
Tru64 UNIX
System Configuration and Tuning

Part Number: AA-RH9GC-TE

September 2002

Product Version: Tru64 UNIX Version 5.1B or higher

This manual describes how to tune Tru64 UNIX to improve operating
system performance, and provides tuning recommendations for Oracle,
Network File System and Web Server applications. It also includes
tuning recommendations for Tru64 UNIX operating system components.

Hewlett-Packard Company
Palo Alto, California

© 2002 Hewlett-Packard Company

Oracle® is a registered trademark of Oracle Corporation. Oracle9i™ and Oracle8i™ are trademarks of
Oracle Corporation. All other product names mentioned herein may be the trademarks of their respective
companies.

Microsoft® and Windows NT® are trademarks of Microsoft Corporation in the U.S. and/or other countries.
Intel®, Pentium®, and Intel Inside® are trademarks of Intel Corporation in the U.S. and/or other countries.
UNIX® and The Open Group™ are trademarks of The Open Group in the U.S. and/or other countries. All
other product names mentioned herein may be the trademarks of their respective companies.

Confidential computer software. Valid license from Compaq Computer Corporation, a wholly owned
subsidiary of Hewlett-Packard Company, required for possession, use, or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial
license.

None of Compaq, HP, or any of their subsidiaries shall be liable for technical or editorial errors or omissions
contained herein. The information is provided “as is” without warranty of any kind and is subject to
change without notice. The warranties for HP or Compaq products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as constituting
an additional warranty.

Contents

About This Manual

Part 1 Introduction to System Tuning

1 Introduction to System Tuning
1.1 Hardware Configuration 1–1
1.1.1 Hardware Configuration Overview 1–2
1.2 Performance Terminology and Concepts 1–2
1.3 Disk Storage Resources 1–4
1.3.1 RAID Technology 1–4
1.3.2 SCSI Concepts 1–6
1.3.2.1 Data Paths 1–7
1.3.2.2 SCSI Bus Speeds 1–7
1.3.2.3 Transmission Methods 1–8
1.3.2.4 Extending UltraSCSI Bus Segments 1–9
1.3.2.5 SCSI Bus Length and Termination 1–10
1.3.3 Fibre Channel 1–11
1.3.3.1 Fibre Channel Topologies 1–12
1.3.3.1.1 Point-to-Point Topology 1–12
1.3.3.1.2 Fabric Topology 1–12
1.3.3.1.3 Arbitrated Loop Topology 1–13
1.3.3.2 Fibre Channel Topology Comparison 1–14
1.3.3.3 Zoning 1–15
1.3.3.3.1 Switch Zoning Versus Selective Storage

Presentation 1–16
1.3.3.3.2 Types of Zoning 1–17
1.3.3.3.3 Zoning Example 1–18
1.3.3.4 Cascaded Switches 1–18
1.4 Network Resources 1–20
1.4.1 Network Subsystem 1–21
1.4.2 Using Redundant Networks 1–21
1.4.3 NetRAIN 1–22
1.4.4 Routing 1–22
1.4.5 LAG Interface 1–23
1.5 File System Resources 1–23

Contents iii

1.5.1 Using AdvFS 1–23
1.5.1.1 Using the UBC 1–24
1.5.2 Using NFS 1–24
1.6 Memory Resources 1–25
1.6.1 Paging and Swapping 1–26
1.6.2 Caching Data 1–26
1.7 CPU Resources 1–27
1.8 Identifying a Resource Model for Your Workload 1–30
1.9 Most Commonly Tuned Subsystems 1–31

2 Gathering System and Performance Information
2.1 Methodology Approach to Solving Performance Problems 2–2
2.2 Obtaining Information About System Events 2–3
2.2.1 Using Event Manager 2–4
2.2.2 Using DECevent 2–4
2.2.3 Using Compaq Analyze 2–5
2.2.4 Using System Accounting and Disk Quotas 2–5
2.3 Primary Tools for Gathering Information 2–6
2.3.1 Gathering Hardware Information Using the hwmgr

Utility 2–6
2.3.2 Gathering System Information by Using the collect

Utility 2–8
2.3.2.1 Configuring collect to Automatically Start on System

Reboot 2–9
2.3.2.2 Plotting collect Datafiles 2–10
2.3.3 Checking the Configuration by Using the sys_check

Utility 2–11
2.4 Secondary Tools for Gathering Information 2–12
2.4.1 Gathering Locking Statistics by Using the lockinfo Utility 2–12
2.4.2 Gathering CPU Usage and Process Statistics by Using the

sched_stat Utility 2–14
2.4.3 Displaying Network and NFS Statistics by Using the

nfsstat Utility 2–14
2.4.4 Gathering Information by Using the tcpdump Utility 2–16
2.4.5 Monitoring Network Statistics by Using the netstat

Command 2–17
2.4.5.1 Input and Output Errors and Collisions 2–18
2.4.5.2 Device Driver Errors 2–18
2.4.5.3 Memory Usage 2–19
2.4.5.4 Socket Connections 2–20
2.4.5.5 Dropped or Lost Packets 2–20

iv Contents

2.4.5.6 Retransmissions, Out-of-Order Packets, and Bad
Checksums 2–21

2.4.5.7 Routing Statistics 2–23
2.4.5.8 Protocol Statistics 2–23
2.4.6 Gathering NFS Server Side Information Using ps axlmp . 2–25
2.4.7 Gathering NFS Client Side Information Using nfsiod 2–25
2.4.8 Monitoring Incoming Network Traffic to an NFS Server by

Using the nfswatch Command 2–26
2.5 Additional Tools for Monitoring Performance 2–26
2.6 Gathering Profiling and Debugging Information 2–28

3 Displaying and Modifying Kernel Subsystem Attributes
3.1 Operating System Support for Attributes 3–1
3.2 Displaying Attribute Values 3–2
3.3 Modifying Attribute Values 3–3
3.3.1 Current Value 3–3
3.3.2 Permanent Value 3–4

Part 2 Tuning by Application

4 Tuning Oracle
4.1 Monitoring Oracle Statistics 4–1
4.2 Improving the Performance of the gettimeofday() Function .. . 4–2
4.3 Choosing and Enabling IPC Communication Protocols 4–3
4.4 Tuning Recommendations 4–4
4.4.1 Modifying Virtual Memory Attributes 4–4
4.4.1.1 Disabling Shared Memory 4–5
4.4.1.2 Allocating Shared Memory 4–5
4.4.1.2.1 Modifying the rad_gh_regions Attribute 4–6
4.4.1.2.2 Modifying the gh_chunks Attribute 4–7
4.4.1.3 Modifying the Percentage of Physical Memory the

UBC is Using 4–7
4.4.1.4 Modifying the Percentage of Memory the UBC is

Borrowing 4–7
4.4.1.5 Modifying the Percentage of Memory the UBC Can

Use For a Single File 4–8
4.4.1.6 Modifying the UBC Threshold 4–8
4.4.1.7 Modifying the Percentage of Pages that Must be

Dirty 4–8
4.4.1.8 Modifying the Swap Allocation Mode 4–8

Contents v

4.4.2 Modifying the Advanced File System Attribute 4–10
4.4.3 Modifying the Virtual File System Attribute 4–10
4.4.4 Modifying Interprocess Communication Attributes 4–11
4.4.4.1 Modifying the System V Shared Regions 4–11
4.4.4.2 Modifying the System V Maximum Size of Shared

Memory Region 4–11
4.4.4.3 Modifying the System V Minimum Size of Shared

Memory Region 4–12
4.4.4.4 Modifying the Shared Memory Regions that Can be

Used at One Time 4–12
4.4.4.5 Modifying the Shared Memory Regions that Can be

Attached at One Time 4–12
4.4.5 Modifying Internet Attributes 4–12
4.4.5.1 Modifying the Send Buffer Size for the UDP Sockets . 4–12
4.4.5.2 Modifying the Receive Buffer Size for the UDP

Sockets 4–13
4.4.5.3 Modifying the Number of Times a System can make

Outgoing Connections 4–13
4.4.6 Modifying Process Attributes 4–13
4.4.6.1 Modifying the Per Process Stack Size 4–14
4.4.6.2 Modifying the Maximum Size of the User Process

Stack Size 4–14
4.4.6.3 Modifying the Per Process Data Size 4–14
4.4.6.4 Modifying the Maximum Size of the Per Process Data

Size 4–14
4.4.6.5 Modifying the Per Process Address Size 4–15
4.4.6.6 Modifying the Maximum Per Process Address Size 4–15
4.4.6.7 Modifying the Maximum Number of Processes 4–15
4.4.6.8 Modifying the Maximum Number of Threads 4–16
4.4.6.9 Modifying the Space Allocated to System Tables 4–16
4.4.7 Modifying the Real-Time Attribute 4–16
4.4.8 Modifying Reliable Datagram Attributes 4–17
4.4.8.1 Modifying the Maximum Number of Objects in the

RDG 4–17
4.4.8.2 Modifying the Maximum Size of the RDG Message 4–17
4.4.8.3 Modifying the Maximum Number of Messages in the

RDG 4–17
4.4.8.4 Modifying the Maximum Number of Sessions within

the RDG Table 4–17
4.4.8.5 Modifying the Maximum Number of Pages Wired For

Message Packets 4–18
4.4.9 Modifying the Memory Channel Attribute 4–18

vi Contents

5 Tuning Network File Systems
5.1 Monitoring NFS Statistics 5–2
5.2 Detecting Poor NFS Performance 5–3
5.3 Performance Benefits and Tradeoffs 5–3
5.4 NFS Configuration 5–4
5.4.1 Configuring Server Threads 5–4
5.4.2 Configuring Client Threads 5–4
5.4.3 Modifying Cache Timeout Limits 5–5
5.5 NFS Retransmissions 5–5
5.5.1 Decreasing Network Timeouts 5–6
5.6 Tuning NFS Servers 5–7
5.6.1 Modifying NFS Server Side Attributes 5–9
5.6.1.1 Write Gathering 5–9
5.6.1.1.1 Improving NFS Server Response Time to Client

Write Requests 5–10
5.6.1.2 Specifying the Amount of Time in Seconds the Server

will Delay the Write 5–11
5.6.1.3 Increasing the NFS Send and Receive Buffer Size 5–12
5.7 Tuning NFS Clients 5–13
5.7.1 Modifying NFS Client Side Attributes 5–13
5.7.1.1 Improving Read Performance 5–14
5.7.1.2 Controlling How Long Before the Client will Start

Transmitting 5–15
5.7.1.3 Directory Name Lookup Cache (DNLC) 5–15
5.7.1.4 Negative Name Cache Lookups (NNC) 5–15
5.7.1.5 Specifying File Consistency Across NFS Clients 5–16
5.7.1.6 Changing the NFS Client Behavior When Fetching

File Attributes 5–16

6 Tuning Internet Servers
6.1 Improving Internet Server Performance 6–1
6.1.1 Configuring Hardware 6–2
6.1.2 Configuring Memory and Swap Space 6–2
6.1.3 Logging IP Addresses 6–3
6.1.4 Monitoring Network Statistics 6–3
6.1.5 Monitoring Socket Statistics 6–5
6.1.6 Monitoring Virtual Memory Statistics 6–5
6.1.7 Gathering Configuration Information 6–6
6.2 Primary Tuning Recommendations 6–6
6.2.1 Modifying Internet Attributes 6–7

Contents vii

6.2.1.1 Increasing the Size of the TCP Hash Table 6–7
6.2.1.2 Disabling PMTU Discovery 6–8
6.2.1.3 Increasing the Number of Outgoing Connection Ports 6–8
6.2.2 Modifying Process Attributes 6–8
6.2.2.1 Increasing the Size of System Tables and Data

Structures 6–9
6.2.2.2 Increasing the Number of Processes per User 6–9
6.2.2.3 Increasing the Number of Threads per User 6–10
6.2.2.4 Increasing the User Process Data Segment Size

Limits 6–10
6.2.2.5 Increasing the User Process Address Space Limits 6–10
6.2.3 Modifying Socket Attributes 6–11
6.2.3.1 Increasing the Maximum Number of Pending TCP

Connections 6–11
6.2.3.2 Increasing the Minimum Number of Pending TCP

Connections 6–11
6.2.3.3 Enabling the mbuf Cluster Compression 6–12
6.3 Advanced Tuning Recommendations 6–12
6.3.1 Modifying Generic Attributes 6–12
6.3.2 Modifying Internet Attributes 6–13
6.3.2.1 Increasing the Number of TCP Hash Table 6–13
6.3.2.2 Increasing the Number of Hash Buckets 6–14
6.3.2.3 Modifying the TCP Partial Connection Timeout Limit 6–14
6.3.2.4 Decreasing the Rate of TCP Retransmissions 6–15
6.3.2.5 Enabling TCP Keepalive Functionality 6–15
6.3.2.6 Increasing the TCP Connection Context Timeout

Rate 6–16
6.3.2.7 Modifying the Range for Outgoing Connection Ports . . 6–17
6.3.2.8 Increasing the Number of IP Input Queues 6–17
6.3.2.9 Increasing the Maximum Length of the IP Input

Queue 6–17
6.3.3 Modifying Network Attributes 6–18
6.3.3.1 Increasing the Number of Output Packets Before

Packets are Dropped 6–18
6.3.3.2 Reducing Screening Cache Misses 6–19
6.3.3.3 Reducing the Screening Buffer Drops 6–19
6.3.4 Modifying Socket Attributes 6–20
6.3.5 Modifying Virtual Memory Attributes 6–20

7 Managing Application Performance
7.1 Improving Application Performance 7–1
7.1.1 Using the Latest Operating System Patches 7–1

viii Contents

7.1.2 Using the Latest Version of the Compiler 7–2
7.1.3 Using Parallelism 7–2
7.1.4 Optimizing Applications 7–2
7.1.5 Using Shared Libraries 7–2
7.1.6 Reducing Application Memory Requirements 7–2
7.1.7 Controlling Memory Locking 7–3

Part 3 Tuning by Component

8 Managing System Resource Allocation
8.1 Tuning Process Limits 8–1
8.1.1 Increasing System Tables and Data Structures 8–2
8.1.2 Increasing the Maximum Number of Processes 8–3
8.1.3 Increasing the Maximum Number of Threads 8–4
8.2 Tuning Program Size Limits 8–5
8.2.1 Increasing the Size of a User Process Stack 8–5
8.2.2 Increasing the Size of a User Process Data Segment 8–5
8.3 Tuning Address Space Limits 8–6
8.4 Tuning Interprocess Communication Limits 8–7
8.4.1 Increasing the Maximum Size of a System V Message 8–8
8.4.2 Increasing the Maximum Size of a System V Message

Queue 8–9
8.4.3 Increasing the Maximum Number of Messages on a

System V Queue 8–9
8.4.4 Increasing the Maximum Size of a System V Shared

Memory Region 8–10
8.4.5 Increasing the Maximum Number of Shared Memory

Regions Attached to a Process 8–11
8.4.6 Modifying Shared Page Table Sharing 8–11
8.5 Tuning the Open File Limits 8–12
8.5.1 Increasing the Maximum Number of Open Files 8–12
8.5.2 Increasing the Maximum Number of Open File

Descriptors 8–13
8.6 Aurema ARMTech Suite 8–15

9 Managing Disk Storage Performance
9.1 Guidelines for Distributing the Disk I/O Load 9–1
9.2 Monitoring the Distribution of Disk I/O 9–3
9.2.1 Displaying Disk Usage by Using the iostat Command 9–4
9.3 Managing Storage with LSM 9–5

Contents ix

9.3.1 LSM Features 9–5
9.4 Managing Hardware RAID Subsystem Performance 9–6
9.4.1 Hardware RAID Features 9–7
9.4.2 Hardware RAID Products 9–8
9.4.3 Hardware RAID Configuration Guidelines 9–9
9.4.3.1 Distributing Storage Set Disks Across Buses 9–10
9.4.3.2 Using Disks with the Same Data Capacity 9–10
9.4.3.3 Choosing the Correct Hardware RAID Stripe Size 9–10
9.4.3.4 Mirroring Striped Sets 9–11
9.4.3.5 Using a Write-Back Cache 9–11
9.4.3.6 Using Dual-Redundant Controllers 9–12
9.4.3.7 Using Spare Disks to Replace Failed Disks 9–12
9.5 Managing CAM Performance 9–12

10 Managing Network Performance
10.1 Gathering Network Information 10–1
10.1.1 Checking Socket Listen Queue Statistics by Using the

sysconfig Command 10–3
10.2 Tuning the Network Subsystem 10–4
10.2.1 Improving the Lookup Rate for TCP Control Blocks 10–6
10.2.2 Increasing the Number of TCP Hash Tables 10–7
10.2.3 Tuning the TCP Socket Listen Queue Limits 10–7
10.2.4 Increasing the Number of Outgoing Connection Ports 10–9
10.2.5 Modifying the Range of Outgoing Connection Ports 10–9
10.2.6 Disabling PMTU Discovery 10–10
10.2.7 Increasing the Number of IP Input Queues 10–11
10.2.8 Enabling mbuf Cluster Compression 10–11
10.2.9 Enabling TCP Keepalive Functionality 10–12
10.2.10 Improving the Lookup Rate for IP Addresses 10–13
10.2.11 Decreasing the TCP Partial-Connection Timeout Limit .. . 10–14
10.2.12 Decreasing the TCP Connection Context Timeout Limit . . 10–15
10.2.13 Decreasing the TCP Retransmission Rate 10–15
10.2.14 Disabling Delaying the Acknowledgment of TCP Data .. . 10–16
10.2.15 Increasing the Maximum TCP Segment Size 10–16
10.2.16 Increasing the Transmit and Receive Buffers for a UDP

Socket 10–17
10.2.17 Increasing the Maximum Size of a Socket Buffer 10–18
10.2.18 Preventing Dropped Input Packets 10–18

11 Managing File System Performance
11.1 Tuning Caches 11–1

x Contents

11.1.1 Monitoring Cache Statistics 11–2
11.1.2 Tuning the namei Cache 11–2
11.1.3 Tuning the UBC 11–4
11.1.4 Tuning the Metadata Buffer Cache 11–7
11.1.5 Tuning AdvFS Access Structures 11–8
11.2 Tuning AdvFS 11–9
11.2.1 AdvFS Configuration Guidelines 11–9
11.2.1.1 Storing Data Using RAID1 or RAID5 11–11
11.2.1.2 Forcing a Synchronous Write Request or Enabling

Persistent Atomic Write Data Logging 11–11
11.2.1.3 Enabling Direct I/O 11–12
11.2.1.4 Using AdvFS to Distribute Files 11–13
11.2.1.5 Striping Data 11–14
11.2.1.6 Defragmenting a File Domain 11–16
11.2.1.7 Decreasing the I/O Transfer Size 11–16
11.2.1.8 Moving the Transaction Log 11–17
11.2.2 Monitoring AdvFS Statistics 11–18
11.2.2.1 Displaying AdvFS Performance Statistics 11–19
11.2.2.2 Displaying Disks in an AdvFS File Domain 11–20
11.2.2.3 Displaying AdvFS File Domains 11–21
11.2.2.4 Displaying AdvFS File Information 11–21
11.2.2.5 Displaying the AdvFS Filesets in a File Domain 11–22
11.2.3 Tuning AdvFS Queues 11–22
11.3 Tuning UFS 11–26
11.3.1 UFS Configuration Guidelines 11–26
11.3.1.1 Modifying the File System Fragment and Block Sizes 11–27
11.3.1.2 Reducing the Density of inodes 11–27
11.3.1.3 Set Rotational Delay 11–28
11.3.1.4 Increasing the Number of Blocks Combined for a

Cluster 11–28
11.3.1.5 Using MFS 11–28
11.3.1.6 Using UFS Disk Quotas 11–29
11.3.1.7 Increasing the Number of UFS and MFS Mounts 11–29
11.3.2 Monitoring UFS Statistics 11–29
11.3.2.1 Displaying UFS Information 11–30
11.3.2.2 Monitoring UFS Clustering 11–31
11.3.2.3 Displaying the Metadata Buffer Cache 11–31
11.3.3 Tuning UFS for Performance 11–32
11.3.3.1 Adjusting UFS Smooth Sync and I/O Throttling 11–32
11.3.3.2 Delaying UFS Cluster Writing 11–35
11.3.3.3 Increasing the Number of Blocks in a Cluster 11–35
11.3.3.4 Defragmenting a File System 11–36

Contents xi

11.4 Tuning NFS 11–37

12 Managing Memory Performance
12.1 Virtual Memory Operation 12–1
12.1.1 Physical Page Tracking 12–2
12.1.2 File-System Buffer Cache Memory Allocation 12–3
12.1.2.1 Metadata Buffer Cache Memory Allocation 12–3
12.1.2.2 Unified Buffer Cache Memory Allocation 12–3
12.1.3 Process Memory Allocation 12–5
12.1.3.1 Process Virtual Address Space Allocation 12–5
12.1.3.2 Virtual Address to Physical Address Translation 12–6
12.1.3.3 Page Faults 12–7
12.1.4 Page Reclamation 12–9
12.1.4.1 Modified Page Prewriting 12–11
12.1.4.2 Reclaiming Memory by Paging 12–12
12.1.4.3 Reclaiming Memory by Swapping 12–13
12.2 Configuring Swap Space for High Performance 12–15
12.3 Monitoring Memory Statistics 12–16
12.3.1 Displaying Memory by Using the vmstat Command 12–17
12.3.2 Displaying Memory by Using the ps Command 12–20
12.3.3 Displaying Swap Space Usage by Using the swapon

Command 12–22
12.3.4 Displaying the UBC by Using the dbx Debugger 12–23
12.4 Tuning to Provide More Memory to Processes 12–24
12.4.1 Reducing the Number of Processes Running

Simultaneously 12–24
12.4.2 Reducing the Static Size of the Kernel 12–24
12.4.3 Increasing the Memory Reserved for Kernel malloc

Allocations 12–25
12.5 Modifying Paging and Swapping Operations 12–25
12.5.1 Increasing the Paging Threshold 12–26
12.5.2 Managing the Rate of Swapping 12–27
12.5.3 Enabling Aggressive Task Swapping 12–28
12.5.4 Limiting the Resident Set Size to Avoid Swapping 12–29
12.5.5 Managing Modified Page Prewriting 12–31
12.5.6 Managing Page-In and Page-Out Clusters Sizes 12–32
12.5.7 Managing I/O Requests on the Swap Partition 12–33
12.6 Reserving Physical Memory for Shared Memory 12–34
12.6.1 Tuning the Kernel to Use Granularity Hints 12–35
12.6.2 Modifying Applications to Use Granularity Hints 12–36
12.7 Improving Performance with Big Pages 12–37
12.7.1 Using Big Pages 12–38

xii Contents

12.7.2 Determining when a Memory Object uses Big Pages 12–39

13 Managing CPU Performance
13.1 Monitoring CPU Performance Information 13–1
13.1.1 Monitoring the Load Average by Using the uptime

Command 13–3
13.1.2 Checking CPU Usage by Using the kdbx Debugger cpustat

Extension 13–4
13.1.3 Checking Lock Usage by Using the kdbx Debugger

lockstat Extension 13–5
13.2 Improving CPU Performance 13–5
13.2.1 Adding Processors 13–6
13.2.2 Using the Class Scheduler 13–6
13.2.2.1 Class Scheduler Overview 13–8
13.2.2.1.1 Related Utilities 13–9
13.2.2.1.2 Invoking the Class Scheduler 13–9
13.2.2.2 Planning Class Scheduling 13–10
13.2.2.3 Configuring Class Scheduling 13–10
13.2.2.4 Creating and Managing Classes 13–12
13.2.2.4.1 Creating a Class 13–12
13.2.2.4.2 Managing Identifier Types Within Classes 13–13
13.2.2.4.3 Enabling the Class Scheduler 13–14
13.2.2.4.4 Adding Members to a Class 13–14
13.2.2.4.5 Deleting Members From a Class 13–15
13.2.2.4.6 Other Class Management Options 13–15
13.2.2.5 Using the runclass Command 13–15
13.2.2.6 Using the Class Scheduling Graphical Interface 13–16
13.2.2.7 Creating or Modifying a Database 13–18
13.2.3 Prioritizing Jobs 13–19
13.2.4 Scheduling Jobs at Offpeak Hours 13–20
13.2.5 Stopping the advfsd Daemon 13–20
13.2.6 Using Hardware RAID to Relieve the CPU of I/O

Overhead 13–20

Contents xiii

Glossary

Index

Figures
1–1 Mapping Out Your Hardware Configuration 1–2
1–2 Point-to-Point Topology 1–12
1–3 Fabric Topology 1–13
1–4 Arbitrated Loop Topology 1–14
1–5 A Simple Zoned Configuration 1–18
1–6 Meshed Resilient Fabric with Four Cascaded Switches 1–19
1–7 Single Interface Configuration 1–20
1–8 Mulitple Interfaces 1–22
1–9 Physical Memory Usage 1–26
1–10 Moving Instructions and Data Through the Memory

Hardware 1–29
11–1 Striping Data 11–15
11–2 AdvFS I/O Queues 11–24
12–1 UBC Memory Allocation 12–4
12–2 Memory Allocation During High File-System Activity and No

Paging Activity 12–4
12–3 Memory Allocation During Low File-System Activity and High

Paging Activity 12–5
12–4 Process Virtual Address Space Usage 12–6
12–5 Virtual-to-Physical Address Translation 12–7
12–6 Paging and Swapping Attributes 12–10
12–7 Paging Operation 12–13

Tables
1–1 RAID Level Performance and Availability Comparison 1–5
1–2 SCSI Bus Speeds 1–8
1–3 SCSI Bus and Segment Lengths 1–10
1–4 Fibre Channel Fabric and Arbitrated Loop Comparison 1–15
1–5 Type of Zoning Supported by Switches 1–17
1–6 Memory Management Hardware Resources 1–28
1–7 Resource Models and Possible Configuration Solutions 1–30
2–1 Tools for Continuous Performance Monitoring 2–27
2–2 Application Profiling and Debugging Tools 2–28
4–1 Tools to Detect Poor Oracle Application Performance 4–1

xiv Contents

5–1 Tools to Detect Poor NFS Performance 5–2
5–2 Potential NFS Problems and Solutions 5–3
5–3 NFS Tuning Guidelines 5–3
5–4 NFS Server Tuning Guidelines 5–8
5–5 Identifying Your Network Card Type 5–12
6–1 Tools for Monitoring Network Statistics 6–4
7–1 Application Performance Improvement Guidelines 7–1
8–1 Default Values for the maxusers Attribute 8–2
8–2 IPC Limits Tuning Guidelines 8–8
9–1 Disk I/O Distribution Monitoring Tools 9–3
9–2 Hardware RAID Subsystem Configuration Guidelines 9–9
10–1 Network Monitoring Tools 10–1
10–2 Network Tuning Guidelines 10–5
11–1 Tools to Display Cache Information 11–2
11–2 When to Change the Values of the Namei Cache Related

Attributes 11–4
11–3 When to Change the Values of the UBC-Related Attributes .. . 11–6
11–4 AdvFS Configuration Guidelines 11–10
11–5 Tools to Display AdvFS Information 11–18
11–6 UFS Configuration Guidelines 11–26
11–7 Tools to Display UFS Information 11–30
11–8 UFS Tuning Guidelines 11–32
12–1 Default Values for vm_page_free_target Attribute 12–10
12–2 Tools to Display Virtual Memory and UBC 12–16
12–3 Memory Resource Tuning Guidelines 12–24
13–1 CPU Monitoring Tools 13–1
13–2 Primary CPU Performance Improvement Guidelines 13–5

Contents xv

About This Manual

This manual contains information about tuning HP Tru64 UNIX for high
performance and high availability. This manual also provides tuning
recommendations for Oracle, Network File System (NFS), and Web server
applications, and for specific Tru64 UNIX operating system components.

For Tru64 UNIX system administration, we recommend that you use
the graphical user interface (GUI). This GUI is presented by SysMan,
an application that is loaded by default when the Common Desktop
Environment (CDE) software is loaded on your system. The SysMan
applications are available in the Application Manager, which you can access
from the CDE Front Panel.

Audience

This manual is intended for system administrators who are responsible for
managing a Tru64 UNIX operating system. Administrators should have an
in-depth knowledge of their applications and users, in addition to operating
system concepts, commands, and utilities. Such an understanding is crucial
to successfully tuning a system for better performance.

New and Changed Features

Additions and changes that have been made to the manual for this version of
Tru64 UNIX include the following:

• This manual has been reorganized into three parts:

– Introduction to System Tuning — Includes new hardware
configuration information and diagrams.

– Tuning by Application Type — Includes three ways to tune different
applications: Oracle, Network File Systems, and Internet servers.
This part includes detailed information about tunable attributes and
system monitoring tools for each application type.

– Tuning by Component — Includes tuning information on how to tune
system resources, disk storage, network, file system, memory, and
CPU. This part also includes detailed information about specific
tunable attributes for each component.

• This manual describes only kernel subsystem attributes that can be
used to improve system performance. All kernel subsystem attributes

About This Manual xvii

are documented in the reference pages. See sys_attrs(5) for more
information.

• Kernel subsystem attributes use only underscores instead of
combinations of dashes and underscores.

• The Advanced File System (AdvFS) buffer cache is no longer used.
AdvFS user and application data and metadata are now cached in the
Unified Buffer Cache (UBC). See Section 11.1.4 for more information.

Documentation sections that described kernel subsystem attributes that
related to the AdvFS buffer cache were removed.

• UNIX File System (UFS) supports smooth sync functionality and I/O
throttling to improve UFS performance. See Section 11.3.3.1 for more
information.

Organization

This manual consists of thirteen chapters and a glossary:

Part I Introduction to System Tuning

Chapter 1 Describes Tru64 UNIX hardware configuration and key ter-
minology and concepts.

Chapter 2 Describes how to gather system information and diagnose
performance problems.

Chapter 3 Describes how to access and modify kernel subsystems.

Part II Tuning by Application Type

Chapter 4 Describes how to configure and tune an Oracle database application.

Chapter 5 Describes how to configure and tune a Network File System application.

Chapter 6 Describes how to configure and tune a Web Server application.

Chapter 7 Describes how to manage application performance.

Part III Tuning By Component

Chapter 8 Describes how to manage system resource allocation.

Chapter 9 Describes how to monitor and tune disk storage performance.

Chapter 10 Describes how to monitor and tune network performance.

Chapter 11 Describes how to manage file system performance.

Chapter 12 Describes how to monitor and tune memory performance.

Chapter 13 Describes how to manage CPU performance.

xviii About This Manual

Related Documents

The System Administration manual provides information on managing and
monitoring your system. The Programmer’s Guide provides information
on the tools for programming on the Tru64 UNIX operating system. It
also provides information on how to optimize the code used to create an
application program, and how to optimize the results of the build process.
The Asynchronous Transfer Mode manual contains information about tuning
Asynchronous Transfer Mode (ATM).

The following Tru64 UNIX manuals also provide useful, relevant
information:

• Technical Overview

• Network Administration: Connections

• Logical Storage Manager

• AdvFS Administration

• Tru64 UNIX Version 5.1B QuickSpecs

• TruCluster Server Version 5.1B QuickSpecs

• Hardware Management

Icons on Tru64 UNIX Printed Manuals

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the manuals to help specific audiences quickly find the manuals
that meet their needs. (You can order the printed documentation from HP.)
The following list describes this convention:

G Manuals for general users

S Manuals for system and network administrators

P Manuals for programmers

R Manuals for reference page users

Some manuals in the documentation help meet the needs of several
audiences. For example, the information in some system manuals is also
used by programmers. Keep this in mind when searching for information
on specific topics.

The Documentation Overview provides information on all of the manuals in
the Tru64 UNIX documentation set.

About This Manual xix

Reader’s Comments

HP welcomes any comments and suggestions you have on this and other
Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

Please include the following information along with your comments:

• The full title of the manual and the order number. (The order number
appears on the title page of printed and PDF versions of a manual.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate HP technical support office. Information
provided with the software media explains how to send problem reports to
HP.

xx About This Manual

Conventions

The following conventions are used in this manual:

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]

{ | } In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

...
A vertical ellipsis indicates that a portion of an
example that would normally be present is not
shown.

cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

About This Manual xxi

Part 1
Introduction to System Tuning

1
Introduction to System Tuning

Tru64 UNIX offers various tools to monitor system performance. To improve
your system performance, this manual offers tuning recommendations.
Before you modify any system attributes, you should become familar with
the following:

This chapter is an introduction to system tuning and describes the following:

• Hardware configuration (Section 1.1)

• Performance terminology and concepts (Section 1.2)

• Disk storage resources (Section 1.3)

• Network resources (Section 1.4)

• File system resources (Section 1.5)

• Memory resources (Section 1.6)

• CPU resources (Section 1.7)

• Identifying a resource model for your workload (Section 1.8)

• Most commonly tuned kernel subsystems (Section 1.9)

1.1 Hardware Configuration

A configuration consists of system, disk storage, and network hardware,
in addition to the operating system and application software. Different
configurations provide various amounts of CPU power, memory resources,
I/O performance, and storage capacity. Use the configuration guidelines
in this manual to choose the configuration that is appropriate for your
workload, performance, and availability needs.

After you configure the system, you may be able to tune the operating
system to improve performance. Tuning usually involves modifying the
kernel by changing the default values of attributes, which affect the
behavior and performance of kernel subsystems.

The following sections provide some background information about how the
CPU, memory, and I/O configuration affect performance. See the Tru64
UNIX Version 5.1B QuickSpecs and the Technical Overview for information
about hardware and operating system performance features.

Introduction to System Tuning 1–1

1.1.1 Hardware Configuration Overview

We recommend that you create a diagram for your own hardware
configuration to help you understand the hardware environment of your
system. Figure 1–1 shows a sample hardware configuration. It includes the
major hardware components of a system that affect performance, such as the
number of CPUs, host bus adapters, network interface cards, Fibre Channel
switches and connections, and storage arrays.

Figure 1–1: Mapping Out Your Hardware Configuration

Server Tape

Host Bus
Adapters

SAN
Backbone

ZK-1962U-AI

Fibre
Channel

SCSI

HSG 80
Controller A

HSG 80
Controller B

RA8000/ESA12000

Port 1 Port 2

Port 1 Port 2

Fibre Channel SwitchFibre Channel Switch

Modular
Data
Routers

1.2 Performance Terminology and Concepts

System performance depends on an efficient utilization of system resources,
which are the hardware and software components available to users or

1–2 Introduction to System Tuning

applications. A system must perform well under the normal workload
exerted on the system by applications and users.

Because workloads change over time (for example, running additional
applications), a system must be scalable, which refers to a system’s ability
to utilize additional hardware resources with a predictable impact on
performance. Scalability can also refer to the ability of a system to absorb
an increase in workload without a significant performance degradation.

A performance problem in a specific area of the configuration is called a
bottleneck. A bottleneck can occur if the workload demands more from a
resource than its capacity, which is the maximum theoretical throughput
of a system resource.

Performance is often described in terms of two rates. Bandwidth is the
rate at which an I/O subsystem or component can transfer bytes of data.
Bandwidth is often called the transfer rate. Bandwidth is especially
important for applications that perform large sequential data transfers.

Throughput is the rate at which an I/O subsystem or component can
perform I/O operations. Throughput is especially important for applications
that perform many small I/O operations.

Performance is also measured in terms of latency, which is the amount
of time to complete a specific operation. Latency is often called delay.
High-performance systems require a low latency time. I/O latency is
measured in milliseconds; memory latency is measured in nanoseconds.
Memory latency depends on the memory bank configuration and the amount
of memory.

Disk performance is often described in terms of disk access time, which is
a combination of the seek time, the amount of time for a disk head to move
to a specific disk track, and the rotational latency, which is the amount of
time for a disk to rotate to a specific disk sector.

A data transfer can consist of file-system data or raw I/O, which is I/O to a
disk or disk partition that does not contain a file system. Raw I/O bypasses
buffers and caches, and it may provide better performance, in some cases,
than file system I/O. Raw I/O is often used by the operating system and
by database application software.

Data transfers also have different access patterns. A sequential access
pattern is an access pattern in which data is read from or written to
contiguous (adjacent) blocks on a disk. A random access pattern is an
access pattern in which data is read from or written to blocks in different
(usually nonadjacent) locations on a disk.

Introduction to System Tuning 1–3

1.3 Disk Storage Resources
Disk storage configurations vary greatly, so you must determine which
configuration will meet the performance and availability needs of your
applications and users.

Disk storage configurations can consist of single disks with traditional
discrete disk partitions. However, you may want to use the Logical Storage
Manager (LSM) to manage large amounts of disk storage. LSM enables you
to set up a shared pool of storage, and also provides high-performance and
high-availability features, such as RAID support.

Storage configurations can also include hardware RAID subsystems, which
greatly expand the number of disks that can be connected to a single I/O
bus and provide many high-performance and high-availability features,
including RAID support and write-back caches. There are various types of
hardware RAID subsystems that are suitable for different environments.

Host bus adapters, RAID controllers, and disks have various performance
features and support Fibre Channel and different parallel Small Computer
System Interface (SCSI) variants. Fibre Channel and SCSI are device
and interconnect technologies that continue to evolve in terms of high
performance, availability, and configuration flexibility. The following
sections discuss disk storage resources in more detail:

• See Section 1.3.1 for more information about RAID functionality.

• See Section 1.3.2 for more information about SCSI.

• See Section 1.3.3 for more information about Fibre Channel.

• See Chapter 9 for more information about storage configurations.

1.3.1 RAID Technology

You can use redundant array of independent disks (RAID) technology in a
storage configuration for high performance and high data availability. You
can obtain RAID functionality by using Logical Storage Manager (LSM) or a
hardware-based RAID subsystem.

There are four primary RAID levels:

• RAID0 — Also known as data or disk striping, RAID0 divides data into
blocks and distributes the blocks across multiple disks in an array, which
improves throughput. Striping does not provide disk data availability.

• RAID1 — Also known as data or disk mirroring, RAID1 maintains
identical copies of data on different disks in an array. Duplicating data
on different disks provides high data availability and improves disk read
performance. You can combine RAID1 with RAID0 to mirror striped
data or disks.

1–4 Introduction to System Tuning

• RAID3 — A type of parity RAID, RAID3 divides data blocks and
distributes the data across a disk array, providing parallel access to data
and increasing bandwidth. RAID3 also provides data availability by
placing redundant parity information on a separate disk, which is used
to regenerate data if a disk in the array fails.

• RAID5 — A type of parity RAID, RAID5 distributes data blocks across
disks in an array. RAID5 allows independent access to data and can
handle simultaneous I/O operations, which improves throughput. RAID5
provides data availability by distributing redundant parity information
across the array of disks. The parity information is used to regenerate
data if a disk in the array fails.

In addition, high-performance RAID controllers support dynamic parity
RAID (also called adaptive RAID3/5), which combines the benefits of
RAID3 and RAID5 to improve disk I/O performance for a wide variety
of applications. Dynamic parity RAID dynamically adjusts, according
to workload needs, between data transfer-intensive algorithms and I/O
operation-intensive algorithms.

It is important to understand that RAID performance depends on the state
of the devices in the RAID subsystem. There are three possible states:

• Steady state (no failures)

• Failure state (one or more disks have failed)

• Recovery state (subsystem is recovering from failure)

Table 1–1 compares the performance features and degrees of availability
for the different RAID levels.

Table 1–1: RAID Level Performance and Availability Comparison
RAID Level Performance Feature Degree of Availability

RAID0 (striping) Balances I/O load and
improves throughput

Lower than single disk

RAID1 (mirroring) Improves read
performance, but degrades
write performance

Highest

RAID0+1 Balances I/O load and
improves throughput,
but degrades write
performance

Highest

RAID3 Improves bandwidth, but
performance may degrade
if multiple disks fail

Higher than single disk

Introduction to System Tuning 1–5

Table 1–1: RAID Level Performance and Availability Comparison (cont.)

RAID Level Performance Feature Degree of Availability

RAID5 Improves throughput, but
performance may degrade
if multiple disks fail

Higher than single disk

Dynamic parity RAID
(RAID3/5)

Improves bandwidth
and throughput, but
performance may degrade
if multiple disks fail

Higher than single disk

There are many variables to consider when choosing a RAID configuration:

• Not all RAID products support all RAID levels.

For example, only high-performance RAID controllers support dynamic
parity RAID.

• RAID products provide different performance features.

For example, only RAID controllers support write-back caches and
relieve the CPU of the I/O overhead.

• Some RAID configurations are more cost-effective than others.

In general, LSM provides more cost-effective RAID functionality than
hardware RAID subsystems. In addition, parity RAID provides data
availability at a cost that is lower than RAID1 (mirroring), because
mirroring n disks requires 2n disks.

• Data recovery rates depend on the RAID configuration.

For example, if a disk fails, it is faster to regenerate data by using a
mirrored copy than by using parity information. In addition, if you are
using parity RAID, I/O performance declines as additional disks fail.

See Chapter 9 for more information about RAID configurations.

1.3.2 SCSI Concepts

The most common type of SCSI is parallel SCSI, which supports SCSI
variants that provide you with a variety of performance and configuration
options. The SCSI variants are based on data path (narrow or wide), bus
speed (Slow, Fast, Ultra, Ultra2, or Ultra3), and transmission method
(single-ended or differential). These variants determine the bus bandwidth
and the maximum allowable SCSI bus length.

Serial SCSI is the next generation of SCSI. Serial SCSI reduces parallel
SCSI’s limitations on speed, distance, and connectivity (number of devices
on the bus), and also provides availability features like hot swap and fault
tolerance.

1–6 Introduction to System Tuning

Fibre Channel is an example of serial SCSI. A high-performance I/O bus
that supports multiple protocols (SCSI, IPI, FIPS60, TCP/IP, HIPPI, and so
forth), Fibre Channel is based on a network of intelligent switches. Link
speeds are available up to 100 MB/sec in full-duplex mode.

The following sections describe parallel SCSI concepts in detail.

1.3.2.1 Data Paths

Disks, host bus adapters, I/O controllers, and storage enclosures support a
specific data path. The data path and the bus speed determine the actual
bandwidth for a bus. There are two data paths available:

• Narrow data path

Specifies an 8-bit data path. The performance of this mode is limited.
SCSI bus specifications restrict the number of devices on a narrow SCSI
bus to eight.

• Wide data path

Specifies a 16-bit data path for Slow, Fast SCSI, UltraSCSI, Ultra2,
and Ultra3. This mode increases the amount of data that is transferred
in parallel on the bus. SCSI bus specifications restrict the number of
devices on a wide bus to 16.

Disks and host bus adapters that use a wide data path can provide
nearly twice the bandwidth of disks and adapters that use a narrow
data path. Wide devices can greatly improve I/O performance for large
data transfers.

Most current disks support wide data paths. Older disks have versions that
support wide and narrow data paths. Devices with different data paths (or
transmission methods) cannot be directly connected on a single bus. You
must use a SCSI signal converter (for example, a DWZZA or DWZZB) or an
UltraSCSI extender (for example, a DWZZC or DWZZH [SCSI hub]) to
connect devices with different data paths.

1.3.2.2 SCSI Bus Speeds

The SCSI bus speed, also called the transfer rate or bandwidth, is the
number of transfers per second. Faster bus speeds provide the best
performance. Both bus speed and the data path (narrow or wide) determine
the actual bus bandwidth (number of bytes transferred per second).

Not all devices support all bus speeds. To set the bus speed on a host bus
adapter, use either console commands or the Loadable Firmware Update
(LFU) utility, depending on the type of adapter. See the TruCluster Server
Software Version 5.1B QuickSpecs for information about SCSI device support.

Table 1–2 shows the available bus speeds.

Introduction to System Tuning 1–7

Table 1–2: SCSI Bus Speeds
Bus Speed Maximum Transfer

Rate (million
transfers/sec)

Maximum Byte
Transfer Rate:
Narrow (MB/sec)

Maximum Byte
Transfer Rate:
Wide (MB/sec)

Ultra3 80 80 160

Ultra2 40 40 80

UltraSCSI 20 20 40

Fast SCSI 10 10 20

Slow 5 5 10

HP’s implementation of Ultra3 is compatible with and compliant to the Ultra
160/m implementation of the Ultra3 SCSI specification.

Fast SCSI, also called Fast10, is an extension to the SCSI-2 specification.
It uses the fast synchronous transfer option, enabling I/O devices to attain
high peak-rate transfers in synchronous mode.

UltraSCSI, also called Fast20, is a high-performance, extended version
of SCSI-2 that reduces many performance and configuration deficiencies
of Fast SCSI. Compared to Fast SCSI bus speed, UltraSCSI doubles the
bandwidth and configuration distances, but with no increase in cost.
UltraSCSI also provides faster transaction times and faster, more accurate
data analysis. All UltraSCSI components are backward compatible with
regular SCSI-2 components.

1.3.2.3 Transmission Methods

The transmission method for a bus refers to the electrical implementation
of the SCSI specification. Supported transmissions methods include:

• Single-ended (SE) SCSI

Used to connect devices that are usually located within the same cabinet.
Single-ended SCSI usually requires short cable lengths.

A single-ended SCSI bus uses one data lead and one ground lead for
the data transmission. A single-ended receiver looks at only the signal
wire as the input. The transmitted signal arrives at the receiving end of
the bus on the signal wire slightly distorted by signal reflections. The
length and loading of the bus determine the magnitude of this distortion.
Therefore, the single-ended transmission method is economical, but it
is more susceptible to noise than the differential transmission method
and requires short cables.

• Differential SCSI

Used to connect devices that are up to 25 meters apart.

1–8 Introduction to System Tuning

A differential SCSI bus uses two wires to transmit a signal. The two
wires are driven by a differential driver that places a signal on one
wire (+SIGNAL) and another signal that is 180 degrees out of phase
(-SIGNAL) on the other wire. The differential receiver generates a
signal output only when the two inputs are different. Because signal
reflections are virtually the same on both wires, they are not seen by the
receiver, which notices only differences on the two wires. The differential
transmission method is less susceptible to noise than single-ended SCSI
and enables you to use long cables.

You cannot directly connect SE and differential devices on the same
bus. To connect SE and differential devices on the same bus you must
use an UltraSCSI extender.

• Low Voltage Differential (LVD) SCSI

Same as differential SCSI, but uses low voltage and you can directly
connect SE and LVD SCSI drives on the same SCSI bus.

When SE and LVD SCSI devices are connected on the same SCSI bus,
performance is limited to SE SCSI operation (40 MB/sec) for all devices
on the SCSI bus (for that particular SCSI channel). According to the
rules of SCSI, to maintain a true LVD SCSI bus and its associated
performance, only LVD SCSI drives can be on the same LVD SCSI
channel. However, this does not prevent the support of dedicated SE
channels and dedicated LVD channels, all on a single array controller.

Ultra2 and Ultra3 devices operate on the LVD electrical platform. When
Ultra2 and Ultra3 devices are connected on the same Ultra3 SCSI bus,
the Ultra2 devices will transfer data up to 80 MB/sec, while the Ultra3
devices will transfer data up to 160 MB/sec. If the SCSI bus is only
capable of supporting Ultra2, all LVD devices will have a maximum
transfer of 80 MB/sec.

1.3.2.4 Extending UltraSCSI Bus Segments

UltraSCSI devices can be either single-ended or differential. Because
of UltraSCSI’s high bus speed, single-ended UltraSCSI signals cannot
maintain their strength and integrity over the same distance as single-ended
Fast SCSI signals. Therefore, UltraSCSI technology uses bus segments
and bus extenders so that systems and storage can be configured over
long distances.

An UltraSCSI bus extender joins two bus segments together without any
impact on SCSI protocol. A bus segment is defined as an unbroken electrical
path consisting of conductors (in cables or backplanes) and connectors. Every
UltraSCSI bus segment must have two terminators, one at each end of the
bus segment. Therefore, an UltraSCSI bus segment corresponds to an entire
bus in Fast SCSI. The SCSI domain is the collection of SCSI devices on all

Introduction to System Tuning 1–9

the bus segments. As with a Fast SCSI bus, an UltraSCSI bus segment can
only support devices of the same type (single-ended or differential).

Although UltraSCSI components allow an UltraSCSI domain to extend for
longer distances than a Fast SCSI bus, there are still limits. Also, because
the use of bus expanders allows UltraSCSI domains to look like a tree
instead of a straight line, the concept of bus length must be replaced with
the concept of the UltraSCSI domain diameter.

1.3.2.5 SCSI Bus Length and Termination

There is a limit to the length of the cables in a SCSI bus. The maximum cable
length depends on the bus speed and the transmission method (single-ended
or differential). The total cable length for a physical bus or UltraSCSI bus
segment is calculated from one terminated end to the other.

In addition, each SCSI bus or bus segment must be terminated only at
each end. Improper bus termination and lengths are a common cause of
bus malfunction.

If you are using devices that have the same transmission method and
data path (for example, wide and differential), a bus will consist of only
one physical bus (or multiple bus fragments in the case of UltraSCSI). If
you have devices with different transmission methods, you will have both
single-ended and differential physical buses or bus segments, each of which
must be terminated only at both ends and adhere to the rules on bus length.

Table 1–3 shows the maximum bus lengths for different bus speeds and
transmission methods.

Table 1–3: SCSI Bus and Segment Lengths
Bus Speed Transmission Method Maximum Bus or Segment

Length

Slow Single-ended 6 meters

Fast Single-ended 3 meters

Fast Differential 25 meters

Ultra Differential 25 meters

Ultra Single-ended 1.5 meters (daisy-chain
configuration in which
devices are spaced less
than 1 meter apart)

1–10 Introduction to System Tuning

Table 1–3: SCSI Bus and Segment Lengths (cont.)

Bus Speed Transmission Method Maximum Bus or Segment
Length

Ultra Single-ended 4 meters (daisy-chain
configuration in which
devices are spaced more
than 1 meter apart)

Ultra Single-ended 20 meters (point to point
configuration in which
devices are only at the ends
of the bus segment)

Note that the total length of a physical bus must include the amount of cable
that is located inside each system and disk storage shelf. This length varies,
depending on the device. For example, the length of cable inside a BA350,
BA353, or BA356 storage shelf is approximately 1.0 meter.

1.3.3 Fibre Channel

Fibre Channel supports multiple protocols over the same physical interface.
Fibre Channel is primarily a protocol-independent transport medium;
therefore, it is independent of the function for which you use it.

Tru64 UNIX uses the Fibre Channel Protocol (FCP) for SCSI to use Fibre
Channel as the physical interface.

Fibre Channel, with its serial transmission method, overcomes the
limitations of parallel SCSI by providing:

• Data rates of 100 MB/sec, 200 MB/sec, and 400 MB/sec

• Support for multiple protocols

• Better scalability

• Improved reliability and availability

Fibre Channel uses an extremely high-transmit clock frequency to achieve
the high data rate. Using optical fiber transmission lines allows the
high-frequency information to be sent up to 40 kilometers (24.85 miles),
which is the maximum distance between transmitter and receiver. Copper
transmission lines may be used for shorter distances.

The following sections describe Fibre Channel in more detail:

• Fibre Channel topologies (Section 1.3.3.1)

• Fibre Channel topology comparison (Section 1.3.3.2)

• Zoning (Section 1.3.3.3)

Introduction to System Tuning 1–11

1.3.3.1 Fibre Channel Topologies

Fibre Channel supports three different interconnect topologies:

• Point-to-point (Section 1.3.3.1.1)

• Fabric (Section 1.3.3.1.2)

• Arbitrated loop (Section 1.3.3.1.3)

______________________ Note _______________________

Although you can interconnect an arbitrated loop with the fabric,
hybrid configurations are not currently supported; therefore,
those configurations are not discussed in this manual.

1.3.3.1.1 Point-to-Point Topology

The point-to-point topology is the simplest Fibre Channel topology. In a
point-to-point topology, one N_Port is connected to another N_Port by a
single link.

Because all frames transmitted by one N_Port are received by the other
N_Port, and in the same order in which they were sent, frames require no
routing.

Figure 1–2 shows an example point-to-point topology.

Figure 1–2: Point-to-Point Topology

N_Port N_Port

Transmit

Receive

Node 1 Node 2

Transmit

Receive

ZK-1534U-AI

1.3.3.1.2 Fabric Topology

The fabric topology provides more connectivity than point-to-point topology.
The fabric topology can connect up to 224 ports.

The fabric examines the destination address in the frame header and routes
the frame to the destination node.

1–12 Introduction to System Tuning

A fabric may consist of a single switch, or there may be several
interconnected switches (up to three interconnected switches are supported).
Each switch contains two or more fabric ports (F_Ports) that are internally
connected by the fabric switching function, which routes the frame from one
F_Port to another F_Port within the switch. Communication between two
switches is routed between two expansion ports (E_Ports).

When an N_Port is connected to an F_Port, the fabric is responsible for the
assignment of the Fibre Channel address to the N_Port attached to the
fabric. The fabric is also responsible for selecting the route a frame will take,
within the fabric, to be delivered to the destination.

When the fabric consists of multiple switches, the fabric can determine an
alternate route to ensure that a frame gets delivered to its destination.

Figure 1–3 shows an example fabric topology.

Figure 1–3: Fabric Topology

N_Port

Node 1

Node 2

Transmit

Receive

Transmit

Receive

Transmit

Receive

Transmit

Receive

Transmit

Receive

Transmit

Receive

Transmit

Receive

Transmit

Receive

F_Port

Fabric

Node 3

Node 4

F_Port

F_PortF_Port N_Port

N_Port

N_Port

ZK-1536U-AI

1.3.3.1.3 Arbitrated Loop Topology

In an arbitrated loop topology, frames are routed around a loop set up by
the links between the nodes. The hub maintains loop continuity by bypassing
a node when the node or its cabling fails, when the node is powered down,
or when the node is removed for maintenance. The hub is transparent to the
protocol. It does not consume any Fibre Channel arbitrated loop addresses
so it is not addressable by a Fibre Channel arbitrated loop port.

The nodes arbitrate to gain control (become master) of the loop. After a node
becomes the master, the nodes select (by way of setting bits in a bitmask)

Introduction to System Tuning 1–13

their own Arbitrated Loop Physical Address (AL_PA). The AL_PA is used
to address nodes on the loop. The AL_PA is dynamic and can change each
time the loop is initialized, a node is added or removed, or at any other time
that an event causes the membership of the loop to change. When a node is
ready to transmit data, it transmits Fibre Channel primitive signals that
include its own identifying AL_PA.

In the arbitrated loop topology, a node port is called an NL_Port (node loop
port), and a fabric port is called an FL_Port (fabric loop port).

Figure 1–4 shows an example of an arbitrated loop topology.

Figure 1–4: Arbitrated Loop Topology

NL_Port NL_Port

Node 1

Node 2

NL_Port NL_Port

Transmit

Receive

Transmit

Receive Transmit

Receive

Transmit

Receive

Node 3

Node 4

Hub

ZK-1535U-AI

1.3.3.2 Fibre Channel Topology Comparison

This section compares and contrasts the fabric and arbitrated loop topologies,
and describes why you might choose to use them.

When compared with the fabric (switched) topology, arbitrated loop is a
lower cost, and lower performance, alternative. Arbitrated loop reduces
Fibre Channel cost by substituting a lower-cost, often nonintelligent and
unmanaged hub, for a more expensive switch. The hub operates by collapsing
the physical loop into a logical star. The cables, associated connectors, and
allowable cable lengths are similar to those of a fabric. Arbitrated loop
supports a theoretical limit of 127 nodes in a loop. Arbitrated loop nodes are
self-configuring and do not require Fibre Channel address switches.

1–14 Introduction to System Tuning

Arbitrated loop provides reduced cost at the expense of bandwidth; all
nodes in a loop share the bandwidth (100 MB/sec per loop), and bandwidth
degrades slightly as nodes and cables are added. Nodes on the loop see
all traffic on the loop, including traffic between other nodes. The hub can
include port-bypass functions that manage movement of nodes on and off the
loop. For example, if the port bypass logic detects a problem, the hub can
remove that node from the loop without intervention. Data availability is
then preserved by preventing the down time associated with node failures,
cable disconnections, and network reconfigurations. However, traffic caused
by node insertion and removal, errors, and so forth, can cause temporary
disruption on the loop.

Although the fabric topology is more expensive, it provides both increased
connectivity and higher performance; switches provide a full-duplex 100
(200) MB/sec point-to-point connection to the fabric. Switches also provide
improved performance and scaling because nodes on the fabric see only
data destined for themselves, and individual nodes are isolated from
reconfiguration and error recovery of other nodes within the fabric. Switches
can provide management information about the overall structure of the
Fibre Channel fabric, which may not be the case for an arbitrated loop hub.

Table 1–4 compares the fabric and arbitrated loop topologies.

Table 1–4: Fibre Channel Fabric and Arbitrated Loop Comparison
When to Use Arbitrated Loop When to Use Fabric

In clusters of up to two members In clusters of more than two members

In applications where low total solution
cost and simplicity are key requirements

In multinode cluster configurations when
possible temporary traffic disruption due
to reconfiguration or repair is a concern

In applications where the shared
bandwidth of an arbitrated loop
configuration is not a limiting factor

In high bandwidth applications where
a shared arbitrated loop topology
is not adequate

In configurations where expansion and
scaling are not anticipated

In cluster configurations where
expansion is anticipated and requires
performance scaling

1.3.3.3 Zoning

This section provides a brief overview of zoning.

A zone is a logical subset of the Fibre Channel devices that are connected
to the fabric. Zoning allows partitioning of resources for management and
access control. In some configurations, it may provide for more efficient use
of hardware resources by allowing one switch to serve multiple clusters or
even multiple operating systems. Zoning entails splitting the fabric into
zones, where each zone is essentially a virtual fabric.

Introduction to System Tuning 1–15

Zoning may be used:

• When you want to set up barriers between systems of different operating
environments or uses; for example, to allow two clusters to utilize the
same switch.

• To create test areas that are separate from the rest of the fabric.

• To provide better utilization of a switch by reducing the number of
unused ports.

______________________ Note _______________________

Any initial zoning must be made before connecting the host bus
adapters and the storage to the switches. However, after zoning is
configured, changes can be made dynamically.

1.3.3.3.1 Switch Zoning Versus Selective Storage Presentation

Switch zoning and the selective storage presentation (SSP) feature
of the HSG80 controllers have similar functions.

Switch zoning controls which servers can communicate with each other
and each storage controller host port. SSP controls which servers will have
access to each storage unit.

Switch zoning controls access at the storage system level; SSP controls
access at the storage unit level.

The following configurations require zoning or selective storage presentation:

• When you have a TruCluster Server cluster in a storage array network
(SAN) with other standalone systems (UNIX or non-UNIX), or other
clusters.

• Any time you have Windows NT or Windows 2000 in the same SAN
with Tru64 UNIX. (Windows NT or Windows 2000 must be in a separate
switch zone.)

• The SAN configuration has more than 64 connections to an RA8000,
ESA12000, MA6000, MA8000, or EMA12000.

The use of selective storage presentation is the preferred way to control
access to storage (so zoning is not required).

1–16 Introduction to System Tuning

1.3.3.3.2 Types of Zoning

There are two types of zoning, soft and hard:

• Soft zoning is a software implementation that is based on the Simple
Name Server (SNS) enforcing a zone. Zones are defined by either
the node or port World Wide Names (WWN), or the domain and port
numbers in the form of D,P, where D is the domain and P is the physical
port number on the switch.

A host system requests a list of all adapters and storage controllers that
are connected to the fabric. The name service provides a list of all ports
that are in the same zone or zones as the requesting host bus adapter.

Soft zoning only works if all hosts honor it; it does not work if a host is
not programmed to allow for soft zoning. For example, if a host tries to
access a controller that is outside the zone, the switch does not prevent
the access.

Tru64 UNIX honors soft zoning and does not attempt to access devices
outside the zone.

If you have used the WWN to define the zone and replace a KGPSA host
bus adapter, you must modify the zone configuration and SSP because
the node WWN has changed.

• With hard zoning, zones are enforced at the physical level across all
fabric switches by hardware blocking of the Fibre Channel frames.
Hardware zone definitions are in the form of D,P, where D is the domain
and P is the physical port number on the switch. An example might
be 1,2 for switch 1, port 2.

If a host attempts to access a port that is outside its zone, the switch
hardware blocks the access.

You must modify the zone configuration when you move any cables from
one port to another within the zone.

If you want to guarantee that there is no access outside any zone, either use
hard zoning, or use operating systems that state they support soft zoning.

Table 1–5 lists the types of zoning that are supported on each of the
supported Fibre Channel switches.

Table 1–5: Type of Zoning Supported by Switches
Switch Type Type of Zoning Supported

DS-DSGGA Soft

DS-DSGGB Soft and Hard

DS-DSGGC Soft and Hard

Introduction to System Tuning 1–17

1.3.3.3.3 Zoning Example

Figure 1–5 shows a sample configuration using zoning. This configuration
consists of two independent zones with each zone containing an independent
cluster.

Figure 1–5: A Simple Zoned Configuration

Fibre Channel Switch

0 2 4 6 8 10 12 14

ZK-1709U-AI

HSG 80
Controller A

HSG 80
Controller B

RA8000/ESA12000

Port 1

Port 1

Port 2

Port 2

HSG 80
Controller A

HSG 80
Controller B

RA8000/ESA12000

Port 1

Port 1

Port 2

Port 2

1 3 5 7 9 11 13 15

KGPSA

Cluster 1
Member
System 1

KGPSA

Cluster 1
Member
System 2

KGPSA

Cluster 2
Member
System 1

KGPSA

Cluster 2
Member
System 2

Cluster
Interconnect

Cluster
Interconnect

For information on setting up zoning, see the SAN Switch Zoning
documentation that is provided with the switch.

See the Cluster Hardware Configuration manual for more information.

1.3.3.4 Cascaded Switches

Multiple switches may be connected to each other to form a network of
switches, or cascaded switches.

1–18 Introduction to System Tuning

A cascaded switch configuration, which allows for network failures up to and
including the switch without losing a data path to a SAN connected node,
is called a mesh or meshed fabric.

Figure 1–6 shows an example meshed resilient fabric with four cascaded
interconnected switches. This configuration will tolerate multiple data path
failures, and is an NSPOF (no single point of failure) configuration.

Figure 1–6: Meshed Resilient Fabric with Four Cascaded Switches

HSG 80
Controller A

HSG 80
Controller B

RA8000/ESA12000

Port 1 Port 2

Port 1 Port 2

Fibre Channel Switch

Fibre Channel SwitchFibre Channel Switch

Fibre Channel Switch

ZK-1794U-AI

Cluster
Interconnect

Member
System

1

KGPSA

KGPSA

Member
System

2

KGPSA

KGPSA

Introduction to System Tuning 1–19

______________________ Note _______________________

If you lose an ISL, the communication can be routed through
another switch to the same port on the other controller. This can
constitute the maximum allowable two hops.

See the Cluster Hardware Configuration manual for more information on
Fibre Channel.

1.4 Network Resources
Systems support various networks and network adapters that provide
different performance features. For example, an Asynchronous Transfer
Mode (ATM) high-performance network is ideal for applications that
need the high speed and the low latency (switched, full-duplex network
infrastructure) that ATM networks provide.

In addition, you can configure multiple network adapters or use NetRAIN to
increase network access and provide high network avialability.

Your system is connected to the network through a Network Interface
Card (NIC) (which is also called a network interface or network
adapter). End systems or hosts can have the following interface options:

• Single interface in a subnet

• Multiple interfaces in a subnet

• Multiple interfaces with automatic failover (NetRAIN)

• Multiple aggregated interfaces (link aggregation)

Routers typically have multiple interfaces, each connected to a different
subnet. Figure 1–7 shows a network with two hosts, Host A and Host B,
each with a single network interface in a subnet.

Figure 1–7: Single Interface Configuration

ZK-1815U-AI

Host A

Host B

16.1.1.2

16.1.1.1

The following sections discuss network resources that are important to
improve system performance.

1–20 Introduction to System Tuning

1.4.1 Network Subsystem

Most resources used by the network subsystem are allocated and adjusted
dynamically; however, there are some tuning guidelines that you can use to
improve performance, particularly with systems that are Internet servers,
including Web, proxy, firewall, and gateway servers.

Network performance is affected when the supply of resources is unable to
keep up with the demand for resources. The following two conditions can
cause this to occur:

• A problem with one or more hardware or software network components

• A workload (network traffic) that consistently exceeds the capacity of
the available resources, although everything appears to be operating
correctly

Neither of these problems are network tuning issues. In the case of a
problem on the network, you must isolate and eliminate the problem. In the
case of high network traffic (for example, the hit rate on a Web server has
reached its maximum value while the system is 100 percent busy), you must
either redesign the network and redistribute the load, reduce the number of
network clients, or increase the number of systems handling the network
load.

1.4.2 Using Redundant Networks

Network connections may fail because of a failed network interface or
a problem in the network itself. You can make the network connection
highly available by using redundant network connections. If one connection
becomes unavailable, you can still use the other connection for network
access. Whether you can use multiple networks depends on the application,
network configuration, and network protocol.

You can also use NetRAIN (redundant array of independent network
adapters) to configure multiple interfaces on the same LAN segment into
a single interface, and to provide failover support for network adapter
and network connections. One interface is always active while the other
interfaces remain idle. If the active interface fails, an idle interface is
brought on line within less than 10 seconds.

NetRAIN supports only Ethernet and FDDI, see Section 1.4.3 for more
information about NetRAIN.

See nr(7) for more information about NetRAIN. See the Network
Administration: Connections guide for information about network
configuration. See Chapter 10 for information about improving network
performance.

Introduction to System Tuning 1–21

1.4.3 NetRAIN

The Redundant Array of Independent Network Adaptors (NetRAIN)
interface provides a mechanism to protect against certain kinds of network
connectivity failures.

NetRAIN integrates multiple network interfaces on the same local area
network (LAN) segment into a single virtual interface called a NetRAIN
set. One network interface in the set is always active while the others
remain idle. If the active interface fails, one of the idle set members comes
on line with the same IP address within an adjustable failover time period.
Figure 1–8 shows Host A with three interfaces that are part of a NetRAIN
set. The NetRAIN virtual interface is assigned the address 16.1.1.1.

Figure 1–8: Mulitple Interfaces

ZK-1817U-AI

Host A

Host B

16.1.1.2

16.1.1.1 16.1.1.3

Host C

NetRAIN monitors the status of its network interfaces with the Network
Interface Failure Finder (NIFF), a tool used to detect and report possible
network failures. This tool can be used independently of NetRAIN. For more
information about NIFF, see NIFF(7).

1.4.4 Routing

All systems (hosts and routers) connected to a network must be configured
to support network routing in order to communicate with other systems on
other networks. A route is the path a packet takes through a network from
one system to another. As such it enables you to communicate with other
systems on other networks. Routes are stored on each system in the routing
tables or routing database. Each route entry consists of the following:

• A destination address (either a network or a host)

• The address of the next hop from your system to the destination

• The address of your system on the network if the route is through an
interface

• A network interface (for example, tu0 and fta0)

1–22 Introduction to System Tuning

• Metrics (for example, hop count and MTU)

Additional routes might be added to your routing tables based on Internet
Control Message Protocol (ICMP) redirect messages. These are messages
from routers to hosts that tell the host to forward traffic to another router
on the local network.

