
Tru64 UNIX
Guide to Preparing Product Kits

Part Number: AA-RH9SE-TE

June 2001

Product Version: Tru64 UNIX Version 5.1A

This manual describes how to create, deliver, and install software product
kits to use on HP Tru64 UNIX operating systems.

Hewlett-Packard Company
Palo Alto, California

© 2001 Hewlett-Packard Company

UNIX® is a trademark of The Open Group in the U.S. and/or other countries. All other product names
mentioned herein may be the trademarks of their respective companies.

Confidential computer software. Valid license from Compaq Computer Corporation, a wholly owned
subsidiary of Hewlett-Packard Company, required for possession, use, or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial
license.

None of Compaq, HP, or any of their subsidiaries shall be liable for technical or editorial errors or omissions
contained herein. The information is provided “as is” without warranty of any kind and is subject to
change without notice. The warranties for HP or Compaq products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as constituting
an additional warranty.

Contents

About This Manual

1 Introducing Product Kits
1.1 Overview 1–1
1.2 Product Types 1–2
1.3 Kit Formats 1–3
1.4 Kit-Building Process 1–3

2 Creating Kit Directories
2.1 Obtaining a Unique Product Code 2–1
2.2 Creating a Kit Building Directory Structure 2–1
2.3 Populating the Source Directory 2–3
2.3.1 Using Standard Directory Structures 2–3
2.3.2 Using Context-Dependent Symbolic Links 2–4
2.3.2.1 Knowing When to Use CDSLs 2–6
2.3.2.2 Identifying CDSLs 2–6
2.3.2.3 Creating CDSLs 2–7
2.3.2.4 Restrictions 2–8
2.3.3 Placing Files in the Kit Source Directory 2–9
2.3.4 Setting Up the Sample Product Kit Source Directory 2–10

3 Preparing Subsets
3.1 Grouping Files into Subsets 3–1
3.2 Creating the Master Inventory File 3–3
3.3 Creating the Key File 3–7

4 Creating Subset Control Programs
4.1 Introducing Subset Control Programs 4–1
4.2 Creating SCP Source Files 4–2
4.3 Setting Up Initial SCP Processing 4–3
4.3.1 Including Library Routines in Your SCP 4–3
4.3.2 Setting Global Variables 4–5
4.4 Working in a Cluster Environment 4–6

Contents iii

4.5 Working in a Dataless Environment 4–9
4.6 Associating SCP Tasks with setld Utility Phases 4–10
4.6.1 Displaying the Subset Menu (M Phase) 4–12
4.6.2 Before Loading the Subset (PRE_L Phase) 4–14
4.6.3 After Loading the Subset (POST_L Phase) 4–16
4.6.4 After Securing the Subset (C INSTALL Phase) 4–19
4.6.5 Before Deleting a Subset (C DELETE Phase) 4–21
4.6.6 Before Deleting a Subset (PRE_D Phase) 4–22
4.6.7 After Deleting a Subset (POST_D Phase) 4–24
4.6.8 Verifying the Subset (V Phase) 4–25
4.7 Determing Subset Installation Status 4–26
4.7.1 Defining Installation and Subset Status 4–26
4.7.2 Understanding Internal Codes for Installation States 4–26
4.7.3 Using Subset Installation Status Library Routines 4–29
4.8 Stopping the Installation 4–31
4.9 Creating SCPs for Different Product Kit Types 4–32
4.9.1 Creating User Product Kit SCPs 4–32
4.9.2 Creating Kernel Product Kit SCPs 4–34

5 Producing and Testing Subsets
5.1 Running the kits Utility 5–1
5.1.1 Compression Flag File 5–5
5.1.2 Image Data File 5–5
5.1.3 Subset Control Files 5–6
5.1.4 Subset Inventory File 5–8
5.2 Testing Subsets 5–10
5.2.1 Loading All Subsets 5–10
5.2.2 Removing All Subsets 5–12
5.2.3 Loading Mandatory Subsets Only 5–12
5.2.4 Testing in a Cluster 5–13
5.2.4.1 Loading the Kit onto a Cluster 5–13
5.2.4.2 Deleting the Kit from a Cluster 5–14
5.3 Updating Inventory After Creating Subsets 5–15

