–8
reading mail messages, 11–7

by number, 11–8
receiving files (UUCP), 14–20
record variable for mail, 11–17
recv subcommand (ftp), 12–6t
redirecting

errors, 6–4
output, 3–26, 6–3
output, of background processes,

6–7
redirecting both standard errors

and output, 6–5
redirecting errors

Bourne shell, 6–4
C shell, 6–5
Korn shell, 6–4
POSIX shell, 6–4

redirecting input/output, 6–1, 6–2
reexecuting commands, 8–8t,

8–22t
reference page, 1–13
referencing variables, 7–19, 7–20
rehash command (C shell), 8–11t
relative pathname, 2–10
remote commands

running in UUCP, 14–13t
remote file transfers (UUCP),

14–13t
remote host

running commands from (UUCP),
14–16

working on, 13–1
remote login, 13–1, 13–3

removing
absolute permissions, 5–11e
characters

ed editor, B–16
vi editor, A–12

directories, 4–11
file links, 3–17
files, 3–26, 3–27
links, 3–17

removing a directory, 4–10, 4–11
current directory, 4–12

removing a file
with verification, 3–28

rename subcommand (ftp), 12–7t
renaming

directories, 3–21
files, 3–21, 3–22
files and directories, 3–21

renaming a directory, 4–9
repeat command (C shell), 8–11t
replacing character strings

ed editor, B–13
vi editor, A–19

replying to mail messages, 11–10
including other recipients in your

reply, 11–10
restart a process, 6–13
Restricted Bourne shell, 7–1, 7–4
restricted characters

in file name, 2–5
restricting file access, 5–14
restricting user environment

Restricted Bourne shell, 7–4
restrictions

password, 1–12
resuming a process, 6–13
returning to local host during

remote connection (UUCP),
14–8t, 14–13t

rlogin command, 13–1
rm command, 3–17, 3–26, 3–27
rmdir command, 4–10, 4–11, 4–12

Index–15

rmdir subcommand (ftp) , 12–7t
root

directory, 2–9
root user

becoming, 5–19
defining shell for, 5–19
tasks performed by, 5–18

runique subcommand (ftp), 12–6t
running

background processes, 6–6
commands conditionally, 7–7
commands in sequence, 7–7
foreground processes, 6–6
shell procedures, 7–26, 7–27

running commands on a remote
host (uux), 14–16

ruptime command, 10–5
rwho command, 10–7

S
s (set) permission, 5–9
saving files

in vi, 2–3
saving mail messages

in files, 11–13
in folders, 11–12

saving part of a file
ed editor, B–5
vi editor, A–20

saving text
ed editor, B–2, B–4, B–5
vi editor, A–15

security
considerations, 5–20
enhanced security system, 1–2n
group, 5–2
logging in rejected, 1–3
Restricted Bourne shell, 7–4
user, 5–2

security files, 5–1
selecting a folder in mail, 11–13
semicolon

running commands in sequence,
7–7

send subcommand (ftp), 12–7t
sending

files through UUCP, 14–20
mail messages, 11–2
messages, 11–21

set command, 8–16, 8–29
C shell, 8–11t

setenv command, 7–20
setenv command (C shell), 8–11t
setting

absolute permissions, 5–11
aliases in C shell and Korn or

POSIX shells, 7–3
environment variable, 7–14t, 7–18
environment variables in all shells,

7–20
environment variables in C shell,

7–20
file and directory permissions, 5–8
file permissions, 5–4
PATH variable, 7–23
permissions using octal numbers,

5–11
setting password

with enhanced security system,
1–2n

shell, 8–10t
aliases, 8–9
assign default values to

environment, 7–13
built-in commands, 8–11, 8–16,

8–29
built-in variables, 8–10, 8–15
changing, 7–4
changing permanently, 7–6
changing temporarily, 7–5
command history, 8–7
command interpreter, 1–6
comparison of features, 8–2
default prompts, 7–5t
default run shell, 7–27