1.4.5 LAG Interface

Link aggregation (LAG) interfaces provide higher availability, fault
tolerance, and load sharing on systems that contain multiple network
adapters. Link aggregation, or trunking, also enables administrators to
combine one or more physical Ethernet NICs and create a single logical link.
(Upper-layer software sees this link aggregation group as a single logical
interface.) The single logical link can carry traffic at higher data rates than
a single interface because the traffic is distributed across all of the physical
ports that make up the link aggregation group.

Using link aggregation provides the following capabilities:

• Increased network bandwidth — The increase is incremental based on
the number and type of ports, or NICs, added to the link aggregation
group.

• Fault tolerance — If a port in a link aggregation group fails, the software
detects the failure and reroutes traffic to the other available ports. This
capability is available for DEGPA (alt) and DE60x (ee) devices only.

• Load sharing — A link aggregation group performs load sharing of both
inbound and outbound traffic. When transmitting packets, the system
uses a load distribution algorithm to determine on which attached port
to transmit the packets.

You can use a link aggregation group virtual interface for the following
point-to-point connections: server-to-server and server-to-switch. For more
information see the Network Administration: Connections guide.

1.5 File System Resources
File-system tuning is important for the Advanced File System (AdvFS) and
the Network File System (NFS). In general, file-system tuning will improve
the performance of I/O-intensive user applications. The following sections
discuss the file system resources for AdvFS, UNIX File System (UFS), and
NFS.

1.5.1 Using AdvFS

The Advanced File System (AdvFS) file system differs from the traditional
UNIX File System (UFS). With AdvFS you can modify your system

Introduction to System Tuning 1–23

configuration at any time without shutting down the system. Because AdvFS
with AdvFS utilities supports a multivolume file system, you can easily add
or remove storage as your system requirements change. In addition, Logical
Storage Manager (LSM) volumes and storage area networks (SANs) can
be used for AdvFS storage.

In contrast, the UFS model is rigid. Each disk (or disk partition) contains
a single file system. The directory hierarchy layer of UFS is bound tightly
to the physical storage layer. When a file system becomes full, this tight
binding makes it impossible to move selected files onto another disk
without changing the full pathnames of those files. The task of dividing
a logical directory into directory subtrees and mapping the subtrees onto
separate disks requires careful consideration. Even with extensive planning,
adjustments to the directory structure are limited with the UFS model.

1.5.1.1 Using the UBC

Caching improves performance when data is reused frequently. AdvFS
uses a dynamic memory cache called the Unified Buffer Cache (UBC) to
manage file metadata and user data.

By using the UBC for caching, AdvFS can maintain file data in memory
as long as memory is available. If other system resources require some of
the memory in use by the file system cache, the UBC can reclaim some of
the memory used by the file system and reissue the needed memory to the
resource requiring it.

Because AdvFS uses the UBC to control caching, the cache is tuned with the
UBC tunable parameters. These include:

• Variables that modify the maximum percentage of physical memory
that the UBC can use at one time.

• The percentage of pages that must be dirty before the UBC starts writing
them to disk.

• The maximum amount of memory allocated to the UBC that can be used
to cache a single file.

See Chapter 11 for the guidelines to modify these parameters.

1.5.2 Using NFS

The network file system (NFS) allows users to access files transparently
across networks. The NFS supports a spectrum of network topologies, from
small and simple networks to large and complex networks. The NFS shares
the Unified Buffer Cache (UBC) with the virtual memory subsystem and
local file systems.

1–24 Introduction to System Tuning

File-system tuning is important for NFS because processing NFS requests
consumes the majority of CPU and wall clock time. Ideally, the UBC hit rate
should be high. Increasing the UBC hit rate can require additional memory
or a reduction in the size of other file-system caches.

NFS uses a simple stateless protocol, which requires that each client request
be complete and self-contained and that the server completely process each
request before sending an acknowledgment back to the client.

Improving performance on a system that is used only for serving NFS
differs from tuning a system that is used for general timesharing, because
an NFS server runs only a few small user-level programs, which consume
few system resources. There is minimal paging and swapping activity, so
memory resources should be focused on caching file system data.

See Chapter 5 and Chapter 10 for more information on NFS tuning.

1.6 Memory Resources

Sufficient memory resources are vital to system performance. Configurations
running CPU and memory-intensive applications often require very-large
memory (VLM) systems that utilize 64-bit architecture, multiprocessing,
and at least 2 GB of memory. Very-large database (VLDB) systems are VLM
systems that also utilize complex storage configurations.

The total amount of physical memory is determined by the capacity of
the memory boards installed in your system. The virtual memory (vm)
subsystem tracks and manages this memory in 8-KB portions called pages,
distributing them among the following areas:

• Static wired memory

Allocated at boot time and used for operating system data and text and
for system tables, static wired memory is also used by the metadata
buffer cache, which holds recently accessed UNIX File System (UFS) and
CD-ROM File System (CDFS) metadata.

• Dynamically wired memory

Dynamically wired memory is used for dynamically allocated data
structures, such as system hash tables. User processes also allocate
dynamically wired memory for address space by using virtual memory
locking interfaces, including the mlock function. The amount of
dynamically wired memory varies according to the demand. The vm
subsystem attribute vm_syswiredpercent specifies the maximum
amount of memory that a user process can wire (by default, this is 80
percent of physical memory).

• Physical memory for processes and data caching

Introduction to System Tuning 1–25

Physical memory that is not wired is referred to as pageable memory.
It is used for processes’ most-recently accessed anonymous memory
(modifiable virtual address space) and file-backed memory (memory
that is used for program text or shared libraries). Pageable memory is
also used to cache the most-recently accessed UFS file system data for
reads and writes and for page faults from mapped file regions, in addition
to AdvFS metadata and file data. The virtual memory subsystem
allocates physical pages according to the process and file system demand.

Figure 1–9 shows the division of physical memory.

Figure 1–9: Physical Memory Usage

Static
wired
memory

ZK-1359U-AI

Dynamically
wired
memory
(size can
change)

Memory shared by processes
and the UBC (subject to
paging and swapping)

1.6.1 Paging and Swapping

Physical memory is a resource that all active processes use. Often there is
not enough physical memory to accommodate all active processes on the
system. To provide more physical memory, the vm subsystem monitors
the amount of available physical memory and might transfer pages to a
secondary memory device called a swap device. A swap device is a block
device in a configured section of a disk. The kernel retrieves pages from a
swap device on demand when a process references the pages. This memory
management policy is called paging.

Under heavy loads, an entire process might be transferred to a swap device.
A process called the swapper manages the transfer of pages between physical
memory and a swap device. This memory management policy is called
swapping.

See Chapter 12 for more information on how to tune attributes that relate to
paging and swapping.

1.6.2 Caching Data

The kernel caches (temporarily stores) in memory recently accessed data.
Caching data is effective because data is frequently reused and it is much

1–26 Introduction to System Tuning

faster to retrieve data from memory than from disk. When the kernel
requires data, it checks if the data was cached. If the data was cached, it
is returned immediately. If the data was not cached, it is retrieved from
disk and cached. File system performance is improved if the cached data
is later reused.

Cached data can be information about a file, user or application data, or
metadata, which is data that describes an object for example, a file. The
following list identifies the types of data that are cached:

• A file name and its corresponding vnode is cached in the namei cache
(Section 11.1.2).

• UFS user and application data and AdvFS user and application data and
metadata are cached in the Unified Buffer Cache (UBC) (Section 11.1.3).

• UFS metadata is cached in the metadata buffer cache (Section 11.1.4).

• AdvFS open file information is cached in access structures
(Section 11.1.5).

1.7 CPU Resources

CPUs support different processor speeds and onboard cache sizes. In
addition, you can choose single-CPU systems or multiprocessor systems,
which allow two or more processors to share common physical memory.
Environments that are CPU-intensive, such as large database environments,
require multiprocessing systems to handle the workload.

An example of a multiprocessing system is a symmetrical multiprocessing
(SMP) system, in which the CPUs execute the same version of the operating
system, access common memory, and execute instructions simultaneously.

When programs are executed, the operating system moves data and
instructions through CPU caches, physical memory, and disk swap space.
Accessing the data and instructions occurs at different speeds, depending on
the location. Table 1–6 describes the various hardware resources.

Introduction to System Tuning 1–27

Table 1–6: Memory Management Hardware Resources
Resource Description

CPU chip caches Various internal caches reside in the CPU
chip. They vary in size, up to a maximum
of 64 KB, depending on the processor.
These caches include the translation
look aside buffer, the high-speed internal
virtual-to-physical translation cache, the
high-speed internal instruction cache,
and the high-speed internal data cache.

Secondary cache The secondary direct-mapped physical
data cache is external to the CPU, but
usually resides on the main processor
board. Block sizes for the secondary
cache vary from 32 bytes to 256 bytes
(depending on the type of processor).
The size of the secondary cache ranges
from 128 KB to 8 MB.

Tertiary cache The tertiary cache is not available on all
Alpha CPUs; otherwise, it is identical
to the secondary cache.

Physical memory The actual amount of physical
memory varies.

Swap space Swap space consists of one or more disks
or disk partitions (block special devices).

The hardware logic and the Privileged Architecture Library (PAL) code
control much of the movement of addresses and data among the CPU cache,
the secondary and tertiary caches, and physical memory. This movement is
transparent to the operating system.

Movement between caches and physical memory is significantly faster than
movement between disk and physical memory, because of the relatively
slow speed of disk I/O. Applications should utilize caches and avoid disk
I/O operations whenever possible.

Figure 1–10 shows how instructions and data are moved among various
hardware components during program execution, and shows the machine
cycles needed to access data and instructions from the hardware locations.

1–28 Introduction to System Tuning

Figure 1–10: Moving Instructions and Data Through the Memory Hardware

ZK-1362U-AI

Main processor board

Tertiary cache
(optional)

Memory boards

Registers

Secondary
cache

Internal data
and instruction

caches

<1

1

5

10

25 - 50

1,000,000

Approximate
number of machine

cycles that are needed
to access data and
instructions from
different locations

CPU
chip

Disk
data

Swap
space

For more information on the CPU, secondary cache, and tertiary cache, see
the Alpha Architecture Reference Manual.

There are several ways that you can optimize CPU performance. You can
reschedule processes or use the Class Scheduler to allocate a percentage of
CPU time to a task or application. This allows you to reserve a majority of
CPU time for important processes, while limiting CPU usage by less critical
processes. See Section 13.2.2 for more information.

Introduction to System Tuning 1–29

1.8 Identifying a Resource Model for Your Workload

Before you can plan or tune a configuration, you must identify a resource
model for your workload. That is, you must determine if your applications
are memory-intensive or CPU-intensive, and how they perform disk and
network I/O. This information will help you to choose the configuration and
tuning guidelines that are appropriate for your workload.

For example, if a database server performs large sequential data transfers,
choose a configuration that provides high bandwidth. If an application
performs many disk write operations, you may not want to choose a RAID1
(mirrored) configuration.

Use Table 1–7 to help you determine the resource model for your workload
and identify a possible configuration solution for each model.

Table 1–7: Resource Models and Possible Configuration Solutions
Resource Model Configuration Solution

CPU-intensive Multiprocessing system, fast CPUs, or
hardware RAID subsystem

Memory-intensive VLM system or large onboard CPU cache

Requires large amount of disk storage System with a large I/O capacity, LSM,
or hardware RAID subsystem

Requires low disk latency Solid-state disks, fast disks, RAID
array, or Fibre Channel

Requires high throughput Solid-state disks, high-performance SCSI
adapters, striping, RAID5, or dynamic
parity RAID (adaptive RAID3/5)

Requires high bandwidth Solid-state disks, high-performance
adapters, wide devices, RAID3, or
dynamic parity RAID

Performs many large sequential
data transfers

High-performance disks, wide devices,
striping, parity RAID

Performs many small data transfers RAID5

Issues predominantly read transfers Mirroring, RAID5, or striping

Issues predominantly write transfers Prestoserve or write-back cache

Performs many network operations Multiple network adapters, NetRAIN,
or high-performance adapters

Application must be highly available Cluster

Data must be highly available Mirroring (especially across different
buses) or parity RAID

Network I/O-intensive Multiple network adapters or NetRAIN

1–30 Introduction to System Tuning

1.9 Most Commonly Tuned Subsystems

This manual describes how to tune many subsystem attributes. We
recommend tuning only those attributes that are specific to your system and
performance problem. The five most commonly tuned subsystems are:

• Virtual Memory (vm)

new_wire_method (Section 4.4.1.1)
rad_gh_regions (Section 4.4.1.2)
gh_chunks (Section 4.4.1.2.2)
ubc_maxpercent (Section 4.4.1.3)
ubc_borrowpercent (Section 4.4.1.4)
vm_ubcseqstartpercent (Section 4.4.1.6)
vm_ubcdirtypercent (Section 4.4.1.7)
vm_swap_eager (Section 4.4.1.8)

• Interprocess Communication (ipc)

ssm_threshold (Section 4.4.4.1)
shm_max (Section 4.4.4.2)
shm_min (Section 4.4.4.3)
shm_mni (Section 4.4.4.4)
shm_seg (Section 4.4.4.5)

• Process (proc)

per_proc_stack_size (Section 4.4.6.1)
max_per_proc_stack_size (Section 4.4.6.2)
per_proc_data_size (Section 4.4.6.3)
max_per_proc_data_size (Section 4.4.6.4 and Section 6.2.2.4)
per_proc_address_space (Section 4.4.6.5)
max_per_proc_address_space (Section 4.4.6.6 and
Section 6.2.2.5)
max_proc_per_user (Section 4.4.6.7 and Section 6.2.2.2)
max_threads_per_user (Section 4.4.6.8 and Section 6.2.2.3)
maxusers (Section 4.4.6.9 and Section 6.2.2.1)

• Internet (inet)

udp_sendspace (Section 4.4.5.1)
udp_recvspace (Section 4.4.5.2)
udp_unserreserved (Section 4.4.5.3)
tcbhashsize (Section 6.2.1.1)
pmtu_enabled (Section 6.2.1.2)
ipport_userreserved (Section 6.2.1.3)

Introduction to System Tuning 1–31

• Socket (socket)

somaxconn (Section 6.2.3.1)
sominconn (Section 6.2.3.2)
sbcompress-threshold (Section 6.2.3.3)

This manual describes how to tune your system by application type and
component. Before tuning your system, you need to understand your system
hardware configuration (see Section 1.1 for more information). The most
commonly tuned subsystems are mentioned throughout this manual, but
only tune those attributes that are related to your performance problem.

The following chapters describe which attributes to tune for improving
system performance:

• Tuning by Application Type (Part 2):

Tuning Oracle (Chapter 4)
Tuning Network File Systems (Chapter 5)
Tuning Internet Servers (Chapter 6)

• Tuning by Component (Part 3):

Managing System Resource Allocation (Chapter 8)
Managing Disk Storage Performance (Chapter 9)
Managing Network Performance (Chapter 10)
Managing File System Performance (Chapter 11)
Managing Memory Performance (Chapter 12)
Managing CPU Performance (Chapter 13)

For more information on subystem attributes, see sys_attrs(5).

1–32 Introduction to System Tuning

2
Gathering System and Performance

Information

You must gather a wide variety of performance information to identify
performance problems or areas where performance is deficient.

Some symptoms or indications of performance problems are obvious.
For example, applications complete slowly or messages appear on the
console, indicating that the system is out of resources. Other problems
or performance deficiencies are not obvious and can be detected only by
monitoring system performance.

There are various commands and utilities that you can use to gather system
performance information. It is important that you gather statistics under
a variety of conditions. Comparing sets of data will help you diagnose
performance problems.

For example, to determine how an application affects system performance,
you can gather performance statistics without the application running, start
the application, and then gather the same statistics. Comparing different
sets of data will enable you to identify whether the application is consuming
memory, CPU, or disk I/O resources.

In addition, you must gather information at different stages during the
application processing to obtain accurate performance information. For
example, an application may be I/O-intensive during one stage and
CPU-intensive during another.

This chapter describes how to perform the following tasks:

• Using a methodology approach to solve performance problems
(Section 2.1)

• Obtaining information about system events (Section 2.2)

• Using the primary tools for gathering information (Section 2.3)

• Using secondary tools to gather information (Section 2.4)

• Continuously monitoring performance (Section 2.5)

After you identify a performance problem or an area in which performance
is deficient, you can identify an appropriate solution. See Part 2 for

Gathering System and Performance Information 2–1

information about tuning by application, and see Part 3 for information
about tuning by component to improve system performance.

2.1 Methodology Approach to Solving Performance
Problems

There are five recommended steps to diagnose a performance problem.
Before you begin, you must become familiar with the terminology and
concepts relating to performance and availability. See Chapter 1 for more
information.

In addition, you must understand how your application utilizes system
resources, because not all configurations and tuning guidelines are
appropriate for all types of workloads. For example, you must determine if
your applications are memory-intensive or CPU-intensive, or if they perform
many disk or network operations. See Section 1.8 for information about
identifying a resource model for your configuration.

To diagnose performance problems, follow these steps:

1. Before you begin, you must understand your system hardware
configuration. To identify and manage your hardware components use
thehwmgr utility (see Section 1.1 or Section 2.3.1 for more information).

2. Run the sys_check utility, but before you do so perform an analysis
of the operating system parameters and kernel attributes that tune
the performance of your system. This tool can be used to diagnose
performance problems. See Section 2.3.3 for more information.

3. Verify and know your software configuration errors. You can use
sys_check to diagnose performance problems. See Section 2.2 for more
information about obtaining information for system events.

4. Determine what type of application you are using and categorize your
application as an Oracle, Network File System, or internet server
application. If you are tuning your system by applications, see the
following chapters:

• Tuning Oracle (Chapter 4)

• Tuning Network File Systems (Chapter 5)

• Tuning Internet Servers (Chapter 6)

5. Find the bottleneck or the system resource that is causing a performance
degradation. Determine the performance problem by plotting the
following information:

• CPU — Idle system time and user time

2–2 Gathering System and Performance Information

• Memory — Sum of active or inactive pages that are being used by
processes, UBC and wired memory.

• Disk I/O — Transactions per second and blocks per second

Use the collect command to gather performance data while the
system is under load or manifesting the performance problem. After
you gather the performance information, use the collgui graphical
interface to plot the data. For information on how to use collgui,
see Section 2.3.2.2. For more information about identifying a resource
model for your workload, see Section 1.8.

2.2 Obtaining Information About System Events

Set up a routine to continuously monitor system events that will alert you
when serious problems occur. Periodically examining event and log files
allows you to correct a problem before it affects performance or availability,
and helps you diagnose performance problems.

The system event logging facility and the binary event logging facility
log system events. The system event logging facility uses the syslog
function to log events in ASCII format. The syslogd daemon collects the
messages logged from the various kernel, command, utility, and application
programs. This daemon then writes the messages to a local file or forwards
the messages to a remote system, as specified in the /etc/syslog.conf
event logging configuration file. Periodically monitor these ASCII log files
for performance information.

The binary event logging facility detects hardware and software events in the
kernel and logs detailed information in binary format records. The binary
event logging facility uses the binlogd daemon to collect various event log
records. The daemon then writes these records to a local file or forwards the
records to a remote system, as specified in the /etc/binlog.conf default
configuration file.

You can examine the binary event log files by using the following methods:

• The Event Manager (EVM) uses the binary log files to communicate
event information to interested parties for immediate or later action. See
Section 2.2.1 for more information about EVM.

• DECevent is a rules-based translation and reporting utility that provides
event translation for binary error log events. EVM uses DECevent’s
translation facility, dia, to translate binary error log events into
human-readable form. Compaq Analyze performs a similar role on some
EV6 series processors.

For more information about DECevent, see Section 2.2.2 or dia(8).

For more information on Compaq Analyze, see Section 2.2.3 or ca(8).

Gathering System and Performance Information 2–3

In addition, we recommend that you configure crash dump support into the
system. Significant performance problems may cause the system to crash,
and crash dump analysis tools can help you diagnose performance problems.

See the System Administration manual for more information about event
logging and crash dumps.

2.2.1 Using Event Manager

Event Manager (EVM) allows you to obtain event information and
communicate this information to interested parties for immediate or later
action. Event Manager provides the following features:

• Enables kernel-level and user-level processes and components to post
events.

• Enables event consumers, such as programs and users, to subscribe for
notification when selected events occur.

• Supports existing event channels such as the binary logger daemon.

• Provides a graphical user interface (GUI) that enables users to review
events.

• Provides an application programming interface (API) library that
enables programmers to write routines that post or subscribe to events.

• Supports command-line utilities for administrators to configure and
manage the EVM environment and for users to post or retrieve events.

See the System Administration manual for more information about EVM.

2.2.2 Using DECevent

The DECevent utility continuously monitors system events through the
binary event logging facility, decodes events, and tracks the number and
the severity of events logged by system devices. DECevent analyzes
system events, attempts to isolate failing device components, and provides
a notification mechanism (for example, mail) that can warn of potential
problems.

You must register a license to use DECevent’s analysis and notification
features, or these features may also be available as part of your service
agreement. A license is not needed to use DECevent to translate the binary
log file to ASCII format.

See the DECevent Translation and Reporting Utility manual for more
information.

2–4 Gathering System and Performance Information

2.2.3 Using Compaq Analyze

Compaq Analyze is a fault analysis utility designed to provide analysis for
single error/fault events, and multiple event and complex analysis. Compaq
Analyze provides system analysis that uses other error/fault data sources in
addition to the traditional binary error log.

Compaq Analyze provides background automatic analysis by monitoring
the active error log and processing events as they occur. The events in
the error log file are checked against the analysis rules. If one or more of
the events in the error log file meets the conditions specified in the rules,
the analysis engine collects the error data and creates a problem report
containing a description of the problem and any corrective actions required.
Once the problem report is created, it is distributed in accordance with your
notification preferences.

Note that recent Alpha EV6 processors are supported only by Compaq
Analyze and not DECevent.

You can download the latest version of Compaq Analyze and other Web
Based Enterprise Service Suite (WEBES) tools and documentation from
the following location:

http://www.compaq.com/support/svctools/webes

Download the kit from the Web site, saving it to /var/tmp/webes. Unpack
the kit using a command similar to the following:

tar -xvf <tar file name>

Use the following command to install the Compaq Web Based Enterprise
Service Suite:

setld -l /var/temp/webes/kit

During the installation, you can safely select the default options. However,
you might not want to install all the optional WEBES tools. Only Compaq
Analyze is used by EVM. See the separate Compaq Analyze documentation
and ca(8) for more information.

2.2.4 Using System Accounting and Disk Quotas

Set up system accounting, which allows you to obtain information about the
resources consumed by each user. Accounting can track the amount of CPU
usage and connect time, the number of processes spawned, memory and disk
usage, the number of I/O operations, and the number of print operations.

You should establish Advanced File System (AdvFS) and UNIX file system
(UFS) disk quotas to track and control disk usage. Disk quotas allow you to
limit the disk space available to users and to monitor disk space usage.

Gathering System and Performance Information 2–5

See the System Administration manual for information about system
accounting and UFS disk quotas. See the AdvFS Administration manual
for information about AdvFS quotas.

2.3 Primary Tools for Gathering Information

The following utilities are the primary tools for gathering performance
information:

• hwmgr utility (Section 2.3.1)

• collect utility (Section 2.3.2)

• sys_check utility (Section 2.3.3)

2.3.1 Gathering Hardware Information Using the hwmgr Utility

The principal command that you use to manage hardware is the hwmgr
command-line interface (CLI). Other interfaces, such as the SysMan tasks,
provide a limited subset of the features provided by hwmgr. Using the
hwmgr command enables you to connect to an unfamiliar system, obtain
information about its component hierarchy and allows you to set attributes
for specific components.

Use the view command to view the hierarchy of hardware within a system.
This command enables you to find what adapters are controlling devices,
and discover where adapters are installed on buses. The following example
shows the hardware component hierarchy on a small system that is not
part of a cluster:

hwmgr view hierarchy

HWID: Hardware component hierarchy
--
1: platform AlphaServer 800 5/500
2: cpu CPU0
4: bus pci0
5: scsi_adapter isp0
6: scsi_bus scsi0
18: disk bus-0-targ-0-lun-0 dsk0
19: disk bus-0-targ-4-lun-0 cdrom0
20: graphics_controller trio0
8: bus eisa0
9: serial_port tty00
10: serial_port tty01
11: parallel_port lp0
12: keyboard PCXAL
13: pointer PCXAS
14: fdi_controller fdi0
15: disk fdi0-unit-0 floppy0
16: network tu0
17: network tu1
output truncated

2–6 Gathering System and Performance Information

Some components might appear as multiple entries in the hierarchy. For
example, if a disk is on a SCSI bus that is shared between two adapters, the
hierarchy shows two entries for the same device. You can obtain similar
views of the system hardware hierarchy by using the SysMan Station GUI.
See the System Administration manual for information on running the
SysMan Menu. Section 13.2.2.6 describes how to use the graphical interface.
See the online help for more information on valid data entries.

To view a specific component in the hierarchy, use the grep command. The
following example shows output for the CPU hardware component:
hwmgr view hierarchy | grep "cpu"
2: cpu qbb-0 CPU0
3: cpu qbb-0 CPU1
4: cpu qbb-0 CPU2
5: cpu qbb-0 CPU3
7: cpu qbb-1 CPU5
8: cpu qbb-1 CPU6
9: cpu qbb-1 CPU7
10: cpu qbb-2 CPU8
11: cpu qbb-2 CPU9
12: cpu qbb-2 CPU10
13: cpu qbb-2 CPU11

The display hierarchy command displays the currently registered
hardware components which have been placed in the system hierarchy.
Components that have a flagged status are identified in the command output
with the following codes:

• (!) warning

• (X) critical

• (-) inactive
See hwmgr(8) for an explanation of these codes.

To view all of the SCSI devices attached to the system (disks and tapes),
use the following command:
hwmgr show scsi

To view how many RAID array controllers can be seen from the host use the
following command:
hwmgr show scsi | grep scp

SCSI DEVICE DEVICE DRIVER NUM DEVICE FIRST
HWID: DEVICEID HOSTNAME TYPE SUBTYPE OWNER PATH FILE VALID PATH

266: 30 wf99 disk none 0 20 scp0 [2/0/7]
274: 38 wf99 disk none 0 20 scp1 [2/1/7]
282: 46 wf99 disk none 0 20 scp2 [2/2/7]
290: 54 wf99 disk none 0 20 scp3 [2/3/7]
298: 62 wf99 disk none 0 20 scp4 [2/4/7]
306: 70 wf99 disk none 0 20 scp5 [2/5/7]
314: 78 wf99 disk none 0 20 scp6 [2/6/7]
322: 86 wf99 disk none 0 20 scp7 [2/7/7]
330: 94 wf99 disk none 0 20 scp8 [2/8/7]
338: 102 wf99 disk none 0 20 scp9 [2/9/7]

Gathering System and Performance Information 2–7

346: 110 wf99 disk none 0 20 scp10 [2/10/7]
354: 118 wf99 disk none 0 20 scp11 [2/11/7]

The scp in the previous example represents the service control port and is
the address that a RAID array (HSG) presents itself for administrative and
diagnostic purposes.

For more information about the hwmgr command, see the Hardware
Management manual or hwmgr(8).

2.3.2 Gathering System Information by Using the collect Utility

The collect utility is a system monitoring tool that records or displays
specific operating system data. It also gathers the vital system performance
information for specific subsystems, such as file systems, memory, disk,
process data, CPU, network, message queue, LSM, and others. The
collect utility creates minimal system overhead and is highly reliable.
It also provides extensive and flexible switches to control data collection
and playback. You can display data at the terminal, or store it in either
a compressed or uncompressed data file. Data files can be read and
manipulated from the command line.

To ensure that the collect utility delivers reliable statistics, it locks itself
into memory using the page-locking function plock(), and by default
cannot be swapped out by the system. It also raises its priority using the
priority function nice(). However, these measures should not have any
impact on a system under normal load, and they should have only a minimal
impact on a system under extremely high load.

You can invoke the collect utility from the collgui graphical user
interface or from the command line. If you are using the graphic user
interface, run cfilt on the command line to filter collect’s data used by
collgui and user scripts. For more information see collect(8).

The following example shows how to run a full data collection and display
the output at the terminal using the standard interval of 10 seconds:
/usr/sbin/collect

This command is similar to the output monitoring commands such as
vmstat(1), iostat(1), netstat(1), and volstat(8).

Use the -s option to select subsystems for inclusion in the data collection, or
use the -e (exclude) option to exclude subsystems from the data collection.

The following output specifies only data from the file system subsystem:
/usr/sbin/collect -sf
FileSystem Statistics
FS Filesystem Capacity Free
0 root_domain#root 128 30

2–8 Gathering System and Performance Information

1 usr_domain#usr 700 147
3 usr_domain#var 700 147

The option letters map to the following subsystems:

• p — Specifies the process data

• m — Specifies the memory data

• d — Specifies the disk data

• l — Specifies the LSM volume data

• n — Specifies the network data

• c — Specifies the CPU data

• f — Specifies the file system data

• tyy — Specifies the terminal data

When you are collecting process data, use the -S (sort) and -n X (number)
options to sort data by percentage of CPU usage and to save only X processes.
Target-specific processes using the Plist option, where list is a list of
process identifiers, comma-separated with blanks.

If there are many (greater than 100) disks connected to the system being
monitored, use the -D option to monitor a particular set of disks.

Use the collect utility with the -p option to read multiple binary data files
and play them back as one stream, with monotonically increasing sample
numbers. You can also combine multiple binary input files into one binary
output file, using the -p option with the input files and the -f option with
the output file.

The collect utility will combine input files in whatever order you specify
on the command line. This means that the input files must be in strict
chronological order if you want to do further processing of the combined
output file. You can also combine binary input files from different systems,
made at different times, with differing subsets of subsystems for which data
has been collected. Filtering options such as -e, -s, -P, and -D can be used
with this utility.

See collect(8) for more information.

2.3.2.1 Configuring collect to Automatically Start on System Reboot

You can configure collect to automatically start when the system reboots.
This is particularly useful for continuous monitoring of subsystems and
processes. It is essential for diagnosing problems and performance issues.
On each system, use the rcmgr command with the set operation to
configure the following values in the /etc/rc.config* file. For example:
% rcmgr set COLLECT_AUTORUN 1

Gathering System and Performance Information 2–9

A value of 1 sets collect to automatically start when the system reboots. A
value of 0 (the default) causes collect to not start on reboot:

% rcmgr set COLLECT_ARGS " -ol -i 10:60 \ -f
/var/adm/collect.dated/collect -H d0:5,1w "

A null value causes collect to start with the following default values:

-i60, 120 -f /var/adm/collect.dated -W 1h -M 10, 15

Direct output from collect should be written to a local file system,
not a NFS-mounted file system, to prevent important diagnostic data
from being lost during system or network problems and to prevent any
consequent system problems arising from collect output being blocked by
a nonresponsive file system.

See rcmgr(8) for more information.

2.3.2.2 Plotting collect Datafiles

Use either collgui (a graphical interface for the collect command) or
cflit (a filter for the collect command) to export collect datafiles to
Excel.

______________________ Note _______________________

To run collgui, you need Perl and Perl/TK. They
are freely downloadable from the collect FTP site:
ftp://ftp.digital.com/pub/DEC/collect

To plot information using the collgui graphical interface, follow these
steps:

1. Run collgui in debug mode:

>> collgui -d "collect datafile"

2. Select the desired subsystem and click on Display.

3. Return to the shell that collgui was started in. You will see
that collgui has created the /var/tmp directory. The file
name is collgui.xxxx, where xxxx are integers. The data file
(collgui.xxxx) is exportable to Excel. Copy it to a Windows system.

4. On your Windows system, start Excel and open collgui.xxxx. You
might have to change files of Type: field to “All files (*.*)”.

5. In Excel 2000, a text import wizard will pop up.

6. In Excel 2000, select data type Delimited, then select Next.

7. In Excel 2000, select Tabs and Spaces as Delimiters, then select Next.

2–10 Gathering System and Performance Information

8. In the Data Preview pane, select the columns that you want to import
using the Shift key select Finish.

9. You should now see the columns displayed in your worksheet.

To plot information using the cflit collect filter, follow these steps:

1. Use cfilt to generate the data file. For example, if you choose to
display the system time, physical memory used for the process
data, and user+system time, wait time for the Single CPU field,
enter the following command:

cfilt -f "collect datafile" ’sin:WAIT:USER+SYS’ ’pro:Systim#:RSS#’
> /var/tmp/collgui.xxxx

Copy the collgui data file to your Windows system.

2. Follow steps 4–9 in the collgui previous procedure.

For more information, see the following Web site:
http://www.tru64unix.compaq.com/collect/collect_faq.html

2.3.3 Checking the Configuration by Using the sys_check Utility

The sys_check utility performs an analysis of operating system parameters
and kernel attributes that tune the performance of your system. The utility
checks memory and CPU resources, provides performance data and lock
statistics for SMP systems and for kernel profiles, and outputs any warnings
and tuning guidelines.

The sys_check utility creates an HTML file that describes the system
configuration, and can be used to diagnose problems. The report generated
by sys_check provides warnings if it detects problems with any current
settings. Use sys_check utility in conjunction with the event management
and system monitoring tools to provide a complete overview and control
of system status.

Consider applying the sys_check utility’s configuration and tuning
guidelines before applying any advanced tuning guidelines.

______________________ Note _______________________

You may experience impaired system performance while running
the sys_check utility. Invoke the utility during offpeak hours to
minimize the performance impact.

You can invoke the sys_check utility from the SysMan graphical user
interface or from the command line. If you specify sys_check without any
command-line options, it performs a basic system analysis and creates an

Gathering System and Performance Information 2–11

HTML file with configuration and tuning guidelines. Options that you can
specify at the command line include:

• The -all option provides information about all subsystems, including
security information and setld inventory verification.

• The -perf option provides only performance data and excludes
configuration data. This may take 5 to 10 minutes to complete.

• The -escalate option creates escalation files required for reporting
problems.

See sys_check(8) for more information.

2.4 Secondary Tools for Gathering Information

The following utilities are the secondary tools used to gather performance
information:

Gathering system information:

• lockinfo utility (Section 2.4.1)

• sched_stat utility (Section 2.4.2)

Gathering network information:

• nfsstat utility (Section 2.4.3)

• tcpdump utility (Section 2.4.4)

• netstat command (Section 2.4.5)

• ps axlmp command (Section 2.4.6)

• nfsiod daemon (Section 2.4.7)

• nfswatch command (Section 2.4.8)

2.4.1 Gathering Locking Statistics by Using the lockinfo Utility

The lockinfo utility collects and displays locking statistics for the kernel
SMP locks. It uses the /dev/lockdev pseudodriver to collect data. Locking
statistics can be gathered when the lockmode attribute for the generic
subsystem is set to 2 (the default), 3, or 4.

To gather statistics with lockinfo, follow these steps:

1. Start up a system workload and wait for it to get to a steady state.

2. Start lockinfo with sleep as the specified command and some number
of seconds as the specified cmd_args. This causes lockinfo to gather
statistics for the length of time it takes the sleep command to execute.

2–12 Gathering System and Performance Information

3. Based on the first set of results, use lockinfo again to request more
specific information about any lock class that shows results, such
as a large percentage of misses, which is likely to cause a system
performance problem.

The following example shows how to gather locking statistics for each
processor over a period of 60 seconds:

lockinfo -percpu sleep 60
hostname: sysname.node.corp.com
lockmode: 4 (SMP DEBUG with kernel mode preemption enabled)
processors: 4
start time: Wed Jun 9 14:45:08 1999
end time: Wed Jun 9 14:46:08 1999
command: sleep 60

tries reads trmax misses percent sleeps waitmax waitsum
misses seconds seconds

bsBuf.bufLock (S)
0 1400786 0 45745 47030 3.4 0 0.00007 0.15526
1 1415828 0 45367 47538 3.4 0 0.00006 0.15732
2 1399462 0 33076 48507 3.5 0 0.00005 0.15907
3 1398336 0 31753 48867 3.5 0 0.00005 0.15934

ALL 5614412 0 45745 191942 3.4 0 0.00007 0.63099

lock.l_lock (S)
0 1360769 0 40985 18460 1.4 0 0.00005 0.04041
1 1375384 0 20720 18581 1.4 0 0.00005 0.04124
2 1375122 0 20657 18831 1.4 0 0.00009 0.04198

ALL 5483049 0 40985 74688 1.4 0 0.00009 0.16526
...inifaddr_lock (C)
0 0 0 1 0 0.0 0 0.00000 0.00000
1 1 1 1 0 0.0 0 0.00000 0.00000
2 0 0 1 0 0.0 0 0.00000 0.00000
3 0 0 1 0 0.0 0 0.00000 0.00000

ALL 1 1 1 0 0.0 0 0.00000 0.00000

total simple_locks = 28100338 percent unknown = 0.0
total rws_locks = 1466 percent reads = 100.0
total complex_locks = 2716146 percent reads = 33.2 percent unknown = 0.0

A locking problem is simply an indication that there is high contention for
a certain type of resource. If contention exists for a lock related to I/O,
and a particular application is spawning many processes that compete
for the same files and directories, application or database storage design
adjustments might be in order.

Applications that use System V semaphores can sometimes encounter
locking contention if they create a very large number of semaphores
in a single semaphore set because the kernel uses locks on each set of

Gathering System and Performance Information 2–13

semaphores. In this case, performance improvements might be realized by
changing the application to use more semaphore sets, each with a smaller
number of semaphores.

See lockinfo(8) for more information.

2.4.2 Gathering CPU Usage and Process Statistics by Using the
sched_stat Utility

The sched_stat utility helps determine how well the system load is
distributed among CPUs, what kinds of jobs are getting (or not getting)
enough cycles on each CPU, and how well cache affinity is being maintained
for these jobs. The sched_stat displays CPU usage and process-scheduling
for SMP and NUMA platforms.

To gather statistics with sched_stat, follow these steps:

1. Start up a system workload and wait for it to get to a steady state.

2. Start sched_stat with sleep as the specified command and some
number of seconds as the specified cmd_arg. This causes sched_stat
to gather statistics for the length of time it takes the sleep command
to execute.

For example, the following command causes sched_stat to collect statistics
for 60 seconds and then print a report:
/usr/sbin/sched_stat sleep 60

If you include options on the command line, only statistics for the specified
options are reported. If you specify the command without any options, all
options except for -R are assumed. See sched_stat(8) for more information.

2.4.3 Displaying Network and NFS Statistics by Using the nfsstat
Utility

To display or reinitialize NFS and remote procedure call (RPC) statistics
for clients and servers, including the number of packets that had to be
retransmitted (retrans) and the number of times a reply transaction ID did
not match the request transaction ID (badxid), enter:
/usr/ucb/nfsstat

Information similar to the following is displayed:
Server rpc:
calls badcalls nullrecv badlen xdrcall
38903 0 0 0 0

Server nfs:
calls badcalls
38903 0

2–14 Gathering System and Performance Information

Server nfs V2:
null getattr setattr root lookup readlink read
5 0% 3345 8% 61 0% 0 0% 5902 15% 250 0% 1497 3%
wrcache write create remove rename link symlink
0 0% 1400 3% 549 1% 1049 2% 352 0% 250 0% 250 0%
mkdir rmdir readdir statfs
171 0% 172 0% 689 1% 1751 4%

Server nfs V3:
null getattr setattr lookup access readlink read
0 0% 1333 3% 1019 2% 5196 13% 238 0% 400 1% 2816 7%
write create mkdir symlink mknod remove rmdir
2560 6% 752 1% 140 0% 400 1% 0 0% 1352 3% 140 0%
rename link readdir readdir+ fsstat fsinfo pathconf
200 0% 200 0% 936 2% 0 0% 3504 9% 3 0% 0 0%
commit
21 0%

Client rpc:
calls badcalls retrans badxid timeout wait newcred
27989 1 0 0 1 0 0
badverfs timers
0 4

Client nfs:
calls badcalls nclget nclsleep
27988 0 27988 0

Client nfs V2:
null getattr setattr root lookup readlink read
0 0% 3414 12% 61 0% 0 0% 5973 21% 257 0% 1503 5%
wrcache write create remove rename link symlink
0 0% 1400 5% 549 1% 1049 3% 352 1% 250 0% 250 0%
mkdir rmdir readdir statfs
171 0% 171 0% 713 2% 1756 6%

Client nfs V3:
null getattr setattr lookup access readlink read
0 0% 666 2% 9 0% 2598 9% 137 0% 200 0% 1408 5%
write create mkdir symlink mknod remove rmdir
1280 4% 376 1% 70 0% 200 0% 0 0% 676 2% 70 0%
rename link readdir readdir+ fsstat fsinfo pathconf
100 0% 100 0% 468 1% 0 0% 1750 6% 1 0% 0 0%
commit
10 0%

The ratio of timeouts to calls (which should not exceed 1 percent) is the
most important thing to look for in the NFS statistics. A timeout-to-call
ratio greater than 1 percent can have a significant negative impact on
performance. See Chapter 10 for information on how to tune your system to
avoid timeouts.

To display NFS and RPC information in intervals (seconds), enter:

/usr/ucb/nfsstat -s -i number

The following example displays NFS and RPC information in 10–second
intervals:

/usr/ucb/nfsstat -s -i 10

Gathering System and Performance Information 2–15

If you are monitoring an experimental situation with nfsstat, reset the
NFS counters to 0 before you begin the experiment. To reset counters to
0, enter:

/usr/ucb/nfsstat -z

See nfsstat(8) for more information about command options and output.

2.4.4 Gathering Information by Using the tcpdump Utility

The tcpdump utility monitors and displays packet headers on a network
interface. You can specify the interface on which to listen, the direction of
the packet transfer, or the type of protocol traffic to display.

The tcpdump command allows you to monitor the network traffic associated
with a particular network service and to identify the source of a packet. It
lets you determine whether requests are being received or acknowledged,
or in the case of slow network performance, to determine the source of
network requests

Your kernel must be configured with the packetfilter option to use the
command. For example:

pfconfig +p +c tu0

The netstat -ni command displays the configured network interfaces.
For example:

netstat -ni
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
tu0 1500 <Link> 00:00f8:22:f8:05 486404139 010939748 632583736
tu0 1500 16.140.48/24 16.140.48.156 486404139 010939748 632583736
tu0 1500 DLI none 486404139 010939748 632583736
sl0* 296 <Link> 0 0 0 0 0
lo0 4096 <Link> 1001631086 0 1001631086 0 0
lo0 4096 127/8 127.0.0.1 1001631086 0 1001631086 0 0

Use the netstat command output to determine which interface to use with
the tcpdump command. For example:

tcpdump -mvi tu0 -Nts1500
tcpdump: listening on tu0
Using kernel BPF filter

k-1.fc77a110 > foo.pmap-v2: 56 call getport prog "nfs" V3 prot UDP port 0 \
(ttl 30, id 20054)
foo.fc77a110 > k-1.pmap-v2: 28 reply getport 2049 (ttl 30, id 36169)
k-1.fd77a110 > foo.pmap-v2: 56 call getport prog "mount" V3 prot UDP port 0 \
(ttl 30, id 20057)
foo.fd77a110 > k-1.pmap-v2: 28 reply getport 1030 (ttl 30, id 36170)
k-1.fe77a110 > foo.mount-v3: 112 call mount "/pns2" (ttl 30, id 20062)
foo.fe77a110 > k-1.mount-v3: 68 reply mount OSF/1 fh 19,17/1.4154.1027680688/4154.\
1027680688 (DF) (ttl 30, id 36171)
k-1.b81097eb > fubar.nfs-v3: 136 call fsinfo OSF/1 fh 19,17/1.4154.1027680688/4154.\
1027680688 (ttl 30, id 20067)

2–16 Gathering System and Performance Information

The -s snaplen option displays snaplen bytes of data from each packet
rather than the default of 68. The default is adequate for IP, ICP, TCP,
and UDP, but 500–1500 bytes is recommended for NFS and RPC adequate
results.

See tcpdump(8) and packetfilter(7) for more information.

2.4.5 Monitoring Network Statistics by Using the netstat Command

To check network statistics, use the netstat command. Some problems to
look for are:

• If the netstat -i command shows excessive amounts of input errors
(Ierrs), output errors (Oerrs), or collisions (Coll), this may indicate a
network problem; for example, cables are not connected properly or the
Ethernet is saturated (see Section 2.4.5.1).

• Use the netstat -is command to check for network device driver
errors (see Section 2.4.5.2).

• Use the netstat -m command to determine if the network is using
an excessive amount of memory in proportion to the total amount of
memory installed in the system.

If the netstat -m command shows several requests for memory delayed
or denied, this means that either physical memory was temporarily
depleted or the kernel malloc free lists were empty (see Section 2.4.5.3).

• Each socket results in a network connection. If the system allocates
an excessive number of sockets, use the netstat -an command
to determine the state of your existing network connections (see
Section 2.4.5.4).

For Internet servers, the majority of connections usually are in a
TIME_WAIT state.

• Use the netstat -p ip command to check for bad checksums, length
problems, excessive redirects, and packets lost because of resource
problems (see Section 2.4.5.5).

• Use the netstat -p tcp command to check for retransmissions, out of
order packets, and bad checksums (see Section 2.4.5.6).

• Use the netstat -p udp command to check for bad checksums and
full sockets (see Section 2.4.5.6).

• Use the netstat -rs command to obtain routing statistics (see
Section 2.4.5.7).

• Use the netstat -s command to obtain display statistics related to the
IP, ICMP, IGMP, TCP, and UDP protocol layers (see Section 2.4.5.8).

Gathering System and Performance Information 2–17

Most of the information provided by netstat is used to diagnose network
hardware or software failures, not to identify tuning opportunities. See the
Network Administration: Connections manual for more information on how
to diagnose failures.

See netstat(1) for more information about the output produced by the
various command options.

2.4.5.1 Input and Output Errors and Collisions

Network collisions are a normal part of network operations. A collision
can occur when two or more Ethernet stations attempt to transmit
simultaneously on the network. If a station is unable to access the network
because another one is already using it, the station will stop trying to
access the network for a short period of time, before attempting to access
the network again. A collision occurs each time a station fails to access the
network. Most network interface cards (NICs) will attempt to transmit a
maximum of 15 times, after which they will drop the output packet and issue
an excessive collisions error.

Use the output of the netstat -i command to check for input errors
(Ierrs), output errors (Oerrs), and collisions (Coll). Compare the values in
these fields with the total number of packets sent. High values may indicate
a network problem. For example, cables may not be connected properly or
the Ethernet may be saturated. A collision rate of up to 10 percent may not
indicate a problem on a busy Ethernet. However, a collision rate of more
than 20 percent could indicate a problem. For example:
netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
tu0 1500 Link 00:00:aa:11:0a:c1 0 0 43427 43427 0
tu0 1500 DLI none 0 0 43427 43427 0
tu1 1500 Link bb:00:03:01:6c:4d 963447 138 902543 1118 80006
tu1 1500 DLI none 963447 138 902543 1118 80006
tu1 1500 o-net plume 963447 138 902543 1118 80006
.
.
.

2.4.5.2 Device Driver Errors

Use the netstat -is command to check for network device driver errors.
For example:
netstat -is
tu0 Ethernet counters at Tue Aug 3 13:57:35 2002

191 seconds since last zeroed
14624204 bytes received
4749029 bytes sent

34784 data blocks received
11017 data blocks sent

2197154 multicast bytes received
17086 multicast blocks received
1894 multicast bytes sent

2–18 Gathering System and Performance Information

17 multicast blocks sent
932 blocks sent, initially deferred
347 blocks sent, single collision
666 blocks sent, multiple collisions

0 send failures
0 collision detect check failure
1 receive failures, reasons include: Frame too long
0 unrecognized frame destination
0 data overruns
0 system buffer unavailable
0 user buffer unavailable

The previous example shows that the system sent 11,017 blocks. Of
those blocks, 1,013 (347 + 666) blocks had collisions, which represents
approximately 10 percent of the blocks sent. A collision rate of up to 10
percent may not indicate a problem on a busy Ethernet. However, a collision
rate of more then 20 percent could indicate a problem.

In addition, the following fields should be 0 or a low single-digit number:

• send failures

• receive failures

• data overruns

• system buffer unavailable

• user buffer unavailable

2.4.5.3 Memory Usage

The netstat -m command shows statistics for network-related memory
structures, including the memory that is being used for mbuf clusters. Use
this command to determine if the network is using an excessive amount of
memory in proportion to the total amount of memory installed in the system.
If the netstat -m command shows several requests for memory (mbuf)
clusters delayed or denied, this means that your system was temporarily
short of physical memory. The following example is from a firewall server
with 128 MB memory that does not have mbuf cluster compression enabled:

netstat -m
2521 Kbytes for small data mbufs (peak usage 9462 Kbytes)
78262 Kbytes for mbuf clusters (peak usage 97924 Kbytes)
8730 Kbytes for sockets (peak usage 14120 Kbytes)
9202 Kbytes for protocol control blocks (peak usage 14551

2 Kbytes for routing table (peak usage 2 Kbytes)
2 Kbytes for socket names (peak usage 4 Kbytes)
4 Kbytes for packet headers (peak usage 32 Kbytes)

39773 requests for mbufs denied
0 calls to protocol drain routines

98727 Kbytes allocated to network

The previous example shows that 39,773 requests for memory were denied.
This indicates a problem because this value should be 0. The example also
shows that 78 MB of memory has been assigned to mbuf clusters, and that
98 MB of memory is being consumed by the network subsystem.

Gathering System and Performance Information 2–19

If you increase the value of the socket subsystem attribute
sbcompress_threshold to 600, the memory allocated to the network
subsystem immediately decreases to 18 MB, because compression at the
kernel socket buffer interface results in a more efficient use of memory.
See Section 6.2.3.3 for more information on the sbcompress_threshold
attribute.

2.4.5.4 Socket Connections

Each socket results in a network connection. If the system allocates an
excessive number of sockets, use the netstat -an command to determine
the state of your existing network connections. The following example shows
the contents of the protocol control block table and the number of TCP
connections currently in each state:
netstat -an | grep tcp | awk ’{print $6}’ | sort | uniq -c

1 CLOSE_WAIT
58 ESTABLISHED
12 FIN_WAIT_1
8 FIN_WAIT_2
17 LISTEN
1 SYN_RCVD

15749 TIME_WAIT
#

For Internet servers, the majority of connections usually are in a TIME_WAIT
state. If the number of entries in the FIN_WAIT_1 and FIN_WAIT_2 fields
represent a large percentage of the total connections (add together all of the
fields), you may want to enable keepalive (see Section 6.3.2.5).

If the number of entries in the SYN_RCVD field represents a large percentage
of the total connections, the server may be overloaded or experiencing TCP
SYN attacks.

Note that in this example there are almost 16,000 sockets being used, which
requires 16 MB of memory. See Section 6.1.2 for more information on
configuring memory and swap space.

2.4.5.5 Dropped or Lost Packets

Use the netstat -p ip command to check for bad checksums, length
problems, excessive redirects, and packets lost because of resource problems
for the IP protocol. Check the output for a nonzero number in the lost
packets due to resource problems field. For example:
netstat -p ip
ip:

259201001 total packets received
0 bad header checksums
0 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length
25794050 fragments received

2–20 Gathering System and Performance Information

0 fragments dropped (duplicate or out of space)
802 fragments dropped after timeout
0 packets forwarded
67381376 packets not forwardable

67381376 link-level broadcasts
0 packets denied access
0 redirects sent
0 packets with unknown or unsupported protocol
170988694 packets consumed here
160039654 total packets generated here
0 lost packets due to resource problems
4964271 total packets reassembled ok
2678389 output packets fragmented ok
14229303 output fragments created
0 packets with special flags set

Use the netstat -id command to monitor dropped output packets.
Examine the output for a nonzero value in the Drop column. If a nonzero
value appears in the Drop column for an interface, you may want to increase
the value of the ifqmaxlen kernel variable to prevent dropped packets. See
Section 6.3.2.9 for more information on this attribute.

The following example shows 4,221 dropped output packets on the tu1
network interface:

netstat -id
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll Drop
tu0 1500 Link 00:00:f8:06:0a:b1 0 0 98129 98129 0 0
tu0 1500 DLI none 0 0 98129 98129 0 0
tu1 1500 Link aa:00:04:00:6a:4e 892390 785 814280 68031 93848 4221
tu1 1500 DLI none 892390 785 814280 68031 93848 4221
tu1 1500 orange flume 892390 785 814280 68031 93848 4221
.
.
.

The output of the previous command shows that the Opkts and Oerrs
fields have the same values for the tu0 interface, which indicates that the
Ethernet cable is not connected. In addition, the value of the Oerrs field
for the tu1 interface is 68,031, which is a high error rate. Use the netstat
-is command to obtain detailed error information.

2.4.5.6 Retransmissions, Out-of-Order Packets, and Bad Checksums

Use the netstat -p tcp command to check for retransmissions,
out-of-order packets, and bad checksums for the TCP protocol. Use the
netstat -p udp command to look for bad checksums and full sockets for
the UDP protocol. You can use the output of these commands to identify
network performance problems by comparing the values in some fields to the
total number of packets sent or received.

For example, an acceptable percentage of retransmitted packets or duplicate
acknowledgments is 2 percent or less. An acceptable percentage of bad
checksums is 1 percent or less.

Gathering System and Performance Information 2–21

In addition, a large number of entries in the embryonic connections
dropped field may indicate that the listen queue is too small or server
performance is slow and clients have canceled requests. Other important
fields to examine include the completely duplicate packets,
out-of-order packets, and discarded fields. For example:

netstat -p tcp
tcp:

66776579 packets sent
58018945 data packets (1773864027 bytes)
54447 data packets (132256902 bytes) retransmitted
5079202 ack-only packets (3354381 delayed)
29 URG only packets
7266 window probe packets
2322828 window update packets
1294022 control packets

40166265 packets received
29455895 acks (for 1767211650 bytes)
719524 duplicate acks
0 acks for unsent data
19788741 packets (2952573297 bytes) received in-sequence
123726 completely duplicate packets (9224858 bytes)
2181 packets with some dup. data (67344 bytes duped)
472000 out-of-order packets (85613803 bytes)
1478 packets (926739 bytes) of data after window
43 window probes
201331 window update packets
1373 packets received after close
118 discarded for bad checksums
0 discarded for bad header offset fields
0 discarded because packet too short

448388 connection requests
431873 connection accepts
765040 connections established (including accepts)
896693 connections closed (including 14570 drops)
86298 embryonic connections dropped
25467050 segments updated rtt (of 25608120 attempts)
106020 retransmit timeouts

145 connections dropped by rexmit timeout
6329 persist timeouts
37653 keepalive timeouts

15536 keepalive probes sent
16874 connections dropped by keepalive

The output of the previous command shows that, out of the 58,018,945
data packets that were sent, 54,447 packets were retransmitted, which is a
percentage that is within the acceptable limit of 2 percent.

In addition, the command output shows that, out of the 29,455,895
acknowledgments, 719,524 were duplicates, which is a percentage that is
slightly larger than the acceptable limit of 2 percent.

Important fields for the netstat -p udp command include the
incomplete headers, bad data length fields, bad checksums, and
full sockets fields, which should have low values. The no port field
specifies the number of packets that arrived destined for a nonexistent port
(for example, rwhod or routed broadcast packets) and were subsequently

2–22 Gathering System and Performance Information

discarded. A large value for this field is normal and does not indicate a
performance problem. For example:
netstat -p udp
udp:

144965408 packets sent
217573986 packets received
0 incomplete headers
0 bad data length fields
0 bad checksums
5359 full sockets
28001087 for no port (27996512 broadcasts, 0 multicasts)
0 input packets missed pcb cache

The previous example shows a value of 5,359 in the full sockets field,
which indicates that the UDP socket buffer may be too small.

2.4.5.7 Routing Statistics

Use the netstat -rs command to obtain routing statistics. The value of
the bad routing redirects field should be small. A large value may
indicate a serious network problem. For example:
netstat -rs
routing:

0 bad routing redirects
0 dynamically created routes
0 new gateways due to redirects
1082 destinations found unreachable
0 uses of a wildcard route

2.4.5.8 Protocol Statistics

Use the netstat -s command to simultaneously display statistics related
to the IP, ICMP, IGMP, TCP, and UDP protocol layers. For example:
netstat -s
ip:

377583120 total packets received
0 bad header checksums
7 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length
12975385 fragments received
0 fragments dropped (dup or out of space)
3997 fragments dropped after timeout
523667 packets forwarded
108432573 packets not forwardable
0 packets denied access
0 redirects sent
0 packets with unknown or unsupported protocol
259208056 packets consumed here
213176626 total packets generated here
581 lost packets due to resource problems
3556589 total packets reassembled ok
4484231 output packets fragmented ok
18923658 output fragments created
0 packets with special flags set

icmp:
4575 calls to icmp_error

Gathering System and Performance Information 2–23

0 errors not generated because old ip message was too short
0 errors not generated because old message was icmp
Output histogram:

echo reply: 586585
destination unreachable: 4575
time stamp reply: 1

0 messages with bad code fields
0 messages < minimum length
0 bad checksums
0 messages with bad length
Input histogram:

echo reply: 612979
destination unreachable: 147286
source quench: 10
echo: 586585
router advertisement: 91
time exceeded: 231
time stamp: 1
time stamp reply: 1
address mask request: 7

586586 message responses generated
igmp:

0 messages received
0 messages received with too few bytes
0 messages received with bad checksum
0 membership queries received
0 membership queries received with invalid field(s)
0 membership reports received
0 membership reports received with invalid field(s)
0 membership reports received for groups to which we belong
0 membership reports sent

tcp:
66818923 packets sent

58058082 data packets (1804507309 bytes)
54448 data packets (132259102 bytes) retransmitted
5081656 ack-only packets (3356297 delayed)
29 URG only packets
7271 window probe packets
2323163 window update packets
1294434 control packets

40195436 packets received
29477231 acks (for 1797854515 bytes)
719829 duplicate acks
0 acks for unsent data
19803825 packets (2954660057 bytes) received in-sequence
123763 completely duplicate packets (9225546 bytes)
2181 packets with some dup. data (67344 bytes duped)
472188 out-of-order packets (85660891 bytes)
1479 packets (926739 bytes) of data after window
43 window probes
201512 window update packets
1377 packets received after close
118 discarded for bad checksums
0 discarded for bad header offset fields
0 discarded because packet too short

448558 connection requests
431981 connection accepts
765275 connections established (including accepts)
896982 connections closed (including 14571 drops)
86330 embryonic connections dropped
25482179 segments updated rtt (of 25623298 attempts)
106040 retransmit timeouts

145 connections dropped by rexmit timeout
6329 persist timeouts

2–24 Gathering System and Performance Information

37659 keepalive timeouts
15537 keepalive probes sent
16876 connections dropped by keepalive

udp:
145045792 packets sent
217665429 packets received
0 incomplete headers
0 bad data length fields
0 bad checksums
5359 full sockets
28004209 for no port (27999634 broadcasts, 0 multicasts)
0 input packets missed pcb cache

2.4.6 Gathering NFS Server Side Information Using ps axlmp

On an NFS server system, the nfsd daemon spawns several I/O threads to
service I/O requests from clients. A sufficient number of threads must be
configured to handle the number of concurrent requests typical for the server.
The default configuration of eight UDP and eight TCP threads is enough for
a workstation exporting a small number of directories to a handful of clients.
For a heavily used NFS server, up to 128 server threads can be configured
and distributed over TCP and UDP. Monitor the NFS server threads on your
server to determine if more threads are required to service the NFS load.

To display idle I/O threads on a server system, enter:
/usr/ucb/ps axlmp 0 | grep -v grep | grep -c nfs_udp

/usr/ucb/ps axlmp 0 | grep -v grep | grep -c nfs_tcp

This will display a count of the number of sleeping and idle UDP and TCP
threads, respectively. If the number of sleeping and idle threads is zero or
lower, you might improve NFS performance by increasing the number of
threads. See Section 5.4.1 or nfsd(8) for more information.

2.4.7 Gathering NFS Client Side Information Using nfsiod

On an NFS client system, the nfsiod daemon spawns several I/O threads to
service asynchronous I/O requests to the server. The I/O threads improve
the performance of both NFS read and writes. The optimum number of
I/O threads depends on many variables, such as how quickly the client
will be writing, how many files will be accessed simultaneously, and the
characteristics of the NFS server. For small clients, the default of seven
threads is sufficient. For larger servers with heavy NFS client activity, more
client threads may be necessary. Monitor the NFS client threads on your
server to determine if more threads are required to service the NFS load.

To display idle I/O threads on a client system, enter:
ps axlm | grep -v grep | grep -c nfsiod

This will display a count of the number of sleeping and idle I/O threads. If
the number of sleeping and idle threads is often zero or lower, you might

Gathering System and Performance Information 2–25

improve NFS performance by increasing the number of threads. See
Section 5.4.2 or nfsiod(8) for more information.

2.4.8 Monitoring Incoming Network Traffic to an NFS Server by Using
the nfswatch Command

The nfswatch program monitors all incoming network traffic to a NFS file
server and divides it into several categories. The number and percentage of
packets received in each category is displayed on the screen in a continuously
updated display. The nfswatch command can usually be run without
options and will produce useful results. For example:

/usr/sbin/nfswatch
Interval packets: 628 (network) 626 (to host) 0 (dropped)
Total packets: 6309 (network) 6307 (to host) 0 (dropped)

Monitoring packets from interface ee0
int pct total unt pct total

ND Read 0 0% 0 TCP Packets 0 0% 0
ND Write 0 0% 0 UDP Packets 139 10% 443
NFS Read 2 0% 2 ICMP Packets 1 0% 1
NFS Write 0 0% 0 Routing Control 81 6% 204
NFS Mount 2 0% 3 Address Resolution 109 8% 280
YP/NIS/NIS+ 0 0% 0 Reverse Addr Resol 15 1% 43
RPC Authorization 7 1% 12 Ethernet/FDDI Bdcst 406 30% 1152
Other RPC Packets 4 0% 10 Other Packets 1087 80% 3352

18 NFS Procedures [10 not displayed] more->
Procedure int pct total completed avg(msec) std dev max resp
CREATE 0 0% 0
GETATTR 1 50% 1 1 3.90 3.90
GETROOT 0 0% 0
LINK 0 0% 0
LOOKUP 0 0% 0
MKDIR 0 0% 0
NULLPROC 0 0% 0
READ 0 0% 0

______________________ Note _______________________

The nfswatch command monitors and displays data for only file
systems mounted with NFS Version 2.0.

Your kernel must be configured with the packetfilter option. After
kernel configuration, any user can invoke nfswatch once the superuser has
enabled promiscuous-mode operation using the pfconfig command. See
packetfilter(7) for more information.

2.5 Additional Tools for Monitoring Performance

You may want to set up a routine to continuously monitor system
performance. Some monitoring tools will alert you when serious problems

2–26 Gathering System and Performance Information

occur (for example, mail). It is important that you choose a monitoring tool
that has low overhead to obtain accurate performance information.

Table 2–1 describes the tools that you use to continuously monitor
performance.

Table 2–1: Tools for Continuous Performance Monitoring
Name Description

Performance Visualizer Graphically displays the performance of all significant
components of a parallel system. Using Performance
Visualizer, you can monitor the performance of all the
member systems in a cluster.
It monitors the performance of several systems
simultaneously, it allows you to see the impact of a
parallel application on all the systems, and to ensure
that the application is balanced across all systems.
When problems are identified, you can change the
application code and use Performance Visualizer to
evaluate the impact of these changes. Performance
Visualizer is a Tru64 UNIX layered product and
requires a license.
It also helps you identify overloaded systems,
underutilized resources, active users, and busy
processes. You can choose to look at all of the hosts
in a parallel system or at individual hosts. See the
Performance Visualizer documentation for more
information.

monitor Collects a variety of performance data on a
running system and either displays the informa-
tion or saves it to a binary file. The monitor
utility is available on the Tru64 UNIX Freeware
CD-ROM. See http://www.tru64unix.com-
paq.com/demos/ossc-v51a/html/monitor.htm
for more information.

top Provides continuous reports on the state of the
system, including a list of the processes using
the most CPU resources. The top command is
available on the Tru64 UNIX Freeware CD-ROM.
See ftp://eecs.nwu.edu/pub/top for more
information.

xload Displays the system load average in a histogram
that is periodically updated. See xload(1X) for
information.

Gathering System and Performance Information 2–27

Table 2–1: Tools for Continuous Performance Monitoring (cont.)

Name Description

volstat Provides information about activity on volumes,
plexes, subdisks, and disks under LSM control. The
volstat utility reports statistics that reflect the
activity levels of LSM objects since boot time or
since you reset the statistics. See Section 9.3 for
information.

volwatch Monitors LSM for failures in disks, volumes, and
plexes, and sends mail if a failure occurs. See
Section 9.3 for information.

2.6 Gathering Profiling and Debugging Information

You can use profiling to identify sections of application code that consume
large portions of execution time, and you can use these tools to profile and
debug the kernel. To improve performance, concentrate on improving the
coding efficiency of those time-intensive sections.

Table 2–2 describes the commands you can use to obtain information
about applications. Detailed information about these tools is located in the
Programmer’s Guide and the Kernel Debugging manual.

In addition, prof_intro(1) provides an overview of application profilers,
profiling, optimization, and performance analysis.

Table 2–2: Application Profiling and Debugging Tools
Name Use Description

atom Profiles applications Consists of a set of prepackaged tools
(third, hiprof, or pixie) that can
be used to instrument applications
for profiling or debugging purposes.
The atom toolkit also consists of a
command interface and a collection of
instrumentation routines that you can use
to create custom tools for instrumenting
applications. See the Programmer’s
Guide and atom(1) for more information.

2–28 Gathering System and Performance Information

Table 2–2: Application Profiling and Debugging Tools (cont.)

Name Use Description

third Checks memory
access and detects
memory leaks in
applications

Performs memory access checks and
memory leak detection of C and C++
programs at run time, by using the
atom tool to add code to executable
and shared objects. The Third Degree
tool instruments the entire program,
including its referenced libraries. See
third(1) for more information.

hiprof Produces a profile
of procedure
execution times in
an application

An atom-based program profiling tool
that produces a flat profile, which shows
the execution time spent in any given
procedure, and a hierarchical profile,
which shows the time spent in a given
procedure and all of its descendents.
The hiprof tool uses code
instrumentation instead of program
counter (PC) sampling to gather
statistics. The gprof command is usually
used to filter and merge output files and
to format profile reports. See hiprof(1)
for more information.

pixie Profiles basic blocks
in an application

Produces a profile showing the number
of times each instruction was executed
in a program. The information can be
reported as tables or can be used to
automatically direct later optimizations
by using the -feedback, -om, or -cord
options in the C compiler (see cc(1)).
The pixie profiler reads an executable
program, partitions it into basic blocks,
and writes an equivalent program
containing additional code that counts
the execution of each basic block.
The pixie utility also generates a
file containing the address of each of
the basic blocks. When you run this
pixie-generated program, it generates
a file containing the basic block counts.
The prof and pixstats commands can
analyze these files. See pixie(1) for
more information.