6 Producing User Product Kits
6.1 Overview 6–1
6.2 Producing Distribution Media 6–2
6.2.1 Editing the /etc/kitcap File 6–3
6.2.1.1 Disk Media Descriptor 6–4
6.2.1.2 Tape Media Descriptor 6–5
6.2.2 Building a User Product Kit on Disk Media 6–7

iv Contents

6.2.3 Building a User Product Kit on Magnetic Tape 6–9
6.3 Testing the Distribution Media 6–10

7 Producing Kernel Product Kits
7.1 Overview 7–1
7.2 Creating Additional Installation Files 7–3
7.2.1 The files File Fragment 7–7
7.2.2 The sysconfigtab File Fragment 7–8
7.2.3 The Object Module File 7–9
7.2.4 The Source and Header Files 7–9
7.2.5 The Method Files 7–9
7.3 Producing Distribution Media 7–9
7.3.1 Editing the /etc/kitcap File 7–11
7.3.1.1 Disk Media Descriptor 7–12
7.3.1.2 Tape Media Descriptor 7–13
7.3.2 Building a Kernel Product Kit on Disk Media 7–15
7.3.3 Building a Kernel Product Kit on Magnetic Tape 7–17
7.4 Testing the Distribution Media 7–18
7.4.1 Testing a Kernel Product Kit with the setld Utility 7–18
7.4.2 Testing a Kernel Product Kit in a RIS Area 7–22

Glossary

Index

Examples
3–1 Sample ODB Kit Master Inventory File 3–5
3–2 Sample ODB Kit Key File 3–7
4–1 Sample setld Installation Menu 4–12
4–2 Sample Test for Alpha Processor During M Phase 4–13
4–3 Sample Backup of Existing Files During PRE_L Phase 4–15
4–4 Sample Backward Link Creation During POST_L Phase 4–17
4–5 Sample Message Output During C INSTALL Phase 4–19
4–6 Sample C DELETE Phase 4–21
4–7 Sample PRE_D Phase Reversal of POST_L Phase Actions 4–23
4–8 Sample File Restoration During POST_D Phase 4–24
4–9 Sample ODB User Product SCP 4–32
4–10 Sample ODB Kernel Product SCP 4–35
5–1 Using the kits Utility to Build ODB Subsets 5–2

Contents v

5–2 Sample Image Data File 5–6
5–3 Sample Subset Control File 5–8
5–4 Sample ODB Product Subset Inventory File 5–9
6–1 Sample Disk Media Descriptor for User Product 6–5
6–2 Sample Tape Media Descriptor for User Product 6–6
6–3 Sample gendisk Command for User Product 6–8
6–4 Sample gentapes Command for User Product 6–10
7–1 Sample Disk Media Descriptor for Kernel Product 7–13
7–2 Sample Tape Media Descriptor 7–14
7–3 Sample gendisk Command 7–16
7–4 Sample gentapes Command 7–18

Figures
1–1 Steps in the Kit-Building Process 1–4
1–2 Kit Directory Hierarchies 1–5
2–1 Kit Directory Hierarchies 2–2
2–2 Member-Specific Directories in Source Hierarchy 2–5
2–3 Sample Product Kit Source Directory 2–11
3–1 ODB Product Subsets and Files 3–2
4–1 Time Lines for setld Utility Phases 4–10
5–1 ODB output Directory 5–5
6–1 User Product Kit File Formats 6–3
7–1 Kernel Product Source Directory 7–4
7–2 Editing the files File Fragment 7–8
7–3 Editing the sysconfigtab File Fragment 7–8
7–4 Kernel Product Kit File Formats 7–11
7–5 Static Configuration of a Driver 7–21