Index–16

default shell, 7–1
defining for root user, 5–19
features, 8–1
file name completion, 8–8
login script, 8–12
mailing files from, 11–5
metacharacters, 8–5, 8–13
program, 1–3
restricting users, 7–4
sample C shell login script, 8–2
scripts, 7–25
setting environment variables,

7–20
using the source command, 11–18
special characters, 2–5, 7–11
subshells, 7–2

SHELL environment variable,
7–14t

shell script, 7–25
compatibility with System V, 9–4

shell scripts
writing, 7–26

shell variable
CDPATH, 8–15
HOME, 8–15
MAIL, 8–15
MAILCHECK, 8–15
PATH, 8–15
PS1, 8–16
PS2, 8–16

SHELL variable, 8–15
shell variables, 7–15

defining custom, 7–18
single quotes, 7–12
soft links, 3–14
sort command, 3–25
sort rules, C–3
sorting file contents, 3–25
source command

in C shell, 8–11t

to invoke shell options for MH,
11–18

special characters, 7–11
specifying default run shell, 7–27
standard error, 6–1, 6–4
standard input, 6–1

filtering, 7–8
standard output, 6–1
starting the ed editor, B–2
starting the vi editor, A–4
status, 8–10t
status information (UUCP), 14–25
status subcommand (ftp), 12–8t
status subcommand (telnet), 13–6t
stderr, 6–2
stdin, 6–2
stdout, 6–2
stop and restart a process, 6–13
stopping (killing) a job or process,

6–11
stopping a command, 1–7
su command, 5–17
subcommands (ftp), 12–5t, 12–7t,

12–8t
subdirectory, 2–7
subject

entering for a mail message, 11–2,
11–17

subshells, 7–2, 7–10
substitute s subcommand

ed editor, B–13
substituting

parameters, 7–20
substitution, global

in vi editor, A–19
sunique subcommand (ftp) , 12–7t
superuser, 5–17
superuser authority

tasks, 5–18
suspend a process, 6–13
symbolic links, 3–14

and inode numbers, 3–16

Index–17

System V habitat, 9–1
accessing, 9–2
command summary, 9–4
location of, 9–3
modifying .cshrc file for, 9–2
modifying .login file for, 9–2
modifying .profile file for, 9–2

T
talk command

use of CRT screen by, 11–24
tasks performed by root user,

5–18
telephone number, specifying

with cu command , 14–5t
TELNET

using, 13–3
TELNET command, 13–3
TERM environment variable,

7–14t
terminal authorization list, 1–4
terminating a connection (local

communications), 11–22, 11–23
terminating a job or process, 6–11
terminating a UUCP job with the

uustat command, 14–25
terminating remote cu connection

(UUCP), 14–8t
terminating remote tip connection

(UUCP), 14–13t
territory

part of locale, C–2
text editor

vi, A–1
text editors

overview of, 2–1
tftp command, 12–8
tilde

in text files, 2–2
notation in pathname, 2–11

tilde as escape character in mail,
E–1

time command (C shell), 8–11t

time format, C–4
punctuation in, C–5

times command, 8–16, 8–29
tip command

options, connecting to a remote
host, 14–8

using local commands, 14–8,
14–11

touch command, 3–27
transfer (t) subcommand

ed editor, B–23
transfer-status information

(UUCP), 14–25
trap command, 8–16, 8–29
tree structure

of directories, 2–8
Trivial File Transfer Protocol,

12–8
types of programs, 6–1
typing errors, correcting

ed editor, B–3
vi editor, A–10

TZ environment variable, 7–14t

U
umask

permission combinations, 5–14t
umask command, 5–13, 8–16,

8–29
C shell, 8–4

unalias command, 8–30
C shell, 8–11t

undo (u) command (vi editor),
A–14

UNIX
case sensitive, 2–6n

UNIX-to-UNIX Copy Program
(UUCP), 14–1

unset command, 7–22, 8–16, 8–30
C shell, 8–11t

unsetenv command, 7–22
unsetenv command (C shell),

8–11t

Index–18

user commands
summary, 9–4

user environment, 7–12
assign default values, 7–13

user identity
confirming, 5–17e

user mask, 5–13
activating in login script, 5–15
default, 5–16

user name
password, 1–2

users
displaying inactive, 6–15
displaying who is logged in, 6–14

using
backslash to quote a single

character, 7–11
braces to group commands, 7–11
commands, 1–5
filters, 7–8
parentheses to group commands,