Gathering System and Performance Information 2–29

Table 2–2: Application Profiling and Debugging Tools (cont.)

Name Use Description

prof Analyzes profiling
data

Analyzes profiling data and produces
statistics showing which portions of
code consume the most time and where
the time is spent (for example, at the
routine level, the basic block level, or the
instruction level).
The prof command uses as input one
or more data files generated by the
kprofile, uprofile, or pixie profiling
tools. The prof command also accepts
profiling data files generated by programs
linked with the -p switch of compilers
such as cc.
The information produced by prof allows
you to determine where to concentrate
your efforts to optimize source code. See
prof(1) for more information.

gprof Analyzes profiling
data and displays
procedure call
information and
statistical program
counter sampling in
an application

Analyzes profiling data and allows you
to determine which routines are called
most frequently, and the source of the
routine call, by gathering procedure call
information and performing statistical
program counter (PC) sampling.
The gprof tool produces a flat profile of
the routines’ CPU usage. To produce a
graphical execution profile of a program,
the tool uses data from PC sampling
profiles, which are produced by programs
compiled with the cc -pg command, or
from instrumented profiles, which are
produced by programs modified by the
atom -tool hiprof command. See
gprof(1) for more information.

uprofile Profiles user code in
an application

Profiles user code using performance
counters in the Alpha chip. The
uprofile tool allows you to profile
only the executable part of a program.
The uprofile tool does not collect
information on shared libraries. You
process the performance data collected
by the tool with the prof command.
See the Kernel Debugging manual or
uprofile(1) for more information.

2–30 Gathering System and Performance Information

Table 2–2: Application Profiling and Debugging Tools (cont.)

Name Use Description

kprofile Produces a program
counter profile of a
running kernel

Profiles a running kernel using the
performance counters on the Alpha
chip. You analyze the performance
data collected by the tool with the
prof command. See kprofile(1)
for more information.

Visual Threads Identifies bottlenecks
and performance
problems in
multithreaded
applications

Enables you to analyze and refine your
multithreaded applications. You can use
Visual Threads to identify bottlenecks
and performance problems, and to
debug potential thread-related logic
problems. Visual Threads uses rule-based
analysis and statistics capabilities and
visualization techniques. Visual Threads
is licensed as part of the Developers’
Toolkit for Tru64 UNIX.

dbx Debugs running
kernels, programs,
and crash dumps,
and examines and
temporarily modifies
kernel variables

Provides source-level debugging for C,
Fortran, Pascal, assembly language,
and machine code. The dbx debugger
allows you to analyze crash dumps, trace
problems in a program object at the
source-code level or at the machine-code
level, control program execution, trace
program logic and flow of control, and
monitor memory locations.
Use dbx to debug kernels, debug stripped
images, examine memory contents, debug
multiple threads, analyze user code
and applications, display the value and
format of kernel data structures, and
temporarily modify the values of some
kernel variables. See dbx(8) for more
information.

kdbx Debugs running
kernels and crash
dumps

Allows you to examine a running kernel
or a crash dump. The kdbx debugger,
a frontend to the dbx debugger, is
used specifically to debug kernel code
and display kernel data in a readable
format. The debugger is extensible and
customizable, allowing you to create
commands that are tailored to your
kernel debugging needs.
You can also use extensions to check
resource usage (for example, CPU usage).
See kdbx(8) for more information.

Gathering System and Performance Information 2–31

Table 2–2: Application Profiling and Debugging Tools (cont.)

Name Use Description

ladebug Debugs kernels and
applications

Debugs programs and the kernel and
helps locate run-time programming
errors. The ladebug symbolic debugger
is an alternative to the dbx debugger
and provides both command-line and
graphical user interfaces and support
for debugging multithreaded programs.
See the Ladebug Debugger Manual and
ladebug(1) for more information.

lsof Displays open files Displays information about files that
are currently opened by the running
processes. The lsof is available on the
Tru64 UNIX Freeware CD-ROM.

2–32 Gathering System and Performance Information

3
Displaying and Modifying Kernel

Subsystem Attributes

The operating system includes various subsystems that define or extend the
kernel. Kernel subsystem attributes are used to set kernel variables, which
control subsystem behavior or track subsystem statistics. Attributes are
assigned default values at boot time. If the default values of some attributes
are not appropriate for your system, you must modify these values to provide
optimal performance.

To display and modify kernel subsystem attributes, follow these steps:

1. Determine the operating system support for an attribute (Section 3.1)

2. Display the attribute values (Section 3.2)

3. Modify the attribute values (Section 3.3)

3.1 Operating System Support for Attributes

To determine if your version of the operating system supports a particular
kernel subsystem attribute, use the following method:

• Use the sysconfig -q subsystem [attribute] command.

If you do not specify an attribute, the system displays all the subsystem
attributes that can be modified with the sysconfig or sysconfigdb
command. If the subsystem is not configured, the operating system
displays a message similar to the following:

framework error: subsystem ’inet’ not found

If you specify an attribute, only the information specific to that attribute
is displayed. For example:

sysconfig -q inet tcbhashsize
inet:
tcbhashsize = 32

If the attribute is not supported or if it cannot be accessed by using
sysconfig, the operating system displays a message similar to the
following:

inet:
tcbhashsize = unknown attribute

Displaying and Modifying Kernel Subsystem Attributes 3–1

• Use the dbx p (print) command. If you cannot access the attribute,
the operating system displays a message stating that the attribute is
not defined or active. For example:

dbx -k /vmunix
dbx version 5.1
Type ’help’ for help.

(dbx) p tcp_keepalive_default
"tcp_keepalive_default" is not defined or not active
(dbx)

See sysconfig(8) and dbx(1) for more information.

3.2 Displaying Attribute Values

There are various methods that you can use to display the current value of a
kernel subsystem attribute and other descriptive information. Use:

• The Kernel Tuner (dxkerneltuner) graphical user interface (GUI) to
display permanent, current (run-time), minimum, and maximum values
of attributes. Access the GUI through the Common Desktop Environment
(CDE) Application Manager window; select the System_Admin icon,
and then select the MonitoringTuning icon. You can then choose the
subsystem whose attributes you want to display.

• The sysconfig -q subsystem [attribute] command to display the
current (run-time) value of the specified attribute or, if an attribute is
not specified, all the attributes for the specified subsystem:

sysconfig -q subsystem [attribute]

For example:

sysconfig -q vm ubc_maxpercent
vm:
ubc_maxpercent = 100

• The sysconfig -Q subsystem [attribute] command to display the
maximum and minimum values of the attributes for the specified
subsystem. If you specify a particular attribute, the system displays
information only for that attribute.

The command output also includes information about the operations that
you can perform on the attribute. The following list describes some of
the sysconfig attributes:

– C - The attribute can be modified when the subsystem is initially
loaded; that is, the attribute supports boot time, permanent
modifications.

– R - The attribute can be tuned at run time; that is, you can modify
the value that the system is currently using.

– Q - The attribute’s current value can be displayed (queried).

3–2 Displaying and Modifying Kernel Subsystem Attributes

For example:

sysconfig -Q vfs bufcache
vfs:
bufcache - type=INT op=CQ min_val=0 max_val=50

The output of the previous command shows that the minimum value of
the bufcache attribute is 0 and the maximum value is 50. The output
also shows that you cannot modify the current (run-time) value.

The following example shows how to use the dbx p (print) command to
display the current value of a kernel variable, instead of an attribute. For
example:

dbx -k /vmunix
dbx version 5.1
Type ’help’ for help.

(dbx) p ipport_userreserved
5000
(dbx)

See dxkerneltuner(8), sysconfig(8), and dbx(1) for more information.

3.3 Modifying Attribute Values

There are various methods that you can use to modify attribute values.
The method you use depends on the version of the operating system you
are running and whether you want to modify the current (run-time) value
of an attribute or modify an attribute’s permanent value. You must be root
to modify attribute values.

The following sections describe how to modify the current and permanent
values.

3.3.1 Current Value

In some cases, you can modify the current (run-time) value of an attribute.
This allows you to determine if modifying an attribute will improve your
system performance without rebooting the system. Not all attributes can
be tuned at run time, and the temporary modifications are lost when you
reboot the system. Use the sysconfig -Q command to determine whether
an attribute can be tuned at run time.

To modify an attribute’s current (run-time) value, use one of the following
methods:

• The Kernel Tuner (dxkerneltuner) GUI, if the attribute supports this
operation. Access the GUI through the Common Desktop Environment
(CDE) Application Manager window; select the System_Admin icon, and
then select the MonitoringTuning icon. Choose the subsystem whose

Displaying and Modifying Kernel Subsystem Attributes 3–3

attribute you want to modify, and enter the new value in the Current
Value field.

• The sysconfig -r command, if the attribute supports this operation.
Use the following command syntax:

sysconfig -r subsystem attribute=value

For example:

sysconfig -r inet tcp_keepinit=30
tcp_keepinit: reconfigured

The following example shows how to use the dbx assign command to
modify the current value of a kernel variable, instead of an attribute.
However, modifications made with the dbx assign command are lost when
you reboot the system. Use the following command syntax:

dbx assign attribute=value

For example:

dbx -k /vmunix
dbx version 5.1
Type ’help’ for help.

(dbx) assign ipport_userreserved=60000
60000
(dbx)

See dxkerneltuner(8), sysconfig(8), and dbx(1) for more information.

3.3.2 Permanent Value

To modify an attribute’s permanent (boot-time) value, the sysconfigtab
file must contain the subsystem name, the attribute name, and the value
of the attribute. Do not manually modify the sysconfigtab file. To make
these modifications, use one of the following methods:

• The Kernel Tuner (dxkerneltuner) GUI. Access the GUI through the
Common Desktop Environment (CDE) Application Manager window,
select the System_Admin icon, and then select the MonitoringTuning
icon. Choose the subsystem whose attribute you want to modify, and
enter the new value in the Boot Time Value field.

• The sysconfigdb command. Use the following command syntax:

sysconfigdb -a -f stanza_file subsystem

The stanza_file is a specially formatted file that contains the name of the
subsystem and a list of attributes and their values. This file is merged
into the sysconfigtab file. See stanza(4) for more information.

To use the new attribute value, you must invoke the sysconfig -r
command if the attribute can be tuned at run time, or reboot the system.

3–4 Displaying and Modifying Kernel Subsystem Attributes

In addition, you can use the dbx patch command to modify the value of a
variable, as well as the on-disk /vmunix image value.

See dxkerneltuner(8), sysconfig(8), and sysconfigdb(8) for more
information. See the System Administration manual for information about
modifying the system configuration file.

Displaying and Modifying Kernel Subsystem Attributes 3–5

Part 2
Tuning by Application

4
Tuning Oracle

This chapter describes how to improve your Oracle 8.1.7.x/9i database
performance. It describes several monitoring tools and offers tuning
recommendations, including:

• Monitoring Oracle statistics (Section 4.1)

• Improving the performance of the gettimeofday() function
(Section 4.2)

• Choosing and enabling IPC communication protocols (Section 4.3)

______________________ Note _______________________

This manual assumes that you are using Oracle Version 8.1.7 or
higher. This version requirement is important because Oracle
Version 8.1.7 and higher, use the direct I/O capabilities of AdvFS
to bypass the Unified Buffer Cache (UBC) part of the file system
layers.

4.1 Monitoring Oracle Statistics

There are several commands and utilities that you can use to gather system
performance information. It is important that you gather statistics under
a variety of conditions. Comparing sets of data will help you to diagnose
performance problems.

Table 4–1 describes the tools that you can use to monitor a system running
an Oracle application.

Table 4–1: Tools to Detect Poor Oracle Application Performance
Tools Description Reference

collect Records or displays specific
operating system data.
It also gathers the vital
system performance
information for specific
subsystems.

Section 2.3.2

Tuning Oracle 4–1

Table 4–1: Tools to Detect Poor Oracle Application Performance (cont.)

Tools Description Reference

lockinfo Collects and displays
locking statistics for the
kernel SMP locks. It uses
the /dev/lockdev pseudo
driver to collect data.

Section 2.4.1

sched_stat Helps determine how
well the system load
is distributed among
CPUs, what kinds of
jobs are getting or not
getting sufficient cycles
on each CPU, and how
well cache affinity is being
maintained for these jobs.

Section 2.4.2

See collect(8), lockinfo(8), and sched_stat(8) for more information.

4.2 Improving the Performance of the gettimeofday()
Function

The Oracle server times many functions as it executes. This is especially
true if the INIT.ORA parameter timed_statistics is set to TRUE.

These timing functions result in system calls into the operating system
kernel, which can degrade Oracle performance because the calling process
relinquishes the CPU. There is a feature in Tru64 UNIX that gives a process
direct access to the operating system’s real-time clock.

Using this feature will improve performance on a heavily used system. It
will also improve performance on a lightly loaded system, but it may not
be as noticeable.

______________________ Note _______________________

This feature is supported on Oracle Version Version 7.3 and
higher.

To enable this feature, enter the following commands:

mknod /dev/timedev c 150

chmod 644 /dev/timedev

If you are working in a cluster, enter the commands on each cluster member.
The /dev/timedev special file will be persistent across system reboots.

4–2 Tuning Oracle

To use this feature with Oracle, the instance has to be restarted. The
existence of the /dev/timedev file is checked only on instance startup. We
recommend that all instances in a cluster (and hence all nodes) have this
feature enabled.

See gettimeofday(2) for more information.

4.3 Choosing and Enabling IPC Communication Protocols

Oracle can use either UDP or RDG (Reliable Datagram) for DLM/IPQ
interinstance communication.We recommend using RDG as the protocol for
IPC instead of using UDP.

______________________ Note _______________________

Although Oracle 8.1.7 does support the use of RDG for
communication, it is not recommended to enable it but continue
to use UDP. In some cases it might be necessary to use UDP as
the communication protocol in a Oracle 9i environment.

The following commands show how to enable and disable the different
protocols for IPC.

Use the following command to disable NUMA support on Oracle 8i or 9i:

cd $ORACLE_HOME/rdbms/lib
make -f ins_rdbms.mk numa_off
make -f ins_rdbms.mkioracle

Enabling NUMA support in Oracle is currently not supported for Oracle
8.1.7/OPS and 9.0.1/RAC installations. If you are planning to use RAC or
OPS you must disable NUMA.

Use the following commands to enable Oracle 9i RAC or 8.1.7 Oracle Parallel
Server:

• In all cases:

cd $ORACLE_HOME/rdbms/lib

• For Oracle 8i:

make -f ins_rdbms.mk ops_on
make -f ins_rdbms.mk ioracle

• For Oracle 9i:

make -f ins_rdbms.mk rac_on
make -f ins_rdbms.mk ioracle

• To make IPC use the UDP Protocol (default for Oracle 8i OPS):

make -f ins_rdbms.mk ipc_udp
make -f ins_rdbms.mk ioracle

Tuning Oracle 4–3

• To use reliable datagram (RDG) for IPC (default for Oracle 9i):
make -f ins_rdbms.mk rac_on
make -f ins_rdbms.mk ioracle

4.4 Tuning Recommendations
There are many kernel subsystem attributes that affect Oracle 8.1.7.x/9i
database performance. This section offers primary tuning recommendations
for some of the attributes for the following subsystems:

• Virtual Memory (Section 4.4.1)

• Advanced File System (Section 4.4.2)

• Virtual File System (Section 4.4.3)

• Interprocess Communication (Section 4.4.4)

• Internet (Section 4.4.5)

• Process (Section 4.4.6)

• Real time (Section 4.4.7)

• Reliable Datagram (Section 4.4.8)

• Memory Channel (Section 4.4.9)

______________________ Note _______________________

Some kernel subsystem attributes enable you to modify their
value and apply the value to a running system. Other attributes
require you to reboot the system to use a new value. See
Section 3.3.1 to determine if an attribute can be tuned at run time.

See sys_attrs(5) for more information.

4.4.1 Modifying Virtual Memory Attributes

You may be able to improve Oracle 8.1.7.x/9i database performance by tuning
the following vm subsystem attributes:

• new_wire_method (Section 4.4.1.1)

• rad_gh_regions (Section 4.4.1.2)

• gh_chunks (Section 4.4.1.2.2)

• ubc_maxpercent (Section 4.4.1.3)

• ubc_borrowpercent (Section 4.4.1.4)

• vm_ubcseqstartpercent (Section 4.4.1.6)

• vm_ubcdirtypercent (Section 4.4.1.7)

4–4 Tuning Oracle

• vm_swap_eager (Section 4.4.1.8)

See sys_attrs_vm(5) for more information and see Chapter 3 for
information about modifying kernel subsystem attributes.

4.4.1.1 Disabling Shared Memory

Using granularity hints shared memory, often referred to as large pages, is
the recommended method of setting shared memory for Oracle 8.1.7.x/9i.
However, using segmented shared memory (SSM), which is controlled by
the ssm_threshold attribute in the ipc subsystem, is also supported and
is enabled by default.

Set new_wire_method to 0 if SSM is used. For example, if the
ssm_threshold has a default value of 8 MB, set new_wire_method to 0.

There is an interaction between the asynchronous I/O (AIO) and page
wiring mechanism that can result in high system time. To solve this
issue, we recommend setting the new_wire_method attribute to 0. The
new_wire_method default is 1.

Disabling this tunable attribute does not result in any negative performance
impacts. However, note that sys_attrs_vm(5) tells you to not modify the
default setting (1, on) for this attribute unless instructed to do so by support
personnel or the patch kit documentation.

One way to avoid the interaction between new_wire_method and
ssm_threshold is to use granularity hints memory (gh_regions or
rad_gh_regions) to prewire memory for the database to use.

See Section 4.4.1.2.2 and Section 4.4.1.2.1 for more information on
gh_chunks and rad_gh_regions.

4.4.1.2 Allocating Shared Memory

Two options for allocating shared memory for Oracle 8.1.7.x/9i are supported.
The traditional option is to use segmented shared memory (SSM), which
is controlled through the tunable ssm_threshold attribute in the ipc
subsystem. The ssm_threshold attribute is enabled by default.

Using granularity hints such as gh_chunks, often referred to as large pages,
is the preferred method of allocating shared memory on GS80/160/320
systems running Oracle 8.1.7.x/9i. (Granularity hints attributes are
documented in sys_attrs_vm(5).) This memory cannot be used for any
other purpose, and it cannot be returned to the system or reclaimed when
not being used. It will be used solely by the database for its system global
area (SGA), or by any other application using shmget() or nshmget()
to allocate shared memory.

Tuning Oracle 4–5

Use the vmstat -P command to determine the amount of granularity hints
memory configured on a system. The two attributes that determine how
chunks of memory are reserved for shared memory are rad_gh_regions
and gh_chunks. The use of rad_gh_regions and gh_chunks, change
depending on which system you are running:

• NUMA-aware systems (GS80, GS160, GS320) should set the
rad_gh_regions attribute. Although the gh_chunks attribute applies
to both non-NUMA and NUMA-aware systems, on NUMA-aware
systems the gh_chunks attribute affects only the first Resource Affinity
Domain (RAD) supported by the system (see Section 4.4.1.2.1).

• We recommend setting the gh_chunks attribute if you want to use
granularity hints memory allocation on non-NUMA systems such as the
ES, DS, and GS140 platforms (see Section 4.4.1.2.2).

4.4.1.2.1 Modifying the rad_gh_regions Attribute

To set the rad_gh_regions attribute on GS80/GS160/GS320 platforms,
specify the amount of memory per RAD/QBB, in MB, through the
corresponding rad_gh_regions attribute. For example, to allocate 2 GB on
QBB0 change the rad_gh_regions attribute to 2048 MB.

To determine the rad_gh_regions setting, take your planned or projected
Oracle SGA size and divide by the number of QBBs/RAD’s your GS system
has configured. For each rad_gh_regions[x] (where x represents the
QBB identifier from 0-7), specify the required value in MB. For example, if
you are running a GS320 platform that has 64 GB of main memory in 8
QBBs, and your Oracle SGA is sized at 16 GB, change the value to at least
2048 MB for rad_gh_regions[0] to rad_gh_regions[7].

We recommend that the sum of rad_gh_regions[*] be set to at least the
size of the Oracle SGA. However, you might consider allocating a larger
value for rad_gh_regions in order to resize the Oracle SGA without having
to reboot the system. Changes to rad_gh_regions require a system reboot
and rad_gh_regions is not a dynamic system tunable.

Shared memory should generally be allocated in striped mode in order to
distribute memory across all available RADs. Changing to a sequential
allocation policy may adversely affect performance as it may cause hotspots
in individual RADs.

If you set rad_gh_regions to any number except 0, you must also
disable ssm by setting ssm_threshold to 0. The default value of the
rad_gh_regions attribute is 0 or disabled.

See Section 4.4.1.2.2 for more information about granularity hints memory
allocation.

4–6 Tuning Oracle

4.4.1.2.2 Modifying the gh_chunks Attribute

The gh_chunks attribute specifies the number of 4-MB chunks of memory
reserved at boot time for shared memory use. This memory cannot be used
for any other purpose, nor can it be returned to the system or reclaimed
when not being used.

There is only about a 7 percent overall performance improvement when
using gh_chunks. Therefore, it might not be the best option for most
systems due to its complexity to implement.

However, some systems might still benefit from using gh_chunks, especially
Oracle 8.1.7.x/9i environments that are having a very large number of clients
connecting and disconnecting from the database. In this type of environment,
using gh_chunks can actually result in a significant performance increase.
We recommend setting gh_chunks to at least the Oracle SGA size and
dividing it by 4 MB. Calculate the value for gh_chunks by dividing Oracle’s
SGA size by 4 MB and then expressing this value in 4-MB units. For
example, if your Oracle SGA is sized at 16GB, divide 16 GB by 4 MB, for
a result of 4000 MB. This equals setting gh_chunks to 1000. If you set
gh_chunks to any number except 0, you must also disable ssm by setting
ssm_threshold to 0. The default value of gh_chunks is 0 or disabled.

4.4.1.3 Modifying the Percentage of Physical Memory the UBC is Using

The ubc_maxpercent attribute specifies the maximum percentage of
physical memory that the UBC can use at one time.

Oracle 8.1.7.x/9i uses the AdvFS direct I/O; therefore you do not need
to artificially restrict the Unified Buffer Cache (UBC). We recommend
decreasing the physical memory that the UBC can use at one time to a
smaller value to prevent (double) caching in the file system. However,
setting the ubc_maxpercent to a low value may cause contention in the
kernel and negatively impact performance.

We recommend increasing the percentage of physical memory that the UBC
can use at one time to at least 70 percent. The value should not be set to
smaller than 35 percent.

4.4.1.4 Modifying the Percentage of Memory the UBC is Borrowing

The ubc_borrowpercent attribute specifies the percentage of memory
above which the UBC is only borrowing memory from the virtual memory
subsystem. Paging does not occur until the UBC has returned all its
borrowed pages.

The ubc_borrowpercent default value is 20 percent, which is a good
percentage for most systems. However, if you are running a database server

Tuning Oracle 4–7

without any current interactive users, consider decreasing the value to 10
percent to improve backup performance.

4.4.1.5 Modifying the Percentage of Memory the UBC Can Use For a Single File

The vm_ubcseqpercent attribute specifies the maximum percentage of
UBC memory that can be used to cache a single file. See Section 4.4.1.6 for
more information about controlling when the UBC checks this limit. The
vm_ubcseqpercent default value is 10 percent, which is a good percentage
for most systems. However, if the system you are running is a database
server-only environment, consider decreasing the value to 5 percent to
improve performance during backups.

4.4.1.6 Modifying the UBC Threshold

The vm_ubcseqstartpercent attribute specifies a threshold value (a
percentage of the UBC in terms of its current size) that determines when
the UBC starts to check the percentage of UBC pages cached for each
file object. If the cached page percentage for any file exceeds the value
of vm_ubcseqpercent, the UBC returns that file’s UBC LRU pages
to virtual memory. See Section 4.4.1.5 for more information about the
vm_ubcseqpercent attribute.

______________________ Note _______________________

The vm_ubcseqstartpercent attribute is defined as a
percentage of the ubc_maxpercent attribute, which is itself a
percentage of available memory. The definition change has no
effect if the ubc_maxpercent specifies its default value (100
percent). However, the definition change has implications if the
value for the ubc_maxpercent has been lowered. For example,
the value for vm_ubcseqstartpercent should be set to 25.

4.4.1.7 Modifying the Percentage of Pages that Must be Dirty

The vm_ubcdirtypercent attribute specifies the percentage of pages that
must be dirty (modified) before the UBC starts writing them to disk. For
most systems the default value of 10 percent is effective. However, if you
are running a system with a lot of file system/UBC activity and that would
benefit from keeping file system pages in the UBC, increase the value to
90 percent.

4.4.1.8 Modifying the Swap Allocation Mode

The vm_swap_eager attribute controls how the system will use the
available swap space by specifying the swap allocation mode, which can be

4–8 Tuning Oracle

immediate mode (1) or deferred mode (0). There is no performance benefit
attached to either mode.

The swap space allocation modes are as follows:

• Immediate mode — This mode reserves swap space when a process
first allocates anonymous memory. Immediate mode is the default swap
space allocation mode and is also called eager mode.

Immediate mode may cause the system to reserve an unnecessarily large
amount of swap space for processes. However, it ensures that swap
space will be available to processes if it is needed. Immediate mode is
recommended for systems that overcommit memory (that is, systems
that page).

• Deferred mode — This mode reserves swap space only if the virtual
memory subsystem needs to write a modified virtual page to swap space.
It postpones the reservation of swap space for anonymous memory until
it is actually needed. Deferred mode is also called lazy mode.

Deferred mode requires less swap space than immediate mode and
may cause the system to run faster because it requires less swap space
bookkeeping. However, because deferred mode does not reserve swap
space in advance, the swap space may not be available when a process
needs it, and the process may be killed asynchronously. Deferred mode
is recommended for large-memory systems or systems that do not
overcommit memory (page).

If you set the vm_swap_eager attribute to 1, the default, your system is in
eager swap allocation mode. If you are in this mode, sum the anonymous
virtual memory for all processes and add at least 10 percent to the size of
your swap space. Use eager swap allocation mode for highly reliable systems
that overcommit memory.

If you set the vm_swap_eager attribute to 0, your system is in lazy swap
allocation mode. If you are in this mode, sum the anonymous virtual memory
for all processes and subtract half of the physical memory. Use lazy mode
for any system that does not overcommit memory. If vm_swap_eager has
been set to 0 and the system is in danger of running out of available swap
space, a process that attempts to allocate swap space is killed. There is no
mechanism to protect processes being deleted in this situation.

We recommend that the Oracle 8.1.7.x/9i database server environment
have enough memory available to set vm_swap_eager to 1. However, if
the workload is well understood and the system has been configured with
enough memory to prevent it from swapping, you can set vm_swap_eager to
0. For eager swap allocation mode, the default value is 1.

Tuning Oracle 4–9

4.4.2 Modifying the Advanced File System Attribute

You may be able to improve Oracle 8.1.7.x/9i database performance by tuning
the advfs subsystem AdvfsSyncMmapPages attribute.

The AdvfsSyncMmapPages attribute specifies a value that controls whether
modified (dirty) memory-mapped pages are flushed to disk during a
sync() system call. If the value is 1, the dirty memory-mapped pages are
asynchronously written to disk. If the value is 1, dirty memory-mapped
pages are not written to disk during a sync system call.

Setting the parameter to 0 prevents AdvFS from trying to flush pages of files
that have been mmapped. the default value of one causes memory-mapped
pages to be written asynchronously to disk during a sync() system call.

Most applications that use mmap() to map pages and files into memory
are using their own synchronization through the fsync() call, so there is
no need for AdvFS to perform the same operation again. This setting also
avoids AdvFS trying to flush pages that should actually stay in memory.

See sys_attrs_advfs(5) for more information and see Chapter 3 for
information about modifying kernel subsystem attributes.

4.4.3 Modifying the Virtual File System Attribute

You may be able to improve Oracle 8.1.7.x/9i database performance by tuning
the following (vfs) subsystem fifo_do_adaptive attribute.

The fifo_do_adaptive attribute specifies a value that enables (1) or
disables (0) the pipe code that attempts to do batch writes to a pipe and
deliver the data in a single call to a reader. The fifo_do_adaptive
attribute is one of the tunables where the default value may not be
appropriate if the system is running as a database server.

The default setting of 1 enables alternate algorithms in the FIFO routines.
This will create an optimal working set size and will perform fewer data
transfer operations, but of a larger size. The default works reasonably well
for applications that perform data transfers of a uniform or near-uniform
size. The default does not work so well for some applications that perform
data transfers of a random size, particularly those that started out
performing transfers such that the FIFO code determined an optimal
transfer size.

The default value is ineffective for some applications in which the peer
processes operate in sync; for example, procA transfers to procB and
then waits for procB’s response. By disabling the fifo_do_adaptive
parameter, performance for some applications degrades, and for other
applications it improves. The performance change depends on how the pipes
are used. We recommend setting this parameter to 0 in Oracle environments.

4–10 Tuning Oracle

See sys_attrs_vfs(5) reference page for more information and see
Chapter 3 for information about modifying kernel subsystem attributes.

4.4.4 Modifying Interprocess Communication Attributes

You may be able to improve Oracle 8.1.7.x/9i database performance by
tuning the following ipc subsystem attributes:

• ssm_threshold (Section 4.4.4.1)

• shm_max (Section 4.4.4.2)

• shm_min (Section 4.4.4.3)

• shm_mni (Section 4.4.4.4)

• shm_seg (Section 4.4.4.5)

See sys_attrs_ipc(5) for more information and see Chapter 3 for
information about modifying kernel subsystem attributes.

4.4.4.1 Modifying the System V Shared Regions

The ssm_threshold attribute specifies the minimum size, in bytes,
of a System V shared region for the use of shared page tables. The
ssm_thresold attribute controls which type of segmented shared memory
(SSM) implementation is used.

The default value is 8 MB. Disable ssm_threshold if you are using large
pages; that is, either rad_gh_regions or gh_chunks, (see Section 4.4.1.2).
We recommend leaving ssm_threshold at its default value on non-GS
series unless you are using rad_gh_regions or gh_chunks; in that case,
set ssm_threshold to 0 (disabled).

4.4.4.2 Modifying the System V Maximum Size of Shared Memory Region

The shm_max attribute specifies the maximum size, in bytes, of a single
System V shared memory region. Oracle concatenates multiple shared
memory regions if the SGA is larger then the value configured for shm_max.
The size for a single shared memory segment (SSM) could be larger than 2
GB. However, applications using shared memory on the same system may
have problems with shared memory segments larger than 2 GB.

To avoid compatibility issues, we recommend setting the maximum size for
an individual shared memory segment to 2 GB. The recommended value is
2 GB minus 8 MB (2139095040). If Oracle is the only application used on
the system, you can increase the size of shm_max to 4 GB minus 16 MB
(4278190080). The default value is 4,194,304 bytes (512 pages).

Tuning Oracle 4–11

4.4.4.3 Modifying the System V Minimum Size of Shared Memory Region

The shm_min attributes specifies the minimum size, in bytes, of a single
System V shared memory region.

The recommended value is one region and the default value is one region.

4.4.4.4 Modifying the Shared Memory Regions that Can be Used at One Time

The shm_mni attribute specifies the maximum number of shared memory
regions that can be used on the system at one time.

The recommended value is 256 regions; the default value is 100 regions. The
system rounds the number to the value associated with the next higher
power of two, so the default value would actually be 128 regions.

4.4.4.5 Modifying the Shared Memory Regions that Can be Attached at One Time

The shm_seg attribute specifies the maximum number of System V shared
memory regions that can be attached to a single process at one time.

The recommended value is 128 regions.

4.4.5 Modifying Internet Attributes

You may be able to improve Oracle 8.1.7.x/9i database performance by
tuning the following inet subsystem attributes:

• udp_sendspace (Section 4.4.5.1)

• udp_recvspace (Section 4.4.5.2)

• ipport_unserreserved (Section 4.4.5.3)

See sys_attrs_inet(5) for more information and see Chapter 3 for
information about modifying kernel subsystem attributes.

Also, for more information about tuning Internet
servers see Chapter 6. For recommendations specific
to GigaBit Ethernet performance, see:

http://www.tru64unix.compaq.com/docs/best_practices/
BP_GIGABIT/TITLE.HTM.

4.4.5.1 Modifying the Send Buffer Size for the UDP Sockets

The udp_sendspace attribute specifies the default send buffer size, in
bytes, for UDP sockets. If your application is using a Gigabit Ethernet or
heavy network activity, consider setting the value of the udp_sendspace
attribute to a higher value than the suggested default.

4–12 Tuning Oracle

The recommended value is 65536 (bytes) or larger, depending on the size and
number of user sessions and or queries.

4.4.5.2 Modifying the Receive Buffer Size for the UDP Sockets

The udp_recvspace attribute specifies the default receive buffer size, in
bytes, for UDP sockets. If your application is using a Gigabit Ethernet or
heavy network activity, consider setting the value of the udp_recvspace
attribute to a higher value than the suggested default.

The recommended value is 65536 (bytes) or larger, depending on the size and
number of user sessions and queries.

4.4.5.3 Modifying the Number of Times a System can make Outgoing Connections

The ipport_userreserved attribute specifies the number of times a
system can simultaneously make outgoing connections to other systems.

The number of outgoing ports is the value of the ipport_userreserved
attribute minus the value of the ipport_userreserved_min attribute.
The default value is 5000 (bytes). Therefore, the default number of outgoing
ports is 3976. The recommended value for large-scale Oracle installations is
also the maximum value of 65535 (bytes).

4.4.6 Modifying Process Attributes

You may be able to improve Oracle 8.1.7.x/9i database performance by
tuning the following proc subsystem attributes:

• per_proc_stack_size (Section 4.4.6.1)

• max_per_proc_stack_size (Section 4.4.6.2)

• per_proc_data_size (Section 4.4.6.3)

• max_per_proc_data_size (Section 4.4.6.4)

• per_proc_address_space (Section 4.4.6.5)

• max_per_proc_address_space (Section 4.4.6.6)

• max_proc_per_user (Section 4.4.6.7)

• max_threads_per_user (Section 4.4.6.8)

• maxusers (Section 4.4.6.9)

See sys_attrs_proc(5) for more information and see Chapter 3 for
information about modifying kernel subsystem attributes.

Tuning Oracle 4–13

4.4.6.1 Modifying the Per Process Stack Size

The per_proc_stack_size attribute specifies, in bytes, the per process
stack size. The default value of 8 MB should be large enough for most Oracle
environments. However, in very large installations and data warehouse type
environments, the value should be increased.

The recommended value is 33,554,432 (32 MB).

4.4.6.2 Modifying the Maximum Size of the User Process Stack Size

The max_per_proc_stack_size attribute specifies the maximum size, in
bytes, of a user process stack. The default value of 32 MB should be large
enough for most Oracle environments. However, in very large installations
and data warehouse type environments, the value should be increased.

The recommended value is 536,870,912 (512 MB). Depending on the Oracle
environment, the maximum stack size can be increased to a maximum value
of less than or equal to 896 MB. This limit is due to the fact that Oracle has a
fixed PGA and fixed SGA at 0x38000000 and 0x58000000 for performance. If
you use a larger value than 896 MB for this parameter, Oracle may corrupt
the fixed SGA and PGA.

4.4.6.3 Modifying the Per Process Data Size

The per_proc_data_size attribute specifies, in bytes, the per process
data size. Set the value to the amount of physical memory installed on
your system. You can raise the value to a larger value than actual memory
available. However, doing so would allow a single process to outgrow a
system’s main memory and cause extensive swapping and paging (see
Section 12.5).

We recommend staying within the bounds of the available memory for the
per_proc_data_size attribute. Never raise per_proc_data_size to a
value larger than the physical memory available plus the configured swap
space. The recommended value is the amount of physical memory installed,
with a maximum value of 4,398,046,511,104 bytes.

4.4.6.4 Modifying the Maximum Size of the Per Process Data Size

The max_per_proc_data_size attribute specifies the maximum size, in
bytes, of a data segment for each process. Set the value to the amount of
physical memory installed on your system. You could raise the value to a
larger value than actual memory available. However, doing so would allow
a single process to outgrow a system’s main memory and cause extensive
swapping and paging (see Section 12.5).

4–14 Tuning Oracle

We recommend staying within the bounds of the available memory
for the max_per_proc_data_size attribute. Never raise
max_per_proc_data_size to a value larger than the physical memory
available plus the configured swap space. The recommended value is the
amount of physical memory installed, with a maximum of 4,398,046,511,104
bytes.

4.4.6.5 Modifying the Per Process Address Size

The per_proc_address_space attribute specifies, in bytes, the per process
address size. Set this value to the amount of physical memory installed on
your system. You could raise the value to a larger value than actual memory
available. However, this would allow a single process to outgrow a system’s
main memory and cause extensive swapping and paging (see Section 12.5).

We recommend staying within the bounds of the available memory
for the per_proc_address_space attribute. Never raise
per_proc_address_space to a value larger than the physical memory
available, plus the configured swap space. The recommended value is
the amount of physical memory installed, with a maximum value of
4,398,046,511,104 bytes.

4.4.6.6 Modifying the Maximum Per Process Address Size

The max_per_proc_address_space attribute specifies the maximum
amount, in bytes, of user process address space. Set the value to the amount
of physical memory installed on your system. You could raise the value to a
larger value than actual memory available. However, doing so would allow
a single process to outgrow a system’s main memory and cause extensive
swapping and paging (see Section 12.5).

We recommend staying within the bounds of the available memory
for the max_per_proc_address_space attribute. Never raise
max_per_proc_address_space to a value larger than the physical
memory available plus the configured swap space. The recommended
value is the amount of physical memory installed, with a maximum of
4,398,046,511,104 bytes.

4.4.6.7 Modifying the Maximum Number of Processes

The max_proc_per_user attribute specifies the maximum number of
processes (tasks) that a user can create (the superuser is not affected). To
disable the limits for the max_proc_per_user attribute, set the attribute
value to 0.

The recommended value is 1024 (processes). If the application requires more
than 1024 tasks per user, increase the value accordingly.

Tuning Oracle 4–15

4.4.6.8 Modifying the Maximum Number of Threads

The max_threads_per_user attribute specifies the maximum limit of
threads a user can create (the superuser is not affected). To disable the limits
for the max_threads_per_user attribute, set the attribute value to 0.

The recommended value is 4096 threads. If the application requires more
than 1024 tasks per user, increase the value accordingly.

4.4.6.9 Modifying the Space Allocated to System Tables

The maxusers attribute specifies the number of simultaneous users that a
system can support without straining system resources. System algorithms
use the maxusers value to size various system data structures and to
determine the amount of space allocated to system tables, such as the
system process table.

For ES40 class systems and higher, we recommend setting the attribute to
a value of 8192 (users) or up to the maximum value of 16,384 (users). The
default value is system-dependent.

4.4.7 Modifying the Real-Time Attribute

You may be able to improve Oracle 8.1.7.x/9i database performance by tuning
the rt subsystem aio_task_max_num attribute.

The aio_task_max_num attribute specifies the limit that indirectly controls
the number of AIO requests that can be wired in physical memory by
restricting the amount of wired physical memory available for a specified
number of tasks. One page of wired physical memory is available to the
number of tasks specified by aio_task_max_num.

The recommended value should be greater than the maximum of
either the DBWR I/O operations or the value of the DB_FILE_MULTI-
BLOCK_READ_COUNT parameter, whichever is higher. The maximum
number of DBWR I/O operations defaults to 8192 unless you specify the
_DB_WRITER_MAX_WRITES initialization parameter. The default value is
102 (one page of wired memory per 102 tasks).

A simple formula for this tunable is:

(DB_WRITER_MAX_WRITES (default 8192) * DB_WRITER_PROCESSES)
+ (PARALLEL_MAX_SERVERS * DB_FILE_MULTIBLOCK_READ_COUNT) +
10.

See sys_attrs_rt(5) for more information and see Chapter 3 for
information about modifying kernel subsystem attributes.

4–16 Tuning Oracle

4.4.8 Modifying Reliable Datagram Attributes

You may be able to improve Oracle 8.1.7.x/9i database performance by
tuning the following rdg subsystem attributes:

• max_objs (Section 4.4.8.1)

• msg_size (Section 4.4.8.2)

• max_async_req (Section 4.4.8.3)

• max_sessions (Section 4.4.8.4)

• rdg_max_auto_msg_wires (Section 4.4.8.5)

See sys_attrs_rdg(5) for more information and see Chapter 3 for
information about modifying kernel subsystem attributes.

4.4.8.1 Modifying the Maximum Number of Objects in the RDG

The max_objs attribute specifies the maximum number of objects in the
RDG endpoint and buffer list.

The recommended value is at least 5 times the number of Oracle processes
per node, up to 10240 or the number of Oracle processes multiplied by 70.

4.4.8.2 Modifying the Maximum Size of the RDG Message

The msg_size attribute specifies the maximum size in bytes of an RDG
message.

The recommended value is equal to or greater than the maximum value
of the DB_BLOCK_SIZE parameter for the database. Oracle recommends
a value of 32768 because Oracle9i supports different block sizes for each
table space.

4.4.8.3 Modifying the Maximum Number of Messages in the RDG

The max_async_req attribute specifies the maximum number of
asynchronous messages held in the RDG send and receive queues.

The recommended value is at least 100. A value of 256 might provide better
performance.

4.4.8.4 Modifying the Maximum Number of Sessions within the RDG Table

The max_async_req attribute specifies the maximum number of sessions
within any given RDG context table.

The recommended value is at least the number of Oracle processes plus two.

Tuning Oracle 4–17

4.4.8.5 Modifying the Maximum Number of Pages Wired For Message Packets

The max_async_req attribute specifies the maximum number of pages
automatically wired in memory for message packets.

We recommend setting the max_async_req attribute to 0.

4.4.9 Modifying the Memory Channel Attribute

You may be able to improve Oracle 8.1.7.x/9i database performance by tuning
the rm subsystem rm_check_for_ipl attribute.

The rm_check_for_ipl attribute specifies the bitmask, indicating when
the CPU priority level (spl) of the processor should be saved in a trace buffer.

We recommend setting this the attribute to 63, the default value.

See sys_attrs_rm(5) for more information and see Chapter 3 for
information about modifying kernel subsystem attributes.

4–18 Tuning Oracle

5
Tuning Network File Systems

The network file system (NFS) allows users to access files transparently
across networks. The NFS supports a spectrum of network topologies, from
small and simple networks to large and complex networks. The NFS shares
the Unified Buffer Cache (UBC) with the virtual memory subsystem and
local file systems.

NFS can put an extreme load on the network. Poor NFS performance is
almost always a problem with the network infrastructure. Look for high
counts of retransmitted messages on the NFS clients, network I/O errors,
and routers that cannot maintain the load. Lost packets on the network
can severely degrade NFS performance. Lost packets can be caused by a
congested server, the corruption of packets during transmission (which
can be caused by bad electrical connections, noisy environments, or noisy
Ethernet interfaces), and routers that abandon forwarding attempts too
quickly.

When evaluating NFS performance, remember that NFS does not perform
well if any file-locking mechanisms are in use on an NFS file. The locks
prevent the file from being cached on the client.

Improving performance on a system that is used only for serving NFS
differs from tuning a system that is used for general timesharing, because
an NFS server runs only a few small user-level programs, which consume
few system resources. There is minimal paging and swapping activity, so
memory resources should be focused on caching file system data.

File-system tuning is important for NFS because processing NFS requests
consumes the majority of CPU and wall-clock time. Ideally, the UBC hit rate
should be high. Increasing the UBC hit rate can require additional memory
or a reduction in the size of other file-system caches (see Section 11.1.3). In
general, file-system tuning will improve the performance of I/O-intensive
user applications. In addition, a vnode must exist to keep file data. If you
are using AdvFS, an access structure is also required to keep file data. See
Chapter 11 for more information about file systems.

This chapter describes how to improve NFS performance. It offers various
configuration guidelines and describes several monitoring tools, including
the following topics:

• Monitoring NFS statistics (Section 5.1)

Tuning Network File Systems 5–1

• Detecting poor performance (Section 5.2)

• Performance benefits and tradeoffs (Section 5.3)

• NFS configuration (Section 5.4)

• NFS retransmissions (Section 5.5)

• Tuning NFS servers (Section 5.6)

• Tuning NFS Clients (Section 5.7)

5.1 Monitoring NFS Statistics

This section provides references to utilities that you can use to gather NFS
performance information. It is important that you gather statistics under
a variety of conditions. Comparing sets of data will help you diagnose
performance problems.

Table 5–1 describes the tools that you can use to detect poor NFS
performance.

Table 5–1: Tools to Detect Poor NFS Performance
Tools Description Reference

nfsstat Displays network file
system statistics.

Section 2.4.3

tcpdump Monitors and displays
packet headers on a
network interface.

Section 2.4.4

netstat Displays network
statistics.

Section 2.4.5

ps axlm Displays idle I/O threads
on a system.

Server side: Section 2.4.6
Client side: Section 2.4.7

nfswatch Monitors all incoming
network traffic to a NFS
file server and divides it
into several categories.

Section 2.4.8

dbx print nfs_sv_ac-
tive_hist

Displays a histogram of the
active NFS server threads.

Section 3.1

dbx print nchstats Determines the namei
cache hit rate.

Section 2.6

dbx print bio_stats Determines the metadata
buffer cache hit rate.

Section 3.1

5–2 Tuning Network File Systems

5.2 Detecting Poor NFS Performance

Table 5–2 describes some poor NFS performance problems and possible
solutions.

Table 5–2: Potential NFS Problems and Solutions
Problem Solutions

NFS server threads busy. Reconfigure the server to run more
threads. See Section 2.4.6.

Memory resources are not focused
on file-system caching.

Increase the amount of memory allocated
to the UBC. See Section 11.1.3.
If you are using AdvFS, increase the
memory reserved for AdvFS access
structures. See Section 11.1.5.

System resource allocation is not
adequate.

Set the value of the maxusers attribute
to the number of server NFS operations
that are expected to occur each second.
See Section 8.1.

UFS metadata buffer cache hit rate is low. Increase the size of the metadata buffer
cache. See Section 11.1.4.
Increase the size of the namei cache. See
Section 11.1.2.

CPU idle time is low. Use UFS, instead of AdvFS. See
Section 11.3.

5.3 Performance Benefits and Tradeoffs

Table 5–3 lists NFS configuration guidelines and performance benefits and
trade-offs.

Table 5–3: NFS Tuning Guidelines
Benefit Guideline Tradeoff

Enable efficient I/O
blocking operations

Configure the appropriate
number of threads on an
NFS server (Section 5.4.1)

None

Enable efficient I/O
blocking operations

Configure the appropriate
number of threads
on the client system
(Section 2.4.7)

None

Tuning Network File Systems 5–3

Table 5–3: NFS Tuning Guidelines (cont.)

Benefit Guideline Tradeoff

Improve performance on
slow or congested networks

Decrease network timeouts
on the client system
(Section 5.4.3)

Reduces the theoretical
performance

Improve network
performance for read-only
file systems and enable
clients to quickly detect
changes

Modify cache timeout
limits on the client system
(Section 5.4.3)

Increases network traffic
to server

The following sections describe these guidelines in more detail.

5.4 NFS Configuration
This section describes specific areas of the network file system (NFS)
configuration. For more information about Network Configuration see the
Network Administration: Connections guide.

5.4.1 Configuring Server Threads

The nfsd daemon runs on NFS servers to service NFS requests from client
systems. The daemon spawns a number of server threads that process NFS
requests from client systems. At least one server thread must be running
for a machine to operate as a server. The number of threads determines the
number of parallel operations and must be a multiple of 8.

To improve performance on frequently used NFS servers, configure either 16
or 32 threads, which provides the most efficient blocking for I/O operations.
Configure 16 threads or more, up to a total of 128 combined UDP and TCP
threads.

To monitor the number of UDP and TCP threads, use the following
commands:
ps axlm | grep -v grep | grep -c nfs_udp

ps axlm | grep -v grep | grep -c nfs_tcp

The previous commands will display the number of sleeping or idle threads.
If this number is repeatedly 0, additional nfsd threads should be configured.
See Section 2.4.7 or nfsd(8) for more information.

5.4.2 Configuring Client Threads

Client systems use the nfsiod daemon to service asynchronous I/O
operations, such as buffer cache read-ahead and delayed write operations.
The nfsiod daemon spawns several I/O threads to service asynchronous

5–4 Tuning Network File Systems

I/O requests to its server. The I/O threads improve performance of both
NFS reads and writes.

The optimal number of I/O threads to run depends on many variables, such
as how quickly the client is writing data, how many files will be accessed
simultaneously, and the behavior of the NFS server. The number of threads
must be a multiple of 8 minus 1 (for example, 7,15 ,31, and so forth is
optimal).

NFS servers attempt to gather writes into complete UFS clusters before
initiating I/O, and the number of threads (plus 1) is the number of writes
that a client can have outstanding at one time. Having exactly 7 or 15
threads produces the most efficient blocking for I/O operations. If write
gathering is enabled, and the client does not have any threads, you may
experience a performance degradation. To disable write gathering, use the
dbx patch command to set the nfs_write_gather kernel variable to 0.
See Section 3.2 for information about the dbx command.

To display idle I/O threads on the client, use the following command:

ps axlm | grep -v grep | grep -c nfsiod

If few threads are sleeping, you might improve NFS performance by
increasing the number of threads. See Section 2.4.6 or nfsiod(8) for more
information.

5.4.3 Modifying Cache Timeout Limits

For read-only file systems and slow network links, performance might
improve by changing the cache timeout limits on NFS client systems. These
timeouts affect how quickly you see updates to a file or directory that was
modified by another host. If you are not sharing files with users on other
hosts, including the server system, increasing these values will slightly
improve performance and will reduce the amount of network traffic that
you generate.

See mount(8) and the descriptions of the acregmin, acregmax, acdirmin,
acdirmax, actimeo options for more information.

5.5 NFS Retransmissions

Excessive retransmissions can cause poor performance because the client
must wait for the server to respond before it retransmits a request. Excessive
retransmissions can be caused by the following problems:

• Overloaded servers that drop packets due to insufficient buffering

• Inadequate Ethernet transceivers that cause packets to be dropped
under busy conditions

Tuning Network File Systems 5–5

• Physical network errors, such as those caused by a noisy coaxial cable

Use the nfsstat -c command to measure the NFS retransmission rate on
client machines. You can then determine the rate of retransmissions. See
nfsstat(8) for more information.

The average NFS response time to a client request under a low to medium
load is approximately 15 milliseconds. Most clients retransmit a request
after approximately 1 second. If a 10 percent reduction in performance is
acceptable, then a 1.5-millisecond increase in response time is an acceptable
limit. This reduction gives an acceptable NFS retransmission rate of 0.15
percent. The calculation is as follows:
.0015 sec/request

----------------------- = 0.0015 retransmission/request
1.0 sec/retransmission

Because the worst-case NFS request (read or write 8 KB over the Ethernet)
requires seven packets (one request and six fragmented replies), the error
rate of the network must be less than 0.02 percent. The calculation is as
follows:
0.15 percent

--------- = 0.02 percent
7

Use the netstat -i command to measure the network error rate. If this
rate is unacceptably high, determine if an individual machine is generating
an excessive number of errors. If the problem appears to be pervasive,
analyze the cabling technology that is being used. For example, if you have
difficulties with noisy nonstandard coaxial cable, you could switch to a
twisted-pair Ethernet. See netstat(1) for more information.

5.5.1 Decreasing Network Timeouts

NFS does not perform well if it is used over slow network links, congested
networks, or wide area networks (WANs). In particular, network timeouts
on client systems can severely degrade NFS performance. This condition can
be identified by using the nfsstat command and determining the ratio of
timeouts to calls. If timeouts are more than 1 percent of the total calls,
NFS performance may be severely degraded. See Section 2.4.3 for sample
nfsstat output of timeout and call statistics.

You can also use the netstat -s command to verify the existence of a
timeout problem. A nonzero value in the fragments dropped after
timeout field in the ip section of the netstat output may indicate that the
problem exists. See Section 2.4.5 for sample netstat command output.

If fragment drops are a problem on a client system, use the mount command
with the -rsize=1024 and -wsize=1024 options to set the size of the NFS
read and write buffers to 1 KB.

5–6 Tuning Network File Systems

5.6 Tuning NFS Servers

Tru64 UNIX uses a buffer cache in memory to avoid disk operations
whenever possible. This memory is effective in reducing the client waiting
time for relatively slow disk I/O. It also makes disk I/O more efficient by
allowing the staging and scheduling of disk operations.

You can improve performance by allowing the disk device driver to schedule
several requests at a time to take advantage of the position of the disk arm.
The total amount of disk I/O is reduced, because repeat requests may be
found in the cache. If NFS read activity is high, then adding more memory
to your server can improve server performance because the size of the buffer
cache is a percentage of the size of memory.

Performance problems at the server make the system buffer cache inefficient
when serving remote write requests. NFS uses a simple stateless protocol,
which requires that each client request be complete and self-contained
and that the server completely process each request before sending
an acknowledgment back to the client. If the server crashes or if an
acknowledgment is lost, the client retransmits its request to the server.
Because of this, the following events occur:

• The server cannot acknowledge the client’s request until data is safely
written to stable storage.

• The client knows exactly how much modified data has been safely stored
by the server.

• The server cannot cache modified data in volatile storage because the
data may be lost if the server crashes.

In NFS Version 2, write operations are synchronous. When the server
receives a write request, it must write the data and information needed
to find it later before replying. Tru64 UNIX uses a technique called write
gathering to reduce this I/O load, but the performance impact is still very
high.

In NFS Version 3, write requests are usually asynchronous, which minimize
the performance impact of write operations. When the server first receives a
write request, it merely acknowledges receipt of the data. Later, the client
will send a commit request, requesting the server to write any data that is
still in the cache and reply when all data is on stable storage. The protocol
includes a write verifier that allows the client to detect if the server crashed
and rebooted between the write and commit operations. If so, the client
retransmits the uncommitted write requests to ensure that the server has
the proper data.

You cannot use the system buffer cache to improve performance with NFS
requests that modify data. If a server writes modified data only to volatile

Tuning Network File Systems 5–7

memory, a server crash would jeopardize the data integrity. The client may
assume that its data is safely stored, but if a crash occurs and the data was
stored only in volatile memory, the data may be lost. Because a single server
stores data for many clients, many clients can be affected. However, if
modifications are always synchronously written to disk, data will not be lost
and you can recover from server crashes.

Because NFS operations are synchronously committed to disk, a server
can survive system failures since data integrity is ensured. However,
performance is degraded because these operations take place at disk speeds
and not at the memory speeds available to cachable operations. In addition,
because these operations are processed serially, there is no opportunity
to optimize the scheduling of the disk arm. Modifications to the cache
are written synchronously to disk, so there is no opportunity to decrease
write-disk traffic.

NFS servers run only a few small user-level programs, which consume few
system resources. File-system tuning is important because processing NFS
requests consumes the majority of CPU and wall-clock time. See Chapter 11
for information on file-system tuning.

In addition, if you are running NFS over Transmission Control Protocol
(TCP), tuning TCP may improve performance if there are many active
clients. See Section 10.2 for information on network subsystem tuning.
If you are running NFS over User Datagram Protocol (UDP), network
subsystem tuning is not normally needed.

Follow the guidelines in Table 5–4 to help you tune a system that is only
serving NFS.

Table 5–4: NFS Server Tuning Guidelines
Guideline Reference

Set the value of the maxusers
attribute to the number of server
NFS operations that are expected
to occur each second.

Section 8.1

Increase the size of the namei cache. Section 11.1.2

Increase the memory reserved
for AdvFS access structures, if
you are using AdvFS.

Section 11.1.5

Increase the size of the metadata
buffer cache, if you are using UFS.

Section 11.1.4

5–8 Tuning Network File Systems

5.6.1 Modifying NFS Server Side Attributes

You may be able to improve network file system server performance by
tuning the following network file system (nfs) subsystem attributes:

• Write gathering (Section 5.6.1.1):

– nfs_write_gather (Version 2.0)

– nfs_ufs_lbolt (Version 2.0)

– nfs3_write_gather (Version 3.0)

– nfs3_ufs_lbolt (Version 3.0)

• Specifying the amount of time the server will delay the write
(Section 5.6.1.2):

– nfs_slow_ticks

– nfs_fast_ticks

– nfs_unkn__ticks

• Increasing the NFS send and receive buffer size (Section 5.6.1.3):

– nfs_tcpsendspace

– nfs_tcprecvspace

______________________ Note _______________________

Parameters for the nfs kernel subsystem are accessible only by
using dbx; there are no comparable system attributes accessible
through the /sbin/sysconfig command or the dxkerneltuner
GUI. See Section 3.2 for more information about dbx.

See sys_attrs_inet(5) for more information and see Chapter 3 for
information about modifying kernel subsystem attributes.

5.6.1.1 Write Gathering

Write gathering can improve the server capacity as it postpones disk writes
of data requests by the client. Updating metadata is done less frequently
compared to every time a write request is made. Write gathering provides a
small amount of latency into the request processing cycle, waiting for more
write requests to the same disk blocks to arrive at the server. However,
the overall benefit of freeing up CPU cycles on the server outweighs the
necessary overhead in most situations.

Write gathering also improves bandwidths as fewer, larger disk writes are
completed; for example, there are fewer seeks and missed rotations. Some
NFS V3 clients support asynchronous writes, but the benefit from server

Tuning Network File Systems 5–9

write gathering is not as apparent. However, clients that do not support
asynchronous writes, such as NFS V2 and some NFS V3 clients, need to do
synchronous writes during recovery, which leaves write gathering turned on.
This can improve system performance.

By default, write gathering is turned on. To receive the best results using
this feature, tuning nfsiods on the clients can help improve the scalability
of large servers scale.

There are nfs variables that are not applicable if nfs_write_gather is
off. You can turn nfs_ufs_lbolt on or off, only if nfs_write_gather is
turned on. The following conditions are the same for NFS V2 and NFS V3.

You can modify the variables under the following conditions:

1. If nfs_write_gather is on (default) → If nfs_ufs_lbolt is on → You
can specify the time the server will delay the write (see Section 5.6.1.2).

2. If nfs_write_gather is on (default) → If nfs_ufs_lbolt is off →
Modifying nfs_*_ticks does not have any effect.

3. If nfs_write_gather is off → If nfs_ufs_lbolt is off → Modifying
nfs_*_ticks does not have any effect.

When serving dumb single threaded clients such as PCs or clients that
do not support biods or clients that only emit writes infrequently, write
gathering can slow down the clients as they wait for delayed replies from the
server. This occurs because of the added overhead of latency added on the
server side, whch delays writing. To improve a client’s performance, disable
nfs_write_gather and set it to 0 using dbx -k /vmunix. See Section 3.2
or Section 5.6.1.1.1 for more information about dbx.

5.6.1.1.1 Improving NFS Server Response Time to Client Write Requests

Changing the setting of the nfs_ufs_lbolt parameter to 0 might
significantly improve NFS server response time to client write requests
under either of the following conditions:

• The storage devices being written to on the NFS server include
nonvolatile (battery-backed) cache.

• The NFS clients are predominantly systems (such as PCs) that always
wait for a reply to one request before sending another request.

Setting nfs_ufs_lbolt has effect only when the NFS V2 protocol is
being used. For NFS V2, the NFS server relies on a technique called write
gathering to improve data throughput of synchronous write requests. One
aspect of write gathering is to delay the return of a write reply to the client to
include replies for any subsequent write requests, which might be received
for the same file during a set interval. When data for all requests processed

5–10 Tuning Network File Systems

during the delay interval are safely in storage, the server issues all the
associated replies at the same time.

The period of time in which the server waits for more client requests is
shorter than the time it takes to do a seek operation to disk but longer than
it takes to flush data to the device’s cache. Therefore, if the device cache
is nonvolatile (the data is safely in storage before the transfer to media is
complete), the time used by the server to wait for more requests is no longer
efficient. Furthermore, the delay period degrades the performance of client
systems that issue only one request as a time and then wait for a reply.

The following example shows how to use the dbx assign command to
change the nfs_ufs_lbolt parameter in the running kernel, and the dbx
patch command to ensure that the new setting is also made to the /vmunix
file on disk:

dbx -k /vmunix
dbx version 5.1
Type ’help’ for help.

(dbx) print nfs_ufs_lbolt = 1
(dbx) assign nfs_ufs_lbolt = 0
(dbx) patch nfs_ufs_lbolt = 0

The nfs_ufs_lbolt parameter is not specific to using NFS V2 with UFS.
Setting this parameter to 0 might also improve NFS V2 performance with
AdvFS or the Cluster File System (CFS) as well. However, in a cluster
environment, there can be a trade-off. The NFS server and the CFS server
for NFS are not necessarily the same member system. If they are not and
nfs_ufs_lbolt is set to 0, multiple replies to NFS write requests over TCP
mounts are no longer batched in one RPC between the two servers in the
cluster. In this case, the increase in the number of RPCs might degrade
cluster performance.

Setting nfs3_ufs_lbolt to 0 will eliminate the same time interval as
nfs_ufs_lbolt does but for requests using NFS V3 rather than NFS V2.
NFS V3 relies far less on write gathering to handle client requests, and
setting nfs3_ufs_lbolt to 0 is not likely to improve NFS V3 performance
to any significant degree.

See Section 3.2 and Section 5.6.1.1.1 for more information about dbx.

5.6.1.2 Specifying the Amount of Time in Seconds the Server will Delay the Write

The nfs subsystem variables nfs_slow_ticks, nfs_fast_ticks, and
nfs_unkn_ticks are specific to write gathering and are used to specify the
amount of time, in seconds, the server will delay the write. Write gathering
uses these variables to delay the write to give a larger window for more write
requests coming for the same file.

Tuning Network File Systems 5–11

The nfs variables are not valid if write gathering is off or if nfs_ufs_lbolt
is turned off. See Section 5.6.1.1 for more information.

To identify what type of network card your system is using, enter one of the
following commands:

• Trace the ifnet structure down to the desired interface and check the
associated if_type using the following command:
dbx -k/vmunix

• Use the hwmgr command to display which network card type your system
is using. For example:
hwmgr -get attr -cat network -a name -a sub_category 42:
name = tu0
sub_category = Ethernet

The hwmgr utility is based on the value of if_type returned from the
network drivers. There are three possible values for if_type:

– IFT_ETHER (Ethernet)

– IFT_FDDI (FDDI)

– IFT_ISO88025 (Token ring and others).
For more information about hwmgr, see Section 2.3.1.

To specify which of the three nfs variables to use, identify the network
card type being used on your system as the media for NFS client/server
communication and then match it with the specific variable in Table 5–5.

Table 5–5: Identifying Your Network Card Type
Network Card Type Variable Default Value (msec)

FDDI nfs_fast_ticks 8

Ethernet nfs_slow_ticks 5

Other nfs_unkn_ticks 8

For newer and faster network cards, such as Gigabit Ethernet, decreasing
the size of nfs_slow_ticks (IFT_ETHER) may result in increased
performance.

5.6.1.3 Increasing the NFS Send and Receive Buffer Size

The nfs_tcpsendspace and nfs_tcprecvspace variables specify the
NFS default send and receive buffer size for TCP sockets. If you are using a
high-speed network adapter such as a Gigabit Ethernet, increasing these
variables can improve system performance.

Use the following command to modify these variables:

5–12 Tuning Network File Systems

dbx -k/vmunix

The default values for nfs_tcpsendspace and nfs_tcprecvspace are
98304 bytes. For NFS V3, the default values are recommended for most
network adapters and an I/O transfer size of 64 K. For NFS Version 2.0, the
default values are recommended for an I/O transfer size of 8K.

Use tcpdump to determine if NFS on the remote system supports a TCP
window size larger than 65536 bytes. The default size of the the TCP
window is 65536 bytes. By default your supports RFC 1323, which allows
you to set up larger window sizes through window scaling. However, if NFS
on the remote system does not support RFC 1323, it will refuse the SYN
packet sent at connection time.

Setting up a larger nfs_tcpsendspace window size on the server will
speed up sending packets, increasing performance. On the client, if the
client system also has Gigabit Ethernet, then the benefit would be the same.

See the Network Programmer’s Guide for more information about window
scaling.

5.7 Tuning NFS Clients
Adding disks or memory to a client can improve performance in two ways:
by improving access time and by reducing the overall load on the server
and network. A client can avoid network file system (NFS) performance
problems for files that are not shared (such as root, swap, and temporary
files) by using local disks for these files. For diskless clients, increased
memory can make a big improvement in performance by allowing the client
to swap and page less often. By adding local resources, the demands on the
server and the network can be reduced.

While it is easy to improve client performance by adding memory or disks,
these improvements may not be cost-effective because of the additional
administrative tasks that are needed to maintain the operating system. For
example, if you store valuable data on local disks, you must ensure that the
disks are backed up. If the data is shared, you may also have to ensure that
other systems have access. If you add resources to the server, the additional
administrative costs are less than if you add the resources to the client.

The following sections describe how to improve nfs performance by
modifying nfs subsystem attributes.

5.7.1 Modifying NFS Client Side Attributes

You may be able to improve NFS server performance by tuning the following
nfs subsystem attributes:

• Improving read performance (Section 5.7.1.1):

Tuning Network File Systems 5–13

– nfs3_readaheads

– nfs3_maxreadahead

• Controlling how long before the client will start transmitting
(Section 5.7.1.2):

– nfs3_jukebox_delay

• Directory name look up (Section 5.7.1.3 and Section 5.7.1.4) :

– nfs_dnlc

– nfs_nnc

• Specifying file consistency across NFS clients (Section 5.7.1.5):

– nfs_cto

• Changing the NFS client behavior when fetching file attributes
(Section 5.7.1.6):

– nfs_quicker_attr

• Increasing the NFS send and receive buffer size (Section 5.6.1.3):

– nfs_tcpsendspace

– nfs_tcprecvspace

______________________ Note _______________________

Parameters for the nfs kernel subsystem are accessible only
by using dbx; there are no comparable system attributes
accessible throught the /sbin/sysconfig command or the
dxkerneltuner GUI.

See sys_attrs_inet(5) for more information and see Chapter 3 for
information about modifying kernel subsystem attributes.

5.7.1.1 Improving Read Performance

When the NFS Version 3.0 client completes a long sequential read or a
partial block write and there are idled clients present, the NFS V3 client will
attempt to read ahead. The nfs3_readahead variable specifies how many
pages the client can read ahead, but not exceeding the maximum pages. The
nfs3_maxreadahead variable species the maximum number of pages that
the client can read ahead. The nfs3_readahead default value is 2 and the
nfs3_maxreadahead default value is 8.

The read-ahead feature helps improve read performance. On systems with
newer and faster network interfaces, tuning both variables as well as the
number of running nfsiods helps saturate the network interface. This

5–14 Tuning Network File Systems

maximizes the system hardware resource. Tuning this variable can double
the read performance on newer gigabit network cards.