Tables
1–1 Using This Manual 1–2
2–1 File Locations in Kit Directories 2–9
3–1 Master Inventory File 3–3
3–2 Key File Product Attributes 3–8
3–3 Key File Subset Descriptors 3–10
3–4 Flags Field Values and Subset Properties 3–11
4–1 SCP Library Routines 4–4
4–2 Installation Library Routines 4–4
4–3 Software Database Library Routines 4–5
4–4 STL_ScpInit Global Variables 4–6
4–5 SCP Operations on a Cluster 4–8
4–6 Software Subset Installation Status 4–27

vi Contents

5–1 Installation Control Files in the instctrl Directory 5–4
5–2 Image Data File Field Descriptions 5–6
5–3 Subset Control File Field Descriptions 5–6
5–4 Subset Inventory File Field Descriptions 5–8

Contents vii

About This Manual

A product kit is the standard mechanism by which software products are
delivered to and maintained on an HP Tru64 UNIX operating system. This
manual describes the procedures for creating, installing, and managing the
collections of files and directories that make up a product kit to be installed
on a customer’s system. Kits can be distributed on CD-ROM, diskette, or
magnetic tape.

Audience

This manual is intended for software developers who are responsible for
creating product kits. They are expected to have experience with UNIX based
operating systems, shell script programming, and system administration.

New and Changed Features

The following list describes the major changes made to this manual:

• Added information about restrictions on subset names (Section 3.1).

• Divided the Creating Subsets chapter into three chapters: Preparing
Subsets (Chapter 3), Creating Subset Control Programs (Chapter 4), and
Producing and Testing Subsets (Chapter 5).

• Updated the SCP library routines in Table 4–1 and the global variables
in Table 4–4.

• Added a new method to determine subset installation status (Section 4.7).

_____________________ Note _____________________

This information replaces former methods of determining
subset installation status and may require changes to the way
you code subset control programs.

• Added restrictions for kernel product kits used to support third party
hardware (Section 7.1).

• Removed instructions for building a consolidated firmware CD-ROM
from the appendices. This information will be updated and relocated to
Tru64 UNIX Best Practices at the following URL:

http://www.tru64unix.compaq.com/docs/best_practices/BP_CONSFWCD/TITLE.HTM

About This Manual ix

Previous versions of this manual are available on the World Wide Web at the
following URL:

http://www.tru64unix.compaq.com/docs/

Technical updates to this manual are also available from the same location.

Organization

This manual is organized as follows:

Chapter 1 Introduces the kit-building process

Chapter 2 Describes how to create and populate kit directories

Chapter 3 Describes how to organize product files into subsets
and create kit production files

Chapter 4 Describes how to create subset control programs

Chapter 5 Describes how to produce and test subsets

Chapter 6 Describes how to create, test, and deliver user product kits

Chapter 7 Describes how to create, test, and deliver kernel product kits

Glossary Defines terms used in this manual

Related Documentation

You may find the following documents helpful when preparing product kits:

• Sharing Software on a Local Area Network describes Remote Installation
Services (RIS) and Dataless Management Services (DMS). RIS is used
to install software across a network instead of using locally mounted
media. DMS allows a server system to maintain the root, /usr, and
/var file systems for client systems. Each client system has its own root
file system on the server, but shares the /usr and /var file systems.

This manual may be helpful if you are preparing a product kit that will
be installed in a RIS environment.

• Writing Device Drivers provides information for systems engineers
who write device drivers for hardware that runs the operating system.
Systems engineers can find information on driver concepts, device
driver interfaces, kernel interfaces used by device drivers, kernel data
structures, configuration of device drivers, and header files related to
device drivers.

This manual may be helpful if you are preparing product kits for a device
driver.

x About This Manual

• The Installation Guide describes the procedures to perform an Update
Installation or a Full Installation of the operating system on all
supported processors and single-board computers. It explains how to
prepare your system for installation, boot the processor, and perform
the installation procedure.

• The Installation Guide — Advanced Topics describes the advanced
installation procedures such as Installation Cloning, Configuration
Cloning, and how to customize the installation process with user
supplied files.