7–10
pipes and filters to run multiple

commands, 7–6
wildcards in file names, 2–12

using mailx commands, F–1
/usr/spool/uucppublic directory

(UUCP), 14–1
UUCP

local cu commands, 14–6
local host control of file access,

14–23
uucp command, 14–1
uulog command, 14–28
uumonitor command, 14–29
uustat command, 14–25
uuto command

copying files, local host control,
options, 14–23

uux command
options, used to run remote

commands, 14–13t

run from remote host (UUCP),
14–16

V
variable name

displaying, 7–12
variables

clearing values of, 7–22
displaying values for, 7–21
in mailx, D–1t
mail, 11–17
mailx, D–1
referencing, 7–19
shell built-in, 8–10

verbose subcommand (ftp) , 12–8t
vi command, 2–2
vi editor, A–1

$ cursor movement command, A–7
(cursor movement command, A–7
) cursor movement command, A–7
{ cursor movement command, A–8
} cursor movement command, A–8
/ search command, A–15
0 cursor movement command, A–7
add (a) command, A–10
append text (A) command, A–11
b cursor movement command, A–7
change (c) command, A–13
change word (cw) command, A–13
clearing a line (D) command, A–13
command mode, A–6
context searching, A–15
copying (yanking) text, A–17
correcting typing errors, A–10
cursor movement command, A–7
customizing your environment,

A–21
delete character (x) command,

A–14t
delete line (dd) command, A–13

Index–19

delete word (dw) command, A–12,
A–13

deleting a block of text, A–20
ex line editor commands, A–18
G cursor movement command, A–8
getting started, A–2
h cursor movement command, A–6
H cursor movement command, A–8
insert (i) command, A–9
insert text (I) command, A–11
j cursor movement command, A–6
k cursor movement command, A–6
l cursor movement command, A–6
locating text, A–15
used to edit mail messages, 11–4
map command, A–22
moving text, A–16
moving within a file, A–6
next (n) search command, A–16
open line (o) command, A–10
open previous line (O) command,

A–11
opening text files, A–4
paste (p) command, A–16
quit (q) command, A–4, A–15
saving part of a file, A–20
saving text files, A–15
saving your customizations, A–23
scrolling and moving, A–8
searching for text, A–15
starting the editor, A–4
substituting text, A–19
undo (u) command, A–14
using advanced techniques, A–15
write (w) command, A–15

vi environment variables
errorbells, A–21t
ignorecase, A–21t
number, A–21t
showmatch, A–21t
tabstop, A–21t
wrapmargin, A–21t
wrapscan, A–21t

virus, 5–20

W
w (write) permission, 5–9
w command, 6–15
who command, 6–14, 10–1
whoami command, 5–17

confirming identity, 5–17e
wildcard [asterisk (*)], 2–12
wildcard character

removing multiple directories using,
4–11

wildcards
changing file permissions with,

5–10
use in removing files, 3–27

window manager, 1–13
working directory, 2–7
working on a remote host, 13–1
write (w) command (vi editor),

A–15
write (w) subcommand

ed editor, B–4, B–6n
write command, 11–21
write permission, 5–5t
writing

logout script, 7–24
mail messages, E–1
shell scripts, 7–26
shell scripts (example), 7–26

X
x (execute) permission, 5–9

Y
yppasswd command, 1–8

Z
z subcommand (telnet) , 13–6t

Index–20