5.7.1.2 Controlling How Long Before the Client will Start Transmitting

The nfs3_jukebox_delay is the client’s variable that controls how
long, in seconds, before the client will start retransmitting again. For
transactions on a busy server, nfs3_jukebox_delay can be increased to
avoid unnecessary retransmission of client requests.The default value for
nfs3_jukebox_delay is 10 seconds.

The nfs3_jukebox_delay variable is not related to any of the storage HSM
mechanisms. The name is used to reflect the error message sent from the
server, NFS3ERR_JUKEBOX. The term JUKEBOX reflects an NFS historic event
and implies that the file is temporarily inaccessible. This allows the client to
be aware of the server status and be able to make decisions to aggressively
delay accessing the file rather than repeatedly retransmitting the request.

5.7.1.3 Directory Name Lookup Cache (DNLC)

The nfs_dnlc variable specifies the directory name lookup cache. By
default, the client maintains a cache of results from recent file system
directory lookup operations. As fewer server lookup requests are completed,
client performance is improved.

To turn off the directory name lookup cache, specify the -noac option with
the mount command. If -noac is not specified at mount time, you can turn
off the nfs_dnlc variable to disable dnlc.

If the server is rapidly changing the files in the directory on the server,
turning nfs_dnlc off can be useful. This will avoid some stale file handles
by forcing opens to issue lookup calls.

5.7.1.4 Negative Name Cache Lookups (NNC)

The nfs_nnc variable specifies the negative name cache. In client lookup
operations, when cache lookup fails, the client also maintains negative name
cache to accommodate the failed vfs layer caching and to further eliminate
unnecessary duplicate server lookups over the wire.

By default, nfs_nnc is turned on. For applications where minimal or no
NFS directory lookup is done, turning nfs_nnc off can improve application
performance.

If the server is rapidly changing the files in the directory on the server,
turning nfs_dnlc off can be useful. This can avoid some stale file handles
by forcing opens to issue lookup calls.

Tuning Network File Systems 5–15

5.7.1.5 Specifying File Consistency Across NFS Clients

The nfs_cto variable specifies the closed-to-open (CTO) process, when a
file is closed and all modified data associated with the file is flushed to the
server or when the file is open, the client sends a request to the server to
validate the client’s local caches. This behavior ensures a file’s consistency
across multiple NFS clients.

When the -nocto option is specified at mount time, the client does not
perform the flush on close. This allows the possibility of differences among
copies of the same file as stored on multiple clients. For example:

mount -nocto fubar:/abc/local

By default, nfs_cto is turned on. The benefit of keeping the variable turned
on is that it solves the inconsistency of a file being accessed by multiple
clients. If the first client makes a write to the file and closes it, when the
second client opens it, the data on the second client is guaranteed to be
up-to-date.

The benefit of turning nfs_cto off is when access to a specific file system
will be made from only one client. Turning nfs_cto off can improve
performance.

The client checks the close-to-open consistency at mount time. First, the
client checks the nfs_cto variable and checks the setting of the mount
-nocto option. Then the client proceeds to do close-to-open consistency by
checking if nfs_cto is on or if the mount -nocto option is not set.

If nfs_cto is turned off at mount time using the -nocto option, set nfs_cto
using dbx -k and the client will do CTO again on the mounted file system.

5.7.1.6 Changing the NFS Client Behavior When Fetching File Attributes

Setting the nfs_quicker_attr variable to any value other than 0, changes
the NFS client behavior when fetching file attributes, for example ls -l
or stat(2). By default, NFS waits for the file I/O to finish and executes
the fsync() function to get the most up-to-date attributes. However, this
can lead to delays when writing a file over a faster-than-disk interface.
In a controlled environoment, setting this variable will fetch the cached
attributes.

Modifying the nfs_quicker_attr variable can be useful in a testing or
debugging environment when you want to observe the progress of writing a
large file by repeatedly fetching file attributes, for example, using ls -l.

5–16 Tuning Network File Systems

6
Tuning Internet Servers

This chapter describes how to tune Tru64 UNIX to improve your Internet
server performance. It offers various configuration guidelines, describes
several monitoring tools, and suggests primary and advanced tuning
recommendations, including the following:

• Improving internet server performance (Section 6.1)

• Primary tuning recommendations (Section 6.2)

• Advanced tuning recommendations (Section 6.3)

Not all recommendations apply to all configurations, and some provide only
marginal performance improvements. Therefore, you must fully understand
your configuration and workload, and then carefully read the documentation
before applying any recommendation.

______________________ Note _______________________

Some attribute names have changed for Tru64 UNIX Version
5.0 and higher.

6.1 Improving Internet Server Performance

This section describes how to improve your Internet server performance. It
offers various configuration guidelines and describes several monitoring
tools, including:

• Configuring hardware (Section 6.1.1)

• Configuring memory and swap space (Section 6.1.2)

• Logging IP addresses (Section 6.1.3)

• Monitoring network statistics (Section 6.1.4)

• Monitoring socket statistics (Section 6.1.5)

• Monitoring virtual memory statistics (Section 6.1.6)

• Gathering configuration information (Section 6.1.7)

Tuning Internet Servers 6–1

6.1.1 Configuring Hardware

The following hardware configuration guidelines can help to improve
Internet server performance:

• Make sure you have the latest version of the firmware for your system,
disks, adapters, and controllers.

• Ensure that you have sufficient memory and swap space to handle the
workload. See Section 6.1.2 for more information.

• Use high-performance storage hardware, including disks, adapters, and
controllers in your Internet server configuration.

• Use Logical Storage Manager (LSM) or hardware RAID storage
configurations for high performance and high availability.

• Use write-back caches in hardware RAID configurations to significantly
improve Internet server performance.

• Place the /tmp and /var/tmp directories on different file systems and, if
possible, different disks. For optimal performance, place the directories
on disks under control of a RAID controller with the write-back cache
option enabled.

6.1.2 Configuring Memory and Swap Space

You must provide sufficient memory and swap space to handle the server
workload. Insufficient memory resources and swap space will cause
performance problems. To configure memory and swap space, follow these
steps:

1. Determine how much physical memory your workload requires.

2. Choose a swap space allocation mode, either immediate or deferred.

3. Determine how much swap space you need.

4. Configure the swap space to efficiently distribute the disk I/O.

In addition to the memory needed for system and application operations,
each connection to an Internet server requires memory resources for the
following:

• Kernel socket structure

• Internet protocol control block (inpcb) structure

• TCP control block structure

• Any socket buffer space that is needed as packets arrive and are
consumed

6–2 Tuning Internet Servers

These memory resources total 1 KB for each connection endpoint (not
including the socket buffer space), which means that you will need 10 MB
of memory to accommodate 10,000 connections.

You must ensure that your server has enough memory to handle demanding
peak loads. Configure ten times more memory than what the server requires
on a busy day, so that you have sufficient memory to handle occasional
spikes of activity.

There are no limitations on a server’s ability to handle millions of TCP
connections if memory resources are available to service the connections.
However, if you do not have sufficient memory, the server will reject new
connection requests until enough existing connections are freed. Use the
netstat -m command to monitor the memory that is currently being used
by the network subsystem. See Section 6.1.4 for more information on the
netstat command.

6.1.3 Logging IP Addresses

If your Internet server logs client host names, the application software may
force the system to perform a reverse DNS lookup in order to obtain the
client’s host name. Reverse DNS lookups are time-intensive and may cause
performance problems on busy servers with many clients.

You can modify the Internet software to log client Internet Protocol (IP)
addresses, instead of client host names, without losing any significant
information. Logging IP addresses may significantly improve the efficiency
of the Internet server.

Consult the documentation provided by your Internet server software vendor
to determine how to disable the logging of client host names. For example,
you can obtain information about modifying Apache HTTP Server software
from the Apache HTTP Server documentation Web site at this URL:

http://httpd.apache.org/docs/

6.1.4 Monitoring Network Statistics

The netstat command displays network statistics, including information
about network routes and active sockets for each protocol. The command
also displays cumulative statistics for network interfaces, including the
number of incoming and outgoing packets and packet collisions, information
about memory used for network operations, and statistics related to IP,
ICMP, TCP, and UDP protocol layers.

Table 6–1 lists the netstat commands you can use to check network
statistics.

Tuning Internet Servers 6–3

Table 6–1: Tools for Monitoring Network Statistics
Tools Description Reference

netstat -i Displays excessive
amounts of input errors
(Ierrs), output errors
(Oerrs), or collisions
(Coll), this may indicate
a network problem.

Section 2.4.5.1

netstat -is Checks for network device
driver errors.

Section 2.4.5.2

netstat -m Determines if the network
is using an excessive
amount of memory
in proportion to the
total amount of memory
installed in the system.

Section 2.4.5.3

netstat -an Determines the state of
your existing network
connections.

Section 2.4.5.4

netstat -p ip Checks for bad checksums,
length problems, excessive
redirects, and packets
lost because of resource
problems.

Section 2.4.5.5

netstat -p tcp Checks for retransmis-
sions, out-of-order packets,
and bad checksums.

Section 2.4.5.6

netstat -p udp Checks for bad checksums
and full sockets.

Section 2.4.5.6

netstat -rs Displays routing statistics. Section 2.4.5.7

netstat -s Displays statistics related
to IP, ICMP, IGMP,TCP,
and UDP protocol layers.

Section 2.4.5.8

sysconfig -q socket Displays the current
attribute values. If the
values show the queues
are overflowing, you many
need to increase the socket
listen queue limit.

Section 6.1.5

vmstat Displays data on virtual
memory usage.

Section 6.1.6

See netstat(1) for more information.

6–4 Tuning Internet Servers

6.1.5 Monitoring Socket Statistics

Three socket subsystem attributes monitor socket listen queue events:

• The sobacklog_hiwat attribute counts the maximum number of
pending requests to any server socket.

• The sobacklog_drops attribute counts the number of times the
system dropped a received SYN packet, because the number of queued
SYN_RCVD connections for a socket equaled the socket’s backlog limit.

• The somaxconn_drops attribute counts the number of times the
system dropped a received SYN packet, because the number of queued
SYN_RCVD connections for the socket equaled the upper limit on the
backlog length (somaxconn attribute).

The initial value of these attributes at boot time is 0. Use the sysconfig
-q socket command to display the current attribute values. If the values
show that the queues are overflowing, you may need to increase the socket
listen queue limit. For example:

sysconfig -q socket
socket:
pftimerbindcpu = 0
sbcompress_threshold = 0
sb_max = 1048576
sobacklog_drops = 0
sobacklog_hiwat = 21
somaxconn = 65535
somaxconn_drops = 0
sominconn = 65535
mbuf_ext_lock_count = 64
umc_min_len = 1024
umc = 0

We recommend that the value of the sominconn attribute equal the value of
the somaxconn attribute. If so, the value of somaxconn_drops will have
the same value as sobacklog_drops.

However, if the value of the sominconn attribute is 0 (the default), and if
one or more server applications uses an inadequate value for the backlog
argument to its listen system call, the value of sobacklog_drops may
increase at a rate that is faster than the rate at which the somaxconn_drops
counter increases. If this occurs, you may want to increase the value of
the sominconn attribute. See Section 6.2.3.2 for more information on the
sominconn attribute.

6.1.6 Monitoring Virtual Memory Statistics

The vmstat command provides data on virtual memory usage. This may
help you determine if a system is paging excessively, which can degrade
Internet server performance. For example:

Tuning Internet Servers 6–5

vmstat 1
Virtual Memory Statistics: (pagesize = 8192)
procs memory pages intr cpu
r w u act free wire fault cow zero react pin pout in sy cs us sy id
7 526 59 80K 758 45K 402M 94M 132M 1M 74M 139K 757 42K 1K 38 14 48
7 526 59 81K 278 45K 939 15 896 0 11 0 824 2K 1K 85 11 4
6 528 59 81K 285 45K 595 67 411 0 10 0 983 5K 2K 81 17 2
7 526 59 81K 353 45K 560 31 446 0 17 0 781 2K 1K 87 10 3
7 526 59 81K 353 45K 406 0 406 0 0 0 1K 4K 2K 85 13 2
7 527 59 81K 288 45K 406 0 406 0 0 0 1K 7K 4K 81 18 1
9 524 59 81K 350 45K 640 72 420 0 13 0 999 3K 2K 85 13 2
.
.
.

The values in the memory fields are specified in 8-KB pages. Check the size
of the free page list (free). Compare the number of free pages to the values
for the active pages (act) and the wired pages (wire). The sum of the free,
active, and wired pages should be close to the amount of physical memory
in your system. Although the value for free should be small, if the value
is consistently small (less than 128 pages) and accompanied by excessive
paging and swapping, you may have a physical memory shortage.

Also, examine the pageout (pout) field. If the number of pageouts is
consistently high, you may have insufficient memory. You also may have
insufficient swap space or your swap space may be inefficiently configured.
Use the swapon -s command to display your swap device configuration,
and use the iostat command to determine which swap disk is being used
the most.

See vmstat(1), swapon(8), and iostat(1) for more information.

6.1.7 Gathering Configuration Information

The sys_check script is a ksh script that gathers configuration information
and formats this information into an HTML file. It warns you if it detects
configuration problems, checks your kernel subsystem attribute settings,
and provides attribute tuning recommendations. See Section 2.3.3 for more
information.

Be sure to use the latest version of sys_check. You can obtain this from:
http://www.tru64unix.compaq.com/sys_check/sys_check.html

6.2 Primary Tuning Recommendations
There are many kernel subsystem attributes that affect Internet server
performance. Internet servers include Web servers, ftp servers, mail servers
and relays, proxy servers, caching servers, gateway systems, and firewall
systems. This section offers primary tuning recommendations for some of
the attributes for the following subsystems:

• Internet (Section 6.2.1)

6–6 Tuning Internet Servers

• Process (Section 6.2.2)

• Socket (Section 6.2.3)

______________________ Note _______________________

Some kernel subsystem attributes enable you to modify their
value and apply the value to a running system. Other attributes
require you to reboot the system to use a new value. See
Section 3.3.1 to determine if an attribute can be tuned at run time.

The primary tuning recommendations provide the best performance
improvement for most Internet server configurations. If performance is
still deficient after applying these recommendations, you may be able to
improve performance by modifying additional kernel subsystem attributes,
as discussed in Section 6.3.

You can also use the Compaq Continuous Profiling Infrastructure (CPI,
formerly known as DCPI) tool to obtain detailed information about system
components that heavily utilize CPU cycles. CPI is offered as an Advanced
Developement Kit. See to the following Web site for more information:

http://www.tru64unix.compaq.com/dcpi

6.2.1 Modifying Internet Attributes

You may be able to improve Internet server performance by tuning the
following Internet inet subsystem attributes:

• tcbhashsize (Section 6.2.1.1)

• pmtu_enabled (Section 6.2.1.2)

• ipport_userreserved (Section 6.2.1.3)

See sys_attrs_inet(5) reference page for more information and see
Chapter 3 for information about modifying kernel subsystem attributes.

6.2.1.1 Increasing the Size of the TCP Hash Table

The tcbhashsize attribute specifies the number of buckets in the
Transmission Control Protocol (TCP) inpcb hash table. The kernel must
look up the connection block for every TCP packet it receives; therefore,
increasing the size of the table can speed up the search and improve
performance.

However, increasing the size of the hash table will cause a slight increase
in wired memory. It can also cause a bottleneck at the TCP hash table in
SMP systems.

Tuning Internet Servers 6–7

The default value is 512 buckets. The recommended value is 16384.

6.2.1.2 Disabling PMTU Discovery

Packets transmitted between servers are divided into equal-sized units
to facilitate the transmission of the data over routers and small-packet
networks, such as Ethernet networks.

When the pmtu_enabled attribute is enabled, the operating system
determines the largest common path maximum transmission unit (PMTU)
value between servers and uses it as the unit size. A routing table entry is
also created for each client network that attempts to connect to the server.

If you have a poorly performing Internet server that handles mainly remote
traffic and the routing table increases to more than 1000 entries, disabling
the PMTU discovery can decrease the size of the routing table, which may
improve server efficiency. However, if a server handles mainly local traffic
and only some remote traffic, disabling PMTU discovery can degrade
bandwidth. Use the netstat -r command to display the contents of the
routing table.

The default value is 1 (PMTU enabled). The recommended value is 0 (PMTU
disabled).

6.2.1.3 Increasing the Number of Outgoing Connection Ports

When a TCP or UDP application creates an outgoing connection, the kernel
dynamically allocates a nonreserved port number for each connection.

The kernel selects the port number from a range of values between
ipport_userreserved_min and ipport_userreserved.

Using the default attribute values, the range of outgoing ports begins at
port 1024 and ends at port 5000, and the number of simultaneous outgoing
connections is limited to 3976 (5000 minus 1024).

If you have a proxy server, caching server, gateway system, or firewall
system with a load of more than 4000 simultaneous connections, you can
modify the value of the ipport_userreserved attribute. The default value
is 5000, which is the minimum value. The recommended value is 65535,
which is the maximum value. Do not specify a value that is greater than
65535 or lower than 5000.

6.2.2 Modifying Process Attributes

You may be able to improve Internet server performance by tuning the
following process proc subsystem attributes:

• maxusers (Section 6.2.2.1)

6–8 Tuning Internet Servers

• max_proc_per_user (Section 6.2.2.2)

• max_threads_per_user (Section 6.2.2.3)

• max_per_proc_data_size (Section 6.2.2.4)

• max_per_proc_address_space (Section 6.2.2.5)

These attributes set limits on system resources. If your Internet server
appears to be reaching the resource limits, you may want to increase the
value of one or more of these attributes. However, increasing the value of
these attributes will allow the system to consume more memory.

See sys_attrs_proc(5) reference page for more information and see
Chapter 3 for information about modifying kernel subsystem attributes.

6.2.2.1 Increasing the Size of System Tables and Data Structures

System algorithms use the maxusers attribute to size various system data
structures and system tables. Increasing the value of maxusers provides
more system resources to processes. However, this will increase the amount
of wired memory.

If your system experiences a lack of resources (for example, Out of
processes, No more processes, or pid table is full messages) and
you have enough memory, increase the value of the maxusers attribute.

To determine an appropriate value for the maxusers attribute, you can
double the default value until you improve performance. For example, if you
have up to 1 GB of memory, increase the value of the maxusers attribute
to 512. If you have up to 2 GB, increase the value to 1024. If you have an
Internet, Web, proxy, caching, firewall, or gateway server, increase the value
of the maxusers attribute to 2048.

The default value varies from 16 to 2048, depending on the amount of
physical memory in the system. It is not recommended that you increase
the value to more than 2048.

System administrators can change the maxusers attribute with the
following command:
sysconfig -r proc maxusers=N

The value N is the desired new value. This command triggers the automatic
expansion of the pid table. The resizing of other system tables is not
performed until you specify a new value for the maxusers attribute in the
/etc/sysconfigtab file and reboot the system.

6.2.2.2 Increasing the Number of Processes per User

The max_proc_per_user attribute specifies the maximum number of
processes that can be allocated at any one time to each user, except superuser.

Tuning Internet Servers 6–9

If your system experiences a lack of processes, increase the value of this
attribute. If you have a multiprocess Internet server (for example, a server
running IPlanet, Apache, CERN, or Zeus), you also may want to increase the
value of this attribute. Note that increasing its value increases the amount
of wired memory.

The default value is 64. The recommended value is 2000. The value you
choose must not be more than the maximum number of processes that can
be started by your system. For Internet servers, these processes include CGI
processes. If you specify a value of 0 for this attribute, there is no limit on
the number of processes per user.

6.2.2.3 Increasing the Number of Threads per User

The max_threads_per_user attribute specifies the maximum number of
threads that can be allocated at any one time to each user, except superuser.

If your system experiences a lack of threads, increase the value of this
attribute. If you have a multithreaded Internet server (for example, a server
running Netscape FastTrack or Netscape Enterprise), you may want to
increase the value this attribute.

The default value is 256. The recommended value is 4096. The value must
not be more than the maximum number of threads that can be started by
your system.

6.2.2.4 Increasing the User Process Data Segment Size Limits

The max_per_proc_data_size attribute specifies the maximum limit of
data segment sizes. Some large programs and large-memory processes may
not run unless you increase the values of this attribute. Increase the limits if
you receive an Out of process memory message.

The default value is 1073741824 (1 GB). The recommended value is
10737418240 (10 GB). If your system has more than 10 GB of memory, you
can further increase this value.

6.2.2.5 Increasing the User Process Address Space Limits

The max_per_proc_address_space attribute specifies the maximum limit
of user process address space (number of bytes of virtual memory). Some
large programs and large-memory processes may not run unless you increase
the value of this attribute. However, increasing the address space limits will
cause a small increase in memory consumption.

The default value is 4294967296 (4 GB) for systems running Tru64 UNIX
Version 5.0 or higher.

6–10 Tuning Internet Servers

The recommended value is 10737418240 (10 GB). If your system has more
than 10 GB of memory, you can further increase this value.

6.2.3 Modifying Socket Attributes

You may be able to improve Internet server performance by tuning the
following socket attributes:

• somaxconn (Section 6.2.3.1)

• sominconn (Section 6.2.3.2)

• sbcompress_threshold (Section 6.2.3.3)

See sys_attrs(5) reference page for more information and see Chapter 3 for
information about modifying kernel subsystem attributes.

6.2.3.1 Increasing the Maximum Number of Pending TCP Connections

The somaxconn attribute specifies the maximum number of pending TCP
connections (the socket listen queue limit) for each server socket (for
example, for the HTTP server socket). Pending TCP connections can be
caused by lost packets in the Internet or denial of service attacks. Busy
Internet servers often experience large numbers of pending connections. If
the listen queue connection limit is too small, incoming connect requests
may be dropped.

The default value is 1024. The recommended value is 65535, which is the
maximum value. Do not specify a value that is higher than the maximum
value because this can cause unpredictable behavior.

6.2.3.2 Increasing the Minimum Number of Pending TCP Connections

The sominconn attribute specifies the minimum number of pending TCP
connections (backlog) for each server socket. The attribute controls
the maximum number of SYN packets that the system can handle
simultaneously before additional requests are discarded. Network
performance can degrade if a client saturates a socket listen queue with
erroneous TCP SYN packets, which blocks other users from the queue.

The value of the sominconn attribute overrides the application-specific
backlog value, which may be set too low for some server software. If you do
not have your application source code, use the sominconn attribute to set a
pending-connection limit that is appropriate for your application.

The default value is 0. The recommended value is 65535, which is the
maximum value. It is recommended that the value of the sominconn
attribute be the same as the value of the somaxconn attribute. See
Section 6.2.3.1 for more information in the somaxconn attribute.

Tuning Internet Servers 6–11

6.2.3.3 Enabling the mbuf Cluster Compression

The sbcompress_threshold attribute controls whether mbuf clusters
are compressed at the socket layer. By default, mbuf clusters are not
compressed, which can cause proxy servers and caching servers to consume
all the available mbuf clusters. This problem is more likely to occur if you
are using FDDI instead of Ethernet. See Section 2.4.5.3 for information
about monitoring mbuf clustering.

To enable mbuf cluster compression, modify the sbcompress_threshold
attribute and specify a value. Packets will be copied into the existing mbuf
clusters if the packet size is less than this value.

The default value is 0 (mbuf compression is disabled). If you have a proxy
server, caching server, gateway system, or firewall system, the recommended
value is 600 bytes.

6.3 Advanced Tuning Recommendations

This section offers advanced tuning recommendations for some of the
attributes for the following subsystems:

• Generic (Section 6.3.1)

• Internet (Section 6.3.2)

• Network (Section 6.3.3)

• Socket (Section 6.3.4)

• Virtual memory (Section 6.3.5)

These recommendations are appropriate only for systems that are primarily
used as Internet servers and are configured with sufficient physical memory.
Using a recommended attribute value in a non-Internet server may cause
degradation in system performance.

Because Internet server configurations differ and a recommended value may
not provide optimal performance for all configurations, be careful when
modifying attributes. Read the attribute descriptions and determine which
values are appropriate for your configuration. If modifying an attribute does
not improve performance, you may want to return to the default value.

6.3.1 Modifying Generic Attributes

You may be able to improve Internet server performance by tuning the
kmemreserve_percent generic (generic) subsystem attribute. This
attribute increases the percentage of physical memory reserved for
kernel memory allocations that are less than or equal to the page size (8
KB). Increasing the value of kmemreserve_percent improves network

6–12 Tuning Internet Servers

throughput by reducing the number of packets that are dropped while the
system is under a heavy network load. However, increasing this value
consumes memory.

You may want to increase the value of the kmemreserve_percent attribute
if the output of the netstat command shows dropped packets, or if the
output of the vmstat -M command shows dropped packets under the
fail_nowait heading. This may occur under a heavy network load.

The default value is 0 (the percentage of reserved physical memory will be
the smallest of 0.4 percent of available memory and 256 KB). Increase the
value (up to a maximum of 75) by small increments until the output of the
vmstat -M command shows no entries under the fail_nowait heading.

6.3.2 Modifying Internet Attributes

You may be able to improve Internet server performance by tuning the
following Internet inet subsystem attributes:

• tcbhashnum (Section 6.3.2.1)

• inifaddr_hsize (Section 6.3.2.2)

• tcp_keepinit (Section 6.3.2.3)

• tcp_rexmit_interval_min (Section 6.3.2.4)

• tcp_keepalive_default (Section 6.3.2.5)

• tcp_msl (Section 6.3.2.6)

• ipport_userreserved_min (Section 6.3.2.7)

• ipqs (Section 6.3.2.8)

• ipqmaxlen (Section 6.3.2.9)

See sys_attrs_inet(5) and Chapter 3 for information about modifying
kernel subsystem attributes.

6.3.2.1 Increasing the Number of TCP Hash Table

The tcbhashnum attribute specifies the number of TCP hash tables.
Increasing the number of hash tables distributes the load and may improve
performance. However, this will slightly increase the amount of wired
memory in the system.

The default value is 1 hash table, which is the minimum value. For busy
Internet server SMP systems, the recommended value is 16. The maximum
value is 64.

If you increase the number of hash tables, decrease the size of the hash table.
See Section 6.2.1.1 for more information. In addition, it is recommended

Tuning Internet Servers 6–13

that you make the value of this attribute the same as the value of the ipqs
attribute. See Section 6.3.2.8 for more information on the ipqs attribute.

6.3.2.2 Increasing the Number of Hash Buckets

The inifaddr_hsize attribute specifies the number of hash buckets in the
kernel interface alias table (in_ifaddr).

If a system is used to serve many different server domain names, each of
which are bound to a unique IP address, the code that matches arriving
packets to the right server address uses the hash table to speed lookup
operations for the IP addresses. These addresses are usually set using the
ifconfig alias or ifconfig aliaslist command. Increasing the
number of hash buckets in the table can improve performance on systems
that use large numbers of IP alias addresses.

The default value is 32 hash buckets. For most Internet servers that do
not use interface IP aliases or if you are using less than 250 aliases, the
recommended value is 32. If you are using more than 500 interface IP
aliases, the recommended value is 512, which is the maximum value.

For the best performance, the value of this attribute must be rounded down
to the nearest power of 2.

6.3.2.3 Modifying the TCP Partial Connection Timeout Limit

The tcp_keepinit attribute specifies the amount of time that a partially
established TCP connection remains on the socket listen queue before it
times out. The value of the attribute is in units of 0.5 seconds. Partial
connections consume socket listen queue slots and fill the queue with
connections in the SYN_RCVD state.

The default value is 150 units (75 seconds). You do not need to modify
the TCP partial-connection timeout limit unless the value of the
somaxconn_drops attribute often increases. See Section 6.1.5 for more
information on the event counter.

If your socket queue limit is set to the maximum value, the default value of
this attribute is usually adequate. If the somaxconn_drops attribute often
increases, and increasing the socket queue limit does not prevent the listen
queue from filling up, you can decrease the value of this attribute to make
partial connections to time out sooner.

In addition, network performance can degrade if a client overfills a socket
listen queue with TCP SYN packets, which blocks other users from the
queue. To eliminate this problem, increase the socket listen queue limit to
its maximum value. If the system continues to drop SYN packets, decrease
the value of this attribute to 30 (15 seconds). Monitor the values of the

6–14 Tuning Internet Servers

sobacklog_drops and somaxconn_drops event counters to determine
if the system is dropping packets.

Do not set the value of this attribute too low, because you may prematurely
break connections with clients on slow network paths or network paths that
lose many packets. Do not set the value to less than 20 units (10 seconds).

6.3.2.4 Decreasing the Rate of TCP Retransmissions

The tcp_rexmit_interval_min attribute specifies the minimum amount
of time between the first TCP retransmission. For some wide area networks
(WANs), the default value may be too small and premature retransmission
timeouts may occur, which cause duplicate transmission of packets and the
erroneous invocation of the TCP congestion-avoidance algorithms.

You can increase the value of this attribute to slow the rate of TCP
retransmissions, which decreases congestion and improves performance.

The default value is 2 units (1 second). Not every connection needs a long
retransmission time. Usually, the default value of this attribute is adequate.
However, for some WANs, the default retransmission interval may be too
small.

To check for retransmissions, use the netstat -p tcp command and
examine the output for data packets retransmitted.

You can increase the value of this attribute to slow the rate of TCP
retransmissions. The attribute is specified in units of 0.5 seconds.

Do not change the default value of this attribute unless you fully understand
TCP algorithms. Do not specify a value that is less than 1 unit.

6.3.2.5 Enabling TCP Keepalive Functionality

Keepalive functionality enables the periodic transmission of messages on
a connected socket to keep connections active and to time out inactive
connections. Sockets that do not exit cleanly are cleaned up when the
keepalive interval expires. If keepalive is not enabled, those sockets continue
to exist until you reboot the system.

Applications enable keepalive for sockets by setting the setsockopt
function’s SO_KEEPALIVE option. The default value is 0 (keepalive is
disabled). To enable keepalive for programs that do not set keepalive on
their own, or if you do not have access to the application source code, set this
attribute to 1. After you set the attribute, all new connections will have
keepalive enabled; existing connections will continue to use the previous
keepalive setting.

Tuning Internet Servers 6–15

If you modify this attribute without rebooting the system, sockets that
already exist will continue to use the old behavior until the applications
are restarted.

If you enable keepalive, you can also configure the following TCP options
for each socket:

• The tcp_keepidle attribute specifies the amount of idle time, in
0.5-second units, before sending a keepalive probe. The default value for
this attribute is 2 hours.

• The tcp_keepintvl attribute specifies the amount of time, in
0.5-second units, between retransmission of keepalive probes. The
default value for this attribute is 75 seconds.

• The tcp_keepcnt attribute specifies the maximum number of keepalive
probes that are sent before the connection is dropped. The default value
for this attribute is 8 probes.

• The tcp_keepinit attribute specifies the maximum amount of time,
in 0.5-second units, before an initial connection attempt times out. The
default value for this attribute is 75 seconds.

6.3.2.6 Increasing the TCP Connection Context Timeout Rate

The tcp_msl attribute determines the maximum lifetime of a TCP segment
and the timeout value for the TIME_WAIT state. The TCP protocol includes
a concept known as the Maximum Segment Lifetime (MSL). When a TCP
connection enters the TIME_WAIT state, it must remain in this state for twice
the value of the MSL, or else undetected data errors on future connections
can occur.

You can decrease the value of this attribute to make the TCP connection
context time out more quickly at the end of a connection. However, this will
increase the chance of data corruption.

The default value is 60 units (30 seconds, which means that the TCP
connection remains in TIME_WAIT state for 60 seconds or twice the value
of the MSL). The value of this attribute is set in units of 0.5 seconds. The
recommended value is the default value; if you use a different value, there
is the potential for data corruption.

Although the TCP specifications specify an MSL of 120 seconds, most TCP
implementations use a value that is less than 120. The Internet FAQ
Consortium Web site offers more information. For RFC793, see the following
URL:
http://www.faqs.org/rfcs/rfc793.html

For RFC1122, see the following URL:
http://www.faqs.org/rfcs/rfc1172.html

6–16 Tuning Internet Servers

In some situations, the default timeout value for the TIME_WAIT state is
too large, so reducing the value of this attribute frees connection resources
sooner than the default behavior.

Do not reduce the value of this attribute unless you fully understand the
design and behavior of your network and the TCP protocol.

6.3.2.7 Modifying the Range for Outgoing Connection Ports

When a TCP or UDP application creates an outgoing connection, the kernel
dynamically allocates a nonreserved port number for each connection.

The kernel selects the port number from a range of values between
ipport_userreserved_min and ipport_userreserved.

If your system requires a particular range of ports, you can modify the value
of this attribute.

The default value is 1024. The maximum value is 65535. Do not specify a
value for this attribute that is greater than 65535 or less than 1024.

6.3.2.8 Increasing the Number of IP Input Queues

For SMP systems, increasing the number of IP input queues can reduce lock
contention at the input queue and distribute the load. The ipqs attribute
specifies the number of IP input queues.

The default value is 1 queue, which is the minimum value. For busy Internet
server SMP systems, the recommended value is 16. The maximum value
is 64.

It is recommended that you make the value of this attribute the same as the
value of the tcbhashnum attribute. See Section 6.2.1.1 for more information
on the tcbhashnum attribute.

6.3.2.9 Increasing the Maximum Length of the IP Input Queue

If the network load is heavy, input packets may be dropped if the IP input
queue becomes filled. The ipqmaxlen attribute specifies the maximum
length, in bytes, of the IP input queue (ipintrq) before input packets are
dropped.

If your system drops input packets, you may want to increase the value of
the ipqmaxlen attribute. Check for dropped input packets by using dbx to
examine the ipintrq kernel structure. For example:
dbx -k /vmunix
(dbx) print ipintrq
struct {

ifq_head = (nil)
ifq_tail = (nil)

Tuning Internet Servers 6–17

ifq_len = 0
ifq_maxlen = 512
ifq_drops = 128
ifq_slock = struct {

sl_data = 0
sl_info = 0
sl_cpuid = 0
sl_lifms = 0

}
}

If the ifq_drops field is not 0, the system is dropping IP input packets.

The default value is 1024. The minimum value is the default value; the
maximum value is 65535. If your system is dropping input packets, the
recommended value is 2048. You may also want to increase the value of the
ifqmaxlen attribute, which controls the output queue. See Section 6.3.3.1
for more information on the ifqmaxlen attribute.

6.3.3 Modifying Network Attributes

You may be able to improve Internet server performance by tuning the
following Network net subsystem attributes:

• ifqmaxlen (Section 6.3.3.1)

• screen_cachedepth (Section 6.3.3.2)

• screen_cachewidth (Section 6.3.3.2)

• screen_maxpend (Section 6.3.3.3)

See sys_attrs_net(5) reference page for more information and see
Chapter 3 for information about modifying kernel subsystem attributes.

6.3.3.1 Increasing the Number of Output Packets Before Packets are Dropped

If the network load is heavy, output packets may be dropped if the interface’s
output queue becomes filled. The ifqmaxlen attribute specifies the number
of output packets that can be queued to a network adapter before packets
are dropped.

You can use the netstat -id command to check for dropped output
packets. If the command output shows a nonzero value in the Drop column
for an interface, the system is dropping output packets and you may want to
increase the value of this attribute.

The default value is 1024. The minimum value is the default value; the
maximum value is 65535. If your system is dropping input packets, the
recommended value is 2048.

6–18 Tuning Internet Servers

6.3.3.2 Reducing Screening Cache Misses

If your machine is acting as a screening router, or a screening firewall
running the screend facility, and has a high number of concurrent
pass-through connections, you could be experiencing screening cache misses.

A screening cache miss can occur when the kernel screening table is trying
to screen a packet that does not have an entry, based on address/port pairs
and protocol. In that case, the table must queue the packet and the screend
daemon must examine it. This can normally occur for the first packet of a
connection, and can also occur if the cache is too small to hold many entries.

Check for screening cache misses by using dbx to examine the number of
screening cache hits and misses. For example:
(dbx) p screen_cachemiss
616738
(dbx) p screen_cachehits
11080198

If the ratio of misses to hits is high, you may want to increase the values of
the screen_cachedepth and screen_cachewidth attributes.

The default value for the screen_cachedepth attribute is 8, which is
the minimum value. If you have high screening cache miss rates, the
recommended value is 16, which is the maximum value.

The default value for the screen_cachewidth attribute is 8, which is
the minimum value. If you have high screening cache miss rates, the
recommended value is 2048, which is the maximum value.

It is recommended that you first increase screen_cachewidth before
increasing screen_cachedepth. Also note that tuning these attributes will
not necessarily reduce screening cache misses to 0. A reboot is required for
the changes to take effect.

Increasing these values will cause a small increase in memory consumption.

6.3.3.3 Reducing the Screening Buffer Drops

If your machine is acting as a screening router, or a screening firewall
running the screend facility, and is under heavy network load, you may be
experiencing screening buffer drops.

You can use the screenstat command to view the current status. For
example:
/usr/sbin/screenstat
total packets screened: 11696910
total accepted: 11470734
total rejected: 225453
packets dropped:

because buffer was full: 34723

Tuning Internet Servers 6–19

because user was out of sync: 0
because too old: 0

total dropped: 34723

If the number of packets dropped because buffer was full is high,
you may want to increase the value of the screen_maxpend attribute.
The default value is 32, which is the minimum value. If you have a high
screening buffer full value, the recommended value is 8192. The maximum
value is 16384.

Increasing this value will cause a small increase in memory consumption.
You must reboot the system to modify this attribute.

6.3.4 Modifying Socket Attributes

You may be able to improve Internet server performance by tuning the
sb_max socket (socket) subsystem attribute. In addition, the socket
subsystem attributes sobacklog_hiwat, sobacklog_drops, and
somaxconn_drops track events related to socket listen queues. By
monitoring these attributes, you can determine if the queues are overflowing.
Section 6.1.5 discusses these attributes.

The sb_max attribute specifies the maximum size of a socket buffer.
Increasing the maximum size of a socket buffer may improve performance if
your applications can benefit from a large buffer size.

The default value is 1048576 bytes. If your applications require a socket
buffer that is larger than the default value, increase the value of this
attribute.

See sys_attrs(5) and Chapter 3 for information about modifying kernel
subsystem attributes.

6.3.5 Modifying Virtual Memory Attributes

You may be able to improve Internet server performance by tuning
ubc_maxpercent, ubc_minpercent, and ubc_borrowpercent virtual
memory vm attributes.

Busy Internet servers usually consume a moderate amount of virtual
memory and use a large set of files. Both processes and the Unified Buffer
Cache (UBC), which caches file-system data, share the physical memory that
is not wired by the kernel.

Too much memory allocated to the UBC can cause excessive paging and
swapping, which may degrade overall system performance. However, an
insufficient amount of memory allocated to the UBC can degrade file system
performance.

6–20 Tuning Internet Servers

The ubc_minpercent attribute specifies the minimum percentage of
memory that only the UBC can utilize. The remaining memory is shared
with processes. The ubc_maxpercent attribute specifies the maximum
percentage of memory that the UBC can utilize. The ubc_borrowpercent
attribute specifies the UBC borrowing threshold.

Between the value of the ubc_borrowpercent attribute and the value of
the ubc_maxpercent attribute, the memory that is allocated to the UBC is
considered borrowed from processes. When paging begins, these borrowed
pages are reclaimed first, until the amount of memory allocated to the UBC
decreases to the value of the ubc_borrowpercent attribute.

The default value for ubc_minpercent is 10 percent. The default
value for ubc_maxpercent is 100 percent. The default value for
ubc_borrowpercent is 20 percent. On a typical Internet server, the default
value for each attribute is usually adequate. Also, if your disks are busy
with file system I/O and the system has sufficient free pages, use the default
values.

Use the vmstat command to display information about virtual memory,
including the free page count.

If you have a low free page count, you may want to increase the memory
available to processes by reducing the memory available to the UBC. You
should attempt to keep in memory the working set of your processes, even if
it increases the number of UBC misses.

You can reduce the default value of the ubc_maxpercent attribute in
decrements of 10 percent.

Reducing the borrowed memory threshold by decreasing the value of the
ubc_borrowpercent attribute may improve the system response time
when memory is low. However, this may also reduce UBC performance.

Tuning Internet Servers 6–21

7
Managing Application Performance

You may be able to improve overall Tru64 UNIX performance by improving
application performance. This chapter describes application performance
guidelines, see Table 7–1.

7.1 Improving Application Performance

Well-written applications use CPU, memory, and I/O resources efficiently.
Table 7–1 describes some guidelines to improve application performance.

Table 7–1: Application Performance Improvement Guidelines
Guideline Performance Benefit Tradeoff

Install the latest
operating system patches
(Section 7.1.1)

Provides the latest
optimizations

None

Use the latest version of
the compiler (Section 7.1.2)

Provides the latest
optimizations

None

Use parallelism
(Section 7.1.3)

Improves SMP
performance

None

Optimize applications
(Section 7.1.4)

Generates more efficient
code

None

Use shared libraries
(Section 7.1.5)

Frees memory May increase execution
time

Reduce application
memory requirements
(Section 7.1.6)

Frees memory Program may not run
optimally

Use memory locking
as part of real-time
program initialization
(Section 7.1.7)

Allows you to lock and
unlock memory as needed

Reduces the memory
available to processes
and the UBC

The following sections describe these improvement guidelines in more detail.

7.1.1 Using the Latest Operating System Patches

Always install the latest operating system patches, which often contain
performance enhancements.

Managing Application Performance 7–1

Check the /etc/motd file to determine which patches you are running.
Contact your customer service representative for information about
installing patches.

7.1.2 Using the Latest Version of the Compiler

Always use the latest version of the compiler to build your application
program. Usually, new versions include advanced optimizations.

Check the software on your system to ensure that you are using the latest
version of the compiler.

7.1.3 Using Parallelism

To enhance parallelism, application developers working in Fortran or C
should consider using the Kuch & Associates Preprocessor (KAP), which
can have a significant impact on SMP performance. See the Programmer’s
Guide for details on KAP.

7.1.4 Optimizing Applications

Optimizing an application program can involve modifying the build process
or modifying the source code. Various compiler and linker optimization levels
can be used to generate more efficient user code. See the Programmer’s
Guide for more information on optimization.

Whether you are porting an application from a 32-bit system to Tru64 UNIX
or developing a new application, never attempt to optimize an application
until it has been thoroughly debugged and tested. If you are porting an
application written in C, use the lint command with the -Q option or
compile your program using the C compiler’s -check option to identify
possible portability problems that you may need to resolve.

7.1.5 Using Shared Libraries

Using shared libraries reduces the need for memory and disk space. When
multiple programs are linked to a single shared library, the amount of
physical memory used by each process can be significantly reduced.

However, shared libraries initially result in an execution time that is slower
than if you had used static libraries.

7.1.6 Reducing Application Memory Requirements

You may be able to reduce an application’s use of memory, which provides
more memory resources for other processes or for file system caching. Follow
these coding considerations to reduce your application’s use of memory:

7–2 Managing Application Performance

• Configure and tune applications according to the guidelines provided
by the application’s installation procedure. For example, you may be
able to reduce an application’s anonymous memory requirements, set
parallel/concurrent processing attributes, size shared global areas and
private caches, and set the maximum number of open/mapped files.

• You may want to use the mmap function instead of the read or write
function in your applications. The read and write system calls require
a page of buffer memory and a page of UBC memory, but mmap requires
only one page of memory.

• Look for data cache collisions between heavily used data structures,
which occur when the distance between two data structures allocated in
memory is equal to the size of the primary (internal) data cache. If your
data structures are small, you can avoid collisions by allocating them
contiguously in memory. To do this, use a single malloc call instead of
multiple calls.

• If an application uses large amounts of data for a short time, dynamically
allocate the data with the malloc function instead of declaring it
statically. When you have finished using dynamically allocated memory,
it is freed for use by other data structures that occur later in the
program. If you have limited memory resources, dynamically allocating
data reduces an application’s memory usage and can substantially
improve performance.

• If an application uses the malloc function extensively, you may be able
to improve its processing speed or decrease its memory utilization by
using the function’s control variables to tune memory allocation. See
malloc(3) for details on tuning memory allocation.

• If your application fits in a 32-bit address space and allocates large
amounts of dynamic memory by using structures that contain many
pointers, you may be able to reduce memory usage by using the -xtaso
option. The -xtaso option is supported by all versions of the C compiler
(-newc, -migrate, and -oldc versions). To use the -xtaso option,
modify your source code with a C-language pragma that controls pointer
size allocations. See cc(1) for details.

See the Programmer’s Guide for detailed information on process memory
allocation.

7.1.7 Controlling Memory Locking

Real-time application developers should consider memory locking as a
required part of program initialization. Many real-time applications remain
locked for the duration of execution, but some may want to lock and unlock
memory as the application runs. Memory-locking functions allow you to lock
the entire process at the time of the function call and throughout the life of

Managing Application Performance 7–3

the application. Locked pages of memory cannot be used for paging and
the process cannot be swapped out.

Memory locking applies to a process’s address space. Only the pages mapped
into a process’s address space can be locked into memory. When the process
exits, pages are removed from the address space and the locks are removed.

Use the mlockall function to lock all of a process’ address space. Locked
memory remains locked until either the process exits or the application calls
the munlockall function. Use the ps command to determine if a process is
locked into memory and cannot be swapped out. See Section 12.3.2.

Memory locks are not inherited across a fork, and all memory locks
associated with a process are unlocked on a call to the exec function or
when the process terminates. See the Guide to Realtime Programming and
mlockall(3) for more information.

7–4 Managing Application Performance

Part 3
Tuning by Component

8
Managing System Resource Allocation

The Tru64 UNIX operating system sets resource limits at boot time. These
limits control the size of system tables, virtual address space, and other
system resources.

The default system resource limits are appropriate for most configurations.
However, if your system has a large amount of memory, is running a
program that requires extensive resources, or running a large-memory
application, you may need to increase the system limits by modifying
subsystem attributes.

This chapter describes system resource allocation and how to increase the
following systemwide limits:

• Process limits (Section 8.1)

• Program size limits (Section 8.2)

• Address space limits (Section 8.3)

• Interprocess communication (IPC) limits (Section 8.4)

• Open file limits (Section 8.5)

• Aurema ARMTrech Suite (Section 8.6)

Instead of modifying systemwide limits, you can use the setrlimit function
to control the consumption of system resources by a specific process and its
child processes. See setrlimit(2) for more information.

8.1 Tuning Process Limits
Tru64 UNIX uses process limits that are appropriate for most configurations.
However, if your applications are memory-intensive or you have a very-large
memory (VLM) system or an Internet server (including, Web, proxy, firewall,
or gateway servers), you may want to increase the process limits. Because
increasing process limits increases the amount of wired memory in the
system, increase the limits only if your system requires more resources.

The following sections describe how to increase these limits:

• System tables and data structures (Section 8.1.1)

• Maximum number of processes (Section 8.1.2)

• Maximum number of threads (Section 8.1.3)

Managing System Resource Allocation 8–1

For more information about the proc subystem attributes, see
sys_attrs_proc(5).

8.1.1 Increasing System Tables and Data Structures

System algorithms use the proc subsystem attribute maxusers to size
various system data structures and system tables, such as the system
process table, which determines how many active processes can be running
at one time.

______________________ Note _______________________

The value of the maxusers attribute is used to set the default
values for some subsystem attributes that set system limits,
including the max_proc_per_user, max_threads_per_user,
min_free_vnodes, and name_cache_hash_size attributes.

Performance Benefit and Tradeoff

Increasing the value of maxusers provides more system resources to
processes. However, increasing the resources available to users will increase
the amount of wired memory.

You can modify the maxusers attribute without rebooting the system.

When to Tune

If you have a large-memory system or Internet server, or your system
experiences a lack of resources, increase the value of the maxusers attribute.
A lack of resources can be indicated by a No more processes, Out of
processes, or pid table is full message.

Recommended Values

The default value assigned to the maxusers attribute depends on the
amount of memory in the system. Table 8–1 shows the default value of the
maxusers attribute for systems with various amounts of memory.

Table 8–1: Default Values for the maxusers Attribute
Size of Memory Value of maxusers

Up to 256 MB 128

257 MB to 512 MB 256

513 MB to 1024 MB 512

1025 MB to 2048 MB 1024

8–2 Managing System Resource Allocation

Table 8–1: Default Values for the maxusers Attribute (cont.)

Size of Memory Value of maxusers

2049 MB to 4096 MB 2048

4097 MB or more 2048

To determine an appropriate value for the maxusers attribute, double the
default value until you notice a performance improvement. If you have an
Internet server, you can increase the value of the maxusers attribute to
2048. We recommend that you not increase the value of the maxusers
attribute to more than 2048.

If you increase the value of maxusers, you may want to increase the value of
the max_vnodes attribute proportionally (see Section 8.5.1).

You must not decrease the default value of the maxusers attribute.

See Chapter 3 for information about modifying kernel subsystem attributes.

8.1.2 Increasing the Maximum Number of Processes

The proc subsystem attribute max_proc_per_user specifies the maximum
number of processes that can be allocated at any one time to each user,
except superuser.

Performance Benefit and Tradeoff

Increasing the value of max_proc_per_user provides more system
resources to processes.

When to Tune

If your system experiences a lack of processes or you have a very-large
memory (VLM) system or an Internet server, you may want to increase the
value of the max_proc_per_user attribute.

You cannot modify the max_proc_per_user attribute without rebooting
the system.

Recommended Values

The default value of the max_proc_per_user attribute is based on the
maxusers attribute. If you want to increase the maximum number
of processes, you can increase the value of the maxusers attribute
(see Section 8.1.1). As an alternative, you can specify a value for the
max_proc_per_user attribute that is equal to or greater than the
maximum number of processes that will be running on the system at one
time. If you have a Web server, these processes include CGI processes.

Managing System Resource Allocation 8–3

If you have an Internet server, increase the value of the max_proc_per_user
attribute to 512.

If you specify a value of 0 for the max_proc_per_user attribute, there is
no limit on processes.

See Chapter 3 for information about modifying kernel subsystem attributes.

8.1.3 Increasing the Maximum Number of Threads

The proc subsystem attribute max_threads_per_user specifies the
maximum number of threads that can be allocated at any one time to each
user, except superuser.

Performance Benefit and Tradeoff

Increasing the value of max_threads_per_user provides more system
resources to processes.

You cannot modify the max_proc_per_user attribute without rebooting
the system.

When to Tune

If your system experiences a lack of threads or you have a VLM system
or an Internet server, you may want to increase the value of the
max_threads_per_user attribute.

Recommended Values

The default value of the max_threads_per_user attribute is based
on the value of the maxusers attribute. If you want to increase the
maximum number of threads, you can modify the maxusers attribute
(see Section 8.1.1). As an alternative, you can specify a value for the
max_threads_per_user attribute that is equal to or greater than the
maximum number of threads that are allocated at one time on the system.
For example, you could increase the value of the max_threads_per_user
attribute to 512.

On a very busy server with enough memory or an Internet server, increase
the value of the max_threads_per_user attribute to 4096.

Setting the value of the max_threads_per_user attribute to 0 will remove
the limit on threads.

If you specify a value of 0 for the max_threads_per_user attribute, there
is no limit on threads.

See Chapter 3 for information about modifying kernel subsystem attributes.

8–4 Managing System Resource Allocation

8.2 Tuning Program Size Limits

If you are running a very large application, you may need to increase the
values of the proc subsystem attributes that control program size limits.
Some large programs and large-memory processes may not run unless you
modify the default values of these attributes.

The following sections describe how to:

• Increase the maximum size of a user process stack (Section 8.2.1)

• Increase the maximum size of a user process data segment (Section 8.2.2)

For more information about the proc subystem attributes, see
sys_attrs_proc(5).

8.2.1 Increasing the Size of a User Process Stack

The proc subsystem attributes per_proc_stack_size and
max_per_proc_stack_size specify the default and maximum sizes of a
user process stack. Some large programs and large-memory processes may
not run unless you increase the default value of these attributes.

Performance Benefit and Tradeoff

Increasing the default and maximum sizes of a user process stack enables
very large applications to run.

You cannot modify the per_proc_stack_size
max_per_proc_stack_size attributes without rebooting the system.

When to Tune

If you are running a large program or a large-memory process, or if you
receive Cannot grow stack messages, increase the default and maximum
sizes of a user process stack.

Recommended Values

The default value of the per_proc_stack_size attribute is 8,388,608
bytes. The default value of the max_per_proc_stack_size attribute is
33,554,432 bytes. Choose values that are significantly less than the address
space limit. See Section 8.3 for more information.

See Chapter 3 for information about modifying kernel subsystem attributes.

8.2.2 Increasing the Size of a User Process Data Segment

The proc subsystem attributes per_proc_data_size and
max_per_proc_data_size specify the default and maximum sizes of a user

Managing System Resource Allocation 8–5

process data segment. Some large programs and large-memory processes
may not run unless you increase the default values of these attributes.

Performance Benefit and Tradeoff

Increasing the default and maximum sizes of a user process data segment
enables very large applications to run.

You cannot modify the per_proc_data_size and
max_per_proc_data_size attributes without rebooting the system.

When to Tune

You may need to increase the values of the per_proc_data_size and
max_per_proc_data_size attributes if you are running a large program
or a large-memory process, if you receive an Out of process memory
message, or the system is an Internet server.

Recommended Values

The default value of the per_proc_data_size is 134,217,728 bytes. The
default value of the max_per_proc_data_size is 1 GB (1,073,741,824
bytes). Choose values that are significantly less than the address space
limit. See Section 8.3 for information.

If you have an Internet server, increase the value of the
max_per_proc_data_size attribute to 10 GB (10,737,418,240 bytes).

See Chapter 3 for information about modifying kernel subsystem attributes.

8.3 Tuning Address Space Limits

The proc subsystem attributes per_proc_address_space and
max_per_proc_address_space specify the default and maximum amount
of user process address space (number of valid virtual regions).

Performance Benefit and Tradeoff

Increasing the address space limit enables large programs to run, and
improves the performance of memory-intensive applications. However, this
causes a small increase in the demand for memory.

You cannot modify the per_proc_address_space and max_per_proc_ad-
dress_space attributes without rebooting the system.

When to Tune

You may want to increase the address space limit if you are running a
memory-intensive process, or if the system is an Internet server.

8–6 Managing System Resource Allocation

Recommended Values

The default value for the per_proc_address_space and
max_per_proc_address_space attributes is 4 GB (4,294,967,296 bytes).

If you have an Internet server, increase the value of the
max_per_proc_address_space attribute to 10 GB (10,737,418,240 bytes).

See Chapter 3 for information about modifying kernel attributes.

8.4 Tuning Interprocess Communication Limits

Interprocess communication (IPC) is the exchange of information
between two or more processes. Some examples of IPC include messages,
shared memory, semaphores, pipes, signals, process tracing, and processes
communicating with other processes over a network.

The following sections describe how to:

• Increase the maximum size of a System V message (Section 8.4.1)

• Increase the maximum size of a System V message queue (Section 8.4.2)

• Increase the maximum size of messages on a System V queue
(Section 8.4.3)

• Increase the maximum size of a system V shared memory region
(Section 8.4.4)

• Increase the maximum number of shared memory regions attached to a
process (Section 8.4.5)

• Modify shared page table sharing (Section 8.4.6)

The Tru64 UNIX operating system provides the following facilities for
interprocess communication:

• Pipes — See the Guide to Realtime Programming for information about
pipes.

• Signals — See the Guide to Realtime Programming for information.

• Sockets — See the Network Programmer’s Guide for information.

• Streams — See the Programmer’s Guide: STREAMS for information.

• X/Open Transport Interface (XTI) — See the Network Programmer’s
Guide for information.

If you are running processes that are memory-intensive, you may want to
increase the values of some ipc subsystem attributes.

Table 8–2 describes the guidelines for increasing IPC limits and lists the
performance benefits as well as tradeoffs.

Managing System Resource Allocation 8–7

Table 8–2: IPC Limits Tuning Guidelines
Guidelines Performance Benefit Tradeoff

Increase the maximum
size of a System V message
(Section 8.4.1)

May improve the
performance of
applications that can
benefit from a large
System V message size

Consumes a small amount
of memory

Increase the maximum
number of bytes on a
System V message queue
(Section 8.4.2)

May improve the
performance of
applications that can
benefit from a large
System V message queue

Consumes a small amount
memory

Increase the maximum
number of outstanding
messages on a System V
queue (Section 8.4.3)

May improve the
performance of
applications that benefit
from having a large
number of outstanding
messages

Consumes a small amount
of memory

Increase the maximum
size of a System V
shared memory region
(Section 8.4.4)

May improve the
performance of
memory-intensive
applications that can
benefit from a large System
V shared memory region

Consumes memory

Increase the maximum
number of shared memory
regions that can be
attached to a process
(Section 8.4.5)

May improve the
performance of
applications that attach
many shared memory
regions

May consume memory

Modify the shared page
table limit (Section 8.4.6)

Enables memory-intensive
or VLM systems to run
efficiently

May consume memory

The following sections describe how to tune some System V attributes.
See sys_attrs_ipc(5) for information about additional IPC subsystem
attributes.

8.4.1 Increasing the Maximum Size of a System V Message

The ipc subsystem attribute msg_max specifies the maximum size of a
System V message that an application can receive.

Performance Benefit and Tradeoff

Increasing the value of the msg_max attribute, may improve the performance
of applications that can benefit from a System V message size that is larger
than the default value. However, increasing this value will consume memory.

8–8 Managing System Resource Allocation

You cannot modify the msg_max attribute without rebooting the system.

When to Tune

If your applications can benefit from setting the default maximum size of a
System V message to a value that is larger than 8192 bytes, you may want
to increase the value of the msg_max attribute.

Recommended Value

The default value of the msg_max attribute is 8192 bytes (1 page).

See Chapter 3 for information about modifying kernel subsystem attributes.

8.4.2 Increasing the Maximum Size of a System V Message Queue

The ipc subsystem attribute msg_mnb, specifies the maximum number of
bytes that can be in a System V message queue at one time.

A process cannot send a message to a queue if the number of bytes in the
queue is greater than the limit specified by the msg_mnb attribute. When the
limit is reached, the process sleeps and waits for this condition to be resolved.

Performance Benefit and Tradeoff

Increasing the value of the msg_mnb attribute may improve performance for
applications that can benefit from a System V message queue that is larger
than the default size. However, increasing this value will consume memory.

You cannot modify the msg_mnb attribute without rebooting the system.

When to Tune

You can track the use of IPC facilities with the ipcs -a command (see
ipcs(1)). By looking at the current number of bytes and message headers in
the queues, you can then determine whether you need to tune the System V
message queue to diminish waiting.

Recommended Value

The default value of the msg_mnb attribute is 16,384 bytes.

See Chapter 3 for information about modifying kernel subsystem attributes.

8.4.3 Increasing the Maximum Number of Messages on a System V
Queue

The ipc subsystem attribute msg_tql specifies the maximum number
of messages that can be on a System V message queue; that is, the total
number of messages that can be outstanding in the system.

Performance Benefit and Tradeoff

Managing System Resource Allocation 8–9

Increasing the value of the msg_tql attribute may improve the performance
of applications that benefit from increasing the number of outstanding
messages to a value that is larger than the default value. However,
increasing the value of this attribute will consume memory.

You cannot modify the msg_tql attribute without rebooting the system.

When to Tune

You may want to increase the value of the msg_tql attribute if your
applications can benefit from increasing the maximum number of
outstanding messages to a value than is larger than 40.

You can track the use of IPC facilities with the ipcs -a command (see
ipcs(1)). By looking at the current number of bytes and message headers in
the queues, you can then determine whether you need to tune the System V
message queue to diminish waiting.

Recommended Values

The default value of the msg_tql is 40.

See Chapter 3 for information about modifying kernel subsystem attributes.

8.4.4 Increasing the Maximum Size of a System V Shared Memory
Region

The ipc subsystem attribute shm_max specifies the maximum size of a
single System V shared memory region.

Performance Benefit and Tradeoff

Increasing the value of the shm_max attribute may improve the performance
of memory-intensive applications that can benefit from a large System
V shared memory region. However, increasing the value of the shm_max
attribute will increase the demand for memory.

You cannot modify the shm_max attribute without rebooting the system.

When to Tune

If your applications are memory-intensive and can benefit from a System V
shared memory region that is larger than the default value of 512 pages, you
may want to increase the value of the shm_max attribute.

Recommended Value

The default value of the shm_max attribute is 4,194,304 bytes (512 pages).

See Chapter 3 for information about modifying kernel subsystem attributes.

8–10 Managing System Resource Allocation

8.4.5 Increasing the Maximum Number of Shared Memory Regions
Attached to a Process

The ipc subsystem attribute shm_seg specifies the maximum number of
System V shared memory regions that can be attached to a single process
at any point in time.

As a design consideration, consider whether you will get better performance
by using threads instead of shared memory.

Performance Benefit and Tradeoff

Increasing the number of System V shared memory regions that can be
attached to a single process may improve the performance of applications
that attach many shared memory regions.

Increasing the value of the shm_seg attribute will consume memory if the
process attaches many shared memory regions.

You cannot modify the shm_seg attribute without rebooting the system.

When to Tune

You may want to increase the value of the shm_seg attribute if a process’
attempt to attach a shared memory region exceeds the limit (the shmat
function returns an EMFILE error).

Recommended Value

The default value of the shm_seg is 32.

See Chapter 3 for information about modifying kernel subsystem attributes.

8.4.6 Modifying Shared Page Table Sharing

Third-level page table sharing occurs when the size of a System V shared
memory segment, as created by the shmget function, is equal to or larger
than the value of the ipc subsystem attribute ssm_threshold.

Performance Benefit and Tradeoff

Increasing the shared page table limit restricts shared page tables to
applications that create shared memory segments larger than 8 MB.
However, this will increase the demand for memory.

You can disable page table sharing, if your applications cannot use shared
page tables.

You can modify the ssm_threshold attribute without rebooting the system.

When to Tune

Managing System Resource Allocation 8–11

If you want to restrict page table sharing to applications that create
shared memory segments larger than 8 MB, increase the value of the
ssm_threshold attribute.

If your applications cannot use shared pages tables because of alignment
restrictions, you may want to disable the sharing of page tables.

Recommended Value

The default value of the ssm_threshold attribute is 8 MB (8,388,608 bytes).

Setting the ssm_threshold attribute to 0 will disable the use of segmented
shared memory.

See Chapter 3 for information about modifying kernel subsystem attributes.

8.5 Tuning the Open File Limits

The following sections describe how to:

• Increase the maximum number of open files (Section 8.5.1)

• Increase the maximum number of open file descriptors (Section 8.5.2)

For more information about the proc subystem attributes, see
sys_attrs_proc(5).

8.5.1 Increasing the Maximum Number of Open Files

The kernel data structure for an open file is called a vnode. These are used
by all file systems. The number of vnodes determines the number of open
files. The allocation and deallocation of vnodes is dynamically handled by
the operating system.

The vfs subsystem attribute max_vnodes specifies the size of the vnode
cache, which is always equal to or more than the maximum number of
open files in the system. You may need to increase the default value of this
attribute to increase the maximum number of open files. Note that you can
also accomplish this task by increasing the value of the proc subsystem
attribute maxusers. See Section 8.1 for more information.

Performance Benefit and Tradeoff

Increasing the size of the vnode cache can improve the performance of
applications that require many open files, but it will also consume memory.

You can modify the max_vnodes attribute without rebooting the system.

When to Tune

8–12 Managing System Resource Allocation

If your applications require many open files or you receive a message
indicating you are out of vnodes, increase the default value of the
max_vnodes attribute.

Recommended Value

The default value of the max_vnodes attribute is 5 percent of memory.

See Chapter 3 for information about modifying kernel subsystem attributes.

8.5.2 Increasing the Maximum Number of Open File Descriptors

You may want to increase the maximum number of open file descriptors for
all processes or for a specific application. The proc subsystem attributes
open_max_soft and open_max_hard control the maximum systemwide
number of open file descriptors for each process.

The open file descriptor limits prevent runaway allocations, such as
allocations within a loop that cannot be exited because of an error condition,
from consuming all of the available file descriptors. If a process reaches the
open_max_soft limit, a warning message is issued. If a process reaches
the open_max_hard limit, the process is stopped.

Performance Benefit and Tradeoff

Improves the performance of applications that open many files.

You cannot modify the open_max_soft and open_max_hard attributes
without rebooting the system.

When to Tune

If you have an application that requires many open files, you can increase
the open file descriptor limit by increasing the values of the open_max_soft
and open_max_hard attributes. However, increasing the open file descriptor
limit may cause runaway allocations.

Recommended Values

The default value of the open_max_soft and open_max_hard attributes
is 4,096, which is the maximum systemwide value that you can set in the
/etc/sysconfigtab file.

If you have an application that requires many open files, you can increase
the open file descriptor limit only for that application, instead of increasing
the systemwide limit. To enable extended (64 KB) file descriptors for a
specific application, follow these steps:

1. Set the setsysinfo system call’s SSI_FD_NEWMAX operation parameter
to 1, which sets the utask bit, enables up to 65,536 (64 KB) open file
descriptors, and raises the process’s hard file limit to 64 KB. This

Managing System Resource Allocation 8–13

setting is inherited by any child process. See setsysinfo(2) for more
information.

2. Set the process’s file descriptor soft limit to a value that is more than
4,096 (the default value) by using the setrlimit function as shown in
the following code fragment:

include <sys/resource.h>
struct rlimit *rlp;

rlp->rlim_cur = 6000;
rlp->rlim_max = 6000;
setrlimit(RLIMIT_NOFILE, rlp);

This setting is inherited by any child process. See setrlimit(2) for
more information.

3. This step is required only for applications that use the select
function’s fd_set parameter, which points to an I/O descriptor set (and
a FD_CLR, FD_ISSET, FD_SET, or FD_ZERO macro) and can modify an
I/O descriptor set. If you meet these qualifications, you can use one of
two procedures, one that enables a static definition of the maximum
number of file descriptors or one that enables a dynamic definition:

• Static definition:

Override the default value of 4,096 for FD_SETSIZE in the
<sys/select.h> header file by specifying the maximum
value of 65,536. You must specify this value before you
include the <sys/time.h> header file (which also includes the
<sys/select.h> header file) in the code, as follows:

define FD_SETSIZE 65536
include <sys/time.h>

This setting is not inherited by child processes; therefore,
FD_SETSIZE must be explicitly set in the code for each child process
that requires 64-KB file descriptors.

• Dynamic definition:

Instead of using statically defined fd_set structures, you can use
fd_set pointers in conjunction with a malloc function, which
provides forward compatibility with any future changes to the
maximum file descriptor limit. For example:

fd_set *fdp;

fdp = (fd_set *) malloc(
(fds_howmany(max_fds,FD_NFDBITS))*sizeof(fd_mask));

The value for max_fds is the number of file descriptors to be
manipulated. We recommend that you use the file descriptor
soft limit for this value. All other keywords are defined in the

8–14 Managing System Resource Allocation

<sys/select.h> header file. The following code segment shows
this choice:

include <sys/time.h>
include <sys/resource.h>

my_program()
{
fd_set *fdp;
struct rlimit rlim;
int max_fds;

getrlimit(RLIMIT_NOFILE, &rlim;);
max_fds = rlim.rlim_cur;

fdp = (fd_set *) malloc(
(fds_howmany(max_fds,FD_NFDBITS))*sizeof(fd_mask));

FD_SET(2, fdp);

for (;;) {
switch(select(max_fds, (fd_set *)0, fdp, (fd_set
*)0,
struct timeval *)0)) {
...
}

In addition, the vfs subsystem attribute max_vnodes must be set high
enough for the needs of any application that requires a high number of
descriptors. The max_vnodes attribute specifies the size of the vnode cache,
and is set to 5 percent of system memory by default. See Section 8.5.1 for
more information.