• System Administration describes how to configure, use, and maintain
the operating system. It includes information on general day-to-day
activities and tasks, changing your system configuration, and locating
and eliminating sources of trouble. This manual is intended for the
system administrators responsible for managing the operating system.
It assumes a knowledge of operating system concepts, commands, and
configurations.

• Reference Pages Sections 8 and 1m describe commands for system
operation and maintenance and are intended for system administrators.
In printed format, this is divided into two volumes.

• The Release Notes describe known problems you might encounter when
working with the operating system and provides possible solutions for
those problems. The printed format also contains information about new
and changed features of the operating system, as well as plans to retire
obsolete features of the operating system. Obsolete features are features
that have been replaced by new technology or otherwise outdated and are
no longer needed. These are intended for anyone installing the operating
system or using the operating system after it is installed.

The Tru64 UNIX documentation is available on the World Wide Web at the
following URL:

http://www.tru64unix.compaq.com/docs/

Icons on Tru64 UNIX Printed Manuals

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the manuals to help specific audiences quickly find the manuals
that meet their needs. (You can order the printed documentation from HP.)
The following list describes this convention:

G Manuals for general users

S Manuals for system and network administrators

About This Manual xi

P Manuals for programmers

R Manuals for reference page users

Some manuals in the documentation help meet the needs of several
audiences. For example, the information in some system manuals is also
used by programmers. Keep this in mind when searching for information
on specific topics.

The Documentation Overview provides information on all of the manuals in
the Tru64 UNIX documentation set.

Reader’s Comments

HP welcomes any comments and suggestions you have on this and other
Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

Please include the following information along with your comments:

• The full title of the manual and the order number. (The order number
appears on the title page of printed and PDF versions of a manual.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate HP technical support office. Information
provided with the software media explains how to send problem reports to
HP.

xii About This Manual

Conventions

The following conventions are used in this manual:

%

$ A percent sign represents the C shell system prompt.
A dollar sign represents the system prompt for the
Bourne, Korn, and POSIX shells.

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]

{ | } In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

. . .
In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

Return In an example, a key name enclosed in a box
indicates that you press that key.

Ctrl/x This symbol indicates that you hold down the
first named key while pressing the key or mouse
button that follows the slash. In examples, this
key combination is enclosed in a box (for example,
Ctrl/C).

About This Manual xiii

1
Introducing Product Kits

This manual provides product and kit developers with the proper method to
create a product kit. The following topics are discussed in this chapter:

• An overview of product kits (Section 1.1)

• Defining the different product types and describing the sample product
used in this guide (Section 1.2)

• Describing the available formats for layered product kits (Section 1.3)

• Illustrating the kit-building process (Section 1.4)

1.1 Overview

A product kit is the collection of files and directories that represent new or
upgraded software to be installed onto a customer’s system. The kit contains
not only the actual files and directories that compose the product, but also
includes the supporting files that are required to install the product on the
system. The product kit is the standard mechanism by which most products
are delivered and maintained on a customer’s system. Kits for user and
kernel products can be distributed on a CD−ROM, diskette, or tape for
installation onto the customer’s system.

Before building a kit, consider the kind of product for which you are building
a kit:

• Does it run in user space or kernel space?

• Is it used during the initial installation and bootstrap of the operating
system?

The answers to these questions determine the type of format you choose, the
type of medium you use to distribute the kit, and the installation procedures
that your users run when they install the kit on their systems.

This chapter helps you answer these questions. It describes the product
types supported by the kit-building process and the options for packaging
and installing the kit on the customer’s system. It leads you through the
steps involved in building kits for the various kinds of products, and it
describes the installation options that the operating system supports.

Introducing Product Kits 1–1

After you determine the type of product kit that you are creating, you can
use the specific chapters in this manual as shown in Table 1–1:

Table 1–1: Using This Manual
ALL product kits

1. Introducing Product Kits

2. Creating Kit Directories

3. Preparing Subsets

4. Creating Subset Control Programsa

5. Producing and Testing Subsets

ONLY user product kits ONLY kernel product kits

4. Producing User Product Kits 5. Producing Kernel Product Kits
a Optional for user product kits, required for kernel product kits.