To disable support for up to 64-KB file descriptors for an application, set
the setsysinfo system call’s SSI_FD_NEWMAX operation parameter to 0,
which disables the utask bit and returns the hard file limit to the default
maximum of 4,096 open file descriptors. However, if the process is using
more than 4,096 file descriptors, the setsysinfo system call will return an
EINVAL error. In addition, if a calling process’s hard or soft limit exceeds
4,096, the limit is set to 4 KB after the call is successful. This setting is
inherited by any child process.

8.6 Aurema ARMTech Suite

Tru64 UNIX supports Aurema’s ARMTech (Active Resource Management
Technology) software product suite. This software provides enhanced
resource management capabilities. The ARMTech suite provides the Tru64
UNIX administrator with the means to manage many operating system
entities, such as Web sites or applications, in addition to users and groups.

See armtech(5) and the Aurema Web site:

http://www.aurema.com

Managing System Resource Allocation 8–15

9
Managing Disk Storage Performance

There are various ways that you can manage your disk storage. Depending
on your performance and availability needs, you can use static disk
partitions, the Logical Storage Manager (LSM), hardware RAID, or a
combination of these solutions.

The disk storage configuration can have a significant impact on system
performance, because disk I/O is used for file system operations and also by
the virtual memory subsystem for paging and swapping.

You may be able to improve disk I/O performance by following the
configuration and tuning guidelines described in this chapter, which
describes the following:

• Improving overall disk I/O performance by distributing the I/O load
(Section 9.1)

• Monitoring the distribution of disk I/O (Section 9.2)

• Managing LSM performance (Section 9.3)

• Managing hardware RAID subsystem performance (Section 9.4)

• Managing Common Access Method (CAM) performance (Section 9.5)

Not all guidelines are appropriate for all disk storage configurations. Before
applying any guideline, be sure that you understand your workload resource
model, as described in Section 1.8, and the guideline’s benefits and tradeoffs.

9.1 Guidelines for Distributing the Disk I/O Load

Distributing the disk I/O load across devices helps to prevent a single disk,
controller, or bus from becoming a bottleneck. It also enables simultaneous
I/O operations.

For example, if you have 16 GB of disk storage, you may get better
performance from sixteen 1-GB disks rather than four 4-GB disks, because
using more spindles (disks) may allow more simultaneous operations. For
random I/O operations, 16 disks may be simultaneously seeking instead
of four disks. For large sequential data transfers, 16 data streams can be
simultaneously working instead of four data streams.

Use the following guidelines to distribute the disk I/O load:

Managing Disk Storage Performance 9–1

• Stripe data or disks.

RAID0 (data or disk striping) enables you to efficiently distribute data
across the disks. See Section 11.2.1.5 for detailed information about the
benefits of striping. Note that availability decreases as you increase the
number of disks in a striped array.

To stripe data, use LSM (see Section 9.3). To stripe disks, use a hardware
RAID subsystem (see Section 9.4).

As an alternative to data or disk striping, you can use the Advanced File
System (AdvFS) to stripe individual files across disks in a file domain.
However, do not stripe a file and also the disk on which it resides. See
Section 11.2 for more information.

• Use RAID5.

RAID5 distributes disk data and parity data across disks in an array
to provide high data availability and to improve read performance.
However, RAID5 decreases write performance in a nonfailure state, and
decreases read and write performance in a failure state. RAID5 can be
used for configurations that are mainly read-intensive. As a cost-efficient
alternative to mirroring, you can use RAID5 to improve the availability
of rarely accessed data.

To create a RAID5 configuration, use LSM (see Section 9.3) or a hardware
RAID subsystem (Section 9.4).

• Distribute frequently used file systems across disks and, if possible,
different buses and controllers.

Place frequently used file systems on different disks and, if possible,
different buses and controllers. Directories containing executable files
or temporary files, such as /var, /usr, and /tmp, are often frequently
accessed. If possible, place /usr and /tmp on different disks.

You can use the AdvFS balance command to balance the percentage of
used space among the disks in an AdvFS file domain. See Section 11.2.1.4
for information.

• Distribute swap I/O across devices.

To make paging and swapping more efficient and help prevent any
single adapter, bus, or disk from becoming a bottleneck, distribute swap
space across multiple disks. Do not put multiple swap partitions on
the same disk.

You can also use LSM to mirror your swap space. See Section 9.3 for
more information.

See Section 12.2 for more information about configuring swap devices
for high performance.

Section 9.2 describes how to monitor the distribution of disk I/O.

9–2 Managing Disk Storage Performance

9.2 Monitoring the Distribution of Disk I/O

Table 9–1 describes some commands that you can use to determine if your
disk I/O is being distributed.

Table 9–1: Disk I/O Distribution Monitoring Tools
Tool Description Reference

showfdmn Displays information about
AdvFS file domains and
determines if files are
evenly distributed across
AdvFS volumes.

Section 11.2.2.3

advfsstat Displays information about
AdvFS file domain and
fileset usage, and provides
performance statistics
information for AdvFS file
domains and filesets that
you can use to determine
if the file system I/O is
evenly distributed.

Section 11.2.2.1

swapon Displays the swap space
configuration and usage. It
displays the total amount
of allocated swap space,
the amount of swap space
that is being used, and the
amount of free swap space.

Section 12.3.3

volstat Displays performance
statistics for LSM objects
and provides information
about LSM volume and
disk usage that you can
use to characterize and
understand your I/O
workload, including the
read/write ratio, the
average transfer size, and
whether disk I/O is evenly
distributed.

Section 9.3 or the
Logical Storage Manager
documentation.

iostat Displays disk I/O statistics
and provides information
about which disks are
being used the most.

Section 9.2.1

Managing Disk Storage Performance 9–3

9.2.1 Displaying Disk Usage by Using the iostat Command

For the best performance, disk I/O should be evenly distributed across disks.
Use the iostat command to determine which disks are being used the
most. The command displays disk I/O statistics for disks, in addition to
terminal and CPU statistics.

An example of the iostat command is as follows; output is provided in
one-second intervals:

/usr/ucb/iostat 1
tty floppy0 dsk0 dsk1 cdrom0 cpu

tin tout bps tps bps tps bps tps bps tps us ni sy id
1 73 0 0 23 2 37 3 0 0 5 0 17 79
0 58 0 0 47 5 204 25 0 0 8 0 14 77
0 58 0 0 8 1 62 1 0 0 27 0 27 46

The iostat command output displays the following information:

• The first line of the iostat command output is the average since boot
time, and each subsequent report is for the last interval.

• For each disk (dskn), the number of KB transferred per second (bps) and
the number of transfers per second (tps).

• For the system (cpu), the percentage of time the CPU has spent in user
state running processes either at their default priority or preferred
priority (us), in user mode running processes at a less favored priority
(ni), in system mode (sy), and in idle mode (id). This information
enables you to determine how disk I/O is affecting the CPU. User mode
includes the time the CPU spent executing library routines. System
mode includes the time the CPU spent executing system calls.

The iostat command can help you to do the following:

• Determine which disk is being used the most and which is being used the
least. This information will help you determine how to distribute your
file systems and swap space. Use the swapon -s command to determine
which disks are used for swap space.

• Determine if the system is disk bound. If the iostat command output
shows a lot of disk activity and a high system idle time, the system may
be disk bound. You may need to balance the disk I/O load, defragment
disks, or upgrade your hardware.

• Determine if an application is written efficiently. If a disk is doing a
large number of transfers (the tps field) but reading and writing only
small amounts of data (the bps field), examine how your applications
are doing disk I/O. The application may be performing a large number of
I/O operations to handle only a small amount of data. You may want to
rewrite the application if this behavior is not necessary.

9–4 Managing Disk Storage Performance

9.3 Managing Storage with LSM
The Logical Storage Manager (LSM) provides flexible storage management,
improved disk I/O performance, and high data availability, with little
additional overhead. Although any type of system can benefit from LSM,
it is especially suited for configurations with large numbers of disks or
configurations that regularly add storage.

LSM allows you to set up unique pools of storage that consist of multiple
disks. From these disk groups, you can create virtual disks (LSM volumes),
which are used in the same way as disk partitions. You can create UFS or
AdvFS file systems on a volume, use a volume as a raw device, or create
volumes on top of RAID storage sets.

Because there is no direct correlation between an LSM volume and a
physical disk, file system or raw I/O can span disks. You can easily add disks
to and remove disks from a disk group, balance the I/O load, and perform
other storage management tasks.

In addition, LSM provides high performance and high availability by
using RAID technology. LSM is often referred to as software RAID. LSM
configurations can be more cost-effective and less complex than a hardware
RAID subsystem. Note that LSM RAID features require a license.

9.3.1 LSM Features

LSM provides the following basic disk management features that do not
require a license:

• Disk concatenation enables you to create a large volume from multiple
disks.

• Load balancing transparently distributes data across disks.

• Configuration database load-balancing automatically maintains an
optimal number of LSM configuration databases in appropriate locations
without manual intervention.

• The volstat command provides detailed LSM performance information.

The following LSM features require a license:

• RAID0 (striping) distributes data across disks in an array. Striping is
useful if you quickly transfer large amounts of data, and also enables
you to balance the I/O load from multi-user applications across multiple
disks. LSM striping provides significant I/O performance benefits with
little impact on the CPU.

• RAID1 (mirroring) maintains copies of data on different disks and
reduces the chance that a single disk failure will cause the data to be
unavailable.

Managing Disk Storage Performance 9–5

• RAID5 (parity RAID) provides data availability through the use of parity
and distributes data and parity across disks in an array.

• Mirrored root file system and swap space improves availability.

• Hot-spare support provides an automatic reaction to I/O failures on
mirrored or RAID5 objects by relocating the affected objects to spare
disks or other free space.

• Dirty-region logging (DRL) improves the recovery time of mirrored
volumes after a system failure.

• A graphical user interface (GUI) enables easy disk management and
provides detailed performance information.

To obtain the best LSM performance, follow the configuration and tuning
guidelines described in the Logical Storage Manager manual.

9.4 Managing Hardware RAID Subsystem Performance

Hardware RAID subsystems provide RAID functionality for high
performance and high availability, relieve the CPU of disk I/O overhead,
and enable you to connect many disks to a single I/O bus or in some cases,
multiple buses. There are various types of hardware RAID subsystems with
different performance and availability features, but they all include a RAID
controller, disks in enclosures, cabling, and disk management software.

RAID storage solutions range from low-cost backplane RAID array
controllers to cluster-capable RAID array controllers that provide extensive
performance and availability features, such as write-back caches and
complete component redundancy.

Hardware RAID subsystems use disk management software, such as the
RAID Configuration Utility (RCU) and the StorageWorks Command Console
(SWCC) utility, to manage the RAID devices. Menu-driven interfaces allow
you to select RAID levels.

Use hardware RAID to combine multiple disks into a single storage set that
the system sees as a single unit. A storage set can consist of a simple set
of disks, a striped set, a mirrored set, or a RAID set. You can create LSM
volumes, AdvFS file domains, or UFS file systems on a storage set, or you
can use the storage set as a raw device.

The following sections discuss the following RAID hardware topics:

• Hardware RAID features (Section 9.4.1)

• Hardware RAID products (Section 9.4.2)

• Guidelines for hardware RAID configurations (Section 9.4.3)

9–6 Managing Disk Storage Performance

See the hardware RAID product documentation for detailed configuration
information.

9.4.1 Hardware RAID Features

Hardware RAID storage solutions range from low-cost backplane RAID
array controllers to cluster-capable RAID array controllers that provide
extensive performance and availability features. All hardware RAID
subsystems provide you with the following features:

• A RAID controller that relieves the CPU of the disk I/O overhead

• Increased disk storage capacity

Hardware RAID subsystems allow you to connect a large number of
disks to a single I/O bus or, in some cases, multiple buses. In a typical
storage configuration, you attach a disk storage shelf to a system by
using a SCSI bus connected to a host bus adapter installed in a I/O bus
slot. However, you can connect a limited number of disks to a SCSI bus,
and systems have a limited number of I/O bus slots.

In contrast, hardware RAID subsystems contain multiple internal SCSI
buses that can be connected to a system by using a single I/O bus slot.

• Read cache

A read cache improves I/O read performance by holding data that it
anticipates the host will request. If a system requests data that is already
in the read cache (a cache hit), the data is immediately supplied without
having to read the data from disk. Subsequent data modifications are
written both to disk and to the read cache (write-through caching).

• Write-back cache

Hardware RAID subsystems support write-back caches (as a standard
or an optional feature), which can improve I/O write performance while
maintaining data integrity. A write-back cache decreases the latency
of many small writes, and can improve Internet server performance
because writes appear to be written immediately. Applications that
perform few writes will not benefit from a write-back cache.

With write-back caching, data intended to be written to disk is
temporarily stored in the cache, consolidated, and then periodically
written (flushed) to disk for maximum efficiency. I/O latency is reduced
by consolidating contiguous data blocks from multiple host writes into a
single unit.

A write-back cache must have an uninterruptible power source (UPS) to
protect against data loss and corruption.

• RAID support

Managing Disk Storage Performance 9–7

All hardware RAID subsystems support RAID0 (disk striping), RAID1
(disk mirroring), and RAID5. High-performance RAID array subsystems
also support RAID3 and dynamic parity RAID. See Section 1.3.1 for
information about RAID levels.

• Non-RAID disk array capability or "just a bunch of disks" (JBOD)

• Component hot swapping and hot sparing

Hot-swap support allows you to replace a failed component while
the system continues to operate. Hot-spare support allows you to
automatically use previously installed components if a failure occurs.

• Graphical user interface (GUI) for easy management and monitoring

9.4.2 Hardware RAID Products

There are different types of hardware RAID subsystems, which provide
various degrees of performance and availability at various costs. HP
supports the following hardware RAID subsystems:

• Backplane RAID array storage subsystems

These entry-level subsystems, such as those utilizing the RAID Array
230/Plus storage controller, provide a low-cost hardware RAID solution
and are designed for small and midsize departments and workgroups.

A backplane RAID array storage controller is installed in a PCI bus slot
and acts as both a host bus adapter and a RAID controller.

Backplane RAID array subsystems provide RAID functionality (0, 1, 0+1,
and 5), an optional write-back cache, and hot-swap functionality.

• High-performance RAID array subsystems

These subsystems, such as the RAID Array 450 subsystem, provide
extensive performance and availability features and are designed
for client/server, data center, and medium to large departmental
environments.

A high-performance RAID array controller, such as an HSZ80 controller,
is connected to a system through an ultrawide differential SCSI bus and
a high-performance host bus adapter installed in an I/O bus slot.

High-performance RAID array subsystems provide RAID functionality
(0, 1, 0+1, 3, 5, and dynamic parity RAID), dual-redundant controller
support, scalability, storage set partitioning, a standard UPS write-back
cache, and components that can be hotswapped.

• Enterprise Storage Arrays (ESA)/Modular storage array (MSA)

These preconfigured high-performance hardware RAID subsystems, such
as the RAID Array 12000, provide the highest performance, availability,
and disk capacity of any RAID subsystem. They are used for high

9–8 Managing Disk Storage Performance

transaction-oriented applications and high bandwidth decision-support
applications.

ESAs support all major RAID levels, including dynamic parity RAID;
fully redundant components that can be hot-swapped; a standard UPS
write-back cache; and centralized storage management.

See the HP Logical Storage Manager Version 5.1B QuickSpecs for detailed
information about hardware RAID subsystem features.

9.4.3 Hardware RAID Configuration Guidelines

Table 9–2 describes the hardware RAID subsystem configuration guidelines
and lists performance benefits as well as tradeoffs.

Table 9–2: Hardware RAID Subsystem Configuration Guidelines
Guideline Performance Benefit Tradeoff

Evenly distribute disks in a
storage set across different
buses (Section 9.4.3.1)

Improves performance
and helps to prevent
bottlenecks

None

Use disks with the same
data capacity in each
storage set (Section 9.4.3.2)

Simplifies storage
management

None

Use an appropriate stripe
size (Section 9.4.3.3)

Improves performance None

Mirror striped sets
(Section 9.4.3.4)

Provides availability
and distributes disk I/O
performance

Increases configuration
complexity and
may decrease write
performance

Use a write-back cache
(Section 9.4.3.5)

Improves write
performance, especially
for RAID5 storage sets

Cost of hardware

Use dual-redundant RAID
controllers (Section 9.4.3.6)

Improves performance,
increases availability,
and prevents I/O bus
bottlenecks

Cost of hardware

Install spare disks
(Section 9.4.3.7)

Improves availability Cost of disks

Replace failed disks
promptly (Section 9.4.3.7)

Improves performance None

The following sections describe some of these guidelines. See your RAID
subsystem documentation for detailed configuration information.

Managing Disk Storage Performance 9–9

9.4.3.1 Distributing Storage Set Disks Across Buses

You can improve performance and help to prevent bottlenecks by distributing
storage set disks evenly across different buses.

In addition, make sure that the first member of each mirrored set is on
a different bus.

9.4.3.2 Using Disks with the Same Data Capacity

Use disks with the same capacity in a storage set. This simplifies storage
management and reduces wasted disk space.

9.4.3.3 Choosing the Correct Hardware RAID Stripe Size

You must understand how your applications perform disk I/O before you
can choose the stripe (chunk) size that will provide the best performance
benefit. See Section 1.8 for information about identifying a resource model
for your system.

Here are some guidelines for stripe sizes:

• If the stripe size is large compared to the average I/O size, each disk in a
stripe set can respond to a separate data transfer. I/O operations can then
be handled in parallel, which increases sequential write performance
and throughput. This can improve performance for environments
that perform large numbers of I/O operations, including transaction
processing, office automation, and file services environments, and for
environments that perform multiple random read and write operations.

• If the stripe size is smaller than the average I/O operation, multiple disks
can simultaneously handle a single I/O operation, which can increase
bandwidth and improve sequential file processing. This is beneficial for
image processing and data collection environments. However, do not
make the stripe size so small that it will degrade performance for large
sequential data transfers.

For example, if you use an 8-KB stripe size, small data transfers will be
distributed evenly across the member disks, but a 64-KB data transfer will
be divided into at least 8 data transfers.

In addition, the following guidelines can help you choose the correct stripe
size:

• Raw disk I/O operations

If your applications are doing I/O to a raw device and not a file system,
use a stripe size that distributes a single data transfer evenly across
the member disks. For example, if the typical I/O size is 1 MB and you
have a four-disk array, you could use a 256-KB stripe size. This would

9–10 Managing Disk Storage Performance

distribute the data evenly among the four member disks, with each doing
a single 256-KB data transfer in parallel.

• Small file system I/O operations

For small file system I/O operations, use a stripe size that is a multiple
of the typical I/O size (for example, four to five times the I/O size). This
will help to ensure that the I/O is not split across disks.

• I/O to a specific range of blocks

Choose a stripe size that will prevent any particular range of blocks
from becoming a bottleneck. For example, if an application often uses a
particular 8-KB block, you may want to use a stripe size that is slightly
larger or smaller than 8 KB or is a multiple of 8 KB to force the data
onto a different disk.

9.4.3.4 Mirroring Striped Sets

Striped disks improve I/O performance by distributing the disk I/O load.
However, striping decreases availability because a single disk failure will
cause the entire stripe set to be unavailable. To make a stripe set highly
available, you can mirror the stripe set.

9.4.3.5 Using a Write-Back Cache

RAID subsystems support, either as a standard or an optional feature, a
nonvolatile (battery-backed) write-back cache that can improve disk I/O
performance while maintaining data integrity. A write-back cache improves
performance for systems that perform large numbers of writes and for
RAID5 storage sets. Applications that perform few writes will not benefit
from a write-back cache.

With write-back caching, data intended to be written to disk is temporarily
stored in the cache and then periodically written (flushed) to disk for
maximum efficiency. I/O latency is reduced by consolidating contiguous data
blocks from multiple host writes into a single unit.

A write-back cache improves performance, especially for Internet servers,
because writes appear to be written immediately. If a failure occurs, upon
recovery, the RAID controller detects any unwritten data that still exists in
the write-back cache and writes the data to disk before enabling normal
controller operations.

A write-back cache must be backed up with an uninterruptible power source
(UPS) to protect against data loss and corruption.

If you are using an HSZ40, HSZ50, HSZ70, or HSZ80 RAID controller with a
write-back cache, the following guidelines may improve performance:

• Set CACHE_POLICY to B.

Managing Disk Storage Performance 9–11

• Set CACHE_FLUSH_TIMER to a minimum of 45 (seconds).

• Enable the write-back cache (WRITEBACK_CACHE) for each unit, and set
the value of MAXIMUM_CACHED_TRANSFER_SIZE to a minimum of 256.

See the RAID subsystem documentation for more information about using
the write-back cache.

9.4.3.6 Using Dual-Redundant Controllers

If supported by your RAID subsystem, you can use a dual-redundant
controller configuration and balance the number of disks across the two
controllers. This can improve performance, increase availability, and prevent
I/O bus bottlenecks.

9.4.3.7 Using Spare Disks to Replace Failed Disks

Install predesignated spare disks on separate controller ports and storage
shelves. This will help you to maintain data availability and recover quickly
if a disk failure occurs.

9.5 Managing CAM Performance

The Common Access Method (CAM) is the operating system interface to the
hardware. CAM maintains pools of buffers that are used to perform I/O.
Each buffer takes approximately 1 KB of physical memory. Monitor these
pools and tune them if necessary.

You may be able to modify the following io subsystem attributes to improve
CAM performance:

• cam_ccb_pool_size — The initial size of the buffer pool free list at
boot time. The default is 200.

• cam_ccb_low_water — The number of buffers in the pool free list at
which more buffers are allocated from the kernel. CAM reserves this
number of buffers to ensure that the kernel always has enough memory
to shut down runaway processes. The default is 100.

• cam_ccb_increment — The number of buffers either added or removed
from the buffer pool free list. Buffers are allocated on an as-needed basis
to handle immediate demands, but are released in a more measured
manner to guard against spikes. The default is 50.

If the I/O pattern associated with your system tends to have intermittent
bursts of I/O operations (I/O spikes), increasing the values of the
cam_ccb_pool_size and cam_ccb_increment attributes may improve
performance.

9–12 Managing Disk Storage Performance

You may be able to diagnose CAM performance problems by using dbx to
examine the ccmn_bp_head data structure, which provides statistics on the
buffer structure pool that is used for raw disk I/O. The information provided
is the current size of the buffer structure pool (num_bp) and the wait count
for buffers (bp_wait_cnt).

For example:

/usr/ucb/dbx −k /vmunix /dev/mem
(dbx) print ccmn_bp_head
struct {

num_bp = 50
bp_list = 0xffffffff81f1be00
bp_wait_cnt = 0

}
(dbx)

If the value for the bp_wait_cnt field is not 0, CAM has run out of buffer
pool space. If this situation persists, you may be able to eliminate the
problem by changing one or more of the CAM subsystem attributes described
in this section.

Managing Disk Storage Performance 9–13

10
Managing Network Performance

The network used to communicate between the client and server does not
normally cause a performance problem. There are, however, two conditions
to look out for: network delays and high retransmission rates. If the
Ethernet is overutilized, clients experience long delays waiting for a free slot
to send requests. An Ethernet utilization of over 50 percent often indicates
excessive network delay.

Network topology often contributes to excessive delay. If clients are
located across many gateways from the servers that they use often, their
requests experience long delays. You may be able to solve the problem by
restructuring the network topology to evenly distribute the load.

This chapter describes how to manage Tru64 UNIX network subsystem
performance. The following sections describe how to:

• Monitor the network subsystem (Section 10.1)

• Tune the network subsystem (Section 10.2)

10.1 Gathering Network Information

Table 10–1 describes the commands you can use to obtain information about
network operations.

Table 10–1: Network Monitoring Tools
Tool Description Reference

netstat Displays network statistics and a list
of active sockets for each protocol,
information about network routes,
and cumulative statistics for network
interfaces, including the number
of incoming and outgoing packets
and packet collisions. Also displays
information about memory used for
network operations.

Section 2.4.5

Managing Network Performance 10–1

Table 10–1: Network Monitoring Tools (cont.)

Tool Description Reference

sobacklog_hiwat
attribute

Reports the maximum number of
pending requests to any server
socket, and allows you to display the
maximum number of pending requests
to any server socket in the system.

Section 10.1.1

sobacklog_drops
attribute

Reports the number of backlog drops
that exceed a socket backlog limit, and
allows you to display the number of
times the system dropped a received
SYN packet because the number of
queued SYN_RCVD connections for
a socket equaled the socket backlog
limit.

Section 10.1.1

somaxconn_drops
attribute

Reports the number of drops that
exceed the value of the somaxconn
attribute, and allows you to display
the number of times the system
dropped a received SYN packet
because the number of queued
SYN_RCVD connections for a socket
equaled the upper limit on the backlog
length (somaxconn attribute).

Section 10.1.1

ping Determines if a system can be reached
on the network and sends an Internet
Control Message Protocol (ICMP)
echo request to a host to determine
if a host is running and reachable,
and to determine if an IP router is
reachable. Enables you to isolate
network problems, such as direct and
indirect routing problems.

See ping(8)

10–2 Managing Network Performance

Table 10–1: Network Monitoring Tools (cont.)

Tool Description Reference

tcpdump Monitors network interface packets on
a network interface. You can specify
the interface on which to listen, the
direction of the packet transfer, or the
type of protocol traffic to display.
The tcpdump command allows you to
monitor the network traffic associated
with a particular network service and
to identify the source of a packet. It
lets you determine whether requests
are being received or acknowledged,
or to determine the source of network
requests, in the case of slow network
performance.
Your kernel must be configured with
the packetfilter option to use the
command.

See Section 2.4.4

traceroute Displays the packet route to a network
host and tracks the route network
packets follow from gateway to
gateway.

See
traceroute(8)

10.1.1 Checking Socket Listen Queue Statistics by Using the
sysconfig Command

You can determine whether you need to increase the socket listen queue
limit by using the sysconfig -q socket command to display the values
of the following attributes:

• sobacklog_hiwat — Allows you to monitor the maximum number of
pending requests to any server socket in the system. The initial value
is 0.

• sobacklog_drops — Allows you to monitor the number of times the
system dropped a received SYN packet because the number of queued
SYN_RCVD connections for a socket equaled the socket backlog limit.
The initial value is 0.

• somaxconn_drops — Allows you to monitor the number of times the
system dropped a received SYN packet because the number of queued
SYN_RCVD connections for the socket equaled the upper limit on the
backlog length (somaxconn attribute). The initial value is 0.

Managing Network Performance 10–3

We recommend that the value of the sominconn attribute equal the value of
the somaxconn attribute. If so, the value of somaxconn_drops will have
the same value as sobacklog_drops.

However, if the value of the sominconn attribute is 0 (the default), and if
one or more server applications uses an inadequate value for the backlog
argument to its listen system call, the value of sobacklog_drops may
increase at a rate that is faster than the rate at which the somaxconn_drops
counter increases. If this occurs, you may want to increase the value of the
sominconn attribute.

See Section 10.2.3 for information on tuning socket listen queue limits.

10.2 Tuning the Network Subsystem

Most resources used by the network subsystem are allocated and adjusted
dynamically; however, there are some tuning guidelines that you can use to
improve performance, particularly with systems that are Internet servers,
including Web, proxy, firewall, and gateway servers.

Network performance is affected when the supply of resources is unable to
keep up with the demand for resources. The following two conditions can
cause this to occur:

• A problem with one or more hardware or software network components

• A workload (network traffic) that consistently exceeds the capacity of
the available resources, although everything appears to be operating
correctly

Neither of these problems are network tuning issues. In the case of a
problem on the network, you must isolate and eliminate the problem. In the
case of high network traffic (for example, the hit rate on a Web server has
reached its maximum value while the system is 100 percent busy), you must
either redesign the network and redistribute the load, reduce the number of
network clients, or increase the number of systems handling the network
load.

See the Network Programmer’s Guide and the Network Administration:
Connections manual for information on how to resolve network problems.

Table 10–2 lists network subsystem tuning guidelines and performance
benefits as well as tradeoffs.

10–4 Managing Network Performance

Table 10–2: Network Tuning Guidelines
Guidelines Performance Benefit Tradeoff

Increase the size of the
hash table that the kernel
uses to look up TCP control
blocks (Section 10.2.1)

Improves the TCP control
block lookup rate and
increases the raw
connection rate

Slightly increases the
amount of wired memory

Increase the number
of TCP hash tables
(Section 10.2.2)

Reduces hash table lock
contention for SMP
systems

Slightly increases the
amount of wired memory

Increase the limits for
partial TCP connections
on the socket listen queue
(Section 10.2.3)

Improves throughput and
response time on systems
that handle a large number
of connections

Consumes memory when
pending connections are
retained in the queue

Increase the number of
outgoing connection ports
(Section 10.2.4)

Allows more simultaneous
outgoing connections

None

Modify the range of
outgoing connection ports
(Section 10.2.5)

Allows you to use ports
from a specific range

None

Disable the use of PMTU
discovery (Section 10.2.6)

Improves the efficiency of
servers that handle remote
traffic from many clients

May reduce server
efficiency for LAN traffic

Increase the number
of IP input queues
(Section 10.2.7)

Reduces IP input queue
lock contention for SMP
systems

None

Enable mbuf
cluster compression
(Section 10.2.8)

Improves efficiency of
network memory allocation

None

Enable TCP keepalive
functionality (Sec-
tion 10.2.9)

Enables inactive socket
connections to time out

None

Increase the size of the
kernel interface alias table
(Section 10.2.10)

Improves the IP address
lookup rate for systems
that serve many domain
names

Slightly increases the
amount of wired memory

Make partial TCP
connections time out more
quickly (Section 10.2.11)

Prevents clients from
overfilling the socket
listen queue

A short time limit may
cause viable connections
to break prematurely

Make the TCP connection
context time out more
quickly at the end
of the connection
(Section 10.2.12)

Frees connection resources
sooner

Reducing the timeout limit
increases the potential
for data corruption; use
caution if you apply
this guideline

Managing Network Performance 10–5

Table 10–2: Network Tuning Guidelines (cont.)

Guidelines Performance Benefit Tradeoff

Reduce the TCP
retransmission rate
(Section 10.2.13)

Prevents premature
retransmissions and
decreases congestion

A long retransmit time
is not appropriate for all
configurations

Enable the immediate
acknowledgment of TCP
data (Section 10.2.14)

Can improve network
performance for some
connections

May adversely affect
network bandwidth

Increase the TCP
maximum segment size
(Section 10.2.15)

Allows sending more
data per packet

May result in
fragmentation at the
router boundary

Increase the size of the
transmit and receive socket
buffers (Section 10.2.3)

Buffers more TCP packets
per socket

May decrease available
memory when the buffer
space is being used

Increase the size of the
transmit and receive
buffers for a UDP socket
(Section 10.2.16)

Helps to prevent dropping
UDP packets

May decrease available
memory when the buffer
space is being used

Allocate sufficient memory
to the UBC (Section 11.1.3)

Improves disk I/O
performance

May decrease the physical
memory available to
processes

Increase the maximum
size of a socket buffer
(Section 10.2.17)

Allows large socket
buffer sizes

Consumes memory
resources

Prevent dropped input
packets (Section 10.2.18)

Allows high network loads None

The following sections describe these tuning guidelines in more detail.

See Chapter 3 for information about modifying kernel subsystem attributes.

10.2.1 Improving the Lookup Rate for TCP Control Blocks

You can modify the size of the hash table that the kernel uses to look up
Transmission Control Protocol (TCP) control blocks. The inet subsystem
attribute tcbhashsize specifies the number of hash buckets in the kernel
TCP connection table (the number of buckets in the inpcb hash table).

Performance Benefit and Tradeoff

The kernel must look up the connection block for every TCP packet it
receives, so increasing the size of the table can speed the search and improve
performance. This results in a small increase in wired memory.

You can modify the tcbhashsize attribute without rebooting the system.

10–6 Managing Network Performance

When to Tune

Increase the number of hash buckets in the kernel TCP connection table if
you have an Internet server.

Recommended Values

The default value of the tcbhashsize attribute is 512. For Internet servers,
set the tcbhashsize attribute to 16384.

10.2.2 Increasing the Number of TCP Hash Tables

Because the kernel must look up the connection block for every Transmission
Control Protocol (TCP) packet it receives, a bottleneck may occur at the TCP
hash table in SMP systems. Increasing the number of tables distributes
the load and may improve performance. The inet subsystem attribute
tcbhashnum specifies the number of TCP hash tables.

Performance Benefit and Tradeoff

For SMP systems, you may be able to reduce hash table lock contention by
increasing the number of hash tables that the kernel uses to look up TCP
control blocks. This will slightly increase wired memory.

You cannot modify the tcbhashnum attribute without rebooting the system.

When to Tune

Increase the number of TCP hash tables if you have an SMP system that
is an Internet server.

Recommended Values

The minimum and default values of the tcbhashnum attribute are 1; the
maximum value is 64. For busy Internet server SMP systems, you can
increase the value of the tcbhashnum attribute to 16. If you increase
this attribute, you should also increase the size of the hash table. See
Section 10.2.1 for information.

We recommend that you make the value of the tcbhashnum attribute the
same as the value of the inet subsystem attribute ipqs. See Section 10.2.7
for information.

10.2.3 Tuning the TCP Socket Listen Queue Limits

You may be able to improve performance by increasing the limits for
the socket listen queue (only for TCP). The socket subsystem attribute
somaxconn specifies the maximum number of pending TCP connections
(the socket listen queue limit) for each server socket. If the listen queue
connection limit is too small, incoming connect requests may be dropped.

Managing Network Performance 10–7

Note that pending TCP connections can be caused by lost packets in the
Internet or denial of service attacks.

The socket subsystem attribute sominconn specifies the minimum number
of pending TCP connections (backlog) for each server socket. The attribute
controls how many SYN packets can be handled simultaneously before
additional requests are discarded. The value of the sominconn attribute
overrides the application-specific backlog value, which may be set too low for
some server software.

Performance Benefit and Tradeoff

To improve throughput and response time with fewer drops, you can increase
the value of the somaxconn attribute.

If you want to improve performance without recompiling an application
or if you have an Internet server, increase the value of the sominconn
attribute. Increasing the value of this attribute can also prevent a client
from saturating a socket listen queue with erroneous TCP SYN packets.

You can modify the somaxconn and sominconn attributes without rebooting
the system. However, sockets that are already open will continue to use the
previous socket limits until the applications are restarted.

When to Tune

Increase the socket listen queue limits if you have an Internet server or a
busy system that has many pending connections and is running applications
generating a large number of connections.

Monitor the sobacklog_hiwat, sobacklog_drops, and
somaxconn_drops attributes to determine if socket queues are overflowing.
If so, you may need to increase the socket listen queue limits. See
Section 10.1.1 for information.

Recommended Values

The default value of the somaxconn attribute is 1024. For Internet servers,
set the value of the somaxconn attribute to the maximum value of 65535.

The default value of the sominconn attribute is 0. To improve performance
without recompiling an application and for Internet servers, set the value of
the sominconn attribute to the maximum value of 65535.

If a client is saturating a socket listen queue with erroneous TCP SYN
packets, effectively blocking other users from the queue, increase the value
of the sominconn attribute to 65535. If the system continues to drop
incoming SYN packets, you can decrease the value of the inet subsystem
attribute tcp_keepinit to 30 (15 seconds).

10–8 Managing Network Performance

The value of the sominconn attribute should be the same as the value of the
somaxconn attribute.

10.2.4 Increasing the Number of Outgoing Connection Ports

When a TCP or UDP application creates an outgoing connection, the kernel
dynamically allocates a nonreserved port number for each connection. The
kernel selects the port number from a range of values between the value of
the inet subsystem attribute ipport_userreserved_min and the value
of the ipport_userreserved attribute. If you use the default attribute
values, the number of simultaneous outgoing connections is limited to 3976.

Performance Benefit

Increasing the number of ports provides more ports for TCP and UDP
applications.

You can modify the ipport_userreserved attribute without rebooting
the system.

When to Tune

If your system requires many outgoing ports, you may want to increase the
value of the ipport_userreserved attribute.

Recommended Values

The default value of the ipport_userreserved attribute is 5000, which
means that the default number of ports is 3976 (5000 minus 1024).

If your system is a proxy server (for example, a Squid caching server or a
firewall system) with a load of more than 4000 simultaneous connections,
increase the value of the ipport_userreserved attribute to the maximum
value of 65000.

We do not recommend that you reduce the value of the ipport_userre-
served attribute to a value that is less than 5000 or increase it to a value
that is higher than 65000.

You can also modify the range of outgoing connection ports. See
Section 10.2.5 for information.

10.2.5 Modifying the Range of Outgoing Connection Ports

When a TCP or UDP application creates an outgoing connection, the kernel
dynamically allocates a nonreserved port number for each connection. The
kernel selects the port number from a range of values between the value of
the inet subsystem attribute ipport_userreserved_min and the value
of the ipport_userreserved attribute. Using the default values for these
attributes, the range of outgoing ports starts at 1024 and stops at 5000.

Managing Network Performance 10–9

Performance Benefit and Tradeoff

Modifying the range of outgoing connections provides TCP and UDP
applications with a specific range of ports.

You can modify the ipport_userreserved_min and ipport_userre-
served attributes without rebooting the system.

When to Tune

If your system requires outgoing ports from a particular range,
you can modify the values of the ipport_userreserved_min and
ipport_userreserved attributes.

Recommended Values

The default value of the ipport_userreserved_min attribute is 1024. The
default value of the ipport_userreserved is 5000. The maximum value
of both attributes is 65000.

Do not reduce the ipport_userreserved attribute to a value that is less
than 5000, or reduce the ipport_userreserved_min attribute to a value
that is less than 1024.

10.2.6 Disabling PMTU Discovery

Packets transmitted between servers are fragmented into units of a
specific size to ease transmission of the data over routers and small-packet
networks, such as Ethernet networks. When the inet subsystem attribute
pmtu_enabled is enabled (set to 1, which is the default behavior), the
system determines the largest common path maximum transmission unit
(PMTU) value between servers and uses it as the unit size. The system
also creates a routing table entry for each client network that attempts to
connect to the server.

Performance Benefit and Tradeoff

If a server handles traffic among many remote clients, disabling the use of
PMTU discovery can decrease the size of the kernel routing table, which
improves server efficiency. However, on a server that handles local traffic
and some remote traffic, disabling the use of PMTU discovery can degrade
bandwidth.

You can modify the pmtu_enabled attribute without rebooting the system.

When to Tune

Under some circumstances, such as the presence on the path of a
fragmenting FDDI-to-Ethernet bridge, the use of PMTU discovery can create
a situation in which packets larger than a certain size disappear and makes

10–10 Managing Network Performance

some data transfers impossible. In this case, disable the use of PMTU
discovery. Also consider disabling the use of PMTU discovery if you have a
server that handles traffic among many remote clients, or if you have an
Internet server that has poor performance and the routing table increases
to more than 1000 entries.

10.2.7 Increasing the Number of IP Input Queues

The inet subsystem attribute ipqs specifies the number of IP input queues.

Performance Benefit and Tradeoff

Increasing the number of IP input queues can reduce lock contention at the
queue by increasing the number of queues and distributing the load.

You cannot modify the ipqs attribute without rebooting the system.

When to Tune

Increase the number of IP input queues if you have an SMP system that
is an Internet server.

Recommended Values

For SMP systems that are Internet servers, increase the value of the ipqs
attribute to 16. The maximum value is 64.

We recommend that you make the value of the ipqs attribute the same as
the value of the inet subsystem attribute tcbhashnum. See Section 10.2.2
for more information.

10.2.8 Enabling mbuf Cluster Compression

The socket subsystem attribute sbcompress_threshold controls whether
mbuf clusters are compressed at the socket layer. By default, mbuf clusters
are not compressed (the sbcompress_threshold is set to 0).

Performance Benefit

Compressing mbuf clusters can prevent proxy servers from consuming all
the available mbuf clusters.

You can modify the sbcompress_threshold attribute without rebooting
the system.

When to Tune

You may want to enable mbuf cluster compression if you have a proxy server.
These systems are more likely to consume all the available mbuf clusters if
they are using FDDI instead of Ethernet.

Managing Network Performance 10–11

To determine the memory that is being used for mbuf clusters, use the
netstat -m command. The following example is from a firewall server with
128 MB of memory that does not have mbuf cluster compression enabled:

netstat -m
2521 Kbytes for small data mbufs (peak usage 9462 Kbytes)
78262 Kbytes for mbuf clusters (peak usage 97924 Kbytes)
8730 Kbytes for sockets (peak usage 14120 Kbytes)
9202 Kbytes for protocol control blocks (peak usage 14551

2 Kbytes for routing table (peak usage 2 Kbytes)
2 Kbytes for socket names (peak usage 4 Kbytes)
4 Kbytes for packet headers (peak usage 32 Kbytes)

39773 requests for mbufs denied
0 calls to protocol drain routines

98727 Kbytes allocated to network

The previous example shows that 39773 requests for memory were denied.
This indicates a problem because this value should be 0. The example also
shows that 78 MB of memory has been assigned to mbuf clusters, and that
98 MB of memory is being consumed by the network subsystem.

Recommended Values

To enable mbuf cluster compression, modify the default value of the socket
subsystem attribute sbcompress_threshold. Packets will be copied into
the existing mbuf clusters if the packet size is less than this value. For
proxy servers, specify a value of 600.

If you increase the value of the sbcompress_threshold attribute to 600,
the memory allocated to the network subsystem immediately decreases to
18 MB, because compression at the kernel socket buffer interface results
in a more efficient use of memory.

10.2.9 Enabling TCP Keepalive Functionality

Keepalive functionality enables the periodic transmission of messages on a
connected socket to keep connections active. Sockets that do not exit cleanly
are cleaned up when the keepalive interval expires. If keepalive is not
enabled, those sockets will continue to exist until you reboot the system.

Applications enable keepalive for sockets by setting the setsockopt
function’s SO_KEEPALIVE option. To override programs that do not set
keepalive on their own, or if you do not have access to the application
sources, use the inet subsystem attribute tcp_keepalive_default to
enable keepalive functionality.

Performance Benefit

Keepalive functionality cleans up sockets that do not exit cleanly when the
keepalive interval expires.

10–12 Managing Network Performance

You can modify the tcp_keepalive_default attribute without rebooting
the system. However, sockets that already exist will continue to use old
behavior, until the applications are restarted.

When to Tune

Enable keepalive if you require this functionality, and you do not have access
to the source code.

Recommended Values

To override programs that do not set keepalive on their own, or if you do not
have access to application source code, set the inet subsystem attribute
tcp_keepalive_default to 1 to enable keepalive for all sockets.

If you enable keepalive, you can also configure the following inet subsystem
attributes for sockets:

• The tcp_keepidle attribute specifies the amount of idle time before
sending a keepalive probe (specified in 0.5-second units). The default
interval is 2 hours.

• The tcp_keepintvl attribute specifies the amount of time (in
0.5-second units) between the retransmission of keepalive probes. The
default interval is 75 seconds.

• The tcp_keepcnt attribute specifies the maximum number of keepalive
probes that are sent before the connection is dropped. The default is 8
probes.

• The tcp_keepinit attribute specifies the maximum amount of time
before an initial connection attempt times out in 0.5 second units. The
default is 75 seconds.

Applications can modify the value of these attributes on a per-socket basis
by using the setsockopt() call.

10.2.10 Improving the Lookup Rate for IP Addresses

The inet subsystem attribute inifaddr_hsize specifies the number of
hash buckets in the kernel interface alias table (in_ifaddr).

If a system is used as a server for many different server domain names, each
of which are bound to a unique IP address, the code that matches arriving
packets to the right server address uses the hash table to speed lookup
operations for the IP addresses.

Performance Benefit and Tradeoff

Increasing the number of hash buckets in the table can improve performance
on systems that use large numbers of aliases.

Managing Network Performance 10–13

You can modify the inifaddr_hsize attribute without rebooting the
system.

When to Tune

Increase the number of hash buckets in the kernel interface alias table if
your system uses large numbers of aliases.

Recommended Values

The default value of the inet subsystem attribute inifaddr_hsize is 32;
the maximum value is 512.

For the best performance, the value of the inifaddr_hsize attribute is
always rounded down to the nearest power of 2. If you are using more than
500 interface IP aliases, specify the maximum value of 512. If you are using
less than 250 aliases, use the default value of 32.

10.2.11 Decreasing the TCP Partial-Connection Timeout Limit

The inet subsystem attribute tcp_keepinit specifies the amount of time
that a partially established TCP connection remains on the socket listen
queue before it times out. Partial connections consume listen queue slots
and fill the queue with connections in the SYN_RCVD state.

Performance Benefit and Tradeoff

You can make partial connections time out sooner by decreasing the value of
the tcp_keepinit attribute.

You can modify the tcp_keepinit attribute without rebooting the system.

When to Tune

You do not need to modify the TCP partial-connection timeout limit, unless
the value of the somaxconn_drops attribute often increases. If this occurs,
you may want to decrease the value of the tcp_keepinit attribute.

Recommended Values

The value of the tcp_keepinit attribute is in units of 0.5 seconds. The
default value is 150 units (75 seconds). If the value of the sominconn
attribute is 65535, use the default value of the tcp_keepinit attribute.

Do not set the value of the tcp_keepinit attribute too low, because you
may prematurely break connections associated with clients on network
paths that are slow or network paths that lose many packets. Do not set the
value to less than 20 units (10 seconds).

10–14 Managing Network Performance

10.2.12 Decreasing the TCP Connection Context Timeout Limit

The TCP protocol includes a concept known as the Maximum Segment
Lifetime (MSL). When a TCP connection enters the TIME_WAIT state, it
must remain in this state for twice the value of the MSL, or else undetected
data errors on future connections can occur. The inet subsystem attribute
tcp_msl determines the maximum lifetime of a TCP segment and the
timeout value for the TIME_WAIT state.

Performance Benefit and Tradeoff

You can decrease the value of the tcp_msl attribute to make the TCP
connection context time out more quickly at the end of a connection.
However, this will increase the chance of data corruption.

You can modify the tcp_msl attribute without rebooting the system.

When to Tune

Usually, you do not have to modify the TCP connection context timeout limit.

Recommended Values

The value of the tcp_msl attribute is set in units of 0.5 seconds. The
default value is 60 units (30 seconds), which means that the TCP connection
remains in the TIME_WAIT state for 60 seconds (or twice the value of the
MSL). In some situations, the default timeout value for the TIME_WAIT state
(60 seconds) is too large, so reducing the value of the tcp_msl attribute frees
connection resources sooner than the default behavior.

Do not reduce the value of the tcp_msl attribute unless you fully
understand the design and behavior of your network and the TCP protocol.
We recommend that you use the default value; otherwise, there is the
potential for data corruption.

10.2.13 Decreasing the TCP Retransmission Rate

The inet subsystem attribute tcp_rexmit_interval_min specifies the
minimum amount of time before the first TCP retransmission.

Performance Benefit and Tradeoff

You can increase the value of the tcp_rexmit_interval_min attribute
to slow the rate of TCP retransmissions, which decreases congestion and
improves performance.

You can modify the tcp_rexmit_interval_min attribute without
rebooting the system.

When to Tune

Managing Network Performance 10–15

Not every connection needs a long retransmission time. Usually, the
default value is adequate. However, for some wide area networks (WANs),
the default retransmission interval may be too small, causing premature
retransmission timeouts. This may lead to duplicate transmission of packets
and the erroneous invocation of the TCP congestion-control algorithms.

To check for retransmissions, use the netstat -p tcp command and
examine the output for data packets retransmitted. See Section 2.4.5
for more information about the netstat command.

Recommended Values

The tcp_rexmit_interval_min attribute is specified in units of 0.5
seconds. The default value is 2 units (1 second).

Do not specify a value that is less than 1 unit. Do not change the attribute
unless you fully understand TCP algorithms.

10.2.14 Disabling Delaying the Acknowledgment of TCP Data

By default, the system delays acknowledging TCP data. The inet
subsystem attribute tcpnodelack determines whether the system delays
acknowledging TCP data.

Performance Benefit and Tradeoff

Disabling delaying of TCP data may improve performance. However, this
may adversely impact network bandwidth.

You can modify the tcpnodelack attribute without rebooting the system.

When to Tune

Usually, the default value of the tcpnodelack attribute is adequate.
However, for some connections (for example, loopback), the delay can degrade
performance. Use the tcpdump command to check for excessive delays.

Recommended Values

The default value of the tcpnodelack is 0. To disable the TCP
acknowledgment delay, set the value of the tcpnodelack attribute to 1.

10.2.15 Increasing the Maximum TCP Segment Size

The inet subsystem attribute tcp_mssdflt specifies the TCP maximum
segment size.

Performance Benefit and Tradeoff

Increasing the maximum TCP segment size allows sending more data per
socket, but may cause fragmentation at the router boundary.

10–16 Managing Network Performance

You can modify the tcp_mssdflt attribute without rebooting the system.

When to Tune

Usually you do not need to modify the maximum TCP segment size.

Recommended Values

The default value of the tcp_mssdflt attribute is 536. You can increase
the value to 1460.

10.2.16 Increasing the Transmit and Receive Buffers for a UDP Socket

The inet subsystem attribute udp_sendspace specifies the default
transmit buffer size for an Internet User Datagram Protocol (UDP) socket.
The inet subsystem attribute udp_recvspace specifies the default receive
buffer size for a UDP socket.

Performance Benefit and Tradeoff

Increasing the UDP transmit and receive socket buffers allows you to buffer
more UDP packets per socket. However, increasing the values uses more
memory when the buffers are being used by an application (sending or
receiving data).

______________________ Note _______________________

UDP attributes do not affect network file system (NFS)
performance.

You can modify the udp_sendspace and udp_recvspace attributes
without rebooting the system. However, you must restart applications to use
the new UDP socket buffer values.

When to Tune

Use the netstat -p udp command to check for full sockets. If the output
shows many full sockets, increase the value of the udp_recvspace
attribute.

Recommended Values

The default value of the udp_sendspace is 9 KB (9216 bytes). The default
value of the udp_recvspace is 40 KB (42240 bytes). You can increase the
values of these attributes to 64 KB.

Managing Network Performance 10–17

10.2.17 Increasing the Maximum Size of a Socket Buffer

The socket subsystem attribute sb_max specifies the maximum size of
a socket buffer.

Performance Benefit and Tradeoff

Increasing the maximum size of a socket buffer may improve performance if
your applications can benefit from a large buffer size.

You can modify the sb_max attribute without rebooting the system.

When to Tune

If you require a large socket buffer, increase the maximum socket buffer size.

Recommended Values

The default value of the sb_max attribute is 128 KB. Increase this value
before you increase the size of the transmit and receive socket buffers.

10.2.18 Preventing Dropped Input Packets

If the IP input queue overflows under a heavy network load, input packets
may be dropped.

The inet subsystem attribute ipqmaxlen specifies the maximum length (in
bytes) of the IP input queue (ipintrq) before input packets are dropped.
The ifqmaxlen attribute specifies the number of output packets that can be
queued to a network adapter before packets are dropped.

Performance Benefit and Tradeoff

Increasing the IP input queue can prevent packets from being dropped.

You can modify the ipqmaxlen and ifqmaxlen attributes without rebooting
the system.

When to Tune

If your system drops packets, you may want to increase the values of the
ipqmaxlen and ifqmaxlen attributes. To check for input dropped packets,
examine the ipintrq kernel structure by using dbx. If the ifq_drops field
is not 0, the system is dropping input packets. For example:
dbx −k /vmunix
(dbx)print ipintrq
struct {

ifq_head = (nil)
ifq_tail = (nil)
ifq_len = 0
ifq_maxlen = 512
ifq_drops = 128

.

.

10–18 Managing Network Performance

.

Use the netstat -id command to monitor dropped output packets.
Examine the output for a nonzero value in the Drop column for an interface.
The following example shows 579 dropped output packets on the tu1
network interface:

netstat -id

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll Drop

fta0 4352 link 08:00:2b:b1:26:59 41586 0 39450 0 0 0
fta0 4352 DLI none 41586 0 39450 0 0 0
fta0 4352 10 fratbert 41586 0 39450 0 0 0
tu1 1500 link 00:00:f8:23:11:c8 2135983 0 163454 13 3376 579
tu1 1500 DLI none 2135983 0 163454 13 3376 579
tu1 1500 red-net ratbert 2135983 0 163454 13 3376 579
.
.
.

In addition, you can use the netstat -p ip, and check for a nonzero
number in the lost packets due to resource problems field or no
memory or interface queue was full field. For example:

netstat -p ip
ip:

259201001 total packets received
0 bad header checksums
0 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length
25794050 fragments received
0 fragments dropped (duplicate or out of space)
802 fragments dropped after timeout
0 packets forwarded
67381376 packets not forwardable

67381376 link-level broadcasts
0 packets denied access
0 redirects sent
0 packets with unknown or unsupported protocol
170988694 packets consumed here
160039654 total packets generated here
0 lost packets due to resource problems
4964271 total packets reassembled ok
2678389 output packets fragmented ok
14229303 output fragments created
0 packets with special flags set

Recommended Values

The default and minimum values for the ipqmaxlen and ifqmaxlen
attributes are 1024; the maximum values are 65535. For most
configurations, the default values are adequate. Only increase the values
if you drop packets.

Managing Network Performance 10–19

If your system drops packets, increase the values of the ipqmaxlen and
ifqmaxlen attributes until you no longer drop packets. For example, you
can increase the default values to 2000.

10–20 Managing Network Performance

11
Managing File System Performance

To tune for better file-system performance, you must understand how your
applications and users perform disk I/O, as described in Section 1.8, and how
the file system you are using shares memory with processes, as described
in Chapter 12. Using this information, you might improve file-system
performance by changing the value of the kernel subsystem attributes
described in this chapter.

This chapter describes how to tune:

• Caches used by file systems (Section 11.1)

• The Advanced File System (AdvFS) (Section 11.2)

• The UNIX file system (UFS) (Section 11.3)

• Network file system (NFS) (Section 11.4 and Chapter 5)

11.1 Tuning Caches

The kernel caches (temporarily stores) in memory recently accessed data.
Caching data is effective because data is frequently reused and it is much
faster to retrieve data from memory than from disk. When the kernel
requires data, it checks if the data was cached. If the data was cached, it
is returned immediately. If the data was not cached, it is retrieved from
disk and cached. File-system performance is improved if data is cached
and later reused.

Data found in a cache is called a cache hit, and the effectiveness of cached
data is measured by a cache hit rate. Data that was not found in a cache is
called a cache miss.

Cached data can be information about a file, user or application data, or
metadata, which is data that describes an object (for example, a file). The
following list identifies the types of data that are cached:

• A file name and its corresponding vnode is cached in the namei cache
(Section 11.1.2).

• UFS user and application data and AdvFS user and application data and
metadata are cached in the Unified Buffer Cache (UBC) (Section 11.1.3).

• UFS file metadata is cached in the metadata buffer cache (Section 11.1.4).

Managing File System Performance 11–1

• AdvFS open file information is cached in access structures
(Section 11.1.5).

11.1.1 Monitoring Cache Statistics

Table 11–1 describes the commands you can use to display and monitor
cache information.

Table 11–1: Tools to Display Cache Information
Tools Description Reference

(dbx) print
processor number

Displays namei cache
statistics.

Section 11.1.2

vmstat Displays virtual memory
statistics.

Section 11.1.3 and
Section 12.3.1

(dbx) print
bio_stats

Displays metadata buffer
cache statistics.

Section 11.3.2.3

11.1.2 Tuning the namei Cache

The virtual file system (VFS) presents to applications a uniform kernel
interface that is abstracted from the subordinate file system layer. As a
result, file access across different types of file systems is transparent to
the user.

The VFS uses a structure called a vnode to store information about each
open file in a mounted file system. If an application makes a read or write
request on a file, VFS uses the vnode information to convert the request and
direct it to the appropriate file system. For example, if an application makes
a read() system call request on a file, VFS uses the vnode information to
convert the system call to the appropriate type for the file system containing
the file: ufs_read() for UFS, advfs_read() for AdvFS, or nfs_read()
call if the file is in a file system mounted through NFS, then directs the
request to the appropriate file system.

The VFS caches a recently accessed file name and its corresponding vnode in
the namei cache. File-system performance is improved if a file is reused
and its name and corresponding vnode are in the namei cache.

The following list describes the vfs subsystem attributes that relate to the
namei cache:

Related Attributes

• vnode_deallocation_enable — Specifies whether or not to
dynamically allocate vnode according to system demands.

Value: 0 to 1

11–2 Managing File System Performance

Default Value: 1 (enabled)

Disabling causes the operating system to use a static vnode pool. For the
best performance, do not disable dynamic vnode allocation.

• name_cache_hash_size — Specifies the size, in slots, of the hash chain
table for the namei cache.

Default Value: 2 * (148 + 10 * maxusers) * 11 / 10 /15

• vnode_age — Specifies the amount of time, in seconds, before a free
vnode can be recycled.

Value: 0 to 2,147,483,647
Default Value: 120 seconds

• namei_cache_valid_time — Specifies the amount of time, in seconds,
that a namei cache entry can remain in the cache before it is discarded.

Value: 0 to 2,147,483,647
Default Value: 1200 (seconds) for 32-MB or larger systems; 30
(seconds) for 24-MB systems

______________________ Note _______________________

If you use increase the values of namei cache-related attributes,
consider increasing file system attributes that cache file and
directory information. If you use AdvFS, see Section 11.1.5 for
more information. If you use UFS, see Section 11.1.4 for more
information.

When to Tune

You can check namei cache statistics to see if you should change the values
of namei cache related attributes. To check namei cache statistics, enter
the dbx print command and specify a processor number to examine the
nchstats data structure. For example:

/usr/ucb/dbx −k /vmunix /dev/mem
(dbx) print processor_ptr[0].nchstats

Information similar to the following is displayed:

struct {
ncs_goodhits = 18984
ncs_neghits = 358
ncs_badhits = 113
ncs_falsehits = 23
ncs_miss = 699
ncs_long = 21

Managing File System Performance 11–3

ncs_badtimehits = 33
ncs_collisions = 2
ncs_unequaldups = 0
ncs_newentry = 697
ncs_newnegentry = 419
ncs_gnn_hit = 1653
ncs_gnn_miss = 12
ncs_gnn_badhits = 12
ncs_gnn_collision = 4
ncs_pad = {

[0] 0
}

}

Table 11–2 describes when you might change the values of namei cache
related attributes based on the dbx print output:

Table 11–2: When to Change the Values of the Namei Cache Related
Attributes
If Increase

The value of ncs_goodhits +
ncs_neghits / ncs_goodhits
+ ncs_neghits + ncs_miss +
ncs_falsehits is less than 80 percent

The value of either the maxusers at-
tribute or the name_cache_hash_size
attribute

The value of the ncs_badtimehits
is more than 0.1 percent of the
ncs_goodhits

The value of the
namei_cache_valid_time at-
tribute and the vnode_age attribute

You cannot modify the values of the name_cache_hash_size
attribute, the namei_cache_valid_time attribute, or the
vnode_deallocation_enable attribute without rebooting the system.
You can modify the value of the vnode_age attribute without rebooting
the system. See Chapter 3 for information about modifying subsystem
attributes.

11.1.3 Tuning the UBC

The Unified Buffer Cache (UBC) shares with processes the memory that
is not wired to cache UFS user and application data and AdvFS user and
application data and metadata. File-system performance is improved if the
data and metadata is reused and in the UBC.

Related Attributes

The following list describes the vm subsystem attributes that relate to the
UBC:

11–4 Managing File System Performance

• vm_ubcdirtypercent — Specifies the percentage of pages that must be
dirty (modified) before the UBC starts writing them to disk.

Value: 0 to 100
Default Value: 10 percent

• ubc_maxdirtywrites — Specifies the number of I/O operations
(per second) that the vm subsystem performs when the number
of dirty (modified) pages in the UBC exceeds the value of the
vm_ubcdirtypercent attribute.

Value: 0 to 2,147,483,647
Default Value: 5 (operations per second)

• ubc_maxpercent — Specifies the maximum percentage of physical
memory that the UBC can use at one time.

Value: 0 to 100
Default Value: 100 percent

• ubc_borrowpercent — Specifies the percentage of memory above
which the UBC is only borrowing memory from the vm subsystem.
Paging does not occur until the UBC has returned all its borrowed pages.

Value: 0 to 100
Default Value: 20 percent
Increasing this value might degrade system response time when a
low-memory condition occurs (for example, a large process working
set).

• ubc_minpercent — Specifies the minimum percentage of memory that
the UBC can use. The remaining memory is shared with processes.

Value: 0 to 100
Default Value: 20 percent
Increasing the value prevents large programs from completely
consuming the memory that the UBC can use.
For I/O servers, consider increasing the value to ensure that enough
memory is available for the UBC.

• vm_ubcpagesteal — Specifies the minimum number of pages to be
available for file expansion. When the number of available pages falls
below this number, the UBC steals additional pages to anticipate the
file’s expansion demands.

Value: 0 to 2,147,483,647
Default Value: 24 (file pages)

Managing File System Performance 11–5

• vm_ubcseqpercent — Specifies the maximum amount of memory
allocated to the UBC that can be used to cache a single

Value: 0 to 100
Default Value: 10 percent of memory allocated to the UBC
Consider increasing the value if applications write large files.

• vm_ubcseqstartpercent — Specifies a threshold value that
determines when the UBC starts to recognize sequential file access and
steal the UBC LRU pages for a file to satisfy its demand for pages. This
value is the size of the UBC in terms of its percentage of physical memory.

Value: 0 to 100
Default Value: 50 percent
Consider increasing the value if applications write large files.

______________________ Note _______________________

If the values of the ubc_maxpercent and ubc_minpercent
attributes are close, you may degrade file system performance.

When to Tune

An insufficient amount of memory allocated to the UBC can impair file
system performance. Because the UBC and processes share memory,
changing the values of UBC-related attributes might cause the system
to page. You can use the vmstat command to display virtual memory
statistics that will help you to determine if you need to change values of
UBC-related attributes. Table 11–3 describes when you might change the
values UBC-related attributes based on the vmstat output:

Table 11–3: When to Change the Values of the UBC-Related Attributes
If vmstat Output Displays Excessive: Action:

Paging but few or no page outs Increase the value of the ubc_borrow-
percent attribute.

Paging and swapping Decrease the ubc_maxpercent attribute.

11–6 Managing File System Performance

Table 11–3: When to Change the Values of the UBC-Related Attributes
(cont.)

If vmstat Output Displays Excessive: Action:

Paging Force the system to reuse pages in
the UBC instead of from the free
list by making the value of the
ubc_maxpercent attribute greater than
the value of the vm_ubseqstartpercent
attribute, which it is by default, and that
the value of the vm_ubcseqpercent
attribute is greater than a referenced file.

Page outs Increase the value of the ubc_min-
percent attribute.

See Section 12.3.1 for information on the vmstat command. See
Section 12.1.2.2 for information about UBC memory allocation.

You can modify the value of any of the UBC parameters described in this
section without rebooting the system. See Chapter 3 for information about
modifying subsystem attributes.

______________________ Note _______________________

The performance of an application that generates a lot of random
I/O is not improved by a large UBC, because the next access
location for random I/O cannot be predetermined.

11.1.4 Tuning the Metadata Buffer Cache

At boot time, the kernel wires a percentage of memory for the metadata
buffer cache. UFS file metadata, such as superblocks, inodes, indirect blocks,
directory blocks, and cylinder group summaries are cached in the metadata
buffer cache. File-system performance is improved if the metadata is reused
and in the metadata buffer cache.

Related Attributes

The following list describes the vfs subsystem attributes that relate to the
metadata buffer cache:

• bufcache — Specifies the size, as a percentage of memory, that the
kernel wires for the metadata buffer cache.

Value: 0 to 50
Default value: 3 percent for 32-MB or larger systems and 2 percent
for 24-MB systems

Managing File System Performance 11–7

• buffer_hash_size — Specifies the size, in slots, of the hash chain
table for the metadata buffer cache.

Value: 0 to 524,287
Default value: 2048 (slots)
Increasing this value distributes the buffers to make the average
chain lengths shorter, which improves UFS performance, but will
reduce the amount of memory available to processes and the UBC.

You cannot modify the values of the buffer_hash_size attribute or
the bufcache attribute without rebooting the system. See Chapter 3 for
information about modifying kernel subsystem attributes.

When to Tune

Consider increasing the size of the bufcache attribute if you have a high
cache miss rate (low hit rate).

To determine if you have a high cache miss rate, use the dbx print
command to display the bio_stats data structure. If the miss rate (block
misses divided by the sum of the block misses and block hits) is more than
3 percent, consider increasing the value of the bufcache attribute. See
Section 11.3.2.3 for more information on displaying the bio_stats data
structure.

Note that increasing the value of the bufcache attribute will reduce the
amount of memory available to processes and the UBC.

11.1.5 Tuning AdvFS Access Structures

At boot time, the system reserves a portion of the physical memory that
is not wired by the kernel for AdvFS access structures. AdvFS caches
information about open files and information about files that were opened
but are now closed in AdvFS access structures. File-system performance is
improved if the file information is reused and in an access structure.

AdvFS access structures are dynamically allocated and deallocated according
to the kernel configuration and system demands.

Related Attribute

• AdvfsAccessMaxPercent — specifies, as a percentage, the maximum
amount of pageable memory that can be allocated for AdvFS access
structures.

Value: 5 to 95
Default value: 25 percent

11–8 Managing File System Performance

You can modify the value of the AdvfsAccessMaxPercent attribute
without rebooting the system. See Chapter 3 for information about
modifying kernel subsystem attributes.

When to Tune

If users or applications reuse AdvFS files (for example, a proxy server),
consider increasing the value of the AdvfsAccessMaxPercent attribute to
allocate more memory for AdvFS access structures. Note that increasing
the value of the AdvfsAccessMaxPercent attribute reduces the amount
of memory available to processes and might cause excessive paging and
swapping. You can use the vmstat command to display virtual memory
statistics that will help you to determine excessive paging and swapping.
See Section 12.3.1 for information on the vmstat command

Consider decreasing the amount of memory reserved for AdvFS access
structures if:

• You do not use AdvFS.

• Your workload does not frequently open, close, and reopen the same files.

• You have a large-memory system (because the number of open files does
not scale with the size of system memory as efficiently as UBC memory
usage and process memory usage).

11.2 Tuning AdvFS

This section describes how to tune Advanced File System (AdvFS) queues,
AdvFS configuration guidelines, and commands that you can use to display
AdvFS information.

See the AdvFS Administration manual for information about AdvFS features
and setting up and managing AdvFS.