This manual uses the fictitious Orpheus Document Builder (ODB) product
to demonstrate how to build kits for each product type. OAT is the code
assigned to Orpheus Authoring Tools, Inc., the fictitious company developing
the ODB product, and 100 is the product version number. The same product
is used for each type of product kit, but Chapter 6 and Chapter 7 describe
the files specific to user and kernel product kits.

1.2 Product Types

The process described in this book lets you deliver layered products for a
customer’s system. A layered product is any software product that is not
part of the base operating system. There are two kinds of layered products:

• User product

A user product runs in user space. Commands and utilities are in this
category, as are applications such as text editors and database systems.
Users interact directly with user products, for example, through
commands or window interfaces.

• Kernel product

A kernel product runs in kernel space. Users do not directly run kernel
products, but the operating system and utilities access them to perform
their work. For example, a device driver is one common type of kernel
product. A user runs an application or utility, which generates system
requests to perform operations such as opening a file or writing data to
a disk. The system determines which device driver should service this
request and then calls the required driver interface.

1–2 Introducing Product Kits

1.3 Kit Formats

Before being copied onto the distribution media (diskette, CD-ROM, or tape),
the product files are gathered into subsets. A subset groups together related
files and specifies whether they are required or optional for the product. You
can copy the product files onto the distribution media in one of the following
formats:

• Compressed tar format

In compressed tar format, the product files belonging to the same subset
are written to the distribution media as a single file. Kits for user and
kernel products should be produced in compressed tar format. During
installation, the setld utility uncompresses the files and moves them
onto the customer’s system, preserving the files’ original directory
structure. The gentapes and gendisk utilities can create kits in
compressed tar format.

• Direct CD−ROM (DCD) format

In direct CD-ROM (DCD) format, the files are written to any disk media
(CD−ROM, hard disk, or diskette) as a UNIX file system (UFS). Subsets
distributed in DCD format cannot be compressed. The gendisk utility
can create kits in DCD format.

1.4 Kit-Building Process

Figure 1–1 shows the process of creating and packaging a kit. In the figure,
boxes drawn with dashed lines represent optional steps; for example, you
do not have to create subset control programs if your kit requires no special
handling when it is installed. In Figure 1–1, the commands enclosed in ovals
perform the associated steps of the kit-building process.

Introducing Product Kits 1–3

Figure 1–1: Steps in the Kit-Building Process

ZK-0460U-AI

Test the installation

Build subsets and
control files

Create subset control
programs

structure
Create kit directory

files
Create kit directory

Produce distribution
media

 newinv kits

 setld

 gendisk gentapes

 setld ris

Test subsets

The kit-building process consists of the following steps:

1. Create the kit directory structure that contains the source files.

On the development system, create the following directory structure for
the kit you want to build:

• A source hierarchy, containing all the files that make up the product

• A data hierarchy, containing files needed to build the kit

• An output hierarchy, to contain the result of the kit-building process;
one or more subsets that make up the product kit

1–4 Introducing Product Kits

Figure 1–2 shows these directory hierarchies.

Figure 1–2: Kit Directory Hierarchies

ZK-0461U-AI

Source Hierarchy
(product source

files)

Data Hierarchy
(kit-building
control files)

Output Hierarchy
(built kit files)

This directory structure is the same for user product kits and kernel
product kits. Only the contents of these directories differ among the
product types. For example, a kernel product kit needs additional files
that are unique to this specific kit type. See Chapter 6 and Chapter 7
for more information about the requirements for each product kit type.

2. Create kit production files.

This includes a master inventory file containing information about
each file in the subset, a key file to define product attributes such as
the product name, product version, subset definitions, and additional
files for kernel product kits.

3. Create subset control programs (if needed).

The setld utility can call a subset control program (SCP) to perform
installation steps specific to your kit. You supply an SCP for your kit
only if the product requires special installation steps, such as those
needed for kernel product kits. The SCP is optional for user products.
Most layered products supply a subset control program, though the
actions the programs perform differ for each product type. For example,
the subset control program for a kernel product may call the kreg utility
to maintain the system file that registers kernel layered products, while
the subset control program for a user product would not.