11.2.1 AdvFS Configuration Guidelines

The amount of I/O contention on the volumes in a file domain is the most
critical factor for fileset performance. This can occur on large, very busy file
domains. To help you determine how to set up filesets, first identify:

• Frequently accessed data

• Infrequently accessed data

• Specific types of data (for example, temporary data or database data)

• Data with specific access patterns (for example, create, remove, read,
or write)

Then, use the previous information and the following guidelines to configure
filesets and file domains:

Managing File System Performance 11–9

• Configure filesets that contain similar types of files in the same file
domain to reduce disk fragmentation and improve performance. For
example, do not place small temporary files, such as the output from
cron and from news, mail, and Web cache servers, in the same file
domain as a large database file.

• For applications that perform many file create or remove operations,
configure multiple filesets and distribute files across the filesets. This
reduces contention on individual directories, the root tag directory, quota
files, and the frag file.

• Configure filesets used by applications with different I/O access patterns
(for example, create, remove, read, or write patterns) in the same file
domain. This might help to balance the I/O load.

• To reduce I/O contention in a multivolume file domain with more than
one fileset, configure multiple domains and distribute the filesets across
the domains. This enables each volume and domain transaction log to
be used by fewer filesets.

• Filesets with a very large number of small files can affect vdump and
vrestore commands at times. Using multiple filesets enables the vdump
command to be run simultaneously on each fileset, and decreases the
amount of time needed to recover filesets with the vrestore command.

Table 11–4 lists additional AdvFS configuration guidelines and performance
benefits and tradeoffs. See the AdvFS Administration manual for more
information about AdvFS.

Table 11–4: AdvFS Configuration Guidelines
Benefit Guideline Tradeoff

Data loss protection Use LSM or RAID to
store data using RAID1
(mirror data) or RAID5
(Section 11.2.1.1)

Requires LSM or RAID

Data loss protection Force synchronous writes
or enable atomic write
data logging on a file
(Section 11.2.1.2)

Might degrade file system
performance

Improve performance for
applications that read or
write data only once

Enable direct I/O
(Section 11.2.1.3)

Degrades performance
of applications that
repeatedly access the
same data

Improve performance Use AdvFS to distribute
files in a file domain
(Section 11.2.1.4)

None

11–10 Managing File System Performance

Table 11–4: AdvFS Configuration Guidelines (cont.)

Benefit Guideline Tradeoff

Improve performance Stripe data (Sec-
tion 11.2.1.5)

None if using AdvFS or
requires LSM or RAID

Improve performance Defragment file domains
(Section 11.2.1.6)

None

Improve performance Decrease the I/O transfer
size (Section 11.2.1.7)

None

Improves performance Move the transaction log
to a fast or uncongested
disk (Section 11.2.1.8)

Might require an
additional disk

The following sections describe these guidelines in more detail.

11.2.1.1 Storing Data Using RAID1 or RAID5

You can use LSM or hardware RAID to implement a RAID1 or RAID5 data
storage configuration.

In a RAID1 configuration, LSM or hardware RAID stores and maintain
mirrors (copies) of file domain or transaction log data on different disks. If a
disk fails, LSM or hardware RAID uses a mirror to make the data available.

In a RAID5 configuration, LSM or hardware RAID stores parity information
and data. If a disk fails, LSM or hardware RAID use the parity information
and data on the remaining disks to reconstruct the missing data.

See the Logical Storage Manager manual for more information about LSM.
See your storage hardware documentation for more information about
hardware RAID.

11.2.1.2 Forcing a Synchronous Write Request or Enabling Persistent Atomic
Write Data Logging

AdvFS writes data to disk in 8-KB units. By default, AdvFS asynchronous
write requests are cached in the UBC, and the write system call returns a
success value. The data is written to disk at a later time (asynchronously).
AdvFS does not guarantee that all or part of the data will actually be written
to disk if a crash occurs during or immediately after the write. For example,
if the system crashes during a write that consists of two 8-KB units of data,
only a portion (less than 16 KB) of the total write might have succeeded.
This can result in partial data writes and inconsistent data.

You can configure AdvFS to force the write request for a specified file to be
synchronous to ensure that data is successfully written to disk before the
write system call returns a success value.

Managing File System Performance 11–11

Enabling persistent atomic write data logging for a specified file writes the
data to the transaction log file before it is written to disk. If a system crash
occurs during or immediately after the write system call, the data in the log
file is used to reconstruct the write system call upon recovery.

You cannot enable both forced synchronous writes and persistent atomic
write data logging on a file. However, you can enable atomic write data
logging on a file and also open the file with an O_SYNC option. This ensures
that the write is synchronous, but also prevents partial writes if a crash
occurs before the write system call returns.

To force synchronous write requests, enter:

chfile -l on filename

A file that has persistent atomic write data logging enabled cannot be
memory mapped by using the mmap system call, and it cannot have direct
I/O enabled (see Section 11.2.1.3). To enable persistent atomic write data
logging, enter:

chfile -L on filename

A file that has persistent atomic write data logging will only be atomic if the
writes are 8192 bytes or less. If the writes are greater than 8192 bytes, they
are written in segments that are at most 8192 bytes in length with each
segement an atomic-write.

To enable atomic-write data logging on AdvFS files that are NFS mounted,
ensure that:

• The NFS property list daemon, proplistd, is running on the NFS
server and that the fileset is mounted on the client by using the mount
command and the proplist option.

• The offset into the file is on an 8-KB page boundary, because NFS
performs I/O on 8-KB page boundaries. In this case, only 8192 byte
segment that start on 8–KB page boundaries can be automatically
written.

See chfile(8) and the AdvFS Administration manual for more information.

11.2.1.3 Enabling Direct I/O

You can enable direct I/O to significantly improve disk I/O throughput for
applications that do not frequently reuse previously accessed data. The
following lists considerations if you enable direct I/O:

• Data is not cached in the UBC and reads and writes are synchronous.
You can use the asynchronous I/O (AIO) functions (aio_read and
aio_write) to enable an application to achieve an asynchronous-like

11–12 Managing File System Performance

behavior by issuing one or more synchronous direct I/O requests without
waiting for their completion.

• Although direct I/O supports I/O requests of any byte size, the best
performance occurs when the requested byte transfer is aligned on a
disk sector boundary and is an even multiple of the underlying disk
sector size.

You cannot enable direct I/O for a file if it is already opened for data
logging or if it is memory mapped. Use the fcntl system call with the
F_GETCACHEPOLICY argument to determine if an open file has direct I/O
enabled.

To enable direct I/O for a specific file, use the open system call and set the
O_DIRECTIO file access flag. A file remains opened for direct I/O until all
users close the file.

See fcntl(2), open(2), the AdvFS Administration manual, and the
Programmer’s Guide for more information.

11.2.1.4 Using AdvFS to Distribute Files

If the files in a multivolume domain are not evenly distributed, performance
might be degraded. You can distribute space evenly across volumes in a
multivolume file domain to balance the percentage of used space among
volumes in a domain. Files are moved from one volume to another until
the percentage of used space on each volume in the domain is as equal as
possible.

To determine if you need to balance files, enter:

showfdmn file_domain_name

Information similar to the following is displayed:

Id Date Created LogPgs Version Domain Name
3437d34d.000ca710 Sun Oct 5 10:50:05 2001 512 3 usr_domain
Vol 512-Blks Free % Used Cmode Rblks Wblks Vol Name
1L 1488716 549232 63% on 128 128 /dev/disk/dsk0g
2 262144 262000 0% on 128 128 /dev/disk/dsk4a

--------- ------- ------
1750860 811232 54%

The % Used field shows the percentage of volume space that is currently
allocated to files or metadata (the fileset data structure). In the previous
example, the usr_domain file domain is not balanced. Volume 1 has 63
percent used space while volume 2 has 0 percent used space (it was just
added).

To distribute the percentage of used space evenly across volumes in a
multivolume file domain, enter:

balance file_domain_name

Managing File System Performance 11–13

The balance command is transparent to users and applications, and does
not affect data availability or split files. Therefore, file domains with very
large files may not balance as evenly as file domains with smaller files
and you might need to manually move large files into the same volume in
a multivolume file domain.

To determine if you should move a file, enter:

showfile -x file_name

Information similar to the following is displayed:

Id Vol PgSz Pages XtntType Segs SegSz I/O Perf File
8.8002 1 16 11 simple ** ** async 18% src

extentMap: 1
pageOff pageCnt vol volBlock blockCnt

0 1 1 187296 16
1 1 1 187328 16
2 1 1 187264 16
3 1 1 187184 16
4 1 1 187216 16
5 1 1 187312 16
6 1 1 187280 16
7 1 1 187248 16
8 1 1 187344 16
9 1 1 187200 16

10 1 1 187232 16
extentCnt: 11

The file in the previous example is a good candidate to move to another
volume because it has 11 extents and an 18 percent performance efficiency
as shown in the Perf field. A high percentage indicates optimal efficiency.

To move a file to a different volume in the file domain, enter:

migrate [-p pageoffset] [-n pagecount] [-s volumeindex_from] \
[-d volumeindex_to] file_name

You can specify the volume from which a file is to be moved, or allow the
system to pick the best space in the file domain. You can move either an
entire file or specific pages to a different volume.

Note that using the balance utility after moving files might move files
to a different volume.

See showfdmn(8), migrate(8), and balance(8) for more information.

11.2.1.5 Striping Data

You can use AdvFS, LSM, or hardware RAID to stripe (distribute) data.
Striped data is data that is separated into units of equal size, then written to
two or more disks, creating a stripe of data. The data can be simultaneously
written if there are two or more units and the disks are on different SCSI
buses.

11–14 Managing File System Performance

Figure 11–1 shows how a write request of 384 KB of data is separated into
six 64-KB data units and written to three disks as two complete stripes.

Figure 11–1: Striping Data

ZK-1687U-AI

Private
Region

Private
Region

Plex
V1-1

Subdisk
dsk8-01

Subdisk
dsk9-01

Subdisk
dsk10-01

Volume
V1

Public
Region

Public
Region

Public
Region

Private
Region

dsk8 dsk9 dsk10

A
D
G

C
F
I

B
E
H

Use only one method to stripe data. In some specific cases, using multiple
striping methods can improve performance, but only if:

• Most of the I/O requests are large (greater than or equal to 1 MB)

• The data is striped over multiple RAID sets on different controllers

• The LSM or AdvFS stripe size is a multiple of the full hardware RAID
stripe size

See stripe(8) for more information about using AdvFS to stripe data. See
the Logical Storage Manager manual for more information about using
LSM to stripe data. See your storage hardware documentation for more
information about using hardware RAID to stripe data.

Managing File System Performance 11–15

11.2.1.6 Defragmenting a File Domain

An extent is a contiguous area of disk space that AdvFS allocates to a file.
Extents consist of one or more 8-KB pages. When storage is added to a file,
it is grouped in extents. If all data in a file is stored in contiguous blocks,
the file has one file extent. However, as files grow, contiguous blocks on the
disk may not be available to accommodate the new data, so the file must be
spread over discontiguous blocks and multiple file extents.

File I/O is most efficient when there are few extents. If a file consists of
many small extents, AdvFS requires more I/O processing to read or write
the file. Disk fragmentation can result in many extents and may degrade
read and write performance because many disk addresses must be examined
to access a file.

To display fragmentation information for a file domain, enter:

defragment -vn file_domain_name

Information similar to the following is displayed:

defragment: Gathering data for ’staff_dmn’
Current domain data:

Extents: 263675
Files w/ extents: 152693
Avg exts per file w/exts: 1.73
Aggregate I/O perf: 70%
Free space fragments: 85574

<100K <1M <10M >10M
Free space: 34% 45% 19% 2%
Fragments: 76197 8930 440 7

Ideally, you want few extents for each file.

Although the defragment command does not affect data availability
and is transparent to users and applications, it can be a time-consuming
process and requires disk space. Run the defragment command during low
file system activity as part of regular file system maintenance, or if you
experience problems because of excessive fragmentation.

There is little performance benefit from defragmenting a file domain that
contains files less than 8 KB, is used in a mail server, or is read-only.

You can also use the showfile command to check a file’s fragmentation.
See Section 11.2.2.4 and defragment(8) for more information.

11.2.1.7 Decreasing the I/O Transfer Size

AdvFS attempts to transfer data to and from the disk in sizes that are the
most efficient for the device driver. This value is provided by the device
driver and is called the preferred transfer size. AdvFS uses the preferred
transfer size to:

11–16 Managing File System Performance

• Consolidate contiguous, small I/O transfers into a larger, single I/O of the
preferred transfer size. This results in a fewer number of I/O requests,
which increases throughput.

• Prefetch, or read-ahead, as many subsequent pages for files being read
sequentially up to the preferred transfer size in anticipation that those
pages will eventually be read by the applicaton.

Generally, the I/O transfer size provided by the device driver is the most
efficient. However, in some cases you may want to reduce the AdvFS I/O
transfer size. For example, if your AdvFS fileset is using LSM volumes, the
preferred transfer size might be very high. This could cause the cache to be
unduly diluted by the buffers for the files being read. If this is suspected,
reducing the read transfer size may alleviate the problem.

For systems with impaired mmap page faulting or with limited memory,
limit the read transfer size to limit the amount of data that is prefetched;
however, this will limit I/O consolidation for all reads from this disk.

To display the I/O transfer sizes for a disk, enter:
chvol -l block_special_device_name domain

To modify the read I/O transfer size, enter:
chvol -r blocks block_special_device_name domain

To modify the write I/O transfer size, enter:
chvol -w blocks block_special_device_name domain

See chvol(8) for more information.

Each device driver has a minimum and maximum value for the I/O transfer
size. If you use an unsupported value, the device driver automatically limits
the value to either the largest or smallest I/O transfer size it supports. See
your device driver documentation for more information on supported I/O
transfer sizes.

11.2.1.8 Moving the Transaction Log

Place the AdvFS transaction log on a fast or uncongested disk and bus;
otherwise, performance might be degraded.

To display volume information, enter:
showfdmn file_domain_name

Information similar to the following is displayed:
Id Date Created LogPgs Domain Name

35ab99b6.000e65d2 Tue Jul 14 13:47:34 2002 512 staff_dmn

Vol 512-Blks Free % Used Cmode Rblks Wblks Vol Name
3L 262144 154512 41% on 256 256 /dev/rz13a

Managing File System Performance 11–17

4 786432 452656 42% on 256 256 /dev/rz13b
---------- ---------- ------

1048576 607168 42%

In the showfdmn command display, the letter L displays next to the volume
that contains the transaction log.

If the transaction log is located on a slow or busy disk, you can:

• Move the transaction log to a different disk.

Use the switchlog command to move the transaction log.

• Divide a large multivolume file domain into several smaller file domains.
This will distribute the transaction log I/O across multiple logs.

To divide a multivolume domain into several smaller domains, create
the smaller domains and then copy portions of the large domain into
the smaller domains. You can use the AdvFS vdump and vrestore
commands to allow the disks being used in the large domain to be used
in the construction of the several smaller domains.

See showfdmn(8), switchlog(8), vdump(8), and vrestore(8) for more
information.

11.2.2 Monitoring AdvFS Statistics

Table 11–5 describes the commands you can use to display AdvFS
information.

Table 11–5: Tools to Display AdvFS Information
Tool Description Reference

advfsstat Displays AdvFS
performance statistics.

Section 11.2.2.1

advscan Displays disks in a file
domain.

Section 11.2.2.2

showfdmn Displays information
about AdvFS file domans
and volumes.

Section 11.2.2.3

showfsets Displays AdvFS fileset
information for a file
domain.

Section 11.2.2.5

showfile Displays information about
files in an AdvFS fileset.

Section 11.2.2.4

The following sections describe these commands in more detail.

11–18 Managing File System Performance

11.2.2.1 Displaying AdvFS Performance Statistics

To display detailed information about a file domain, including use of the
UBC and namei cache, fileset vnode operations, locks, bitfile metadata table
(BMT) statistics, and volume I/O performance, use the advfsstat command.

The following example displays volume I/O queue statistics:

advfsstat -v 3 [-i number_of_seconds] file_domain

Information, in units of one disk block (512 bytes), similar to the following
is displayed:

rd wr rg arg wg awg blk ubcr flsh wlz sms rlz con dev
0 0 0 0 0 0 1M 0 10K 303K 51K 33K 33K 44K

You can use the -i option to display information at specific time intervals, in
seconds.

The previous example displays:

• rd (read) and wr (write) requests

Compare the number of read requests to the number of write requests.
Read requests are blocked until the read completes, but asynchronous
write requests will not block the calling thread, which increases the
throughput of multiple threads.

• rg and arg (consolidated reads) and wg and awg (consolidated writes)

The consolidated read and write values indicate the number of disparate
reads and writes that were consolidated into a single I/O to the device
driver. If the number of consolidated reads and writes decreases
compared to the number of reads and writes, AdvFS may not be
consolidating I/O.

• blk (blocking queue), ubcr (ubc request queue), flsh (flush queue), wlz
(wait queue), sms (smooth sync queue), rlz (ready queue), con (consol
queue), and dev (device queue). See Section 11.2.3 for information on
AdvFS I/O queues.

If you are experiencing poor performance, and the number of I/O requests
on the flsh, blk, or ubcr queues increases continually while the
number on the dev queue remains fairly constant, the application may
be I/O bound to this device. You might eliminate the problem by adding
more disks to the domain or by striping with LSM or hardware RAID.

To display the number of file creates, reads, and writes and other operations
for a specified domain or fileset, enter:

advfsstat [-i number_of_seconds] -f 2 file_domain file_set

Information similar to the following is displayed:

Managing File System Performance 11–19

lkup crt geta read writ fsnc dsnc rm mv rdir mkd rmd link
0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 10 0 0 0 0 2 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

24 8 51 0 9 0 0 3 0 0 4 0 0
1201 324 2985 0 601 0 0 300 0 0 0 0 0
1275 296 3225 0 655 0 0 281 0 0 0 0 0
1217 305 3014 0 596 0 0 317 0 0 0 0 0
1249 304 3166 0 643 0 0 292 0 0 0 0 0
1175 289 2985 0 601 0 0 299 0 0 0 0 0
779 148 1743 0 260 0 0 182 0 47 0 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

See advfsstat(8) for more information.

11.2.2.2 Displaying Disks in an AdvFS File Domain

Use the advscan command:

• To search all devices and LSM disk groups for AdvFS domains.

• To rebuild all or part of your /etc/fdmns directory if you deleted the
/etc/fdmns directory, a directory domain under /etc/fdmns, or links
from a domain directory under /etc/fdmns.

• If you moved devices in a way that has changed device numbers.

To display AdvFS volumes on devices or in an LSM disk group, enter:
advscan device | LSM_disk_group

Information similar to the following is displayed:
Scanning disks dsk0 dsk5
Found domains:
usr_domain

Domain Id 2e09be37.0002eb40
Created Thu Jun 26 09:54:15 2002
Domain volumes 2
/etc/fdmns links 2
Actual partitions found:

dsk0c
dsk5c

To re-create missing domains on a device, enter:
advscan -r device

Information similar to the following is displayed:
Scanning disks dsk6
Found domains: *unknown*

Domain Id 2f2421ba.0008c1c0
Created Mon Jan 20 13:38:02 2002
Domain volumes 1
/etc/fdmns links 0
Actual partitions found:

dsk6a*
unknown

Domain Id 2f535f8c.000b6860

11–20 Managing File System Performance

Created Tue Feb 25 09:38:20 2002
Domain volumes 1
/etc/fdmns links 0
Actual partitions found:

dsk6b*

Creating /etc/fdmns/domain_dsk6a/
linking dsk6a

Creating /etc/fdmns/domain_dsk6b/
linking dsk6b

See advscan(8) for more information.

11.2.2.3 Displaying AdvFS File Domains

To display information about a file domain, including the date created and
the size and location of the transaction log, and information about each
volume in the domain, including the size, the number of free blocks, the
maximum number of blocks read and written at one time, and the device
special file, enter:
showfdmn file_domain

Information similar to the following is displayed:
Id Date Created LogPgs Version Domain Name

34f0ce64.0004f2e0 Wed Mar 17 15:19:48 2002 512 4 root_domain

Vol 512-Blks Free % Used Cmode Rblks Wblks Vol Name
1L 262144 94896 64% on 256 256 /dev/disk/dsk0a

For multivolume domains, the showfdmn command also displays the total
volume size, the total number of free blocks, and the total percentage of
volume space currently allocated.

See showfdmn(8) for more information about the output of the command.

11.2.2.4 Displaying AdvFS File Information

To display detailed information about files (and directories) in an AdvFS
fileset, enter:
showfile filename...

or
showfile *

The * displays the AdvFS characteristics for all of the files in the current
working directory.

Information similar to the following is displayed:

Id Vol PgSz Pages XtntType Segs SegSz I/O Perf File
23c1.8001 1 16 1 simple ** ** ftx 100% OV
58ba.8004 1 16 1 simple ** ** ftx 100% TT_DB

** ** ** ** symlink ** ** ** ** adm

Managing File System Performance 11–21

239f.8001 1 16 1 simple ** ** ftx 100% advfs
** ** ** ** symlink ** ** ** ** archive

9.8001 1 16 2 simple ** ** ftx 100% bin (index)
** ** ** ** symlink ** ** ** ** bsd
** ** ** ** symlink ** ** ** ** dict

288.8001 1 16 1 simple ** ** ftx 100% doc
28a.8001 1 16 1 simple ** ** ftx 100% dt

** ** ** ** symlink ** ** ** ** man
5ad4.8001 1 16 1 simple ** ** ftx 100% net

** ** ** ** symlink ** ** ** ** news
3e1.8001 1 16 1 simple ** ** ftx 100% opt

** ** ** ** symlink ** ** ** ** preserve
** ** ** ** advfs ** ** ** ** quota.group
** ** ** ** advfs ** ** ** ** quota.user

b.8001 1 16 2 simple ** ** ftx 100% sbin (index)
** ** ** ** symlink ** ** ** ** sde

61d.8001 1 16 1 simple ** ** ftx 100% tcb
** ** ** ** symlink ** ** ** ** tmp
** ** ** ** symlink ** ** ** ** ucb

6df8.8001 1 16 1 simple ** ** ftx 100% users

See showfile(8) for more information about the command output.

11.2.2.5 Displaying the AdvFS Filesets in a File Domain

To display information about the filesets in a file domain, including the
fileset names, the total number of files, the number of used blocks, the quota
status, and the clone status, enter:

showfsets file_domain

Information similar to the following is displayed:

usr
Id : 3d0f7cf8.000daec4.1.8001
Files : 30469, SLim= 0, HLim= 0
Blocks (512) : 1586588, SLim= 0, HLim= 0
Quota Status : user=off group=off
Object Safety: off
Fragging : on
DMAPI : off

The previous example displays that a file domain called dmn1 has one fileset
and one clone fileset.

See showfsets(8) for more information.

11.2.3 Tuning AdvFS Queues

For each AdvFS volume, I/O requests are sent to one of the following queues:

• Blocking, UBC request, and flush queue

The blocking, UBC request, and flush queues are queues in which
reads and synchronous write requests are cached. A synchronous write
request must be written to disk before it is considered complete and the
application can continue.

11–22 Managing File System Performance

The blocking queue is used primarily for reads and for kernel
synchronous write requests. The UBC request queue is used for
handling UBC requests to flush pages to disk. The flush queue is used
primarily for buffer write requests, either through fsync(), sync(),
or synchronous writes. Because the buffers on the blocking and UBC
request queues are given slightly higher priority than those on the flush
queue, kernel requests are handled more expeditiously and are not
blocked if many buffers are waiting to be written to disk.

Processes that need to read or modify data in a buffer in the blocking,
UBC request, or flush queue must wait for the data to be written to
disk. This is in direct contrast with buffers on the lazy queues that can
be modified at any time until they are finally moved down to the device
queue.

• Lazy queue

The lazy queue is a logical series of queues in which asynchronous write
requests are cached. When an asynchronous I/O request enters the lazy
queue, it is assigned a timestamp. This timestamp is used to periodically
flush the buffers down toward the disk in numbers large enough to allow
them to be consolidated into larger I/Os. Processes can modify data in
buffers at any time while they are on the lazy queue, potentially avoiding
additonal I/Os. Descriptions of the queues in the lazy queue are provided
after Figure 11–2.

All four queues (blocking, UBC request, flush, and lazy) move buffers to
the device queue. As buffers are moved onto the device queue, logically
contiguous I/Os are consolidated into larger I/O requests. This reduces the
actual number of I/Os that must be completed. Buffers on the device queue
cannot be modified until their I/O has completed.

The algorithms that move the buffers onto the device queue and favor taking
buffers from the queues in the following order; blocking queue, UBC request
queue, and then flush queue. All three are favored over the lazy queue.
The size of the device queue is limited by device and driver resources. The
algorithms that load the device queue use feedback from the drivers to
know when the device queue is full. At that point the device is saturated
and continued movement of buffers to the device queue would only degrade
throughput to the device. The potential size of the device queue and how full
it is, ultimately determines how long it may take to complete a synchronous
I/O operation.

Figure 11–2 shows the movement of synchronous and asynchronous I/O
requests through the AdvFS I/O queues.

Managing File System Performance 11–23

Figure 11–2: AdvFS I/O Queues

Smooth
sync

queue

Ready
queue

Consol
queueWait

queue

Flush queue

Lazy queue

Device
queue

Asynchronous
I/O request

ZK-1764U-AI

Synchronous
I/O request

Blocking queue

UBC request queue

disk

Detailed descriptions of the AdvFS lazy queues are as follows:

• Wait queue — Asynchronous I/O requests that are waiting for an AdvFS
transaction log write to complete first enter the wait queue. Each file
domain has a transaction log that tracks fileset activity for all filesets
in the file domain, and ensures AdvFS metadata consistency if a crash
occurs.

AdvFS uses write-ahead logging, which requires that when metadata
is modified, the transaction log write must complete before the actual
metadata is written. This ensures that AdvFS can always use the
transaction log to create a consistent view of the file-system metadata.
After the transaction log is written, I/O requests can move from the wait
queue to the smooth sync queue.

• Smooth sync queue — Asynchronous I/O requests remain in the smooth
sync queue for at least 30 seconds, by default. Allowing requests to
remain in the smooth sync queue for a specified amount of time prevents
I/O spikes, increases cache hit rates, and improves the consolidation of
requests. After requests have aged in the smooth sync queue, they move
to the ready queue.

• Ready queue — Asynchronous I/O requests are sorted in the ready
queue. After the queue reaches a specified size, the requests are moved
the consol queue.

• Consol queue — Asynchronous I/O requests are interleaved in the consol
queue and moved to the device queue.

11–24 Managing File System Performance

Related Attributes

The following list describes the vfs subsystem attributes that relate to
AdvFS queues:

• smoothsync_age — Specifies the amount of time, in seconds, that
a modified page ages before becoming eligible for the smoothsync
mechanism to flush it to disk.

Value: 0 to 60
Default value: 30 seconds
Setting the value to 0 sends data to the ready queue every 30
seconds, regardless of how long the data is cached.
Increasing the value increases the chance of lost data if the system
crashes, but can decrease net I/O load (improve performance) by
allowing the dirty pages to remain cached longer.

The smoothsync_age attribute is enabled when the system boots
to multiuser mode and disabled when the system changes from
multiuser mode to single-user mode. To permanently change the value
of the smoothsync_age attribute, edit the following lines in the
/etc/inittab file:

smsync:23:wait:/sbin/sysconfig -r vfs smoothsync_age=30 > /dev/null 2>&1
smsyncS:Ss:wait:/sbin/sysconfig -r vfs smoothsync_age=0 > /dev/null 2>&1

You can use the smsync2 mount option to specify an alternate
smoothsync policy that can further decrease the net I/O load. The default
policy is to flush modified pages after they have been dirty for the
smoothsync_age time period, regardless of continued modifications to
the page. When you mount a filesystem using the smsync2 mount option,
modified pages in nonmemory-mapped mode are not written to disk until
they have been dirty and idle for the smoothsync_age time period.

Note that AdvFS files in memory-mapped mode may not be flushed
according to smoothsync_age.

• AdvfsSyncMmapPages — Specifies whether or not to disable smoothsync
for applications that manage their own mmap page flushing.

Value: 0 or 1
Default value: 1 (enabled)

See mmap(2) and msync(2) for more information.

• AdvfsReadyQLim — Specifies the size of the ready queue.

Value: 0 to 32 K (blocks)
Default value: 16 K (blocks)

Managing File System Performance 11–25

You can modify the value of the AdvfsSyncMmapPages, smoothsync_age,
and the AdvfsReadyQLim attributes without rebooting the system. See
Chapter 3 for information about modifying kernel subsystem attributes.

When to Tune

If you reuse data, consider increasing:

• The amount of time I/O requests remain in the smoothsync queue to
increase the possibility of a cache hit. However, doing so increases the
chance that data might be lost if the system crashes.

Use the advfsstat -S command to show cache statistics in the AdvFS
smoothsync queue.

• The size of the ready queue to increase the possibility that I/O requests
will be consolidated into a single, larger I/O and improve the possibility
of a cache hit. However, doing so is not likely to have much influence if
smoothsync is enabled and can increase the overhead in sorting the
incoming requests onto the ready queue.

11.3 Tuning UFS

This section describes UFS configuration and tuning guidelines and
commands that you can use to display UFS information.

11.3.1 UFS Configuration Guidelines

Table 11–6 lists UFS configuration guidelines and performance benefits
and tradeoffs.

Table 11–6: UFS Configuration Guidelines
Benefit Guideline Tradeoff

Improve performance
for small files

Make the file system
fragment size equal to the
block size (Section 11.3.1.1)

Wastes disk space for
small files

Improve performance
for large files

Use the default file system
fragment size of 1 KB
(Section 11.3.1.1)

Increases the overhead
for large files

Free disk space and
improve performance
for large files

Reduce the density of
inodes on a file system
(Section 11.3.1.2)

Reduces the number of
files that can be created

Improve performance for
disks that do not have a
read-ahead cache

Set rotational delay
(Section 11.3.1.3)

None

11–26 Managing File System Performance

Table 11–6: UFS Configuration Guidelines (cont.)

Benefit Guideline Tradeoff

Decrease the number of
disk I/O operations

Increase the number of
blocks combined for a
cluster (Section 11.3.1.4)

None

Improve performance Use a memory file system
(MFS) (Section 11.3.1.5)

Does not ensure data
integrity because of
cache volatility

Control disk space usage Use disk quotas
(Section 11.3.1.6)

Might result in a slight
increase in reboot time

Allow more mounted
file systems

Increase the maximum
number of UFS and MFS
mounts (Section 11.3.1.7)

Requires additional
memory resources

The following sections describe these guidelines in more detail.

11.3.1.1 Modifying the File System Fragment and Block Sizes

The UFS file system block size is 8 KB. The default fragment size is 1 KB.
You can use the newfs command to modify the fragment size to 1024 KB,
2048 KB, 4096 KB, or 8192 KB when you create it.

Although the default fragment size uses disk space efficiently, it increases
the overhead for files less than 96 KB. If the average file in a file system is
less than 96 KB, you might improve disk access time and decrease system
overhead by making the file-system fragment size equal to the default block
size (8 KB).

See newfs(8) for more information.

11.3.1.2 Reducing the Density of inodes

An inode describes an individual file in the file system. The maximum
number of files in a file system depends on the number of inodes and the size
of the file system. The system creates an inode for each 4 KB (4096 bytes) of
data space in a file system.

If a file system will contain many large files and you are sure that you will
not create a file for each 4 KB of space, you can reduce the density of inodes
on the file system. This will free disk space for file data, but also reduces the
number of files that can be created.

To do this, use the newfs -i command to specify the amount of data space
allocated for each inode when you create the file system. See newfs(8) for
more information.

Managing File System Performance 11–27

11.3.1.3 Set Rotational Delay

The UFS rotdelay parameter specifies the time, in milliseconds, to service
a transfer completion interrupt and initiate a new transfer on the same disk.
It is used to decide how much rotational spacing to place between successive
blocks in a file. By default, the rotdelay parameter is set to 0 to allocate
blocks continuously. It is useful to set rotdelay on disks that do not have a
read-ahead cache. For disks with cache, set the rotdelay to 0.

Use either the tunefs command or the newfs command to modify the
rotdelay value.

See newfs(8) and tunefs(8) for more information.

11.3.1.4 Increasing the Number of Blocks Combined for a Cluster

The value of the UFS maxcontig parameter specifies the number of blocks
that can be combined into a single cluster (or file-block group). The default
value of maxcontig is 8. The file system attempts I/O operations in a size
that is determined by the value of maxcontig multiplied by the block size
(8 KB).

Device drivers that can chain several buffers together in a single transfer
should use a maxcontig value that is equal to the maximum chain length.
This may reduce the number of disk I/O operations.

Use the tunefs command or the newfs command to change the value of
maxcontig.

See newfs(8) and tunefs(8) for more information.

11.3.1.5 Using MFS

The memory file system (MFS) is a UFS file system that resides only in
memory. No permanent data or file structures are written to disk. An MFS
can improve read/write performance, but it is a volatile cache. The contents
of an MFS are lost after a reboot, unmount operation, or power failure.

Because no data is written to disk, an MFS is a very fast file system and can
be used to store temporary files or read-only files that are loaded into the
file system after it is created. For example, if you are performing a software
build that would have to be restarted if it failed, use an MFS to cache the
temporary files that are created during the build and reduce the build time.

See mfs(8) for more information.

11–28 Managing File System Performance

11.3.1.6 Using UFS Disk Quotas

You can specify UFS file-system limits for user accounts and for groups by
setting up UFS disk quotas, also known as UFS file system quotas. You can
apply quotas to file-systems to establish a limit on the number of blocks and
inodes (or files) that a user account or a group of users can allocate. You can
set a separate quota for each user or group of users on each file system.

You may want to set quotas on file systems that contain home directories,
because the sizes of these file systems can increase more significantly than
other file systems. Do not set quotas on the /tmp file system.

Note that, unlike AdvFS quotas, UFS quotas may cause a slight increase in
reboot time. See the AdvFS Administration manual for information about
AdvFS quotas. See the System Administration manual for information about
UFS quotas.

11.3.1.7 Increasing the Number of UFS and MFS Mounts

Mount structures are dynamically allocated when a mount request is made
and subsequently deallocated when an unmount request is made.

Related Attributes

The max_ufs_mounts attribute specifies the maximum number of UFS and
MFS mounts on the system.

Value: 0 to 2,147,483,647

Default value: 1000 (file system mounts)

You can modify the max_ufs_mounts attribute without rebooting the
system. See Chapter 3 for information about modifying kernel subsystem
attributes.

When to Tune

Increase the maximum number of UFS and MFS mounts if your system will
have more than the default limit of 1000 mounts.

Increasing the maximum number of UFS and MFS mounts enables you
to mount more file systems. However, increasing the maximum number
mounts requires memory resources for the additional mounts.

11.3.2 Monitoring UFS Statistics

Table 11–7 describes the commands you can use to display UFS information.

Managing File System Performance 11–29

Table 11–7: Tools to Display UFS Information
Tools Decription Reference

dumpfs Displays UFS
information.

Section 11.3.2.1

(dbx) print ufs_clusterstats Displays UFS
clustering
statistics.

Section 11.3.2.2

(dbx) print bio_stats Displays metadata
buffer cache
statistics.

Section 11.3.2.3

11.3.2.1 Displaying UFS Information

To display UFS information for a specified file system, including super block
and cylinder group information, enter:

dumpfs filesystem | /devices/disk/device_name

Information similar to the following is displayed:

magic 11954 format dynamic time Tue Sep 14 15:46:52 2002
nbfree 21490 ndir 9 nifree 99541 nffree 60
ncg 65 ncyl 1027 size 409600 blocks 396062
bsize 8192 shift 13 mask 0xffffe000
fsize 1024 shift 10 mask 0xfffffc00
frag 8 shift 3 fsbtodb 1
cpg 16 bpg 798 fpg 6384 ipg 1536
minfree 10% optim time maxcontig 8 maxbpg 2048
rotdelay 0ms headswitch 0us trackseek 0us rps 60

The information contained in the first lines are relevant for tuning. Of
specific interest are the following fields:

• bsize — The block size of the file system, in bytes (8 KB).

• fsize — The fragment size of the file system, in bytes. For the optimum
I/O performance, you can modify the fragment size.

• minfree — The percentage of space that cannot be used by normal users
(the minimum free space threshold).

• maxcontig — The maximum number of contiguous blocks that will be
laid out before forcing a rotational delay; that is, the number of blocks
that are combined into a single read request.

• maxbpg — The maximum number of blocks any single file can allocate
out of a cylinder group before it is forced to begin allocating blocks
from another cylinder group. A large value for maxbpg can improve
performance for large files.

• rotdelay — The expected time, in milliseconds, to service a transfer
completion interrupt and initiate a new transfer on the same disk. It is

11–30 Managing File System Performance

used to decide how much rotational spacing to place between successive
blocks in a file. If rotdelay is 0, then blocks are allocated contiguously.

11.3.2.2 Monitoring UFS Clustering

To display how the system is performing cluster read and write transfers,
use the dbx print command to examine the ufs_clusterstats data
structure. For example:

/usr/ucb/dbx −k /vmunix /dev/mem
(dbx) print ufs_clusterstats

Information similar to the following is displayed:

struct {
full_cluster_transfers = 3130
part_cluster_transfers = 9786
non_cluster_transfers = 16833
sum_cluster_transfers = {

[0] 0
[1] 24644
[2] 1128
[3] 463
[4] 202
[5] 55
[6] 117
[7] 36
[8] 123
[9] 0
.
.
.

[33]

}
}
(dbx)

The previous example shows 24644 single-block transfers, 1128 double-block
transfers, 463 triple-block transfers, and so on.

You can use the dbx print command to examine cluster reads and writes by
specifying the ufs_clusterstats_read and ufs_clusterstats_write
data structures respectively.

11.3.2.3 Displaying the Metadata Buffer Cache

To display statistics on the metadata buffer cache, including superblocks,
inodes, indirect blocks, directory blocks, and cylinder group summaries,
use the dbx print command to examine the bio_stats data structure.
For example:

/usr/ucb/dbx −k /vmunix /dev/mem
(dbx) print bio_stats

Information similar to the following is displayed:

Managing File System Performance 11–31

struct {
getblk_hits = 4590388
getblk_misses = 17569
getblk_research = 0
getblk_dupbuf = 0
getnewbuf_calls = 17590
getnewbuf_buflocked = 0
vflushbuf_lockskips = 0
mntflushbuf_misses = 0
mntinvalbuf_misses = 0
vinvalbuf_misses = 0
allocbuf_buflocked = 0
ufssync_misses = 0

}

The number of block misses (getblk_misses) divided by the sum of block
misses and block hits (getblk_hits) should not be more than 3 percent. If
the number of block misses is high, you might want to increase the value of
the bufcache attribute. See Section 11.1.4 for information on increasing
the value of the bufcache attribute.

11.3.3 Tuning UFS for Performance

Table 11–8 lists UFS tuning guidelines and performance benefits and
tradeoffs.

Table 11–8: UFS Tuning Guidelines
Benefit Guideline Tradeoff

Improve performance Adjust UFS smoothsync and I/O
throttling for asynchronous UFS
I/O requests (Section 11.3.3.1)

None

Free CPU cycles and reduce
the number of I/O operations

Delay UFS cluster writing
(Section 11.3.3.2)

If I/O throttling is not
used, might degrade
real-time workload
performance when
buffers are flushed

Reduce the number of disk
I/O operations

Increase the number of
combined blocks for a cluster
(Section 11.3.3.3)

Might require more
memory to buffer data

Improve read and write
performance

Defragment the file system
(Section 11.3.3.4)

Requires down time

The following sections describe these guidelines in more detail.

11.3.3.1 Adjusting UFS Smooth Sync and I/O Throttling

UFS uses smoothsync and I/O throttling to improve UFS performance and to
minimize system stalls resulting from a heavy system I/O load.

11–32 Managing File System Performance

Smoothsync allows each dirty page to age for a specified time period before
going to disk. This allows more opportunity for frequently modified pages to
be found in the cache, which decreases the I/O load. Also, spikes in which
large numbers of dirty pages are locked on the device queue are minimized
because pages are enqueued to a device after having aged sufficiently, as
opposed to getting flushed by the update daemon.

I/O throttling further addresses the concern of locking dirty pages on the
device queue. It enforces a limit on the number of delayed I/O requests
allowed to be on the device queue at any point in time. This allows the
system to be more responsive to any synchronous requests added to the
device queue, such as a read or the loading of a new program into memory.
This can also decrease the amount and duration of process stalls for specific
dirty buffers, as pages remain available until placed on the device queue.

Related Attributes

The vfs subsystem attributes that affect smoothsync and throttling are:

• smoothsync_age — Specifies the amount of time, in seconds, that
a modified page ages before becoming eligible for the smoothsync
mechanism to flush it to disk.

Value: 0 to 60
Default value: 30 seconds
If set to 0, smoothsync is disabled and dirty page flushing is
controlled by the update daemon at 30-second intervals.

When to Tune

Increasing the value increases the chance of lost data if the system
crashes, but can decrease net I/O load (improve performance) by allowing
the dirty pages to remain cached longer.

The smoothsync_age attribute is enabled when the system boots to
multiuser mode and disabled when the system changes from multiuser
mode to single-user mode. To change the value of the smoothsync_age
attribute, edit the following lines in the /etc/inittab file:

smsync:23:wait:/sbin/sysconfig -r vfs smoothsync_age=30 > /dev/null 2>&1
smsyncS:Ss:wait:/sbin/sysconfig -r vfs smoothsync_age=0 > /dev/null 2>&1

You can use the smsync2 mount option to specify an alternate
smoothsync policy that can further decrease the net I/O load. The
default policy is to flush modified pages after they have been dirty for
the smoothsync_age time period, regardless of continued modifications
to the page. When you mount a UFS using the smsync2 mount option,
modified pages are not written to disk until they have been dirty and idle
for the smoothsync_age time period. Note that memory-mapped pages
always use this default policy, regardless of the smsync2 setting.

Managing File System Performance 11–33

• io_throttle_shift — Specifies a value that limits the maximum
number of concurrent delayed UFS I/O requests on an I/O device queue.

Default value: 1 (2 seconds). However, the io_throttle_shift
attribute only applies to file systems that you mount using the
throttle mount option.

The greater the number of requests on an I/O device queue, the
longer it takes to process those requests and to make those pages
and device available. The number of concurrent delayed I/O requests
on an I/O device queue can be throttled (controlled) by setting the
io_throttle_shift attribute. The calculated throttle value is based
on the value of the io_throttle_shift attribute and the device’s
calculated I/O completion rate. The time required to process the I/O
device queue is proportional to the throttle value. The correspondences
between the value of the io_throttle_shift attribute and the time
to process the device queue are:

Value of the io_throttle_shift Attribute Time (in seconds) to Process
Device Queue

-4 0.0625

-3 0.125

-2 0.25

-1 0.5

0 1

1 2

2 4

3 8

4 16

Consider reducing the value of the io_throttle_shift attribute if
your environment is particularly sensitive to delays in accessing the
I/O device.

• io_maxmzthruput — Specifies whether or not to maximize I/O
throughput or to maximize the availability of dirty pages. Maximizing
I/O throughput works more aggressively to keep the device busy,
but within the constraints of the io_throttle_shift attribute.
Maximizing the availability of dirty pages favors decreasing the stall
time experienced when waiting for dirty pages.

Value: 0 (disabled) or 1 (enabled)

11–34 Managing File System Performance

Default value: 1 (enabled). However, the io_throttle_maxmzthruput
attribute only applies to file system that you mount using the throttle
mount option.

When to Tune

Consider disabling the io_maxmzthruput attribute if your environment
is particularly sensitive to delays in accessing sets of frequently used
dirty pages or an environment in which I/O is confined to a small number
of I/O-intensive applications, such that access to a specific set of pages
becomes more important for overall performance than does keeping the
I/O device busy.

You can modify the smoothsync_age, io_throttle_static, and
io_throttle_maxmzthruput attributes without rebooting the system.

11.3.3.2 Delaying UFS Cluster Writing

By default, clusters of UFS pages are written asynchronously. You can
configure clusters of UFS pages to be written delayed as other modified
data and metadata pages are written.

Related Attribute

delay_wbuffers — Specifies whether or not clusters of UFS pages are
written asynchronously or delayed.

Value: 0 or 1
Default value: 0 (asynchronously)
If the percentage of UBC dirty pages reaches the value of the
delay_wbuffers_percent attribute, the clusters will be written
asynchronously, regardless of the value of the delay_wbuffers
attribute.

Delay writing clusters of UFS pages if your applications frequently write to
previously written pages. This can result in a decrease in the total number of
I/O requests. However, if you are not using I/O throttling, it might adversely
affect real-time workload performance because the system will experience a
heavy I/O load at sync time.

To delay writing clusters of UFS pages, use the dbx patch command to set
the value of the delay_wbuffers kernel variable to 1 (enabled).

See Section 3.2 for information about using dbx.

11.3.3.3 Increasing the Number of Blocks in a Cluster

UFS combines contiguous blocks into clusters to decrease I/O operations.
You can specify the number of blocks in a cluster.

Managing File System Performance 11–35

Related Attribute

cluster_maxcontig — Specifies the number of blocks that are combined
into a single I/O operation.

Default value: 32 blocks

If the specific file-system’s rotational delay value is 0 (default), then UFS
attempts to create clusters with up to n blocks, where n is either the value
of the cluster_maxcontig attribute or the value from device geometry,
whichever is smaller.

If the specific file-system’s rotational delay value is nonzero, then n is the
value of the cluster_maxcontig attribute, the value from device geometry,
or the value of the maxcontig file-system attribute, whichever is smaller.

When to Tune

Increase the number of blocks combined for a cluster if your applications
can use a large cluster size.

Use the newfs command to set the file-system rotational delay value and the
value of the maxcontig attribute. Use the dbx command to set the value of
the cluster_maxcontig attribute.

11.3.3.4 Defragmenting a File System

When a file consists of noncontiguous file extents, the file is considered
fragmented. A very fragmented file decreases UFS read and write
performance, because it requires more I/O operations to access the file.

When to Perform

Defragmenting a UFS file system improves file-system performance.
However, it is a time-consuming process.

You can determine whether the files in a file system are fragmented by
determining how effectively the system is clustering. You can do this by
using the dbx print command to examine the ufs_clusterstats data
structure. See Section 11.3.2.2 for information.

UFS block clustering is usually efficient. If the numbers from the UFS
clustering kernel structures show that clustering is not effective, the files in
the file system may be very fragmented.

Recommended Procedure

To defragment a UFS file system, follow these steps:

1. Back up the file system onto tape or another partition.

11–36 Managing File System Performance

2. Create a new file system either on the same partition or a different
partition.

3. Restore the file system.

See the System Administration manual for information about backing up
and restoring data and creating UFS file systems.

11.4 Tuning NFS

The network file system (NFS) shares the Unified Buffer Cache (UBC)
with the virtual memory subsystem and local file systems. NFS can
put an extreme load on the network. Poor NFS performance is almost
always a problem with the network infrastructure. Look for high counts of
retransmitted messages on the NFS clients, network I/O errors, and routers
that cannot maintain the load.

Lost packets on the network can severely degrade NFS performance. Lost
packets can be caused by a congested server, the corruption of packets
during transmission (which can be caused by bad electrical connections,
noisy environments, or noisy Ethernet interfaces), and routers that abandon
forwarding attempts too quickly.

For information about how to tune network file systems (NFS), see
Chapter 5.

Managing File System Performance 11–37

12
Managing Memory Performance

You may be able to improve Tru64 UNIX performance by optimizing your
memory resources. Usually, the best way to improve performance is to
eliminate or reduce paging and swapping. To do this, increase memory
resources.

This chapter describes:

• How the operating system allocates virtual memory to processes and to
file-system caches, and how memory is reclaimed (Section 12.1)

• How to configure swap space for high performance (Section 12.2)

• How to display information about memory usage (Section 12.3)

• The kernel subsystem attributes that you can modify to provide more
memory resources to processes (Section 12.4)

• How to modify the paging and swapping operations (Section 12.5)

• How to reserve physical memory for shared memory (Section 12.6)

• How to use big pages to improve the performance of memory-intensize
applications (Section 12.7)

12.1 Virtual Memory Operation

The operating system allocates physical memory in 8-KB units called pages.
The virtual memory subsystem tracks and manages all the physical pages in
the system and efficiently distributes the pages among three areas:

• Static wired memory

Allocated at boot time and used for operating system data and text and
for system tables, static wired memory is also used by the metadata
buffer cache, which holds recently accessed UNIX file system (UFS) and
CD-ROM file system (CDFS) metadata.

You can reduce the amount of static wired memory only by removing
subsystems or by decreasing the size of the metadata buffer cache (see
Section 12.1.2.1).

• Dynamically wired memory

Dynamically wired memory is allocated at boot time and used for
dynamically allocated data structures, such as system hash tables.

Managing Memory Performance 12–1

User processes also allocate dynamically wired memory for address
space by using virtual memory locking interfaces, including the mlock
function. The amount of dynamically wired memory varies according
to the demand. The vm subsystem attribute vm_syswiredpercent
specifies the maximum amount of memory that a user process can wire
(80 percent of physical memory, by default).

• Physical memory for processes and data caching

Physical memory that is not wired is referred to as pageable memory.
It is used for processes’ most-recently accessed anonymous memory
(modifiable virtual address space) and file-backed memory (memory that
is used for program text or shared libraries). Pageable memory is also
used to cache the most-recently accessed UFS file system data for reads
and writes and for page faults from mapped file regions, in addition
to AdvFS metadata and file data.

The virtual memory subsystem allocates physical pages according
to the process and file-system demand. Because processes and file
systems compete for a limited amount of physical memory, the virtual
memory subsystem periodically reclaims the oldest pages by writing
their contents to swap space or disk (paging). Under heavy loads,
entire processes may be suspended to free large amounts of memory
(swapping). You can control virtual memory operation by tuning various
vm subsystem attributes, as described in this chapter.

You must understand memory operation to determine which tuning
guidelines will improve performance for your workload. The following
sections describe how the virtual memory subsystem:

• Tracks physical pages (Section 12.1.1)

• Allocates memory to file system buffer caches (Section 12.1.2)

• Allocates memory to processes (Section 12.1.3)

• Reclaims pages (Section 12.1.4)

12.1.1 Physical Page Tracking

The virtual memory subsystem tracks all the physical memory pages in the
system. Page lists are used to identify the location and age of each page. The
oldest pages are the first to be reclaimed. At any one time, each physical
page can be found on one of the following lists:

• Wired list — Pages that are wired and cannot be reclaimed

• Free list — Pages that are clean and are not being used

Page reclamation begins when the size of the free list decreases to a
tunable limit.

12–2 Managing Memory Performance

• Active list — Pages that are currently being used by processes or the
Unified Buffer Cache (UBC)

To determine which active pages to reclaim first, the page-stealer
daemon identifies the oldest pages on the active list. The oldest pages
that are being used by processes are designated as inactive pages. The
oldest pages that are being used by the UBC are designated UBC LRU
(Unified Buffer Cache least-recently used) pages.

Use the vmstat command to determine the number of pages that are on
the page lists. Remember that pages on the active list (the act field in the
vmstat output) include both inactive and UBC LRU pages.

12.1.2 File-System Buffer Cache Memory Allocation

The operating system uses caches to store file system user data and
metadata. If the cached data is later reused, a disk I/O operation is avoided,
which improves performance. This is because data can be retrieved from
memory faster than a disk I/O operation.

The following sections describe these file-system caches:

• Metadata buffer cache (Section 12.1.2.1)

• Unified Buffer Cache (Section 12.1.2.2)

12.1.2.1 Metadata Buffer Cache Memory Allocation

At boot time, the kernel allocates wired memory for the metadata buffer
cache. The cache acts as a layer between the operating system and disk
by storing recently accessed UFS and CDFS metadata, which includes file
header information, superblocks, inodes, indirect blocks, directory blocks,
and cylinder group summaries. Performance is improved if the data is later
reused and a disk operation is avoided.

The metadata buffer cache uses bcopy routines to move data in and out
of memory. Memory in the metadata buffer cache is not subject to page
reclamation.

The size of the metadata buffer cache is specified by the value of the vfs
subsystem bufcache attribute. See Section 11.1.4 for information on tuning
the bufcache attribute.

12.1.2.2 Unified Buffer Cache Memory Allocation

The physical memory that is not wired is available to processes and to the
Unified Buffer Cache (UBC), which compete for this memory.

The UBC functions as a layer between the operating system and disk
by storing recently accessed file-system data for reads and writes from

Managing Memory Performance 12–3

conventional file activity and holding page faults from mapped file sections.
UFS caches user and application data in the UBC. AdvFS caches user and
application data and metadata in the UBC. File-system performance is
improved if the data and metadata is reused and in the UBC.

Figure 12–1 shows how the memory subsystem allocates physical memory to
the UBC and for processes.

Figure 12–1: UBC Memory Allocation

ZK-1360U-AI

UBC maximum (ubc_maxpercent
default is 100%)

UBC borrowing threshold
(ubc_borrowpercent default is 20%)
UBC minimum
(ubc_minpercent default is 10%)

Memory shared
by UBC

and processes

Memory
available

only to UBC

At any one time, the amount of memory allocated to the UBC and to
processes depends on file-system and process demands. For example, if file
system activity is heavy and process demand is low, most of the pages will be
allocated to the UBC, as shown in Figure 12–2.

Figure 12–2: Memory Allocation During High File-System Activity and No
Paging Activity

ZK-1426U-AI

UBC maximum

UBC borrowing threshold

UBC minimum

Memory used
by processes

Memory
used by
the UBC

In contrast, heavy process activity, such as large increases in the working
sets for large executables, will cause the memory subsystem to reclaim UBC

12–4 Managing Memory Performance

borrowed pages, down to the value of the ubc_borrowpercent attribute, as
shown in Figure 12–3.

Figure 12–3: Memory Allocation During Low File-System Activity and High
Paging Activity

ZK-1427U-AI

UBC maximum

UBC borrowing threshold

UBC minimum

Memory used
by processes

Memory
used by
the UBC

The size of the UBC is specified by the value of the vfs subsystem
UBC-related attributes. See Section 11.1.3 for information on tuning the
UBC-related attribute.

12.1.3 Process Memory Allocation

Physical memory that is not wired is available to processes and the UBC,
which compete for this memory. The virtual memory subsystem allocates
memory resources to processes and to the UBC according to the demand, and
reclaims the oldest pages if the demand depletes the number of available
free pages.

The following sections describe how the virtual memory subsystem allocates
memory to processes.

12.1.3.1 Process Virtual Address Space Allocation

The fork system call creates new processes. When you invoke a process,
the fork system call:

1. Creates a UNIX process body, which includes a set of data structures
that the kernel uses to track the process and a set of resource
limitations. See fork(2) for more information.

2. Establishes a contiguous block of virtual address space for the
process. Virtual address space is the array of virtual pages that the
process can use to map into actual physical memory. Virtual address
space is used for anonymous memory (memory that holds data elements

Managing Memory Performance 12–5

and structures that are modified during process execution) and for
file-backed memory (memory used for program text or shared libraries).

Because physical memory is limited, a process’ entire virtual address
space cannot be in physical memory at one time. However, a process
can execute when only a portion of its virtual address space (its working
set) is mapped to physical memory. Pages of anonymous memory and
file-backed memory are paged in only when needed. If the memory
demand increases and pages must be reclaimed, the pages of anonymous
memory are paged out and their contents moved to swap space, while
the pages of file-backed memory are simply released.

3. Creates one or more threads of execution. The default is one thread
for each process. Multiprocessing systems support multiple process
threads.

Although the virtual memory subsystem allocates a large amount of virtual
address space for each process, it uses only part of this space. Only 4 TB
is allocated for user space. User space is generally private and maps to a
nonshared physical page. An additional 4 TB of virtual address space is used
for kernel space. Kernel space usually maps to shared physical pages. The
remaining space is not used for any purpose.

Figure 12–4 shows the use of process virtual address space.

Figure 12–4: Process Virtual Address Space Usage

User space
(4 TB)

Kernel space
(maximum 4 TB)Unused

ZK-1363U-AI

0 2
64

12.1.3.2 Virtual Address to Physical Address Translation

When a virtual page is touched (accessed), the virtual memory subsystem
must locate the physical page and then translate the virtual address into
a physical address. Each process has a page table, which is an array
containing an entry for each current virtual-to-physical address translation.
Page table entries have a direct relation to virtual pages (that is, virtual
address 1 corresponds to page table entry 1) and contain a pointer to the
physical page and protection information.

Figure 12–5 shows the translation of a virtual address into a physical
address.

12–6 Managing Memory Performance

Figure 12–5: Virtual-to-Physical Address Translation

Virtual address

Physical address

Virtual address

Physical address

Process Virtual Address Space

Physical Memory Pages

Page table

ZK-1358U-AI

A process resident set is the complete set of all the virtual addresses that
have been mapped to physical addresses (that is, all the pages that have
been accessed during process execution). Resident set pages may be shared
among multiple processes.

A process working set is the set of virtual addresses that are currently
mapped to physical addresses. The working set is a subset of the resident set,
and it represents a snapshot of the process resident set at one point in time.

12.1.3.3 Page Faults

When an anonymous (nonfile-backed) virtual address is requested, the
virtual memory subsystem must locate the physical page and make it
available to the process. This occurs at different speeds, depending on
whether the page is in memory or on disk (see Figure 1–10).

If a requested address is currently being used (that is, the address is in the
active page list), it will have an entry in the page table. In this case, the PAL
code loads the physical address into the translation lookaside buffer, which
then passes the address to the CPU. Because this is a memory operation,
it occurs quickly.

If a requested address is not active in the page table, the PAL lookup code
issues a page fault, which instructs the virtual memory subsystem to locate
the page and make the virtual-to-physical address translation in the page
table.

Managing Memory Performance 12–7

There are four different types of page faults:

1. If a requested virtual address is being accessed for the first time,
a zero-filled-on-demand page fault occurs. The virtual memory
subsystem performs the following tasks:

a. Allocates an available page of physical memory.

b. Fills the page with zeros.

c. Enters the virtual-to-physical address translation in the page table.

2. If a requested virtual address has already been accessed and is located
in the memory subsystem’s internal data structures, a short page
fault occurs. For example, if the physical address is located in the hash
queue list or the page queue list, the virtual memory subsystem passes
the address to the CPU and enters the virtual-to-physical address
translation in the page table. This occurs quickly because it is a memory
operation.

3. If a requested virtual address has already been accessed, but the
physical page has been reclaimed, the page contents will be found either
on the free page list or in swap space. If a page is located on the free
page list, it is removed from the hash queue and the free list and then
reclaimed. This operation occurs quickly and does not require disk I/O.

If a page is found in swap space, a page-in page fault occurs. The
virtual memory subsystem copies the contents of the page from swap
space into the physical address and enters the virtual-to-physical
address translation in the page table. Because this requires a disk I/O
operation, it requires more time than a memory operation.

4. If a process needs to modify a read-only virtual page, a copy-on-write
page fault occurs. The virtual memory subsystem allocates an
available page of physical memory, copies the read-only page into the
new page, and enters the translation in the page table.

The virtual memory subsystem uses the following techniques to improve
process execution time and decrease the number of page faults:

• Mapping additional pages

The virtual memory subsystem attempts to anticipate which pages the
task will need next. Using an algorithm that checks which pages were
most recently used, the number of available pages, and other factors, the
subsystem maps additional pages along with the page that contains the
requested address.

12–8 Managing Memory Performance

• Page coloring

The virtual memory subsystem attempts to map a process’ entire
resident set into the secondary cache and executes the entire task, text,
and data within the cache.

The vm subsystem attribute private_cache_percent specifies the
percentage of the secondary cache that is reserved for anonymous
memory. This attribute is used only for benchmarking. The default is to
reserve 50 percent of the cache for anonymous memory and 50 percent
for file-backed memory (shared). To cache more anonymous memory,
increase the value of the private_cache_percent attribute.

12.1.4 Page Reclamation

Because memory resources are limited, the virtual memory subsystem must
periodically reclaim pages. The free page list contains clean pages that are
available to processes and the UBC. As the demand for memory increases,
the list may become depleted. If the number of pages falls below a tunable
limit, the virtual memory subsystem will replenish the free list by reclaiming
the least-recently used pages from processes and the UBC.

To reclaim pages, the virtual memory subsystem:

1. Prewrites modified pages to swap space in an attempt to forestall a
memory shortage. See Section 12.1.4.1 for more information.

2. Begins paging if the demand for memory is not satisfied, as follows:

a. Reclaims pages that the UBC has borrowed and puts them on the
free list.

b. Reclaims the oldest inactive and UBC LRU pages from the active
page list, moves the contents of the modified pages to swap space or
disk, and puts the clean pages on the free list.

c. If needed, more aggressively reclaims pages from the active list.

See Section 12.1.4.2 for more information about reclaiming memory
by paging.

3. Begins swapping if the demand for memory is not met. The virtual
memory subsystem temporarily suspends processes and moves entire
resident sets to swap space, which frees large numbers of pages. See
Section 12.1.4.3 for information about swapping.

The point at which paging and swapping start and stop depends on the
values of some vm subsystem attributes. Figure 12–6 shows some of the
attributes that control paging and swapping.

Managing Memory Performance 12–9

Figure 12–6: Paging and Swapping Attributes

(vm_page_free_target)

(vm_page_free_hardswap)

ZK-0933U-AI

Paging threshold

Reclaim a page for each page
allocated (vm_page_free_min)

Swapping stops

 vm_page_free_optimal)
(vm_page_free_swap and

Swapping starts

(vm_page_free_reserved)
Only privileged tasks can run

Free Page List

Detailed descriptions of the attributes are as follows:

• vm_page_free_target — Specifies a threshold value that stops paging.
When the number of pages on the free page list reaches this value,
paging stops. The default value of the vm_page_free_target attribute
is based on the amount of memory in the system. Use Table 12–1 to
determine the default value for your system.

Table 12–1: Default Values for vm_page_free_target Attribute
Size of Memory Value of vm_page_free_target

Up to 512 MB 128

513 MB to 1024 MB 256

1025 MB to 2048 MB 512

2049 MB to 4096 MB 768

More than 4096 MB 1024

• vm_page_free_min — Specifies a threshold value at which a page must
be reclaimed for each page allocated. The default value is twice the value
of the vm_page_free_reserved attribute.

12–10 Managing Memory Performance

• vm_page_free_reserved — Specifies a threshold value that
determines when memory is limited to privileged tasks. When the
number of pages on the free page list falls below this value, only
privileged tasks can get memory. The default value is 10 pages.

• vm_page_free_swap — Specifies a threshold value that begins
swapping idle tasks. When the number of pages on the free page list
falls below this value, idle task swapping begins. The default value is
calculated using this formula:

vm_page_free_min + ((vm_page_free_target - vm_page_free_min) / 2)

• vm_page_free_optimal — Specifies a threshold value that begins
hard swapping. When the number of pages on the free list falls below
this value for five seconds, hard swapping begins. The first processes to
be swapped out include those with the lowest scheduling priority and
those with the largest resident set size. The default value is calculated
using this formula:

vm_page_free_min + ((vm_page_free_target - vm_page_free_min) / 2)

• vm_page_free_hardswap — Specifies a threshold value that
stops page swapping. When the number of pages on the free list
reaches this value, paging stops. The default value is the value of the
vm_page_free_target attribute multiplied by 16.

See Section 12.5 for information about modifying paging and swapping
attributes.

The following sections describe the page reclamation procedure in detail.

12.1.4.1 Modified Page Prewriting

The virtual memory subsystem attempts to prevent memory shortages by
prewriting modified inactive and UBC LRU pages to disk. To reclaim a
page that has been prewritten, the virtual memory subsystem only needs to
validate the page, which can improve performance. See Section 12.1.1 for
information about page lists.

When the virtual memory subsystem anticipates that the pages on the free
list will soon be depleted, it prewrites to disk the oldest modified (dirty)
pages that are currently being used by processes or the UBC.

The value of the vm subsystem attribute vm_page_prewrite_target
determines the number of inactive pages that the subsystem will prewrite
and keep clean. The default value is vm_page_free_target * 2.

The vm_ubcdirtypercent attribute specifies the modified UBC LRU page
threshold. When the number of modified UBC LRU pages is more than this
value, the virtual memory subsystem prewrites to disk the oldest modified

Managing Memory Performance 12–11

UBC LRU pages. The default value of the vm_ubcdirtypercent attribute
is 10 percent of the total UBC LRU pages.

In addition, the sync function periodically flushes (writes to disk) system
metadata and data from all unwritten memory buffers. For example, the
data that is flushed includes, for UFS, modified inodes and delayed block
I/O. Commands, such as the shutdown command, also issue their own sync
functions. To minimize the impact of I/O spikes caused by the sync function,
the value of the vm subsystem attribute ubc_maxdirtywrites specifies the
maximum number of disk writes that the kernel can perform each second.
The default value is five I/O operations per second.

12.1.4.2 Reclaiming Memory by Paging

When the memory demand is high and the number of pages on the
free page list falls below the value of the vm subsystem attribute
vm_page_free_target, the virtual memory subsystem uses paging to
replenish the free page list. The page-out daemon and task swapper daemon
are extensions of the page reclamation code, which controls paging and
swapping.

The paging process is as follows:

1. The page reclamation code activates the page-stealer daemon,
which first reclaims the clean pages that the UBC has borrowed
from the virtual memory subsystem, until the size of the UBC
reaches the borrowing threshold that is specified by the value of the
ubc_borrowpercent attribute (the default is 20 percent). Freeing
borrowed UBC pages is a fast way to reclaim pages, because UBC pages
are usually not modified. If the reclaimed pages are dirty (modified),
their contents must be written to disk before the pages can be moved
to the free page list.

2. If freeing clean UBC borrowed memory does not sufficiently replenish
the free list, a page out occurs. The page-stealer daemon reclaims the
oldest inactive and UBC LRU pages from the active page list, moves
the contents of the modified pages to disk, and puts the clean pages
on the free list.

3. Paging becomes increasingly aggressive if the number of free pages
continues to decrease. If the number of pages on the free page list falls
below the value of the vm subsystem attribute vm_page_free_min
(the default is 20 pages), a page must be reclaimed for each page taken
from the list.

Figure 12–7 shows the movement of pages during paging operations.

12–12 Managing Memory Performance

Figure 12–7: Paging Operation

Swap

Free pages

Active pages
(VM and UBC)

Clean pages from the free list are moved to the
active list for use by processes and the UBC

The virtual memory
subsystem identifies the
least-recently-used
active pages.

These inactive and
UBC LRU pages
are the first pages
to be reclaimed when
paging begins.

When memory is needed, paging begins.
The virtual memory subsystem reclaims
UBC borrowed pages and then inactive
and UBC LRU pages and moves the
pages to free list. Modified pages are
first written to swap space or disk.

ZK-1361U-AI

Inactive
pages

UBC
LRU
pages

Paging stops when the number of pages on the free list increases to the limit
specified by the vm subsystem attribute vm_page_free_target. However,
if paging individual pages does not sufficiently replenish the free list,
swapping is used to free a large amount of memory (see Section 12.1.4.3).

12.1.4.3 Reclaiming Memory by Swapping

If there is a continuously high demand for memory, the virtual memory
subsystem may be unable to replenish the free page list by reclaiming single
pages. To dramatically increase the number of clean pages, the virtual
memory subsystem uses swapping to suspend processes, which reduces the
demand for physical memory.

The task swapper will swap out a process by suspending the process,
writing its resident set to swap space, and moving the clean pages to the free
page list. Swapping has a serious impact on system performance because a

Managing Memory Performance 12–13

swapped out process cannot execute, and should be avoided on VLM systems
and systems running large programs.

The point at which swapping begins and ends is controlled by a number of
vm subsystem attributes, as follows:

• Idle task swapping begins when the number of pages on the free list
falls below the value of the vm_page_free_swap attribute for a period
of time. The task swapper suspends all tasks that have been idle for
30 seconds or more.

• Hard task swapping begins when the number of pages on the free page
list falls below the value of the vm_page_free_optimal attribute for
more than five seconds. The task swapper suspends, one at a time, the
tasks with the lowest priority and the largest resident set size.

• Swapping stops when the number of pages on the free list increases to
the value of the vm_page_free_hardswap attribute.

• A swap in occurs when the number of pages on the free list increases
to the value of the vm_page_free_optimal attribute for a period
of time. The value of the vm_inswappedmin attribute specifies the
minimum amount of time, in seconds, that a task must remain in the
inswapped state before it can be moved out of swap space. The default
value is 1 second. The task’s working set is then paged in from swap
space, and the task can now execute. You can modify the value of the
vm_inswappedmin attribute without rebooting the system.

You may be able to improve system performance by modifying the attributes
that control when swapping begins and ends, as described in Section 12.5.
Large-memory systems or systems running large programs should avoid
paging and swapping, if possible.

Increasing the rate of swapping (swapping earlier during page reclamation)
may increase throughput. As more processes are swapped out, fewer
processes are actually executing and more work is done. Although increasing
the rate of swapping moves long-sleeping threads out of memory and
frees memory, it may degrade interactive response time because when an
outswapped process is needed, it will have a long latency period.

Decreasing the rate of swapping (by swapping later during page reclamation)
may improve interactive response time, but at the cost of throughput. See
Section 12.5.2 for more information about changing the rate of swapping.

To facilitate the movement of data between memory and disk, the virtual
memory subsystem uses synchronous and asynchronous swap buffers. The
virtual memory subsystem uses these two types of buffers to immediately
satisfy a page-in request without having to wait for the completion of a
page-out request, which is a relatively slow process.

12–14 Managing Memory Performance

Synchronous swap buffers are used for page-in page faults and for swap
outs. Asynchronous swap buffers are used for asynchronous page outs and
for prewriting modified pages. See Section 12.5.7 for swap buffer tuning
information.

12.2 Configuring Swap Space for High Performance

Use the swapon command to display swap space, and to configure additional
swap space after system installation. To make this additional swap space
permanent, use the vm subsystem attribute swapdevice to specify swap
devices in the /etc/sysconfigtab file. For example:

vm:
swapdevice=/dev/disk/dsk0b,/dev/disk/dsk0d

See Chapter 3 for information about modifying kernel subsystem attributes.

See Section 4.4.1.8 or Section 12.1.3 for information about swap space
allocation modes and swap space requirements.

The following list describes how to configure swap space for high
performance:

• Ensure that all your swap devices are configured when you boot the
system, instead of adding swap space while the system is running.

• Use fast disks for swap space to decrease page-fault latency.

• Use disks that are not busy for swap space.

• Spread out swap space across multiple disks; do not put multiple
swap partitions on the same disk. This makes paging and swapping
more efficient and helps to prevent any single adapter, disk, or bus
from becoming a bottleneck. The page reclamation code uses a form
of disk striping (known as swap-space interleaving) that improves
performance when data is written to multiple disks.

• Spread out your swap disks across multiple I/O buses to prevent a single
bus from becoming a bottleneck.

• Configure multiple swap devices as individual devices (or LSM volumes)
instead of striping the devices and configuring only one logical swap
device.

• If you are paging heavily and cannot increase the amount of memory in
your system, consider using RAID5 for swap devices. See Chapter 9 for
more information about RAID5.

See the System Administration manual for more information about adding
swap devices. See Chapter 9 for more information about configuring and
tuning disks for high performance and availability.

Managing Memory Performance 12–15

12.3 Monitoring Memory Statistics

Table 12–2 describes the tools that you can use to display memory usage
information.

Table 12–2: Tools to Display Virtual Memory and UBC
Tools Description Reference

vmstat Displays information about process threads,
virtual memory usage (page lists, page
faults, page ins, and page outs), interrupts,
and CPU usage (percentages of user, system
and idle times).

Section 12.3.1

ps Displays current statistics for running
processes, including CPU usage, the
processor and processor set, and the
scheduling priority.
The ps command also displays virtual
memory statistics for a process, including the
number of page faults, page reclamations,
and page ins; the percentage of real memory
(resident set) usage; the resident set size;
and the virtual address size.

Section 12.3.2)

swapon Displays information about swap space
utilization and the total amount of allocated
swap space, swap space in use, and free
swap space for each swap device. You can
also use this command to allocate additional
swap space.

Section 12.3.3

(dbx) print
ufs_geta-
page_stats

Reports UBC statistics and examines the
ufs_getapage_stats data structure,
which contains information about UBC page
usage.

Section 12.3.4

sys_check Analyzes system configuration and displays
statistics, providing warnings and tuning
guidelines if necessary.

Section 2.3.3

12–16 Managing Memory Performance

Table 12–2: Tools to Display Virtual Memory and UBC (cont.)

Tools Description Reference

uerf -r 300 Displays total system memory. See uerf(8) for
more information

ipcs Displays interprocess communication
(IPC) statistics for currently active
message queues, shared-memory segments,
semaphores, remote queues, and local queue
headers.
The information provided in the following
fields reported by the ipcs −a command can
be especially useful: QNUM, CBYTES, QBYTES,
SEGSZ, and NSEMS.

See ipcs(1) for
more information

The following sections describe the vmstat, ps, swapon,and dbx tools in
detail.

12.3.1 Displaying Memory by Using the vmstat Command

To display the virtual memory, process, and CPU statistics, enter:

/usr/ucb/vmstat

Information similar to the following is displayed:

Virtual Memory Statistics: (pagesize = 8192)
procs memory pages intr cpu
r w u act free wire fault cow zero react pin pout in sy cs us sy id
2 66 25 6417 3497 1570 155K 38K 50K 0 46K 0 4 290 165 0 2 98
4 65 24 6421 3493 1570 120 9 81 0 8 0 585 865 335 37 16 48
2 66 25 6421 3493 1570 69 0 69 0 0 0 570 968 368 8 22 69
4 65 24 6421 3493 1570 69 0 69 0 0 0 554 768 370 2 14 84
4 65 24 6421 3493 1570 69 0 69 0 0 0 865 1K 404 4 20 76
1 2 3 4 5

The first line of the vmstat output is for all time since a reboot, and each
subsequent report is for the last interval.

The vmstat command includes information that you can use to diagnose
CPU and virtual memory problems. Examine the following fields:

1 Process information (procs):

• r — Number of threads that are running or can run.

• w — Number of threads that are waiting interruptibly (waiting for
an event or a resource, but can be interrupted or suspended). For
example, the thread can accept user signals or be swapped out of
memory.

Managing Memory Performance 12–17

• u — Number of threads that are waiting uninterruptibly (waiting
for an event or a resource, but cannot be interrupted or suspended).
For example, the thread cannot accept user signals; it must come
out of the wait state to take a signal. Processes that are waiting
uninterruptibly cannot be stopped by the kill command.

2 Virtual memory information (memory):

• act — Number of pages on the active list, including inactive pages
and UBC LRU pages.

• free — Number of pages on the free list.

• wire — Number of pages on the wired list. Pages on the wired
list cannot be reclaimed.

See Section 12.1.1 for more information on page lists.

3 Paging information (pages):

• fault — Number of address translation faults.

• cow — Number of copy-on-write page faults. These page faults occur
if the requested page is shared by a parent process and a child
process, and one of these processes needs to modify the page. If
a copy-on-write page fault occurs, the virtual memory subsystem
loads a new address into the translation buffer, and then copies the
contents of the requested page into this address, so that the process
can modify it.

• zero — Number of zero-filled-on-demand page faults. These page
faults occur if a requested page is not located in the internal data
structures and has never been referenced. If a zero-filled-on-demand
page fault occurs, the virtual memory subsystem allocates an
available page of physical memory, fills the page with zeros, and
then enters the address into the page table.

• react — Number of pages that have been faulted (touched) while
on the inactive page list.

• pin — Number of requests for pages from the page-stealer daemon.

• pout — Number of pages that have been paged out to disk.

4 Interrupt information (intr):

• in — Number of nonclock device interrupts per second.

• sy — Number of system calls called per second.

• cs — Number of task and thread context switches per second.

5 CPU usage information (cpu):

12–18 Managing Memory Performance

• us — Percentage of user time for normal and priority processes.
User time includes the time the CPU spent executing library
routines.

• sy — Percentage of system time. System time includes the time the
CPU spent executing system calls.

• id — Percentage of idle time.

See Section 12.3.1 for information about using the vmstat command to
monitor CPU usage.

To use the vmstat command to diagnose a memory performance problem:

• Check the size of the free page list (free). Compare the number of
free pages to the values for the active pages (act) and the wired pages
(wire). The sum of the free, active, and wired pages should be close to
the amount of physical memory in your system. Although the value for
free should be small, if the value is consistently small (less than 128
pages) and accompanied by excessive paging and swapping, you may not
have enough physical memory for your workload.

• Examine the pout field. If the number of page outs is consistently high,
you may have insufficient memory.

• The following command output may indicate that the size of the UBC is
too small for your configuration:

– The output of the vmstat or monitor command shows excessive file
system page-in activity, but little or no page-out activity or shows a
very low free page count.

– The output of the iostat command shows little or no swap disk I/O
activity or shows excessive file system I/O activity. See Section 9.2 for
more information.

Excessive paging also can increase the miss rate for the secondary cache,
and may be indicated by the following output:

• The output of the ps command shows high task swapping activity. See
Section 12.3.2 for more information.

• The output of the swapon command shows excessive use of swap space.
See Section 12.3.3 for more information.

To display statistics about physical memory use, enter:

vmstat -P

Information similar to the following is displayed:

Total Physical Memory = 512.00 M
= 65536 pages

Physical Memory Clusters:

Managing Memory Performance 12–19

start_pfn end_pfn type size_pages / size_bytes
0 256 pal 256 / 2.00M

256 65527 os 65271 / 509.93M
65527 65536 pal 9 / 72.00k

Physical Memory Use:

start_pfn end_pfn type size_pages / size_bytes
256 280 unixtable 24 / 192.00k
280 287 scavenge 7 / 56.00k
287 918 text 631 / 4.93M
918 1046 data 128 / 1.00M

1046 1209 bss 163 / 1.27M
1210 1384 kdebug 174 / 1.36M
1384 1390 cfgmgmt 6 / 48.00k
1390 1392 locks 2 / 16.00k
1392 1949 unixtable 557 / 4.35M
1949 1962 pmap 13 / 104.00k
1962 2972 vmtables 1010 / 7.89M
2972 65527 managed 62555 / 488.71M

============================
Total Physical Memory Use: 65270 / 509.92M

Managed Pages Break Down:

free pages = 1207
active pages = 25817

inactive pages = 20103
wired pages = 15434

ubc pages = 15992
==================

Total = 78553

WIRED Pages Break Down:

vm wired pages = 1448
ubc wired pages = 4550
meta data pages = 1958

malloc pages = 5469
contig pages = 159

user ptepages = 1774
kernel ptepages = 67

free ptepages = 9
==================

Total = 15434

See vmstat(1) for more information about this command and its options. See
Section 12.4 for information about increasing memory resources.

12.3.2 Displaying Memory by Using the ps Command

To display the current state of the system processes and how they use
memory, enter:
/usr/ucb/ps aux

Information similar to the following is displayed:
USER PID %CPU %MEM VSZ RSS TTY S STARTED TIME COMMAND
chen 2225 5.0 0.3 1.35M 256K p9 U 13:24:58 0:00.36 cp /vmunix /tmp
root 2236 3.0 0.5 1.59M 456K p9 R + 13:33:21 0:00.08 ps aux
sorn 2226 1.0 0.6 2.75M 552K p9 S + 13:25:01 0:00.05 vi met.ps

12–20 Managing Memory Performance

root 347 1.0 4.0 9.58M 3.72 ?? S Nov 07 01:26:44 /usr/bin/X11/X -a
root 1905 1.0 1.1 6.10M 1.01 ?? R 16:55:16 0:24.79 /usr/bin/X11/dxpa
mat 2228 0.0 0.5 1.82M 504K p5 S + 13:25:03 0:00.02 more
mat 2202 0.0 0.5 2.03M 456K p5 S 13:14:14 0:00.23 -csh (csh)
root 0 0.0 12.7 356M 11.9 ?? R < Nov 07 3-17:26:13 [kernel idle]

1 2 3 4 5 6 7

The ps command displays a snapshot of system processes in order of
decreasing CPU usage, including the execution of the ps command itself.
By the time the ps command executes, the state of system processes has
probably changed.

The ps command output includes the following information that you can use
to diagnose CPU and virtual memory problems:

1 Percentage of CPU time usage (%CPU).

2 Percentage of real memory usage (%MEM).

3 Process virtual address size (VSZ) — This is the total amount of
anonymous memory allocated to the process (in bytes).

4 Real memory (resident set) size of the process (RSS) — This is the total
amount of physical memory, in bytes, mapped to virtual pages (that
is, the total amount of memory that the application has physically
used). Shared memory is included in the resident set size figures; as a
result, the total of these figures may exceed the total amount of physical
memory available on the system.

5 Process status or state (S) — This specifies whether a process is in one
of the following states:

• Runnable (R)

• Sleeping (S) — Process has been waiting for an event or a resource
for less than 20 seconds, but it can be interrupted or suspended. For
example, the process can accept user signals or be swapped out.

• Uninterruptible sleeping (U) — Process is waiting for an event or a
resource, but cannot be interrupted or suspended. You cannot use
the kill command to stop these processes; they must come out of
the wait state to accept the signal.

• Idle (I) — Process has been sleeping for more than 20 seconds.

• Stopped (T) — Process has been stopped.

• Halted (H) — Process has been halted.

• Swapped out (W) — Process has been swapped out of memory.

• Locked into memory (L) — Process has been locked into memory and
cannot be swapped out.

• Has exceeded the soft limit on memory requirements (>).

Managing Memory Performance 12–21

• A process group leader with a controlling terminal (+).

• Has a reduced priority (N).

• Has a raised priority (<).

6 Current CPU time used (TIME), in the format hh:mm:ss.ms.

7 The command that is running (COMMAND).

From the output of the ps command, you can determine which processes are
consuming most of your system’s CPU time and memory resources, and
whether processes are swapped out. Concentrate on processes that are
running or paging. Here are some concerns to keep in mind:

• If a process is using a large amount of memory (see the RSS and VSZ
fields), the process may have excessive memory requirements. See
Section 7.1 for information about decreasing an application’s use of
memory.

• If duplicate processes are running, use the kill command to terminate
duplicate processes. See kill(1) for more information.

• If a process is using a large amount of CPU time, it may be in an infinite
loop. You may have to use the kill command to terminate the process
and then correct the problem by making changes to its source code.

You can also use the Class Scheduler to allocate a percentage of CPU
time to a specific task or application (see Section 13.2.2) or lower the
process’ priority by using either the nice or renice command. These
commands have no effect on memory usage by a process. See nice(1) or
renice(8) for more information.

• Check the processes that are swapped out. Examine the S (state) field.
A W entry indicates a process that has been swapped out. If processes
are continually being swapped out, this could indicate a lack of memory
resources. See Section 12.4 for information about increasing memory
resources.

See ps(1) for more information about this command and its options.

12.3.3 Displaying Swap Space Usage by Using the swapon Command

To display information about your swap device configuration, including the
total amount of allocated swap space, the amount of swap space that is being
used, and the amount of free swap space, enter:

/usr/sbin/swapon -s

Infomation for each swap partition is displayed similar to the following:

Swap partition /dev/disk/dsk1b (default swap):
Allocated space: 16384 pages (128MB)
In-use space: 10452 pages (63%)

12–22 Managing Memory Performance

Free space: 5932 pages (36%)

Swap partition /dev/disk/dsk4c:
Allocated space: 128178 pages (1001MB)
In-use space: 10242 pages (7%)
Free space: 117936 pages (92%)

Total swap allocation:

Allocated space: 144562 pages (1.10GB)
Reserved space: 34253 pages (23%)
In-use space: 20694 pages (14%)
Available space: 110309 pages (76%)

You can configure swap space when you first install the operating system, or
you can add swap space at a later date. Application messages, such as the
following, usually indicate that not enough swap space is configured into the
system or that a process limit has been reached:

“unable to obtain requested swap space”
“swap space below 10 percent free”

See Section 4.4.1.8 or Section 12.1.3 for information about swap space
requirements. See Section 12.2 for information about adding swap space and
distributing swap space for high performance.

See swapon(2) for more information about this command and its options.

12.3.4 Displaying the UBC by Using the dbx Debugger

If you have not disabled read-ahead, you can display the UBC by using the
dbx print command to examine the ufs_getapage_stats data structure.
For example:

/usr/ucb/dbx −k /vmunix /dev/mem (dbx) print ufs_getapage_stats

Information similar to the following is displayed:

struct {
read_looks = 2059022
read_hits = 2022488
read_miss = 36506
alloc_error = 0
alloc_in_cache = 0

}
(dbx)

To calculate the hit rate, divide the value of the read_hits field by the
value of the read_looks field. A good hit rate is a rate above 95 percent. In
the previous example, the hit rate is approximately 98 percent.

See dbx(1) for more information about this command and its options.

Managing Memory Performance 12–23

12.4 Tuning to Provide More Memory to Processes

If your system is paging or swapping, you may be able to increase the
memory that is available to processes by tuning various kernel subsystem
attributes.

Table 12–3 shows the guidelines for increasing memory resources to
processes and lists the performance benefits as well as trade offs. Some of
the guidelines for increasing the memory available to processes may affect
UBC operation and file-system caching. Adding physical memory to your
system is the best way to stop paging or swapping.

Table 12–3: Memory Resource Tuning Guidelines
Performance Benefit Guideline Tradeoff

Decrease CPU load and
demand for memory

Reduce the number of processes
running at the same time
(Section 12.4.1)

System performs
less work

Free memory Reduce the static size of the
kernel (Section 12.4.2)

Not all
functionality may
be available

Improve network throughput
under a heavy load

Increase the percentage
of memory reserved for
kernel malloc allocations
(Section 12.4.3)

Consumes memory

Improve system response
time when memory is low

Decrease cache sizes
(Section 11.1)

May degrade
file-system
performance

Free memory Reduce process memory
requirements (Section 7.1.6)

Program may not
run optimally

The following sections discuss these tuning guidelines in more detail.

12.4.1 Reducing the Number of Processes Running Simultaneously

You can improve performance and reduce the demand for memory by
running fewer applications simultaneously. Use the at or batch command
to run applications at offpeak hours.

See at(1) for more information.

12.4.2 Reducing the Static Size of the Kernel

You can reduce the static size of the kernel by deconfiguring any unnecessary
subsystems. Use the sysconfig command to display the configured
subsystems and to delete subsystems. Be sure not to remove any subsystems
or functionality that is vital to your environment.

12–24 Managing Memory Performance

See Chapter 3 for information about modifying kernel subsystem attributes.

12.4.3 Increasing the Memory Reserved for Kernel malloc Allocations

If you are running a large Internet application, you may need to increase
the amount of memory reserved for the kernel malloc subsystem. This
improves network throughput by reducing the number of packets that
are dropped while the system is under a heavy network load. However,
increasing this value consumes memory.

Related Attribute

The following list describes the generic subsystem attribute that relates to
the memory reserved for kernel allocations:

• kmemreserve_percent — Specifies the percentage of physical memory
reserved for kernel memory allocations that are less than or equal to
the page size (8 KB).

Value: 1 to 75
Default: 0, which actually specifies 0.4 percent of available memory
or 256 KB, whichever is smaller.

You can modify the kmemreserve_percent attribute without rebooting.

When to Tune

You might want to increase the value of the kmemreserve_percent
attribute if the output of the netstat -d -i command shows dropped
packets, or if the output of the vmstat -M command shows dropped packets
under the fail_nowait heading. This may occur under a heavy network
load.

See Chapter 3 for information about modifying kernel subsystem attributes.

12.5 Modifying Paging and Swapping Operations
You might improve performance by modifying paging and swapping
operations that are described in the following sections:

• Increasing the paging threshold (Section 12.5.1)

• Managing the rate of swapping (Section 12.5.2)

• Enabling aggressive swapping (Section 12.5.3)

• Limiting process resident set size (Section 12.5.4)

• Managing the rate of dirty page prewriting (Section 12.5.5)

• Managing page-in and page-out cluster sizes (Section 12.5.6)

• Managing I/O requests (Section 12.5.7)

Managing Memory Performance 12–25

• Using memory locking (Section 7.1.7)

12.5.1 Increasing the Paging Threshold

Paging is the transfer of program segments (pages) into and out of memory.
Excessive paging is not desired. You can specify the number of pages on the
free list before paging begins. See Section 12.1.4 for more information on
paging.

Related Attribute

The vm subsystem vm_page_free_target specifies the minimum number
of pages on the free list before paging begins. The default value of the
vm_page_free_target attribute is based on the amount of memory in
the system.

Use the following table to determine the default value for your system:

Size of Memory Value of vm_page_free_target

Up to 512 MB 128

513 MB to 1024 MB 256

1025 MB to 2048 MB 512

2049 MB to 4096 MB 768

More than 4096 MB 1024

You can modify the vm_page_free_target attribute without rebooting
the system.

When to Tune

Do not decrease the value of the vm_page_free_target attribute.

Do not increase the value of the vm_page_free_target attribute if
the system is not paging. You might want to increase the value of the
vm_page_free_target attribute if you have sufficient memory resources,
and your system experiences performance problems when a severe memory
shortage occurs. However, increasing this value might increase paging
activity on a low-memory system and can waste memory if it is set too high.
See Section 12.1.4 for information about paging and swapping attributes.

If you increase the default value of the vm_page_free_target attribute,
you may also want to increase the value of the vm_page_free_min attribute.

See Chapter 3 for information about modifying kernel subsystem attributes.

12–26 Managing Memory Performance

12.5.2 Managing the Rate of Swapping

Swapping begins when the free page list falls below the swapping threshold.
Excessive swapping is not desired. You can specify when swapping begins
and ends. See Section 12.1.4 for more information on swapping.

Related Attributes

The following list describes the vm subsystem attributes that relate to
modified page prewriting:

• vm_page_free_optimal — Specifies a threshold value that begins
hard swapping. When the number of pages on the free list falls below
this value for five seconds, hard swapping begins.

Value: 0 to 2,147,483,647
Default value: Automatically scaled by using this formula:
vm_page_free_min + ((vm_page_free_target -
vm_page_free_min)/ 2)

• vm_page_free_min — Specifies a threshold value that starts page
swapping. When the number of pages on the free page list falls below
this value, paging starts.

Value: 0 to 2,147,483,647
Default value: 20 (pages, or twice the amount of
vm_page_free_reserved)

• vm_page_free_reserved — Specifies a threshold value that
determines when memory is limited to privileged tasks. When the
number of pages on the free page list falls below this value, only
privileged tasks can get memory.

Value: 1 to 2,147,483,647
Default value: 10 (pages)

• vm_page_free_target — Specifies that when the number pages on the
free page list reaches this value, paging stops.

The default value is based on the amount of managed memory that is
available on the system, as follows:

Available Memory (MB) vm_page_free_target (pages)

Less than 512 128

512 to 1023 256

1024 to 2047 512

Managing Memory Performance 12–27

Available Memory (MB) vm_page_free_target (pages)

2048 to 4095 768

4096 and higher 1024

You can modify the vm_page_free_optimal, vm_page_free_min, and
vm_page_free_target attributes without rebooting the system. See
Chapter 3 for information about modifying kernel subsystem attributes.

When to Tune

Do not change the value of the vm_page_free_optimal attribute if the
system is not paging.

Decreasing the value of the vm_page_free_optimal attribute improves
interactive response time, but decreases throughput.

Increasing the value of the vm_page_free_optimal attribute moves
long-sleeping threads out of memory, frees memory, and increases
throughput. As more processes are swapped out, fewer processes are
actually executing and more work is done. However, when an outswapped
process is needed, it will have a long latency and might degrade interactive
response time.

Increase the value of the vm_page_free_optimal only by two pages at a
time. Do not specify a value that is more than the value of the vm subsystem
attribute vm_page_free_target.

12.5.3 Enabling Aggressive Task Swapping

Swapping begins when the free page list falls below the swapping threshold,
as specified by the vm subsystem vm_page_free_swap attribute. Excessive
swapping is not desired. You can specify whether or not idle tasks are
aggressively swapped out. See Section 12.1.4 for more information on
swapping.

Related Attribute

The vm subsystem vm_aggressive_swap specifies whether or not the task
swapper aggressively swaps out idle tasks.

Value: 1 or 0
Default value: 0 (disabled)

When to Tune

Aggressive task swapping improves system throughput, but it degrades
the interactive response performance. Usually, you do not need to enable
aggressive task swapping.

12–28 Managing Memory Performance

You can modify the vm_aggressive_swap attribute without rebooting. See
Chapter 3 for information about modifying kernel attributes.

12.5.4 Limiting the Resident Set Size to Avoid Swapping

By default, Tru64 UNIX does not limit the resident set size for a process.
Applications can set a process-specific limit on the number of pages resident
in memory by specifying the RLIMIT_RSS resource value in a setrlimit()
call. However, applications are not required to limit the resident set size of a
process and there is no systemwide default limit. Therefore, the resident
set size for a process is limited only by system memory restrictions. If the
demand for memory exceeds the number of free pages, processes with large
resident set sizes are likely candidates for swapping. See Section 12.1.4
for more information on swapping.

To avoid swapping a process because it has a large resident set size, you can
specify process-specific and systemwide limits for resident set sizes.

Related Attributes

The following list describes the vm subsystem attributes that relate to
limiting the resident set size:

• anon_rss_enforce — Specifies different levels of control over process
set sizes and when the pages that a process is using in anonymous
memory are swapped out (blocking the process) during times of
contention for free pages.

Value: no limit (0), a soft limit (1), or a hard limit (2)
Default value: 0 (no limit)

Setting anon_rss_enforce to either 1 or 2 allows you to enforce
a systemwide limit on resident set size for a process through the
vm_rss_max_percent attribute.

Setting anon_rss_enforce to 1 (a soft limit) enables finer control over
process blocking and paging of anonymous memory by allowing you to set
the vm_rss_block_target and vm_rss_wakeup_target attributes.

• vm_rss_max_percent — Specifies a percentage of the total pages of
anonymous memory on the system that is the systemwide limit on the
resident set size for any process. The value of this attribute has an effect
only if the anon_rss_enforce attribute is set to 1 or 2.

Value: 0 to 100
Default value: 100 percent

You can decrease this percentage to enforce a systemwide limit on the
resident set size for any process. Be aware, however, that this limit
applies to privileged and unprivileged processes and will override a

Managing Memory Performance 12–29

larger resident set size that may be specified for a process through the
setrlimit() call.

• vm_rss_block_target — Specifies a threshold number of free
pages that will start swapping anonymous memory from the resident
set of a process. Paging of anonymous memory starts when the
number of free pages meets or exceeds this value. The process is
blocked until the number of free pages reaches the value set by the
vm_rss_wakeup_target attribute.

Value: 0 to 2,147,483,647
Default value: Same as vm_page_free_optimal

Increasing the value starts paging of anonymous memory earlier than
when hard swapping occurs. Decreasing the value delays paging of
anonymous memory beyond the point at which hard swapping occurs.

• vm_rss_wakeup_target — Specifies a threshold number of free pages
that will unblock a process whose anonymous memory is swapped out.
The process is unblocked when the number of free pages meets this value.

Value: 0 to 2,147,483,647
Default value: Same as vm_page_free_optimal

Increasing the value frees more memory before unblocking the task.
Decreasing the value unblocks tasks sooner, but less memory is freed.

• vm_page_free_optimal — Specifies a threshold value that begins
hard swapping. When the number of pages on the free list falls below
this value for five seconds, hard swapping begins.

Value: 0 to 2,147,483,647
Default value: Automatically scaled by using this formula:
vm_page_free_min + ((vm_page_free_target -
vm_page_free_min) / 2)

When to Tune

You do not need to limit resident set sizes if the system is not paging.

If you limit the resident set size, either for a specific process or systemwide,
you must also use the vm subsystem attribute anon_rss_enforce to set
either a soft or hard limit on the size of a resident set.

If you enable a hard limit, a task’s resident set cannot exceed the limit. If
a task reaches the hard limit, pages of the task’s anonymous memory are
moved to swap space to keep the resident set size within the limit.

If you enable a soft limit, anonymous memory paging will start when the
following conditions are met:

12–30 Managing Memory Performance

• A task’s resident set exceeds the systemwide or per-process limit.

• The number of pages of the free page list is less than the value of the
vm_rss_block_target attribute.

You cannot modify the anon_rss_enforce attribute without rebooting the
system. You can modify the vm_page_free_optimal, vm_rss_maxper-
cent, vm_rss_block_target, and vm_rss_wakeup_target attributes
without rebooting the system.

12.5.5 Managing Modified Page Prewriting

The vm subsystem attempts to prevent a memory shortage by prewriting
modified (dirty) pages to disk. To reclaim a page that was prewritten, the
virtual memory subsystem only needs to validate the page, which can
improve performance. When the virtual memory subsystem anticipates
that the pages on the free list will soon be depleted, it prewrites to disk the
oldest inactive and UBC LRU pages. You can tune attributes that relate to
prewriting. See Section 12.1.4.1 for more information about prewriting.

Related Attributes

The following list describes the vm subsystem attributes that relate to
modified page prewriting:

• vm_ubcdirtypercent — Specifies the percentage of pages that must be
dirty (modified) before the UBC starts writing them to disk.

Value: 0 to 100
Default: 10 percent

• vm_page_prewrite_target — Specifies the maximum number of
modified UBC (LRU) pages that the vm subsystem will prewrite to disk if
it anticipates running out of memory.

Value: 0 to 2,147,483,647
Default: vm_page_free_target * 2

• vm_page_free_target — Specifies that when the number pages on the
free page list reaches this value, paging stops.

The following table shows the default value is based on the amount of
managed memory that is available on the system:

Available Memory (MB) vm_page_free_target (pages)

Less than 512 128

512 to 1023 256

1024 to 2047 512

Managing Memory Performance 12–31

Available Memory (MB) vm_page_free_target (pages)

2048 to 4095 768

4096 and higher 1024

You can modify the vm_page_prewrite_target or vm_ubcdirtypercent
attribute without rebooting the system.

When to Tune

You do not need to modify the value of the vm_page_prewrite_target
attribute if the system is not paging.

Decreasing the value of the vm_page_prewrite_target attribute will
improve peak workload performance, but it will cause a drastic performance
degradation when memory is exhausted.

Increasing the value of the vm_page_prewrite_target attribute will:

• Prevent a drastic performance degradation when memory is exhausted,
but will also reduce peak workload performance.

• Increase the amount of continuous disk I/O, but provide better file
system integrity if a system crash occurs.

Increase the value of the vm_page_prewrite_target attribute by
increments of 64 pages.

To increase the rate of UBC LRU dirty page prewriting, decrease the value
of the vm_ubcdirtypercent attribute by increments of 1 percent.

See Chapter 3 for information about modifying kernel attributes.

12.5.6 Managing Page-In and Page-Out Clusters Sizes

The virtual memory subsystem reads in and writes out additional pages to
the swap device in an attempt to anticipate the number of pages that it will
need. You can specify the number of additional pages to the swap device.

Related Attributes

The following list describes the vm subsystem attributes that relate to
reading and writing pages:

• vm_max_rdpgio_kluster — Specifies the size, in bytes, of the largest
page-in (read) cluster that is passed to the swap device.

Value: 8192 to 131,072
Default: 16,384 (bytes) (16 KB)

12–32 Managing Memory Performance

• vm_max_wrpgio_kluster — Specifies the size, in bytes, of the largest
page-out (write) cluster that is passed to the swap device.

Value: 8192 to 131,072
Default: 32,768 (bytes) (32 KB)

You cannot modify the vm_max_rdpgio_kluster and vm_max_wrp-
gio_kluster attributes without rebooting the system. See Chapter 3 for
information about modifying kernel subsystem attributes.

When to Tune

You might want to increase the value of the vm_max_rdpgio_kluster
attribute if you have a large-memory system and you are swapping processes.
Increasing the value increases the peak workload performance because more
pages will be in memory and the system will spend less time page faulting,
but will consume more memory and decrease system performance.

You may want to increase the value of the vm_max_wrpgio_kluster
attribute if you are paging and swapping processes. Increasing the value
improves the peak workload performance and conserves memory, but might
cause more page ins and decrease the total system workload performance.

12.5.7 Managing I/O Requests on the Swap Partition

Swapping begins when the free page list falls below the swapping
threshold. Excessive swapping is not desired. You can specify the number of
outstanding synchronous and asynchronous I/O requests that can be on swap
partitions at one time. See Section 12.1.4 for more information on swapping.

Synchronous swap requests are used for page-in operations and task
swapping. Asynchronous swap requests are used for page-out operations
and for prewriting modified pages.

Related Attributes

The following list describes the vm subsystem attributes that relate to
requests in swap partitions:

• vm_syncswapbuffers — Specifies the number of synchronous I/O
requests that can be outstanding to the swap partitions at one time.
Synchronous swap requests are used for page-in operations and task
swapping.

Value: 1 to 2,147,483,647
Default: 128 (requests)

• vm_asyncswapbuffers — Specifies the number of asynchronous
I/O requests per swap partition that can be outstanding at one time.

Managing Memory Performance 12–33

Asynchronous swap requests are used for page-out operations and for
prewriting modified pages.

Value: 0 to 2,147,483,647
Default: 4 (requests)

When to Tune

The value of the vm_syncswapbuffers attribute should be equal to
the approximate number of simultaneously running processes that the
system can easily support. Increasing the value increases overall system
throughput, but it consumes memory.

The value of the vm_asyncswapbuffers attribute should be equal to the
approximate number of I/O transfers that a swap device can support at
one time. If you are using LSM, you might want to increase the value of
the vm_asyncswapbuffers attribute, which causes page-in requests to
lag asynchronous page-out requests. Decreasing the value will use more
memory, but it will improve the interactive response time.

You can modify the vm_syncswapbuffers attribute and the
vm_asyncswapbuffers attribute without rebooting the system. See
Chapter 3 for information about modifying kernel subsystem attributes.

12.6 Reserving Physical Memory for Shared Memory

Granularity hints allow you to reserve a portion of physical memory at boot
time for shared memory. This functionality allows the translation lookaside
buffer to map more than a single page, and enables shared page table entry
functionality, which may result in more cache hits.

On some database servers, using granularity hints provides a 2 to 4 percent
run-time performance gain that reduces the shared memory detach time.
See your database application documentation to determine if you should
use granularity hints.

For most applications, use the Segmented Shared Memory (SSM)
functionality (the default) instead of granularity hints.

To enable granularity hints, you must specify a value for the vm subsystem
attribute gh_chunks. In addition, to make granularity hints more effective,
modify applications to ensure that both the shared memory segment starting
address and size are aligned on an 8-MB boundary.

Section 12.6.1 and Section 12.6.2 describe how to enable granularity hints.

12–34 Managing Memory Performance

12.6.1 Tuning the Kernel to Use Granularity Hints

To use granularity hints, you must specify the number of 4-MB chunks of
physical memory to reserve for shared memory at boot time. This memory
cannot be used for any other purpose and cannot be returned to the system
or reclaimed.

To reserve memory for shared memory, specify a nonzero value for the
gh_chunks attribute. For example, if you want to reserve 4 GB of memory,
specify 1024 for the value of gh_chunks (1024 * 4 MB = 4 GB). If you specify
a value of 512, you will reserve 2 GB of memory.

The value you specify for the gh_chunks attribute depends on your database
application. Do not reserve an excessive amount of memory, because this
decreases the memory available to processes and the UBC.

______________________ Note _______________________

If you enable granularity hints, disable the use of segmented
shared memory by setting the value of the ipc subsystem
attribute ssm_threshold attribute to 0.

You can determine if you have reserved the appropriate amount of memory.
For example, you can initially specify 512 for the value of the gh_chunks
attribute. Then, enter the following dbx commands while running the
application that allocates shared memory:

/usr/ucb/dbx -k /vmunix /dev/mem

(dbx) px &gh_free_counts
0xfffffc0000681748
(dbx) 0xfffffc0000681748/4X
fffffc0000681748: 0000000000000402 0000000000000004
fffffc0000681758: 0000000000000000 0000000000000002
(dbx)

The previous example shows:

• The first number (402) specifies the number of 512-page chunks (4 MB).

• The second number (4) specifies the number of 64-page chunks.

• The third number (0) specifies the number of 8-page chunks.

• The fourth number (2) specifies the number of 1-page chunks.

To save memory, you can reduce the value of the gh_chunks attribute until
only one or two 512-page chunks are free while the application that uses
shared memory is running.

The following vm subsystem attributes also affect granularity hints:

Managing Memory Performance 12–35

• The gh_min_seg_size — Specifies the shared memory segment size
above which memory is allocated from the memory reserved by the
gh_chunks attribute. The default is 8 MB.

• gh_fail_if_no_mem — When set to 1 (the default), the shmget
function returns a failure if the requested segment size is larger than
the value specified by the gh_min_seg_size attribute, and if there is
insufficient memory in the gh_chunks area to satisfy the request.

If the value of the gh_fail_if_no_mem attribute is 0, the entire request
will be satisfied from the pageable memory area if the request is larger
than the amount of memory reserved by the gh_chunks attribute.

• gh_keep_sorted — Specifies whether the memory reserved for
granularity hints is sorted. The default does not sort reserved memory.

• gh_front_alloc — Specifies whether the memory reserved for
granularity hints is allocated from low physical memory addresses
(the default). This functionality is useful if you have an odd number
of memory boards.

In addition, messages will display on the system console indicating
unaligned size and attach address requests. The unaligned attach messages
are limited to one per shared memory segment.

See Chapter 3 for information about modifying kernel subsystem attributes.

12.6.2 Modifying Applications to Use Granularity Hints

You can make granularity hints more effective by making both the shared
memory segment starting address and size aligned on an 8-MB boundary.

To share third-level page table entries, the shared memory segment attach
address (specified by the shmat function) and the shared memory segment
size (specified by the shmget function) must be aligned on an 8-MB
boundary. This means that the lowest 23 bits of both the address and the
size must be 0.

The attach address and the shared memory segment size is specified by
the application. In addition, System V shared memory semantics allow a
maximum shared memory segment size of 2 GB minus 1 byte. Applications
that need shared memory segments larger than 2 GB can construct these
regions by using multiple segments. In this case, the total shared memory
size specified by the user to the application must be 8-MB aligned. In
addition, the value of the shm_max attribute, which specifies the maximum
size of a System V shared memory segment, must be 8-MB aligned.

If the total shared memory size specified to the application is greater than 2
GB, you can specify a value of 2139095040 (or 0x7f800000) for the value of

12–36 Managing Memory Performance

the shm_max attribute. This is the maximum value (2 GB minus 8 MB) that
you can specify for the shm_max attribute and still share page table entries.

Use the following dbx command sequence to determine if page table entries
are being shared:

/usr/ucb/dbx -k /vmunix /dev/mem

(dbx) p *(vm_granhint_stats *)&gh_stats_store
struct {

total_mappers = 21
shared_mappers = 21
unshared_mappers = 0
total_unmappers = 21
shared_unmappers = 21
unshared_unmappers = 0
unaligned_mappers = 0
access_violations = 0
unaligned_size_requests = 0
unaligned_attachers = 0
wired_bypass = 0
wired_returns = 0

}
(dbx)

For the best performance, the shared_mappers kernel variable
should be equal to the number of shared memory segments,
and the unshared_mappers, unaligned_attachers, and
unaligned_size_requests variables should be 0.

Because of how shared memory is divided into shared memory segments,
there may be some unshared segments. This occurs when the starting
address or the size is aligned on an 8-MB boundary. This condition may be
unavoidable in some cases. In many cases, the value of total_unmappers
will be greater than the value of total_mappers.

Shared memory locking changes a lock that was a single lock into a hashed
array of locks. The size of the hashed array of locks can be modified by
modifying the value of the vm subsystem attribute vm_page_lock_count.
The default value is 0.

12.7 Improving Performance with Big Pages

Big pages memory allocation supports mapping a page of virtual memory to
8, 64, or 512 pages of physical memory. Given physical memory’s current
8-KB page size, this means that a single page of virtual memory can map
to 64, 512, or 4096 KB. Using big pages can minimize the performance
penalties that are associated with misses in the translation lookaside buffer.
The result can be improved performance for applications that need to map
large amounts of data.

Unlike granularity hints, which reserve memory at boot time and can be
used only with system V shared memory, big pages allocates memory at run

Managing Memory Performance 12–37

time and supports anonymous memory (for example, mmap and malloc) as
well as System V shared memory, stack memory, and text segments.

Big pages memory allocation is most effective when used with
memory-intensive applications, such as large databases, running on systems
with robust physical memory resources. Systems with limited memory
resources, and systems where the workload stresses memory resources, are
not good candidates for using big pages. Similarly, if a system does not run
memory-intensive applications that require large chunks of memory, it may
not benefit from big pages.

12.7.1 Using Big Pages

Enabling and using big pages is controlled through the following attributes
of the vm kernel subsystem:

vm_bigpg_enabled — Enable big pages

Enables (1) or disables (0) big pages.

Enabling big pages automatically disables granularity hints;
gh_chunks, rad_gh_regions, and related attributes are ignored
when vm_bigpg_enabled is set to 1.

When big pages is disabled, the associated vm_bigpg* attributes are
ignored.

Default value: 0 (disabled)

Can be set only at boot time.

vm_bigpg_thresh — Apportion free memory among page sizes

The percentage of physical memory that should be maintained on the
free page list for each of the four possible page sizes (8, 64, 512, and
4096 KB).

When a page of memory is freed, an attempt is made to coalesce the
page with adjacent pages to form a bigger page. When an 8-KB page
is freed, an attempt is made to coalesce it with 7 other such pages to
form a 64-KB page. If that succeeds, the 64-KB page is now free and
so an attempt is made to coalesce it with 7 other 64 KB pages to form
a 512 KB page. This page is coalesced with 7 other 512 KB pages, if
available, to form a 4 Mbyte page. The process stops there.

The vm_bigpg_thresh attribute sets the threshold at which coalescing
of free memory for each page size begins. If vm_bigpg_thresh is 0
percent, then attempts to coalesce pages of size 8, 64, or 512 KB occur
whenever a page of that size is freed. The result can be that all smaller
pages are coalesced and free pages are all 4096 KB in size.

12–38 Managing Memory Performance

If vm_bigpg_thresh is 6 percent, the default, then attempts to
coalesce pages of 8 KB occur only after 6 percent of system memory
consists of 8 KB pages. The same holds for the larger page sizes. The
result is 6 percent of free pages are 8 KB in size, 6 percent are 64 KB
in size, 6 percent are 512 KB in size. The remaining free pages are
4096 KB in size. This assumes there is enough free memory to allocate
6 percent of system memory to 512-KB pages. When free memory
gets low, allocation of free pages to the largest page size, 4096 KB,
is affected first, then allocation to 512-KB pages, and last allocation
to 64-KB page sizes.

With smaller values of vm_bigpg_thresh, more pages are coalesced,
and so fewer pages are available at the smaller sizes. This can result
in a performance degradation as a larger page will then have to be
broken into smaller pieces to satisfy an allocation request for one of
the smaller page sizes. If vm_bigpg_thresh is too large, fewer large
size pages will be available and applications may not be able to take
full advantage of big pages. Generally, the default value will suffice,
but this value can be increased if the system work load requires more
small pages.

Default value: 6 percent. Minimum value: 0 percent. Maximum value:
25 percent.

Can be set at boot time and run time.

12.7.2 Determining when a Memory Object uses Big Pages

The attributes that determine when a particular type of memory object
uses big pages, vm_bigpg_anon, vm_bigpg_seg, vm_bigpg_shm,
vm_bigpg_ssm, and vm_bigpg_stack, each has a default value of 64. This
represents, in KB, the smallest amount of memory that a process can request
and still benefit from an extended virtual page size.

For this default value of 64, the kernel handles a memory allocation request
for 64 KB or greater by creating, depending on the size of the request, one or
more virtual pages whose sizes can be a mix of 8 KB, 64 KB, 512 KB, and
4096 KB. The attribute value does not determine the page size. That is,
the 64-KB default does not mean that all virtual pages are 64 KB in size.
Instead, the kernel chooses a page size (or combination of sizes) that is most
appropriate for the total amount of memory being requested and does so in
the context of any alignment restrictions that the request might impose. The
kernel handles memory allocation requests for fewer than 64 KB by using
the default algorithm that maps one virtual page to 8 KB of physical memory.

Increasing the value of the attribute to greater than 64 restricts big pages
memory allocation to a subset of the applications that might otherwise
benefit from it. For example, setting an attribute to 8192 means that only

Managing Memory Performance 12–39

programs that request allocations of 8192 or more KB are allocated virtual
pages larger than 8 KB.

Setting the value of vm_bigpg_anon, vm_bigpg_seg, vm_bigpg_shm,
vm_bigpg_ssm, or vm_bigpg_stack to 0 disables big pages memory
allocation for the type of memory object identified by the attribute. For
example, setting vm_bigpg_anon to 0 disables big pages memory allocation
for processes that request allocations of anonymous memory. There are no
clear benefits to disabling big pages memory allocation for specific types of
memory.

Changes to vm_bigpg_anon, vm_bigpg_seg, vm_bigpg_shm,
vm_bigpg_ssm, or vm_bigpg_stack after the system is booted apply only
to new memory allocations; run-time changes do not affect those memory
mappings that are already in place.

Setting any of the following attributes to a value from 1 to 64 is the same as
setting it to 64.

______________________ Note _______________________

Consult your support representative before changing any of the
following per-object controls to values other than their default
of 64 KB.

vm_bigpg_anon — Big pages for anonymous memory

Sets the minimum amount of anonymous memory (in KB) that a user
process must request before the kernel maps a virtual page in the
process address space to multiple physical pages. Anonymous memory
is requested by calls to mmap(), nmmap(),malloc(), and amalloc().
Anonymous memory for memory mapped files is not supported.

____________________ Note ____________________

If the anon_rss_enforce attribute (which sets a limit on
the resident set size of a process) is 1 or 2, it overrides and
disables big pages memory allocation of anonymous and
stack memory. Set anon_rss_enforce to 0 if you want big
pages memory allocation for anonymous and stack memory.

Default value: 64 KB

Can be set at boot time and run time.

12–40 Managing Memory Performance

vm_bigpg_seg — Big pages for program text objects

Sets the minimum amount of memory (in KB) that a user process must
request for a program text object before the kernel maps a virtual page
in the process address space to multiple physical pages. Allocations
for program text objects are generated when the process executes
a program or loads a shared library. See also the descriptions of
vm_segment_cache_max and vm_segmentation.

Default value: 64 KB

Can be set at boot time and run time.

vm_bigpg_shm — Big pages for shared memory

Sets the minimum amount of System V shared memory, in KB, that
a user process must request before the kernel maps a virtual page
in the process address space to multiple physical pages. Allocations
for System V shared memory are generated by calls to shmget(),
shmctl(), and nshmget().

Default value: 64 KB

Can be set at boot time and run time.

vm_bigpg_ssm — Big pages for segmented shared memory

Sets the minimum amount, in KB, of segmented shared memory
(System V shared memory with shared page tables) that a user process
must request before the kernel maps a virtual page in the process
address space to multiple physical pages. Requests for segmented
shared memory are generated by calls to shmget(), shmctl(), and
nshmget().

The vm_bigpg_ssm attribute is disabled if the ssm_threshold
IPC attribute is set to 0. The value of ssm_threshold must be equal
to or greater than the value of SSM_SIZE. By default, ssm_threshold
equals SSM_SIZE. See sys_attrs_ipc(5) for more information.

Default value: 64 KB

Can be set at boot time and run time.

vm_bigpg_stack — Big pages for stack memory

Sets the minimum amount of memory, in KB, needed for the
user process stack before the kernel maps a virtual page in the
process address space to multiple physical pages. Stack memory is
automatically allocated by the kernel on the user’s behalf.

If the anon_rss_enforce attribute (which sets a limit on the
resident set size of a process) is 1 or 2, it overrides and disables
big pages memory allocation of anonymous and stack memory. Set

Managing Memory Performance 12–41

anon_rss_enforce to 0 if you want big pages memory allocation for
anonymous and stack memory.

Default value: 64 KB

Can be set at boot time and run time.

See sys_attrs_vm(5) for more information.

12–42 Managing Memory Performance

13
Managing CPU Performance

You can improve system performance by optimizing CPU resources. This
chapter describes how to perform the following tasks:

• Obtain information about CPU performance by using the CPU
monitoring tools (Section 13.1)

• Improve CPU performance by adding processors or running the
class scheduler to control the execution of tasks and applications.
(Section 13.2)

13.1 Monitoring CPU Performance Information

Table 13–1 describes the tools you can use to gather information about
CPU usage.

Table 13–1: CPU Monitoring Tools
Name Description Reference

ps Displays current statistics for
running processes, including
CPU usage, the processor
and processor set, and the
scheduling priority.

Section 12.3.2

vmstat Displays information about
process threads, virtual memory
usage (page lists, page faults,
page ins, and page outs),
interrupts, and CPU usage
(percentages of user, system,
and idle times). First reported
are the statistics since boot
time; subsequent reports are
the statistics since a specified
interval of time.

Section 12.3.1

Managing CPU Performance 13–1

Table 13–1: CPU Monitoring Tools (cont.)

Name Description Reference

uptime Displays the system load
average and the number of jobs
in the run queue for the last 5
seconds, the last 30 seconds,
and the last 60 seconds. The
uptime command also shows
the number of users logged
into the system and how long a
system has been running.

Section 13.1.1

(kdbx)
cpustat

Displays CPU statistics,
including the percentages of
time the CPU spends in various
states.

Section 13.1.2

(kdbx)
lockstats

Displays lock statistics for each
lock class on each CPU in the
system.

Section 13.1.3

sys_check Analyzes system configuration
and displays statistics and
checks kernel variable settings
and memory and CPU resources,
and provides performance data
and lock statistics for SMP and
kernel profiles.

See Section 2.3.3 or see
sys_check(8) for more
information.

Process Tuner Displays current statistics for
running processes. Invoke the
Process Tuner graphical user
interface (GUI) from the CDE
Application Manager to display
a list of processes and their
characteristics, display the
processes running for yourself
or all users, display and modify
process priorities, or send a
signal to a process.
While monitoring processes, you
can select parameters to view
(percent of CPU usage, virtual
memory size, state, and nice
priority) and also sort the view.

Section 13.2.2.1.1

13–2 Managing CPU Performance

Table 13–1: CPU Monitoring Tools (cont.)

Name Description Reference

monitor Collects a variety of performance
data on a running system and
either displays the information
in a graphical format or saves it
to a binary file.

See monitor(3) for more
information.

top Provides continuous reports
on the state of the system,
including a list of the processes
using the most CPU resources.

The top command is
available on the Tru64 UNIX
Freeware CD-ROM. See
ftp://eecs.nwu.edu/pub/top for
information.

ipcs -a Displays interprocess
communication (IPC) statistics
for currently active message
queues, shared-memory
segments, semaphores, remote
queues, and local queue headers.
The information provided in
the following fields reported
by the ipcs −a command can
be especially useful: QNUM,
CBYTES, QBYTES, SEGSZ, and
NSEMS.

See ipcs(1) for more
information.

w Displays the current time, the
amount of time since the system
was last started, the users
logged in to the system, and
the number of jobs in the run
queue for the last 5 seconds, 30
seconds, and 60 seconds.

See w(1) for more information.

xload Displays the system load
average in a histogram that is
periodically updated.

See xload(1X) for more
information.

The following sections describe the ps, vmstat, uptime, cpustat, and
lockstats commands in detail.

13.1.1 Monitoring the Load Average by Using the uptime Command

The uptime command shows how long a system has been running and the
load average. The load average counts the jobs that are waiting for disk I/O,
and applications whose priorities have been changed with either the nice or
the renice command. The load average numbers give the average number
of jobs in the run queue for the last 5 seconds, the last 30 seconds, and the
last 60 seconds.

Managing CPU Performance 13–3

An example of the uptime command is as follows:

/usr/ucb/uptime
1:48pm up 7 days, 1:07, 35 users, load average: 7.12, 10.33, 10.31

The command output displays the current time, the amount of time since
the system was last started, the number of users logged into the system,
and the load averages for the last 5 seconds, the last 30 seconds, and the
last 60 seconds.

From the command output, you can determine whether the load is increasing
or decreasing. An acceptable load average depends on your type of system
and how it is being used. In general, for a large system, a load of 10 is high,
and a load of 3 is low. Workstations should have a load of 1 or 2.

If the load is high, look at what processes are running with the ps command.
You may want to run some applications during offpeak hours. See
Section 12.3.2 for information about the ps command.

You can also lower the priority of applications with the nice or renice
command to conserve CPU cycles. See nice(1) and renice(8) for more
information.

13.1.2 Checking CPU Usage by Using the kdbx Debugger cpustat
Extension

The kdbx debugger cpustat extension displays CPU statistics, including
the percentages of time the CPU spends in the following states:

• Running user-level code

• Running system-level code

• Running at a priority set with the nice function

• Idle

• Waiting (idle with input or output pending)

The cpustat extension to the kdbx debugger can help application developers
determine how effectively they are achieving parallelism across the system.

By default, the kdbx cpustat extension displays statistics for all CPUs
in the system. For example:

/usr/bin/kdbx −k /vmunix /dev/mem
(kdbx)cpustat
Cpu User (%) Nice (%) System (%) Idle (%) Wait (%)
===== ========== ========== ========== ========== ==========

0 0.23 0.00 0.08 99.64 0.05
1 0.21 0.00 0.06 99.68 0.05

See the Kernel Debugging manual and kdbx(8) for more information.

13–4 Managing CPU Performance

13.1.3 Checking Lock Usage by Using the kdbx Debugger lockstat
Extension

The kdbx debugger lockstats extension displays lock statistics for each
lock class on each CPU in the system, including the following information:

• Address of the structure

• Class of the lock for which lock statistics are being recorded

• CPU for which the lock statistics are being recorded

• Number of instances of the lock

• Number of times that processes have tried to get the lock

• Number of times that processes have tried to get the lock and missed

• Percentage of time that processes miss the lock

• Total time that processes have spent waiting for the lock

• Maximum amount of time that a single process has waited for the lock

• Minimum amount of time that a single process has waited for the lock

For example:

/usr/bin/kdbx −k /vmunix /dev/mem
(kdbx)lockstats

See the Kernel Debugging manual and kdbx(8) for more information.

13.2 Improving CPU Performance

A system must be able to efficiently allocate the available CPU cycles
among competing processes to meet the performance needs of users and
applications. You can improve performance by optimizing CPU usage.

Table 13–2 describes the guidelines to improve CPU performance.

Table 13–2: Primary CPU Performance Improvement Guidelines
Guidelines Performance Benefit Tradeoff

Add processors
(Section 13.2.1)

Increases CPU resources Applicable only for
multiproccessing systems,
and may affect virtual
memory performance

Use the class scheduler
(Section 13.2.2)

Allocates CPU resources
to critical applications

None

Prioritize job
(Section 13.2.3)

Ensures that important
applications have the
highest priority

None

Managing CPU Performance 13–5

Table 13–2: Primary CPU Performance Improvement Guidelines (cont.)

Guidelines Performance Benefit Tradeoff

Schedule jobs at offpeak
hours (Section 13.2.4)

Distributes the system load None

Stop the advfsd daemon
(Section 13.2.5)

Decreases demand for
CPU power

Applicable only if you
are not using the AdvFS
graphical user interface

Use hardware RAID
(Section 13.2.6)

Relieves the CPU of disk
I/O overhead and provides
disk I/O performance
improvements

Increases costs

The following sections describe how to optimize your CPU resources. If
optimizing CPU resources does not solve the performance problem, you may
have to upgrade your CPU to a faster processor.

13.2.1 Adding Processors

Multiprocessing systems allow you to expand the computing power
of a system by adding processors. Workloads that benefit most from
multiprocessing have multiple processes or multiple threads of execution
that can run concurrently, such as database management system (DBMS)
servers, Internet servers, mail servers, and compute servers.

You may be able to improve the performance of a multiprocessing system
that has only a small percentage of idle time by adding processors. See
Section 12.3.1 for information about checking idle time.

Before you add processors, you must ensure that a performance problem
is not caused by the virtual memory or I/O subsystems. For example,
increasing the number of processors will not improve performance in a
system that lacks sufficient memory resources.

In addition, increasing the number of processors may increase the demands
on your I/O and memory subsystems and could cause bottlenecks.

If you add processors and your system is metadata-intensive (that is, it
opens large numbers of small files and accesses them repeatedly), you can
improve the performance of synchronous write operations by using a RAID
controller with a write-back cache (see Section 9.4).

13.2.2 Using the Class Scheduler

The class scheduler provides you with a method of controlling the execution
of tasks or applications by restricting the length of time that they can
access the processor (CPU). For example, daemons such as the print spooler

13–6 Managing CPU Performance

are given less access time. The CPU will then have more time available
to perform other tasks. To do this, you specify that the print daemon
/usr/lbin/lpd is allowed to use no more than a certain percentage of
the available CPU time. You can group resource user identifiers, such as a
user’s UID (user identification), into classes and assign the required CPU
access time to each class.

This feature can help you to allocate system resources so that the most
important work receives the required processing time. For example, you
might want to run two versions of a production database on your system.
One version is used as part of your business operations, while the other is a
test copy, with different tuning parameters. You can assign the test database
to a different class to prevent it from affecting your daily operations.

To set up and use the class scheduler, you must complete the following steps:

1. Plan the allocation of CPU resources.

2. Use class_admin to set up and maintain the class database.

3. Create classes and add members to the classes.

4. Verify class entries using the show command.

5. Save the entries to the database.

6. Enable class scheduling to start the daemon.

Use the class scheduler commands to monitor and control scheduling as
follows:

• Execute class_admin commands such as stat from the command line
or a shell script without running an interactive session

• Use the runclass command to execute a task according to the priorities
set for a particular class

The following sections suggest a systematic approach to using class
scheduling, although it is not necessary to perform tasks in a specific
sequence. There are two methods of accessing the class scheduler:

• Manual

By executing class_admin commands from the command line to
configure a default database, add classes and class members, and enable
the class scheduling daemon to create a quick fix to a CPU resource
sharing problem.

• Graphical Interface

By using the graphical user interface available as a SysMan Menu
suboption, Class Scheduling, which is available under the Monitoring
and Tuning menu option.

Managing CPU Performance 13–7

See the System Administration manual for information on running the
SysMan Menu. Section 13.2.2.6 describes how you use the graphical
interface. See the online help for additional information on valid data
entries.

The following reference pages contain detailed information on using the
class scheduler commands and options:

• class_scheduling(4)

• class_admin(8)

• runclass(1)

• sysman(8)

The following command displays online help for the class_admin command:

/usr/sbin/class_admin help

13.2.2.1 Class Scheduler Overview

To use the class scheduler, you must first create a database file and populate
the file with one or more classes. Each class is assigned a CPU value that
controls its access to processing time, expressed as a percentage of the total
CPU time availability. You can assign one or more applications or groups
of applications to a class, identified according to a unique system process
identifier such as:

• UID — User identifier, a unique number assigned to each user account
(login)

• GID — Group identifier, a number or name assigned to several user
accounts to indicate that they belong to the same group

• PID — Process identifier, a system-assigned number that is unique to
each process

• PGID — Process group identifier, a system-assigned number that is
unique to each process group

• SESS — Session identifier, a system-assigned number that is unique
to each session

The PID, PGID, and SESS identifiers are usually temporary and do not
persist across a reboot, ceasing to exist when a task is completed. They
are not stored in the database and have no effect when the system or task
is restarted.

After the database is established, you can enable class scheduling. This
operation starts a class scheduling daemon and puts the CPU access
restrictions into effect. Other commands enable you to review classes, change

13–8 Managing CPU Performance

contents or scheduling parameters, and delete components or entire classes.
When a class scheduling database is configured and enabled, you can:

• Use runclass to execute a task (process) according to the CPU access
value set for a specific class. For example, you might set a value for
interactive operations that is much higher than background processes
such as print daemons. To temporarily use the higher value for a print
job, you can execute the lpr command in the same class as interactive
operations.

• Use the class_admin command to execute class scheduling commands
from within scripts.

13.2.2.1.1 Related Utilities

The following utilities are also available for use when monitoring and tuning
processes:

• The nice command

• The Process Tuner (dxproctuner) graphical interface, available
from the CDE MonitoringTuning folder in the Application Manager -
System_Admin

• You can invoke the iostat and vmstat commands from the SysMan
Menu

13.2.2.1.2 Invoking the Class Scheduler

The class scheduler is provided as both a command-line interface and a
graphical user interface. You can invoke the class scheduler in several ways,
depending on which user environment you are working from:

• From the SysMan Menu, select the Monitoring and Tuning branch, then
select the Class Scheduling task.

• From the command line, enter either of the following commands:

sysman class_sched

sysman -menu "Class Scheduling"

• From CDE (assuming your system is running a graphics environment
with CDE), follow these steps:

1. Select the Application Manager from the CDE front panel.

2. Select the System_Admin Software Management Group.

3. Select the Configuration Software Management Group.

4. Select the class scheduler icon.

Managing CPU Performance 13–9

The following sections focus on using the command-line method, and provide
a brief introduction to using the graphical interface. See the online help for
more information in using the graphical interface.

13.2.2.2 Planning Class Scheduling

How you allocate CPU resources depends on your system environment and
what resources and priorities must be considered. A typical scenario is to
assign a higher CPU percentage to interactive tasks so that users do not
encounter long response times. Most batch or background processes will be
assigned a lower CPU percentage, while some specific background processes
might require a higher CPU percentage. For example, if a nightly backup is
being performed, you might not want it to have such a low CPU percentage
that it does not complete in a reasonable time.

If your system is involved with critical real-time tasks that must take
precedence over interactive processes, your course of action might be
different. In such cases you should design a baseline that assigns processes
to classes. You can then monitor processes and gather user feedback to tune
the database by moving tasks from class to class or by changing the CPU
access time of the classes.

Do not use the root account to create test processes when you configure class
scheduling. Root account processes always take precedence over others, even
when assigned to an existing restricted class.

13.2.2.3 Configuring Class Scheduling

Use the class_admin command to configure an initial database. This
command provides:

• An interactive command (with subcommands) that enables you to create
and administer a database of classes. The database is stored in the
binary file /etc/class, which cannot be manually edited. Type help at
the class> command prompt for a list of options.

• A command mode that allows you to execute class_admin commands at
the command prompt, or include commands in shell scripts.

A database must be configured before you can enable class scheduling with
the enable command. If a database does not exist when you enter the
class_admin command, the command will invoke an interactive session
and prompt you to automatically configure a database. If a script invokes
the class_admin command, it uses the system defaults to configure the
database.

The following example shows an interactive configuration session using
class_admin. In the actual output, the lines will be formatted to fit in
80 columns.

13–10 Managing CPU Performance

/usr/sbin/class_admin
Class Scheduler Administration

configure:

Shall processes that have not been explicitly
assigned to a defined class be assigned to a
’default’ class? Enter (yes/no) [no]: yes

Enforce class scheduling when the CPU is otherwise
idle? (yes/no) [no]: yes

How often do you want the system to reset class usage?
Enter number of seconds (1): 2
class>

The configuration values have the following effect:

• To be scheduled, a process must be assigned to a class. If you answer yes
to the first prompt, a special class called the default class is created.
Any process that is not explicitly assigned to a defined class will be
assigned to the default class.

If you answer no to this prompt, then only those processes that are
explicitly assigned to a defined class will be class scheduled.

• If you answer yes to the second prompt, you allow classes to exceed their
allotted CPU time percentage when the system is otherwise idle. If you
answer no, classes are restricted to their allotted percentage even if
the CPU has no other work.

• The third prompt allows you to set the standard reset time for all classes.
For example, if you choose the short default time of 1 second, each class
will have more frequent, but shorter, opportunities to access the CPU.

Use a small number (several seconds) if there are interactive jobs subject
to class scheduling to give them a quick response time. If only batch jobs
are class scheduled, response time is not an issue and you can specify
larger values.

In the example, a default class was created and all current processes were
assigned to that class. Class scheduling will be enforced even when the CPU
is idle and class usage will be reset every five seconds.

To review the current configuration, enter the show command:

class> show
Configuration:
-Processes not explicitly defined in the database are
class scheduled.
-If the processor has some idle time, class scheduled
processes are not allowed to exceed their cpu percentage.
-The class scheduler will check class CPU usage every 2
seconds.

Managing CPU Performance 13–11

Class scheduler status: disabled current database: /etc/class

Classes:

default targeted at 100%:
class members:
Every one not listed below

The next step in the process is to create classes and populate the classes
with system processes such as tasks, daemons, or user accounts by using
the appropriate identifiers such as UID or SESS.

13.2.2.4 Creating and Managing Classes

When the database is configured, you can administer classes as follows:

• Create a class:

– Add processes to the class

– Delete processes from a class

• Change the CPU access value (time percentage) of any class

• Destroy an entire class, whether empty or populated

• Show details of class members and configuration settings

• View statistics of actual CPU use against current priority settings

Some of these options are described briefly in the following sections. For
detailed descriptions of command options, see the online help and reference
pages.

13.2.2.4.1 Creating a Class

To create a class, either use the command-mode or enter an interactive
session as follows:
class_admin
class> create high_users 50

The command-mode version is entered as follows:
class_admin create batch_jobs 10
batch_jobs created at 10% cpu usage

changes saved

The first command creates a class named high_users and assigns a CPU
usage restriction of 50 percent. The second command creates a class named
batch_jobs and assigns a CPU usage restriction of 10 percent. In command
mode, the changes are automatically saved to the database in /etc/class.
When making changes to classes interactively, use the save command to
commit changes to the database. If you attempt to end the session with the

13–12 Managing CPU Performance

quit command and there are unsaved changes, you will be prompted to save
or discard the changes before quitting the interactive session as follows:

class> quit
Class scheduler database modified.
Save changes? (yes/no) [yes]:yes

changes saved

13.2.2.4.2 Managing Identifier Types Within Classes

Unique system-assigned identifiers that the class scheduler recognizes
(such as the PID, GID, or UID) identify which processes are members of
a specific class. After you have created classes, you can add UIDs and
GIDs or processes to one or more classes by using the add command. You
must specify the type of identifier (ID) used and enter one or more unique
identifiers. UIDs and GIDs can be determined from the /etc/passwd and
/etc/group files. Alternatively, you can use the graphical interface Account
Manager (dxaccounts) to display UID and Group information.

Process identifiers can be obtained from system files or by using a command
such as ps. With the ps command, you can determine the values of PID,
PGID, and SESS. Enter the following command to display the PID for every
process running on the system:

/sbin/ps aj

USER PID PPID PGID SESS JOBC S TTY TIME COMMAND
walt 5176 5162 5176 2908 1 S ttyp1 0:01.30 -sh (csh)
root 12603 5176 12603 2908 1 R + ttyp1 0:00.05 ps aj

See ps(1) for more information and a definitive list of the process data items
displayed when you use this command.

The following identifiers are supported:

gid

A group identification number from the /etc/group file. For example,
if you are adding members to a class, using this number will add all the
users that are assigned to the group.

uid

A user identification number from the /etc/passwd file. For example,
if you are adding members to a class, this number will add only the
specific user to which the UID is assigned.

Managing CPU Performance 13–13

pgrp

A process group identifier. In the output from the ps aj command, see
the entries under the PGID table heading in the previous example.

session

A session identifier. In the output from the ps aj command, see the
entries under the SESS table heading in the previous example.

pid

The process identifier. In the output from the ps aj command, see the
entries under the PID table heading in the previous example.

It is most likely that you will use types uid and gid in your established
classes, as these values will persist across a reboot or when class scheduling
is stopped and restarted. You can use the account management tools, such
as dxaccounts or the Accounts option of the SysMan Menu, to list UIDs
and GIDs for users and groups. The identifiers associated with types pgrp,
session, and pid are temporary, and will not exist on reboot or when
a process terminates.

13.2.2.4.3 Enabling the Class Scheduler

To enable the class scheduler daemon, enter the following command:

class_admin enable
Class scheduling enabled and daemon \
/usr/sbin/class_daemon started.

To disable the daemon, enter the following command:

class_admin disable
Class scheduling disabled.

13.2.2.4.4 Adding Members to a Class

To add a process to a class, enter the add command as shown in the following
interactive mode example:
class> add batch_jobs uid 234 457 235

You must use one of the unique identifiers previously specified, and you
cannot add the same identifier to a class more than once. The same
procedure can be performed in command mode or from a script as follows:
class_admin add batch_jobs uid 234 457 235
uid 234 457 235 added to high_users

In command mode, additions to a class are automatically saved to the
/etc/class database.

13–14 Managing CPU Performance

13.2.2.4.5 Deleting Members From a Class

To delete one or more processes from a class, enter the delete command
in interactive or command mode. For example:

class> delete high_users uid 11
uid 11 deleted from high_users

This example deletes the single UID number 11 from class high_users.

13.2.2.4.6 Other Class Management Options

See class_admin(8) for information on the following options:

• Change the priority of a class. For example:

class> change batch_jobs 20
batch_jobs retargeted at 20%

• Destroy an entire class, whether empty or full. For example:

class> destroy high_users
high_users is not empty.

to destroy anyway? [yes/no]:yes
high_users destroyed

• Loading and saving scheduling databases. For example:

class> load database_performance
current database modified and not saved
load new database anyway (destroys changes)? (yes/no) [yes]: \
yes
database database_performance loaded

In this example the presence of unsaved modifications to the current
database was detected, and the user was prompted to save the changes.

• View statistics of actual CPU use against current priority settings. For
example:

class> stats
Class scheduler status: enabled

class name target percentage actual percentage
high_users 50% 40.0%
batch_jobs 10% 2.0%

13.2.2.5 Using the runclass Command

Once you have established scheduler classes and enabled class scheduling,
you can use the runclass command to execute a command in a particular
class. When you use the runclass command as root user (superuser), your
processes have unrestricted access to CPU resources even when assigned
to an existing class. By default, root processes are never restricted. This
ensures that no user process can lock up resources needed by the root
account. If you need to test a class scheduler configuration, ensure that you

Managing CPU Performance 13–15

log in and create processes using a nonprivileged user account. You might
want to set up dummy user accounts to perform such testing.

The following command uses the runclass command to open a terminal
window and assign it to the previously created high_users class:
runclass high_users xterm

The following command shows that the pgrp number for the terminal
process is now identified as a member of that class:
class_admin show
.
.
.
class members:
pgrp 24330 pgrp 24351 pgrp 24373

In this example, the identifier for the xterm process is added to the class.
You can use the following command to view the running process:

ps agx | grep xterm

See runclass(1) for more information.

13.2.2.6 Using the Class Scheduling Graphical Interface

The class scheduler can be launched from the SysMan menu by selecting
the Class Scheduling option from the Monitoring and Tuning tasks.
Alternatively, you can launch it from the Common Desktop Environment
(CDE) Application Manager.

As for the command-line method of using the class scheduler described in
preceding sections, the steps involved in initial configuration are as follows:

1. Plan your classes and the processes, users, or groups that will be in
each class.

2. Configure and name a database by creating classes and adding them
to the database.

3. Define the new database as the current database.

4. Start the class scheduling daemon.

You can complete these steps by using the SysMan Menu Class Scheduling
main menu option, where the following three suboptions are available:

Configure Class Scheduler

This is the main option that you use to configure and initialize class
scheduling. When you select this option, a window is displayed:
Configure Class Scheduler on hostname. From here you can select one
of the following options:

• Make Current... — Use this option to choose an existing database
and make it the current database. When the system is first used,

13–16 Managing CPU Performance

only the default database is available from the option list. This
database is a placeholder and contains no classes. You can modify
the default or create new databases, adding options to the list.

• New... — Use this option to create a new database and add it to the
list of optional databases. A data entry window will be displayed
for you to name the database and select or create classes.

• Copy... — Use this option to copy an existing database to a file so
that you can use it as a starting point for a new database. You will
be prompted to enter a file name and location for the copy.

• Modify... — Use this option to change the configuration of an
existing database. If you want to preserve the original database
before modifying it, use the Copy... option first.

• Delete — Use this option to remove databases from the option list.
You will not be able to recover these databases once removed.

The New... option is the main option and the one most frequently
used. It is described in detail in Section 13.2.2.7. The Modify... option
provides an identical interface, which allows you to change existing
classes and databases.

The remaining menu options require only a confirmation and do not
involve extensive data entry. For example, if you want to delete a
database, you will only be prompted to confirm that the database is
to be destroyed.

[Re]Start Class Scheduler

Use this option to start the class scheduling daemon, or restart it if it
was stopped. You will be prompted to confirm your selection.

Stop Class Scheduler

Use this option to stop the class scheduling daemon. You will be
prompted to confirm your selection.

See the System Administration manual for information on running the
SysMan Menu. Section 13.2.2.6 describes how you use the graphical
interface. See the online help for additional information on valid data
entries.

Managing CPU Performance 13–17

13.2.2.7 Creating or Modifying a Database

When you select the New... or Modify... options, a screen is displayed titled
Configure Class Scheduler: Create/Modify Scheduling Database. To create
a new database, follow these steps:

1. In the Name: field, type the name of the database that you want to
create. The name should reflect the function of the database, so that
you can easily recognize it when it is displayed in a list of many options.
For example, served_applications.

2. From the option list titled Available Scheduled Classes, you can select
any existing classes. If you are setting up the first database, no classes
will be listed and only the New.. option will be available for selection.

3. To create a new class, press the New... button to display the window
titled Create a new class. In this window, you complete the following
steps:

• Enter a name for the class in the Class name field. The name
should enable you to easily recognize the members of the class. For
example, principal_users.

• Move the slider bar adjacent to the CPU allocation label to assign a
value for the percentage of CPU time allocated to this class.

• From the pull-down menu in the Member type field, select the type
of identifier you will use to allocate processes to this class. Only the
Group ID and User ID will persist across reboots. Session, Process
group, and Process ID identifiers will not persist.

• In the member field, enter the name of the user from the
/etc/passwd file, a group from the /etc/group file, or a process
identifier from the output of the following command:

/sbin/ps aj

• Select the OK button to complete the class entry and return to the
previous window, or select the Apply button to complete this entry
and retain the window to create further classes. Use the Cancel
button if you do not want to proceed with the creation of a class.

4. When classes are created, they appear as entries in the optional list of
Available Scheduling Classes. Apart from the class name, the CPU time
percentage allocation and member and type are also displayed. You can
now select classes to add to the database as follows:

• Click on a class to highlight it

• Press the Select button to add the class to the database.

13–18 Managing CPU Performance

5. When all required classes are selected, press the OK button to create the
new database. The new database will be added to the list of Available
Scheduling Databases.

You also use the Configure Class Scheduler: Create/Modify Scheduling
Database window to perform maintenance and administrative operations
on classes as follows:

• Use the Copy... option to copy a class and use it as the base for a new
class.

• Use the Modify... option to change characteristics of a class.

• Use the Delete... option to destroy a class and remove it permanently
from the Available Scheduling Classes.

To begin using the newly created database, follow these steps:

1. If the window titled Configure Class Scheduler on hostname is not
already displayed, invoke the SysMan Menu and select the Configure
Class Scheduler option.

2. Highlight the required database by clicking on it, then press the Make
Current... button. You will be prompted to confirm or cancel your choice.

3. Press the OK button to return to the SysMan Menu, Class Scheduling
options, and select the option titled [Re]Start Class Scheduler. You will
be prompted to confirm your choice.

On completing these steps, the class scheduling daemon starts and uses
the scheduling database that you specified. To verify and monitor that
the database is working as anticipated, use the show command at the
terminal command line. For example, to view scheduling statistics, enter the
following command:

class_admin stats

Class scheduler status: enabled \
current database: /etc/.cl_lab1

class name target percentage actual percentage
prio-tasks-lab 10 10

You might need to spend some time monitoring tasks and system
performance, tuning your classes to obtain the required results.

13.2.3 Prioritizing Jobs

You can prioritize jobs so that important applications are run first. Use
the nice command to specify the priority for a command. Use the renice
command to change the priority of a running process.

See nice(1) and renice(8) for more information.

Managing CPU Performance 13–19

13.2.4 Scheduling Jobs at Offpeak Hours

You can schedule jobs so that they run at offpeak hours (use the at and cron
commands) or when the load level permits (use the batch command). This
can relieve the load on the CPU and the memory and disk I/O subsystems.

See at(1) and cron(8) for more information.

13.2.5 Stopping the advfsd Daemon

The advfsd daemon allows Simple Network Management Protocol (SNMP)
clients such as Netview to request AdvFS file system information. If you
are not using the AdvFS graphical user interface (GUI), you can free CPU
resources and prevent the advfsd daemon from periodically scanning disks
by stopping the advfsd daemon.

To prevent the advfsd daemon from starting at boot time, rename
/sbin/rc3.d/S53advfsd to /sbin/rc3.d/T53advfsd.

To immediately stop the daemon, enter the following command:

/sbin/init.d/advfsd stop

13.2.6 Using Hardware RAID to Relieve the CPU of I/O Overhead

RAID controllers can relieve the CPU of the disk I/O overhead, in addition to
providing many disk I/O performance-enhancing features. See Section 9.4
for more information about hardware RAID.

13–20 Managing CPU Performance

Glossary

This glossary lists the terms that are used to describe Tru64 UNIX
performance, availability, and tuning.

active list
Pages that are being used by the virtual memory subsystem or the UBC.

adaptive RAID 3/5
See dynamic parity RAID

AL_PA
The Arbitrated Loop Physical Address (AL_PA) is used to address nodes on
the Fibre Channel loop. When a node is ready to transmit data, it transmits
Fibre Channel primitive signals that include its own identifying AL_PA.

anonymous memory
Modifiable memory that is used for stack, heap, or malloc.

arbitrated loop
A Fibre Channel topology in which frames are routed around a loop set up
by the links between the nodes in the loop. All nodes in a loop share the
bandwidth, and bandwidth degrades slightly as nodes and cables are added.

attributes
Dynamically configurable kernel variables, whose values you can modify to
improve system performance. You can utilize new attribute values without
rebuilding the kernel.

bandwidth
The rate at which an I/O subsystem or component can transfer bytes of
data. Bandwidth is especially important for applications that perform large
sequential transfers.

See also transfer rate

bitfile metadata table (BMT)
The bitfile metadata table describes the file extents on the volume.

blocking queue
The blocking queue is a queue in which reads and synchronous write
requests are cached. The blocking queue is used primarily for reads and for
kernel synchronous write requests.

See also flush queue

Glossary–1

BMT
See bitfile metadata table (BMT)

bottleneck
A system resource that is being pushed near to its capacity and is causing
a performance degradation.

bus extenders
Bus extenders are used by the UltraSCSI technology to configure systems
and storage over long distances.

See also bus segments

bus segments
Bus segments are used by the UltraSCSI technology to configure systems
and storage over long distances.

See also bus extenders

cache
A temporary location for holding data that is used to improve performance by
reducing latency. CPU caches and secondary caches hold physical addresses.
Disk track caches and write-back caches hold disk data. Caches can be
volatile (that is, not backed by disk data or a battery) or nonvolatile.

cache hit
Data found in a cache.

cache hit rate
The measure of effective cached data.

cache miss
Data that was not found in a cache.

capacity
The maximum theoretical throughput of a system resource, or the maximum
amount of data, in bytes, that a disk can contain. A resource that has
reached its capacity may become a bottleneck and degrade performance.

cascaded switches
Multiple switches that may be connected to each other to form a network
of switches.

See also meshed fabric

cluster
A loosely coupled group of servers (cluster member systems) that share
data for the purposes of high availability. Some cluster products utilize a
high-performance interconnect for fast and dependable communication.

Glossary–2

Compaq Analyze
A diagnostic tool that provides error event analysis and translation.

copy-on-write page fault
A page fault that occurs when a process needs to modify a read-only virtual
page.

configuration
The assemblage of hardware and software that comprises a system or a
cluster. For example, CPUs, memory boards, the operating system, and
mirrored disks are parts of a configuration.

configure
To set up or modify a hardware or software configuration. For example,
configuring the I/O subsystem can include connecting SCSI buses and
setting up mirrored disks.

data path
Determines the actual bandwidth for a bus.

deferred mode
A swap space allocation mode by which swap space is not reserved until the
system needs to write a modified virtual page to swap space. Deferred mode
is sometimes referred to as lazy mode.

delay
See latency

disk access time
A combination of the seek time and the rotational latency, measured in
milliseconds. A low access time is especially important for applications that
perform many small I/O operations.

See also rotational latency, seek time

disk partitions
Disk partitions are logical divisions of a disk that allow you to organize files
by putting them into separate areas of varying sizes. Partitions hold data
in structures called file systems and can also be used for system operations
such as paging and swapping.

disk quotas
Allows the system administrator to limit the disk space available to users
and to monitor disk space usage.

dynamically wired memory
Wired memory that is used for dynamically allocated data structures, such
as system hash tables. User processes also allocate dynamically wired

Glossary–3

memory for address space by using virtual memory locking interfaces,
including the mlock function.

dynamic parity RAID
Also called adaptive RAID3/5, dynamic parity RAID combines the features
of RAID3 and RAID5 to improve disk I/O performance and availability for
a wide variety of applications. Adaptive RAID3/5 dynamically adjusts,
according to workload needs, between data transfer-intensive algorithms
and I/O operation-intensive algorithms.

eager mode
See immediate mode

extent
Contiguous area of disk space that AdvFS allocates to a file.

E_Port
Communication between two switches which is routed between two
expansion ports.

fabric
A switch, or multiple interconnected switches, that route frames between
the originator node (transmitter) and destination node (receiver).

fail over / failover
To automatically utilize a redundant resource after a hardware or software
failure, so that the resource remains available. For example, if a cluster
member system fails, the applications running on that system automatically
fail over to another member system.

Fast SCSI
Enables I/O devices to attain high peak-rate transfers in synchronous mode.

Fast10
See Fast SCSI

Fast20
See UltraSCSI

FC-AL
See arbitrated loop

file-backed memory
Memory that is used for program text or shared libraries.

flush queue
The flush queue is a queue in which reads and synchronous write requests
are cached. The flush queue is used primarily for buffer write requests or
synchronous writes.

Glossary–4

See also blocking queue

frame
All data is transferred in a packet of information called a frame. A frame is
limited to 2112 bytes. If the information consists of more than 2112 bytes, it
is divided up into multiple frames.

free list
Pages that are clean and are not being used (the size of the free list controls
when page reclamation occurs).

F_Port
The ports within the fabric (fabric port). This port is called an F_port. Each
F_port is assigned a 64-bit unique node name and a 64-bit unique port name
when it is manufactured. Together, the node name and port name make up
the worldwide name.

FL_Port
An F_Port containing the loop functionality is called an FL_Port.

hard zoning
Zones are enforced at the physical level across all fabric switches by
hardware blocking of the Fibre Channel frames.

hardware RAID
A storage subsystem that provides RAID functionality by using intelligent
controllers, caches, and software.

high availability
The ability of a resource to withstand a hardware or software failure. High
availability is achieved by using some form of resource duplication that
removes single points of failure. Availability also is measured by a resource’s
reliability. No resource can be protected against an infinite number of
failures.

immediate mode
A swap space allocation mode by which swap space is reserved when
modifiable virtual address space is created. Immediate mode is often
referred to as eager mode and is the default swap space allocation mode.

inactive pages
The oldest pages that are being used by processes.

interprocess communication
The interprocess communication (IPC) is the exchange of information
between two or more processes.

IPC
See interprocess communication

Glossary–5

kernel variables
Variables that determine kernel and subsystem behavior and performance.
System attributes and parameters are used to access kernel variables.

latency
The amount of time to complete a specific operation. Latency is also
called delay. High performance requires a low latency time. I/O latency
can be measured in milliseconds, while memory latency is measured in
microseconds. Memory latency depends on the memory bank configuration
and the system’s memory requirements.

lazy mode
See deferred mode

lazy queue
Logical series of queues in which asynchronous write requests are cached.

link
The physical connection between an N_Port and another N_Port or an
N_Port and an F_Port. A link consists of two connections, one to transmit
information and one to receive information. The transmit connection on one
node is the receive connection on the node at the other end of the link. A link
may be optical fiber, coaxial cable, or shielded twisted pair.

mesh
See meshed fabric

meshed fabric
A cascaded switch configuration, which allows for network failures up to and
including the switch without losing a data path to a SAN connected node.

mirroring
Maintaining identical copies of data on different disks, which provides high
data availability and improves disk read performance. Mirroring is also
known as RAID 1.

multiprocessor
A system with two or more processors (CPUs) that share common physical
memory.

namei cache
Location where the virtual file system (VFS) caches a recently accessed file
name and its corresponding vnode.

NetRAIN
A Redundant Array of Independent Netowork Adaptors interface provides a
mechanism to protect against certain kinds of network connectivity failures.

Glossary–6

network adapter
See network interface card (NIC)

network interface
See network interface card (NIC)

network interface card (NIC)
A circuit board used to create a physical connection to a network. A NIC is
also called a network adapter or a network interface.

node
The source and destination of a frame. A node may be a computer system,
a redundant array of independent disks (RAID) array controller, or a disk
device. Each node has a 64-bit unique node name (worldwide name) that is
built into the node when it is manufactured.

N_Port
Each node must have at least one Fibre Channel port from which to send
or receive data. This node port is called an N_Port. Each port is assigned
a 64-bit unique port name (worldwide name) when it is manufactured. An
N_Port is connected directly to another N_Port in a point-to-point topology.
An N_Port is connected to an F_Port in a fabric topology.

NL_Port
In an arbitrated loop topology, information is routed around a loop. A node
port that can operate on the loop is called an NL_Port (node loop port). The
information is repeated by each NL_Port until it reaches its destination.
Each port has a 64-bit unique port name (worldwide name) that is built into
the node when it is manufactured.

page
The smallest portion of physical memory that the system can allocate
(8 KB of memory).

pageable memory
Physical memory that is not wired.

page coloring
The attempt to map a process’ entire resident set into the secondary cache.

page fault
An instruction to the virtual memory subsystem to locate a requested page
and make the virtual-to-physical address translation in the page table.

page in
To move a page from a disk location to physical memory.

page-in page fault
A page fault that occurs when a requested address is found in swap space.

Glossary–7

page out
To write the contents of a modified (dirty) page from physical memory to
swap space.

page table
An array containing an entry for each current virtual-to-physical address
translation.

paging
The process by which pages that are allocated to processes and the UBC are
reclaimed for reuse.

See also Unified Buffer Cache

parallel SCSI
The most common type of SCSI which supports SCSI variants that provide a
variety of performance and configuration options.

parameters
Statically configurable kernel variables, whose values can be modified to
improve system performance. You must rebuild the kernel to utilize new
parameter values. Many parameters have corresponding attributes.

parity RAID
A type of RAID functionality that provides high data availability by storing
on a separate disk or multiple disks redundant information that is used to
regenerate data. Parity RAID is also knows as a type of RAID3.

physical memory
The total capacity of the memory boards installed in your system. Physical
memory is either wired or it is shared by processes and the UBC.

preferred transfer size
Value of data transfer to and from the disk in sizes that are most efficient for
the device driver. This value is provided by the device driver.

Privileged Architecture Library (PAL)
Controls the movement of addresses and data among the CPU cache, the
secondary and tertiary caches, and physical memory. This movement is
transparent to the operating system.

RAID
RAID (redundant array of independent disks) technology provides high
disk I/O performance and data availability. The Tru64 UNIX operating
system provides RAID functionality by using disks and the Logical Storage
Manager software (LSM). Hardware-based RAID functionality is provided
by intelligent controllers, caches, disks, and software.

Glossary–8

RAID0
Also known as disk striping, RAID0 functionality divides data into blocks
and distributes the blocks across multiple disks in a array. Distributing the
disk I/O load across disks and controllers improves disk I/O performance.
However, striping decreases availability because one disk failure makes
the entire disk array unavailable.

RAID1
Also known as data mirroring, RAID1 functionality maintains identical
copies of data on different disks in an array. Duplicating data provides high
data availability. In addition, RAID1 improves the disk read performance,
because data can be read from two locations. However, RAID1 decreases
disk write performance, because data must be written twice. Mirroring n
disks requires 2n disks.

RAID3
RAID3 functionality divides data blocks and distributes (stripes) the data
across a disk array, providing parallel access to data. RAID3 provides data
availability; a separate disk stores redundant parity information that is
used to regenerate data if a disk fails. It requires an extra disk for the parity
information. RAID3 increases bandwidth, but it provides no improvement in
the throughput. RAID3 can improve the I/O performance for applications
that transfer large amounts of sequential data.

RAID5
RAID5 functionality distributes data blocks across disks in an array.
Redundant parity information is distributed across the disks, so each array
member contains the information that is used to regenerate data if a disk
fails. RAID5 allows independent access to data and can handle simultaneous
I/O operations. RAID5 provides data availability and improves performance
for large file I/O operations, multiple small data transfers, and I/O read
operations. It is not suited to applications that are write-intensive.

random access pattern
Refers to an access pattern in which data is read from or written to blocks in
various locations on a disk.

raw I/O
I/O to a disk or disk partition that does not use a file system. Raw I/O
bypasses buffers and caches, and can provide better performance than file
system I/O.

redundancy
The duplication of a resource for purposes of high availability. For example,
you can obtain data redundancy by mirroring data across different disks or
by using parity RAID. You can obtain system redundancy by setting up a
cluster, and network redundancy by using multiple network connections.

Glossary–9

The more levels of resource redundancy you have, the greater the resource
availability. For example, a cluster with four member systems has more
levels of redundancy and thus higher availability than a two-system cluster.

reliability
The average amount of time that a component will perform before a failure
that causes a loss of data. Often expressed as the mean time to data loss
(MTDL), the mean time to first failure (MTTF) or the mean time between
failures (MTBF).

resident set
The complete set of all the virtual addresses that have been mapped to
physical addresses (that is, all the pages that have been accessed during
process execution).

resource
A hardware or software component (such as the CPU, memory, network, or
disk data) that is available to users or applications.

rotational latency
The amount of time, in milliseconds, for a disk to rotate to a specific disk
sector.

route
The path a packet takes through a network from one system to another. It
enables you to commmunicate with other systems on other networks. Routes
are stored on each system in the routing tables or routing database.

scalability
The ability of a system to utilize additional resources with a predictable
increase in performance, or the ability of a system to absorb an increase in
workload without a significant performance degradation.

scalable
A system’s ability to utilize additional hardware resources with a predictable
impact on performance.

SCSI
Small Computer System Interface (SCSI) is a device and interconnect
technology.

SCSI bus speed
See bandwidth

seek time
The amount of time, in milliseconds, for a disk head to move to a specific
disk track.

Glossary–10

selective storage presentation (SSP)
Controls which server will have access to each storage unit. SSP also
controls access at the storage unit level.

sequential access pattern
Refers to an access pattern in which data is read from or written to
contiguous blocks on a disk.

serial SCSI
Reduces parallel SCSI’s limitation on speed, distance, and connectivity, and
also provides availability features like hot swap and fault tolerance. Serial
SCSI is the next generation of SCSI.

short page fault
A page fault that occurs when a requested address is found in the virtual
memory subsystem’s internal data structures.

simple name server (SNS)
A switch service that stores names, addresses, and attributes for up to 15
minutes, and provides them to other devices in the fabric. SNS is defined
by fibre channel standards and exists at a well known address. May also
be referred to as a directory service.

SMP
Symmetrical multiprocessing (SMP) is the ability of a multiprocessor system
to execute the same version of the operating system, access common memory,
and execute instructions simultaneously.

soft zoning
A software implementation that is based on the Simple Name Server (SNS),
enforcing a zone. It also works if all hosts honor it; it does not work if a host
is not programmed to allow for soft zoning.

software RAID
Storage subsystem that provides RAID functionality by using software (for
example, LSM).

static wired memory
Wired memory that is allocated at boot time and used for operating system
data and text and for system tables, static wired memory is also used by
the metadata buffer cache, which holds recently accessed UNIX file system
(UFS) and CD-ROM file system (CDFS) metadata.

striping
Distributing data across multiple disks in a disk array, which improves I/O
performance by allowing parallel access. Striping is also known as RAID 0.
Striping can improve the performance of sequential data transfers and I/O
operations that require high bandwidth.

Glossary–11

swap device
A block device in a configured section of a disk.

swap in
To move a swapped-out process’ pages from disk swap space to physical
memory in order for the process to execute. Swapins occur only if the
number of pages on the free page list is higher than a specific amount for
a period of time.

swap out
To move all the modified pages associated with a low-priority process or a
process with a large resident set size from physical memory to swap space.
A swapout occurs when number of pages on the free page list falls below
a specific amount for a period of time. Swapouts will continue until the
number of pages on the free page list reaches a specific amount.

swap-space interleaving
See striping

swapping
Writing a suspended process’ modified (dirty) pages to swap space, and
putting the clean pages on the free list. Swapping occurs when the number
of pages on the free list falls below a specific threshold.

switch zoning
Controls which server can communicate with each other and each storage
controller host port. Switch zoning also controls access at the storage system
level.

throughput
The rate at which an I/O subsystem or component can perform I/O
operations. Throughput is especially important for applications that perform
many small I/O operations.

transfer rate
See bandwidth

transmission method
Refers to the electrical implementation of the SCSI specification for a bus.

tune
To modify the kernel by changing the values of kernel variables, which will
improve system performance.

UBC
See Unified Buffer Cache

Glossary–12

UBC LRU
The Unified Buffer Cache least-recently used (UBC LRU) pages are the
oldest pages that are being used by the UBC.

Unified Buffer Cache
A portion of physical memory that is used to cache most-recently accessed
file system data.

UltraSCSI
Refers to a storage configuration of devices (adapters or controllers) and
disks that doubles the performance of SCSI-2 configurations. UltraSCSI
(also called Fast-20) supports increased bandwidth and throughput, and can
support extended cable distances.

virtual address space
The array of pages that an application can map into physical memory.
Virtual address space is used for anonymous memory (memory used for
stack, heap, or malloc) and for file-backed memory (memory used for
program text or shared libraries).

virtual memory subsystem
A subsystem that uses a portion of physical memory, disk swap space, and
daemons and algorithms to control the allocation of memory to processes
and to the UBC.

VLDB
Refers to very-large database (VLDB) systems, which are VLM systems that
use a large and complex storage configuration. The following is a typical
VLM/VLDB system configuration:

• An SMP system with two or more high-speed CPUs

• More than 4 GB of physical memory

• Multiple high-performance host bus adapters

• RAID storage configuration for high performance and high availability

VLM
Refers to very-large memory (VLM) systems, which utilize 64-bit
architecture, multiprocessing, and at least 2 GB of memory.

vnode
The kernel data structure for an open file.

wired list
Pages that are wired and cannot be reclaimed.

wired memory
Pages of memory that are wired and cannot be reclaimed by paging.

Glossary–13

working set
The set of virtual addresses that are currently mapped to physical addresses.
The working set is a subset of the resident set and represents a snapshot
of the process’ resident set.

workload
The total number of applications running on a system and the users utilizing
a system at any one time under normal conditions.

World Wide Names (WWN)
A unique number assigned to a subsystem by the Institute of Electrical and
Electronics Engineers (IEEE) and set by the manufacturer prior to shipping.
The worldwide name assigned to a subsystem never changes. Fibre Channel
devices have both a node name and a port name worldwide name, both of
which are 64-bit numbers.

zero-filled-on-demand page fault
A page fault that occurs when a requested address is accessed for the first
time.

zone
A logical subset of the Fibre Channel devices that re connected to the fabric.

zoning
Allows partitioning of resources for management and access control. It may
provide efficient use of hardware resources by allowing one switch to serve
multiple clusters or even mulitple operating systems. It entails splitting the
fabric into zones, whre each zone is essentially a virtual faric.

Glossary–14

Index

A
access patterns

random, 1–3
sequential, 1–3

accounting
monitoring resources, 2–5

active page list, 12–3
displaying, 12–17

adaptive RAID3/5, 1–5
administering

CPU resources, 13–6
Advanced File System

(See AdvFS)
AdvFS

access structure tuning, 11–8
balancing volumes, 11–13
blocking queue, 11–22
configuration guidelines, 11–9
consol queue, 11–24
defragmenting file domains, 11–16
device queue, 11–22
displaying, 11–18, 11–19, 11–20,

11–21, 11–22
displaying extent map, 11–21
distributing data, 11–13, 11–14
enabling direct I/O, 11–12
flushing queue, 11–22
I/O queues, 11–22
lazy queue, 11–22
managing files with, 11–9
moving transaction log, 11–17
preventing data loss, 11–11
ready queue, 11–24
smooth sync queue, 11–24
striping files, 11–14

transfer size, 11–16
using UBC, 1–24
wait queue, 11–24

AdvfsAccessMaxPercent attribute
controlling memory reserved for

access structure, 11–8
advfsd daemon

stopping, 13–20
advfsstat command

displaying AdvFS statistics, 11–19
AdvfsSyncMmapPages attribute

controlling memory-mapped pages,
4–10

recommended value, 4–10
advscan command

displaying file domain location,
11–20

aio_task_max_num attribute
modifying the AIO requests, 4–16
recommended value, 4–16

anon_rss_enforce attribute
limiting resident set size, 12–29

Application Manager
class scheduler, 13–9

applications
address space, 8–6
characteristics, 1–30
compilers, 7–2
CPU and memory statistics, 13–2
debugging, 2–28, 2–31, 2–32
displaying, 12–20
granularity hints, 12–36
improving performance, 7–1
memory locking, 7–3
memory requirements, 7–2
memory usage, 12–24

Index–1

parallelism, 7–2
patches, 7–1
priorities, 13–19
process resources, 8–1
profiling, 2–28
resident set size, 12–21
shared libraries, 7–2
tuning Internet servers, 6–1
tuning network file systems, 5–1
tuning Oracle, 4–1
virtual address space, 12–5, 12–21

arbitrated loop
characteristics, 1–14
compared with fabric topology,

1–14
asynchronous I/O, 11–23
asynchronous swap buffers, 12–15
at command

scheduling applications, 13–20
atom toolkit

profiling applications, 2–28
attributes

displaying values, 3–2
modifying AdvFS, 4–10
modifying generic, 6–12
modifying Internet, 6–13
modifying Internet subsystem,

4–12, 6–7
modifying interprocess

communiction, 4–11
modifying Memory Channel, 4–18
modifying network, 6–18
modifying NFS client side, 5–13
modifying NFS server side, 5–9
modifying process, 6–8
modifying process subsystem, 4–13
modifying real-time, 4–16
modifying reliable datagram, 4–17
modifying socket, 6–11
modifying socket subsystem, 6–20
modifying the current value, 3–3
modifying the permanent value,

3–4
modifying virtual file system, 4–10

modifying virtual memory, 4–4,
6–20

name change, 6–1
operating system support, 3–1
setting limits on system resources,

6–9

B
balance command

distributing AdvFS data, 11–13
bandwidth, 1–3
batch command

scheduling applications, 13–20
big pages memory, 12–37
bio_stats structure

displaying, 11–31
blocking queue, 11–22
bottleneck, 1–3
bufcache attribute

controlling buffer cache size, 11–7
buffer_hash_size attribute

controlling table size, 11–7
buses

distributing data, 9–1
length, 1–10
speed, 1–7
termination, 1–10

C
cache access times, 1–27
caching data

physical memory, 1–26
CAM

monitoring, 9–13
tuning, 9–12

cam_ccb_increment attribute
tuning CAM, 9–12

cam_ccb_low_water attribute
tuning CAM, 9–12

cam_ccb_pool_size attribute
tuning CAM, 9–12

chfile command

Index–2

enabling data logging, 11–11
preventing data writes, 11–11

chvol command
modifying I/O transfer size, 11–16

class scheduler, 13–6, 13–8
adding class members, 13–14
CDE, 13–9
changing priority, 13–15
class_admin, 13–8, 13–10
class_scheduling, 13–8
configuring, 13–10
creating classes, 13–12
daemon, 13–14
deleting class members, 13–15
destroying a class, 13–15
disabling, 13–14
enabling, 13–14
GID, 13–8, 13–13
graphical user interface, 13–16
identifier types, 13–13
invoking, 13–9
loading databases, 13–15
managing classes, 13–12
nice command, 13–9
PGID, 13–8
PID, 13–8
planning, 13–10
process identifiers, 13–13
runclass command, 13–8, 13–15
SESS, 13–8
SysMan Menu, 13–9
UID, 13–8, 13–13

class_admin, 13–6
administering, 13–12
using, 13–10

client
transmitting, 5–15

cluster_maxcontig kernel variable
increasing blocks, 11–35

collect utility
automatically start on reboot, 2–9
gathering system information, 2–8

plotting collect datafiles, 2–10
Common Access Method, 9–12

(See also CAM)
Compaq Analyze

monitoring system events, 2–5
Compaq Analyze (CA)

monitoring system events, 2–3
Compaq Continuous Profiling

Infrastructure
monitoring CPU cycles, 6–7

configuration
hardware, 1–2
NFS, 5–4
sys_check utility, 2–11

copy-on-write page fault, 12–8
CPI, 6–7

(See also Compaq Continuous
Profiling Infrastructure)

CPU
adding processors, 13–6
administering resources, 13–6
CPI, 6–7

(See also Compaq Continuous
Profiling Infrastructure)

displaying, 12–17, 12–20
improving performance, 13–5
internal caches, 1–27
monitoring, 9–4, 13–2, 13–4
scheduling jobs, 13–20
using hardware RAID, 13–20

cpustat extension
reporting CPU statistics, 13–2,

13–4
cron command

scheduling applications, 13–20

D
daemon

class scheduler, 13–14
data path, 1–7
dbx command

Index–3

changing kernel attributes, 5–11
debugging applications, 2–31
displaying UBC statistics, 12–16,

12–23
to determine support for attribute,

3–2
debugging

applications, 2–28
dbx command, 2–31
kdbx command, 2–31
ladebug, 2–32

DECevent utility
monitoring system events, 2–3, 2–4

deferred swap mode, 4–9
defragment command

AdvFS, 11–16
delay_wbuffers attribute

delaying cluster writes, 11–35
direct I/O, 11–12
disk

defragmenting, 11–16, 11–36
displaying, 11–30
distributing data, 9–1
distributing file systems, 9–2
guidelines for distributing I/O, 9–1
hardware RAID, 9–6
improving performance, 9–1
LSM, 9–5
monitoring I/O distribution, 9–3
quotas, 2–5
RAID5, 1–5
using in hardware RAID subsystem,

9–7
disk quotas

limiting disk usage, 2–5
UFS, 11–29

displaying
file systems, 11–18, 11–29
memory, 12–16
NFS, 5–2
swap space, 12–16
UFS, 11–29

distributing data
AdvFS, 11–14

dumpfs command
displaying UFS information, 11–30

dxproctuner, 13–9
dynamic parity RAID, 1–5

E
eager swap mode, 4–9
event logging

options for, 2–3
Event Manager

monitoring system events, 2–4
event monitoring, 2–27

Compaq Analyze, 2–5
DECevent, 2–4
Event Manager, 2–4
nfswatch command, 2–27
Performance Visualizer, 2–27
volstat utility, 2–27
volwatch command, 2–27

extent map
displaying, 11–21

F
fabric, 1–12
Fibre Channel, 1–11

(See also SCSI)
arbitrated loop, 1–14
data rates, 1–11
distance, 1–11
fabric, 1–12
overcoming SCSI limitations, 1–11
point-to-point, 1–12
topology, 1–12
zoning, 1–17

(See also Fibre Channel
switch)

Fibre Channel switch
zoning, when required, 1–17

fifo_do_adaptive attribute
modifying pipe code, 4–10
recommended value, 4–10

file domains

Index–4

displaying, 11–21
file systems

AdvFS, 11–9
displaying, 11–18
distributing, 9–2
NFS, 11–37
resources, 1–23
tuning, 11–32
UFS, 11–26

filesets
displaying, 11–21, 11–22

flush queue, 11–22
free page list, 12–2

displaying, 12–17

G
gettimeofday () function

improving performance, 4–2
gh_chunks attribute

modifying, 4–7
recommended value, 4–7
reserving shared memory, 12–34
using granularity hints, 4–5

gh_fail_if_no_mem attribute
reserving shared memory, 12–36

gh_min_seg_size attribute
reserving shared memory, 12–36

gprof command
profiling applications, 2–30

granularity hints
reserving shared memory, 12–34

H
hardware

configuration, 1–2
gathering information, 2–6

(See also hwmgr utility)
hardware configuration

guidelines to improve Internet
server performance, 6–2

mapping, 1–2
overview, 1–2

hardware RAID, 9–6
(See also RAID)
configuration guidelines, 9–6, 9–9
disk capacity, 9–10
distributing disk data, 9–10
dual-redundant controllers, 9–12
features, 9–7
products, 9–8
RAID support, 9–8
spare disks, 9–12
stripe size, 9–10
striping mirrored disks, 9–11
write-back cache, 9–7, 9–11

hiprof, 2–28
(See also atom toolkit)
profiling applications, 2–29

hwmgr utility
gathering information, 2–6
network cards, 5–12

I
I/O clustering

displaying cluster reads and writes,
11–31

idle time
displaying, 12–17
monitoring, 9–4

ifqmaxlen attribute
increasing the number of output

packets before packets are
dropped, 6–18

recommended value, 6–18
immediate swap mode, 4–9
inactive page list, 12–3
inifaddr_hsize attribute

improving IP address lookups,
10–13

increasing the number of hash
buckets, 6–14

Index–5

recommended value, 6–14
inodes

reducing density of, 11–27
Internet

subsystem, 1–31
Internet server

advanced tuning recommendations,
6–12

configuring memory and swap
space, 6–2

definition of, 8–1
gathering configuration

information, 6–6
hardware configuration guidelines,

6–2
logging IP addresses, 6–3
modifying generic attributes, 6–12
modifying Internet attributes, 6–7,

6–13
modifying network attributes, 6–18
modifying process attributes, 6–8
modifying socket attributes, 6–11,

6–20
modifying virtual memory

attributes, 6–20
monitoring network statistics, 6–3
monitoring socket statistics, 6–5
monitoring virtual memory

statistics, 6–5
multiprocess, 6–9
netstat command, 2–17
primary tuning recommendations,

6–6
SMP systems, 6–17
tuning, 6–1
tuning a screening firewall, 6–19
tuning a screening router, 6–19
types of, 6–6

interprocess communication, 8–7
(See also IPC)
subsystem, 1–31

interrupts

displaying, 12–18
io_throttle_maxmzthruput

attribute
caching UFS I/O, 11–32

io_throttle_shift attribute
caching UFS I/O, 11–32

iostat command, 13–9
displaying CPU usage, 9–4
displaying disk usage, 9–4

IPC, 8–7
(See also System V IPC)
displaying, 12–17
monitoring, 13–3

ipcs command
displaying IPC, 12–17
monitoring IPC, 8–7, 13–3

ipintrq data structure
checking dropped packets, 10–18

ipport_unserreserved attribute
modifying outgoing connections,

4–13
recommended value, 4–13

ipport_userreserved attribute
increasing connection ports, 6–8,

10–9
modifying the range for connection

ports, 6–17
recommended value, 6–8, 6–17

ipport_userreserved_min
attribute
modifying range of outgoing ports,

10–9
ipqmaxlen attribute

increasing the length of IP input
queue, 6–17

preventing dropped packets, 10–18
recommended value, 6–18

ipqs attribute
increasing IP input queues, 10–11
increasing the number of IP input

queues, 6–17
recommended value, 6–17

Index–6

K
kdbx command

debugging kernels, 2–31
kernel

debugging, 2–32
profiling, 2–31
reducing size of, 12–24

kmemreserve_percent attribute
increasing memory, 6–12, 12–25
recommended value, 6–13

kprofile utility
profiling kernels, 2–31

L
ladebug

debugging kernels and applications,
2–32

LAG interface
providing higher availability, 1–23

large programs, 8–5
(See also program size limits)

latency, 1–3
lazy swap mode, 4–9
lockinfo utlity

gathering locking statistics, 2–12
locks

monitoring, 13–2, 13–5
lockstats extension

displaying lock statistics, 13–2,
13–5

Logical Storage Manager
(See LSM)

loop topology
characteristics, 1–14

LSM
features, 9–5
managing disks, 9–5
monitoring, 2–27
page-out rate, 12–34
RAID support, 9–5

lsof command

displaying open files, 2–32

M
malloc function

controlling memory usage, 7–3
malloc map

increasing, 12–25
managing memory

paging, 1–26
swapping, 1–26

max_async_req attribute
modifying pages wired for packets,

4–18
modifying sessions in RDG table,

4–17
recommended value, 4–17, 4–18

max_objs attribute
modifying objects in the RDG, 4–17
recommended value, 4–17

max_per_proc_address_size
attribute
modifying per process stack size,

4–15
recommended value, 4–15

max_per_proc_address_space
attribute
increasing user address space, 8–6
increasing user process address

space limits, 6–10
recommended value, 6–10

max_per_proc_data_size attribute
increasing maximum segment size,

8–5
increasing user process data

segment size limits, 6–10
modifying the data size, 4–14
recommended value, 4–14, 6–10

max_per_proc_stack_size
attribute
modifying the stack size, 4–14, 8–5
recommended value, 4–14

Index–7

max_proc_per_user attribute
modifying the number of processes,

4–15, 6–9, 8–3
recommended value, 4–15

max_proc_per_user attributes
recommended value, 6–10

max_threads_per_user attribute
modifying the number of threads,

4–16, 6–10, 8–4
recommended value, 4–16, 6–10

max_ufs_mounts attribute
increasing the number of UFS

mounts, 11–29
max_vnodes attribute

increasing open files, 8–12
maxusers attribute

increasing name cache size, 11–2
increasing open files, 8–12
increasing system resources, 8–2
increasing the size of system tables

and data structures, 6–9
modifying the space allocated to

system tables, 4–16
recommended value, 4–16, 6–9

memory
improving application performance,

12–37
Memory File System

(See MFS)
memory management, 1–25, 12–1

(See also paging)
buffer caches, 1–27
CPU cache access, 1–27
increasing memory resources,

12–24
locking, 7–3
metadata buffer cache, 12–3
operation, 12–1
overview, 1–25
paging, 12–12
PAL code, 12–7
prewriting modified pages, 12–11,

12–31
swap buffers, 12–14

swapping, 12–13
tracking pages, 12–2
UBC, 12–3

metadata buffer cache, 12–3
displaying, 11–31
hash chain table size, 11–7
tuning, 11–7

MFS, 11–28
mount limit, 11–29

migrate command
distributing AdvFS data, 11–13

mirroring
hardware RAID, 9–8
RAID1, 1–4

monitor command
monitoring systems, 2–27, 13–3

monitoring
applications, 2–28
CAM, 9–13
CPU, 13–1
disk I/O distribution, 9–3, 9–4
lsof command, 2–32
monitor command, 2–27
networks, 10–1
open files, 2–32
sockets, 10–3
top command, 2–27

msg_max attribute
increasing message size, 8–8

msg_mnb attribute
controlling number of bytes on a

queue, 8–9
msg_size attribute

modifying the size of the RDG
Message, 4–17

recommended value, 4–17
msg_tql attribute

increasing message queue size, 8–9
multiprocessing, 13–6
multiprocessor, 1–27

N
name_cache_hash_size attribute

Index–8

controlling name cache, 11–2
name_cache_valid_time attribute

controlling name cache, 11–2
NetRAIN

configuring multiple interfaces,
1–21, 1–22

netstat command, 5–6
bad checksums, 2–21
checking for retransmitted packets,

10–16
checking network statistics, 6–3
device driver errors, 2–18
displaying, 2–17
displaying dropped packets, 12–25
dropped or lost packets, 2–20
input and output errors and

collisions, 2–18
memory usage, 2–19
monitoring full sockets, 10–17
monitoring networks, 2–17
monitoring packets, 10–19
out-of-order packers, 2–21
protocol statistics, 2–23
retransmission, 2–21
routing statistics, 2–23
socket connections, 2–20

networks
checking for dropped packets,

10–18
displaying, 2–14
IP address lookup, 10–13
IP input queues, 10–11
keepalive, 10–12
LAG interface, 1–23
mbuf cluster compression, 10–11
monitoring, 2–17, 2–27, 10–2,

10–3
NetRAIN, 1–21, 1–22
network adapter, 1–20
network interface, 1–20
network interface card, 1–20

NFS limits, 5–6
outgoing connection ports, 10–9
partial TCP timeout limit, 10–14
PMTU discovery, 10–10
preventing dropped packets, 10–18
routing, 1–22
socket buffer size, 10–18
socket listen queue, 10–7
subsystem, 1–21, 1–31
TCP context timeout limit, 10–15
TCP data acknowledgment, 10–16
TCP hash table, 10–7
TCP lookup rate, 10–6
TCP retransmission rate, 10–15
TCP segment size, 10–16
tuning guidelines, 10–4
UDP socket buffers, 10–17
using redundant networks, 1–21

new_wire_method attribute
resolving high systemtime, 4–5

NFS
cache timeout limits, 5–5
client problems, 5–13
client threads, 5–4
configuration, 5–4
dectecting poor performance, 5–3,

5–5
displaying, 2–14, 2–25
gathering, 2–25
identifying network card, 5–11,

5–12
modifying server side, 5–9
monitoring, 2–27, 5–2
mount options, 5–5
netstat command, 2–17
nfswatch command, 2–26
performance benefits and tradeoffs,

5–3
retransmissions, 5–5
server problems, 5–7
server response time, 5–10

Index–9

server threads, 5–4
tcpdump utility, 2–16
timeout limit, 5–6
tuning guidelines, 5–1, 5–8, 5–13
using UBC, 1–24
write gathering, 5–5, 5–9

NFS client
increasing NFS performance of,

5–13
NFS server

problems, 5–7
server performance, 5–7

nfs_*_ticks attribute
write gathering, 5–10

(See also nfs_write_gather
attribute)

nfs_cto attribute
specifying file consistency across

client, 5–16
nfs_dnlc attribute

directory name lookup cache, 5–15
(See also nfs_nnc attribute)

nfs_fast_ticks attribute
time the server will delay the write,

5–11
nfs_nnc attribute

negative name cache lookups, 5–15
nfs_quicker_attr

fetching file attributes, 5–16
nfs_slow_ticks attribute

time the server will delay the write,
5–11

nfs_tcprecspace attribute
recommended value, 5–12

nfs_tcprecvspace attribute
increasing the buffer size, 5–12

(See also nfs_tcpsendspace
attribute)

nfs_tcpsendspace attribute
increasing the buffer size, 5–12
recommended value, 5–12

nfs_ufs_lbolt attribute
modifying parameter in the kernel,

5–11

write gathering, 5–10
(See also nfs_write_gather

attribute)
nfs_unkn_ticks attribute

time the server will delay the write,
5–11

nfs_write_gather attribute
time server will delay the write,

5–10
write gathering, 5–10

(See also nfs_ufs_lbolt
attribute)

nfs3_jukebox_delay attribute
controlling time before client will

tramsmit, 5–15
nfs3_readahead attribute

improving read performance, 5–14
(See also nfs3_maxreadahead

attribute; nfs3_readahead
attribute)

recommended value, 5–14
nfsiod daemon, 5–4

gathering client information, 2–25
tuning client, 5–9

nfsstat command
measuring retransmissions with,

5–6
nfsstat utility

displaying network and NFS
statistics, 2–14

nfswatch command
monitoring incoming traffic, 2–26
monitoring NFS, 2–27

nice command, 13–9
decreasing system load, 13–4
prioritizing applications, 13–19

O
open files

displaying with lsof, 2–32
open_max_hard attribute

controlling open file descriptors,
8–13

Index–10

open_max_soft attribute
controlling open file descriptors,

8–13
Oracle

choosing and enabling IPC
protocols, 4–3

detecting poor performance, 4–1
gettimeofday () function, 4–2
modifying AdvFS attributes, 4–10
modifying Internet attributes, 4–12
modifying interprocess

communication attributes,
4–11

modifying process attributes, 4–13
modifying real-time attributes,

4–16
modifying reliable datagram

attributes, 4–17
modifying virtual memory

attributes, 4–4, 4–10
monitoring, 4–1
tuning, 4–1, 4–4

P
page coloring, 12–9
page fault, 12–7
page in

displaying, 12–17
page lists

tracking, 12–2
page mapping

big pages memory allocation, 12–37
page outs, 12–12

displaying, 12–17
page table, 12–6
page-in page fault, 12–8
pages

displaying, 12–17
reclaiming, 12–2, 12–9
size, 1–25, 12–1
tracking, 12–2

paging, 12–12
attributes for, 12–9
controlling rate of, 12–12
displaying, 12–19
increasing threshold, 12–26
memory management, 1–26
reclaiming pages, 12–2
threshold, 12–10, 12–12

PAL code
influence on memory management,

12–7
parallelism

using in applications, 7–2
path maximum transmission unit

disabling, 6–8
per_proc_address_size attribute

modifying per process address size,
4–15

recommended value, 4–15
per_proc_address_space attribute

increasing user address space, 8–6
per_proc_data_size attribute

increasing default segment size,
8–5

modifying per process data size,
4–14

recommended value, 4–14
per_proc_stack_size attribute

increasing maximum stack size,
8–5

modifying per process stack size,
4–14

recommended value, 4–14
performance

improving Internet servers, 6–1
improving network file systems,

5–1
improving Oracle, 4–4
methodology approach to solve

problems, 2–2
monitoring, 2–1

Performance Visualizer

Index–11

monitoring cluster events, 2–27
physical memory, 1–25

caching data, 1–26
distribution of, 1–25, 12–1
process, 1–26
reserving for shared memory,

12–34
UBC, 1–26, 12–2
virtual memory, 1–26, 12–2
wired, 1–25, 12–1

ping command
querying remote system, 10–2

pipes, 8–7
pixie profiler, 2–28

(See also atom toolkit)
profiling applications, 2–29

PMTU, 6–8
(See also path maximum

transmission unit)
pmtu_enabled attribute

disabling PMTU discovery, 6–8,
10–10

recommended value, 6–8
point-to-point, 1–12
preventing data loss

AdvFS, 11–11
using RAID, 11–11

prewriting modified pages, 12–11
managing, 12–31

priorities
changing application, 13–19

private_cache_percent attribute
reserving cache memory, 12–9

process
resident set size limit, 12–29
subsystem, 1–31

process tuner, 13–9
displaying process information,

13–2
prof command

profiling applications, 2–30
profiling

applications, 2–28
program size limits

tuning, 8–5
ps command

displaying CPU usage, 12–20
displaying idle threads, 2–25
displaying memory usage, 12–20

R
rad_gh_regions attribute

modifying, 4–6
modifying chunks of memory, 4–6

(See also gh_chunks
attribute)

recommended value, 4–6
RAID, 1–4

hardware subsystem, 9–6
levels, 1–4
LSM, 9–5
products, 1–6

RAID levels, 1–4
random access patterns, 1–3
raw I/O, 1–3
real-time interprocess

communication
pipes and signals, 8–7

recommendations
Internet server configurations, 6–1

resident set, 12–7
controlling size of, 12–29
displaying size of, 12–21

resources
CPU, 1–27
disk storage, 1–4
file system, 1–23
memory, 1–25
network subsystem, 1–21
networks, 1–20

rm_check_for_ipl
recommended value, 4–18
specifying the bitmask, 4–18

rotational latency, 1–3
routing

network path, 1–22
runclass command, 13–7, 13–15

Index–12

S
sb_max attribute

increasing socket buffer size, 10–18
recommended value, 6–20
specifying the size of a socket buffer,

6–20
sbcompress_threshold attribute

enabling mbuf cluster compressions,
10–11

enabling the mbuf cluster
compression, 6–12

recommended value, 6–12
scalability, 1–3
sched_stat utility

gathering CPU usage and process
statistics, 2–14

screen_cachedepth attribute,
6–19
(See also screen_cachewidth

attribute)
recommended value, 6–19
reducing screening cache misses,

6–19
screen_cachewidth attribute,

6–19
(See also screen_cachedepth

attribute)
recommended value, 6–19
reducing screening cache misses,

6–19
screen_maxpend attribute

recommended value, 6–20
reducing the screening buffer drops,

6–19
SCSI, 1–6

(See also Fibre Channel)
bus length, 1–10
bus speed, 1–7
bus termination, 1–10
data path, 1–7

extending UltraSCSI bus segments,
1–9

parallel, 1–6
transmission method, 1–8

seek time, 1–3
sequential access patterns, 1–3
server

increasing NFS performance of, 5–7
setrlimit

controlling resource consumption,
8–1

setrlimit system call
setting resident set limit, 12–29

shared memory
reserving memory for, 12–34

shm_max attribute
increasing shared memory region

size, 8–10
modifying the System V maximum

size regions, 4–11
recommended value, 4–11

shm_min attribute
modifying the System V minimum

region, 4–12
recommended value, 4–12

shm_mni attribute
modifying the regions that can be

used at one time, 4–12
recommended value, 4–12

shm_seg attribute
increasing attached shared memory

regions, 8–11
modifying the regions that can be

attached at one time, 4–12
recommended value, 4–12

short page fault, 12–8
showfdmn utility

displaying file domain and volume
statistics, 11–21

showfile utility
displaying AdvFS file information,

11–21

Index–13

showfsets utility
displaying fileset information,

11–22
signals, 8–7
smooth sync queue, 11–24
smoothsync_age attribute

caching UFS I/O, 11–32
SMP systems, 1–27

tuning, 6–17
SO_KEEPALIVE attribute

enabling TCP keepalive
functionality, 6–15

recommended value, 6–15
sobacklog_drops attribute

counting the number of times the
system dropped a packet, 6–5

monitoring sockets, 10–2, 10–3
sobacklog_hiwat attribute

counting the maximum number of
pending requests, 6–5

monitoring sockets, 10–2t, 10–3
sockets

IPC, 8–7
monitoring, 10–2t, 10–3
subsystem, 1–31
tuning, 10–7, 10–18

software RAID
(See LSM)

somaxconn attribute
increasing socket listen queue,

10–7
increasing the maximum number of

pending TCP connections, 6–11
recommended value, 6–11

somaxconn_drops attribute
counting the number of times the

system dropped a packet, 6–5
monitoring sockets, 10–2, 10–3

sominconn attribute
increasing socket listen queue,

10–7
increasing the number of pending

TCP connections, 6–11
recommended value, 6–11

ssm_threshold attribute
allocating shared memory, 4–5
controlling shared page tables,

8–11
disabling shared memory, 4–5
modifying the System V shared

regions, 4–11
recommended value, 4–5, 4–11

stack size
increasing, 8–5

streams , 8–7
striping

hardware RAID, 9–8
striping files

AdvFS, 11–14
subsystem

Internet, 1–31
interprocess communication, 1–31
most commonly tuned, 1–31
process, 1–31
socket, 1–32
virtual memory, 1–31

swap in, 12–14
swap out, 12–13
swap space, 12–33

asynchronous requests, 12–33
displaying, 12–22
distributing, 12–15
I/O queue depth, 12–15
managing, 12–33
monitoring, 9–4
performance guidelines, 12–15
specifying, 12–15

swapdevice attribute
specifying swap space, 12–15

swapon command
adding swap space, 12–15, 12–16
displaying swap space, 12–16,

12–22
swapping

aggressive, 12–28
changing rate of, 12–27
controlling rate of, 12–12
disk space, 12–16

Index–14

impact on performance, 12–13
memory management, 1–26
operation, 12–13
threshold, 12–11, 12–14

switchlog command
moving transaction log, 11–17

symmetrical multiprocessing,
1–27
tuning, 6–17

sync
minimizing impact of, 12–12

synchronous I/O, 11–22
synchronous requests, 12–33
synchronous swap buffers, 12–15
sys_check utility

gathering configuration
information, 2–11, 6–6,
13–2

sysconfig command
determining support for attribute,

3–1
SysMan Menu

class scheduler, 13–9
class scheduling, 13–7, 13–16
iostat command, 13–9
vmstat command, 13–9

system buffer cache, 5–7
system events

monitoring with tcpdump utility,
2–27

system jobs
displaying statistics for, 13–3

system load
decreasing with nice, 13–4
monitoring, 13–2, 13–3

system time
displaying, 12–17
monitoring, 9–4

System V IPC, 8–7
systems

adding CPU, 13–6
optimizing CPU resources, 13–5

T
tcbhashnum attribute, 6–13

increasing number of hash tables,
10–7

recommended value, 6–13
tcbhashsize attribute

improving TCP lookups, 10–6
increasing the size of the TCP hash

table, 6–7
recommended value, 6–7

TCP, 6–7, 6–11
(See also Transmission Control

Protocol)
tcp_keepalive_default attribute

enabling keepalive, 10–12
tcp_keepcnt attribute

specifying maximum keepalive
probes, 6–16, 10–13

tcp_keepidle attribute
specifying the amount of idle time,

6–16, 10–13
tcp_keepinit attribute

modifying the TCP partial
connection timeout limit, 6–14

recommended value, 6–14
specifying TCP timeout limit,

10–13, 10–14
specifying the time before

connection times out, 6–16
tcp_keepintvl attribute

specifying retransmission probes,
10–13

specifying the time between
retransmission of keepalive
probes, 6–16

tcp_msl attribute
decreasing TCP context timeout

limit, 10–15
increasing the TCP connection

context timeout rate, 6–16
recommended value, 6–16

Index–15

tcp_mssdflt attribute
increasing the TCP segment size,

10–16
tcp_rexmit_interval_min attribute

decreasing TCP retransmission
rate, 10–15

decreasing the rate of TCP
retransmissions, 6–15

recommended value, 6–15
tcpdump utility

determining support on remote
system, 5–13

gathering information, 2–16
monitoring network events, 2–27
monitoring network packets, 10–3

tcpnodelack attribute
delaying TCP data

acknowledgment, 10–16
third, 2–28

(See also atom toolkit)
profiling applications, 2–29

threads
lacking of, 6–10

throughput, 1–3
top command

monitoring systems, 2–27, 13–3
traceroute command

displaying packet route, 10–3
Transmission Control Protocol

(See TCP)
Increasing the size of the TCP hash

table, 6–7
transmission method, 1–8
tuning

address space, 8–6
AdvFS, 1–23
application memory, 7–2
CPU, 13–5
file system, 1–23
Internet server, 6–1
IPC limits, 8–7
memory, 12–24, 12–25
network subsystem, 10–4
NFS, 1–24, 5–8, 5–13

open file limits, 8–12
Oracle, 4–1
paging and swapping, 12–25
process limits, 8–1
program size limits, 8–5
system resources, 8–1
UBC, 11–4
UFS, 11–32

U
UBC, 1–26, 12–2

allocating memory to, 12–3
borrowing threshold, 12–12
displaying, 12–23
displaying pages used by, 12–19
for AdvFS, 1–24
for NFS, 1–24
tools to display, 12–16
tuning, 11–4
tuning Internet servers, 6–20

UBC LRU page list, 12–3
ubc_borrowpercent attribute

memory the UBC is borrowing, 4–7
recommended value, 4–7, 6–21
specifying the UBC borrowing

threshold, 6–20
ubc_maxborrowpercent attribute

tuning the UBC, 11–4
ubc_maxdirtywrites

tuning the UBC, 11–4
ubc_maxdirtywrites attribute

prewriting modified pages, 12–11,
12–12

prewriting pages, 12–31
ubc_maxpercent attribute

memory the UBC is using, 4–7
recommended value, 4–7, 6–21
specifying the maximum percentage

of memory for the UBC, 6–20
tuning the UBC, 11–4

ubc_minpercent attribute
recommended value, 6–21

Index–16

specifying the minimum percentage
of memory for the UBC only,
6–20

tuning the UBC, 11–4
udp_recvspace attribute

increasing UDP socket buffers,
10–17

modifying the receive buffer size for
the UDP socket, 4–13

recommended value, 4–13
udp_sendspace attribute

increasing UDP socket buffers,
10–17

modifying the send buffer size for
the UDP socket, 4–12

recommended value, 4–12
uerf command

displaying memory, 12–17
UFS

blocks combined for a cluster,
11–28

combining blocks, 11–35
configuration guidelines, 11–26
defragmenting, 11–36
delaying cluster writes, 11–35
displaying, 11–30
fragment size, 11–27, 11–30
inode density, 11–27
memory file system (MFS), 11–28
monitoring, 11–31
mount limit, 11–29
quotas, 11–29
sequential block allocation, 11–28
smoothsync, 11–32
tuning guidelines, 11–32

ufs_clusterstats structure
displaying UFS clustering statistics,

11–31
ufs_getapage_stats structure,

12–16
displaying the UBC by using the

dbx, 12–23

Unified Buffer Cache, 12–3
(See also UBC)

uprofile utility
profiling applications, 2–30

uptime command
displaying system load, 13–2, 13–3

user address space
increasing, 8–6

user data segment
increasing, 8–5

user time
displaying, 12–17
monitoring, 9–4

using RAID
preventing data loss, 11–11

V
virtual address space, 12–5, 12–6

displaying size of, 12–21
virtual memory

accessing addresses, 12–7
address space, 12–5
aggressive swapping, 12–28
application memory requirements,

7–2
displaying, 12–17, 12–20
displaying pages used by, 12–19
distribution of, 1–26, 12–2
function of, 12–2
page faulting, 12–7
page table, 12–6
paging operation, 12–12
paging threshold, 12–26
resident set, 12–7
subsystem, 1–31
swapping operation, 12–13
translating virtual addresses, 12–6
working set, 12–7

Visual Threads
profiling applications, 2–31

vm_aggressive_swap attribute

Index–17

enabling aggressive swapping,
12–28

vm_asyncswapbuffers attribute
controlling swap I/O queue depth,

12–15
managing swap space, 12–33

vm_bigpg_anon attribute
configuring big pages for anonymous

memory, 12–40
vm_bigpg_enabled attribute

enabling big pages, 12–38
vm_bigpg_seg attribute

configuring big pages for text
objects, 12–40

vm_bigpg_shm attribute
configuring big pages for shared

memory, 12–41
vm_bigpg_ssm attribute

configuring big pages for segmented
shared memory, 12–41

vm_bigpg_stack attribute
configuring big pages for stack

memory, 12–41
vm_bigpg_thresh attribute

apportioning free memory among
big pages, 12–38

vm_max_rdpgio_kluster attribute
increasing page-in cluster size,

12–32
vm_max_wrpgio_kluster attribute

controlling page-out cluster size,
12–32

vm_page_free_hardswap attribute
setting swapping threshold, 12–11

vm_page_free_min attribute
controlling rate of swapping, 12–27
setting free list minimum, 12–10

vm_page_free_optimal attribute
managing rate of swapping, 12–27
setting swapping threshold, 12–11

vm_page_free_reserved attribute
setting privileged tasks threshold,

12–11
vm_page_free_swap attribute

setting swapping threshold, 12–11
vm_page_free_target attribute

controlling paging, 12–26
managing rate of swapping, 12–27
setting paging threshold, 12–10

vm_page_prewrite_target
attribute
prewriting modified pages, 12–11
prewriting pages, 12–31

vm_rss_block_target attribute
setting free page threshold for

resident set limit, 12–29
vm_rss_maxpercent attribute

setting resident set limit, 12–29
vm_rss_wakeup_target attribute

setting free page threshold for
resident set limit, 12–29

vm_swap_eager attribute
modifying the swap allocation mode,

4–8
recommended value, 4–8

vm_syncswapbuffers attribute
controlling swap I/O queue depth,

12–15
managing swap space, 12–33

vm_ubcdirtypercent attribute
modifying the percentage of pages

that are dirty, 4–8
prewriting pages, 12–11, 12–31
recommended value, 4–8
tuning the UBC, 11–4

vm_ubcpagesteal attribute
tuning the UBC, 11–4

vm_ubcseqpercent attribute
memory the UBC can use for single

file, 4–8
recommended value, 4–8
tuning the UBC, 11–4

vm_ubcseqstartpercent attribute
modifying the UBC threshold, 4–8
recommended value, 4–8
tuning the UBC, 11–4

vmstat command, 13–9
displaying dropped packets, 12–25

Index–18

displaying the CPU, 12–16
displaying virtual memory, 12–16,

12–17
providing data on virtual memory

usage, 6–5
tracking page lists, 12–3

vnode_age attribute
controlling name cache, 11–2

vnode_deallocation_enable
attribute
controlling name cache, 11–2

vnodes
definition, 8–12

volstat utility
monitoring LSM events, 2–27

volwatch utility
monitoring LSM events, 2–27

W
w utility

displaying system information,
13–3

wired memory, 1–25, 12–1
wired page list, 12–2

displaying, 12–17
working set, 12–7
workload, 1–2

characterizing, 1–30
identifying resource model, 1–30

write-back cache
hardware RAID, 9–7, 9–11
multiprocessing systems, 13–6

X
X/Open Transport Interface, 8–7
xload command

monitoring system load, 2–27,
13–3

XTI, 8–7

Z
zero-filled-on-demand page fault,

12–8
zoning, 1–17

(See also Fibre Channel switch)

Index–19