4. Build subsets and control files.

Before transferring your kit onto distribution media, organize the
product files into subsets. Subsets group together related files. For
example, one subset could contain optional product files, while another
subset could contain the files required to run the product. The kits
utility creates subsets according to the specifications you define in the
master inventory and key files. Invoke the kits utility from the same
directory where the master inventory file is located. See Chapter 3 for
information about the master inventory and key files.

Introducing Product Kits 1–5

5. Test subsets.

You must test your subsets to ensure that they can be loaded onto a
running system, that the product runs on the system, and that the
subsets can be deleted. Subset testing includes loading all subsets onto
a running system and deleting all subsets from a running system. If
your kit includes optional subsets, you also should load the mandatory
subsets onto a running system to determine if the product works as
expected. If not, you may have to reclassify some optional subsets as
mandatory.

6. Produce distribution media.

When you have created the subsets for the product, you are ready to
package the kit with either the gendisk or gentapes utility. At this
point, you must decide whether to create the kit in DCD format or in
tar format. If you are creating a kit for a kernel product, you may need
to modify the kit and add files to support your system’s bootstrap link.

7. Test product kit media.

After you have successfully created the kit, you should test its
installation from the new media. Chapter 6 and Chapter 7 tell you how
to test the installation of each of the product kit types.

1–6 Introducing Product Kits

2
Creating Kit Directories

After you develop a software product, you package the product files to
process them into a kit. First you must organize these files by function and
use, then place them into a kit-building directory structure. When you
design the kit-building directory structure, consider where you want to place
the product files on the customer’s system and then create a kit directory
structure that closely mirrors that on the customer’s system.

A kit developer must perform the following actions to create kit directories:

1. Obtain a unique three-letter manufacturer’s product code (Section 2.1)

2. Create the directory structure needed to build a product kit (Section 2.2)

3. Populate the source directory on the kit-building system (Section 2.3)

2.1 Obtaining a Unique Product Code

Before you can create a product kit, you must have a unique three-letter
product code. To obtain this product code, send electronic mail to
product@dssr.sqp.zko.dec.com. You use this product code and a
product version number that you assign to name your product-specific
subdirectories.

Examples in this book use OAT as the prefix as the unique three-letter
product code for the Orpheus Document Builder (ODB) product kit.
Assuming this is the first release of the product, the examples use 100 as
the version number.

2.2 Creating a Kit Building Directory Structure

To create a kit, you need three separate directory hierarchies on the kit
development system. Figure 2–1 shows these directory hierarchies.

Creating Kit Directories 2–1

Figure 2–1: Kit Directory Hierarchies

ZK-0461U-AI

Source Hierarchy
(product source

files)

Data Hierarchy
(kit-building
control files)

Output Hierarchy
(built kit files)

The following definitions describe each directory hierarchy:

• Source hierarchy

The source hierarchy exactly mirrors the directory structure into which
customers install your finished kit. You must place each file that is
to become part of your kit into the required directory in the source
hierarchy. You can create the source hierarchy under any directory you
choose.

• Data hierarchy

The data hierarchy contains the following files to specify the contents
of the kit and how it is organized:

– A master inventory file lists each of the files in the kit and defines
which subset contains each file.

– A key file specifies the kit’s attributes, such as the product name and
version and whether the subsets are in compressed or uncompressed
format.

– A subdirectory named scps contains any subset control programs
that the product requires.

– Additional files may be required, depending on the kit type.

The kits utility is run from this data directory. There is no specific
requirement for the location of the data hierarchy, but it is good practice
to place it under the same directory as the source hierarchy.

• Output hierarchy

The output hierarchy contains the results of building the kit in the same
format that the distribution media will contain when it is delivered to the
customer. There is no specific requirement for the location of the output
hierarchy, but it is good practice to place it under the same directory as
the source and data hierarchies.

Use the mkdir command to create your kit directories. For example:

mkdir -p /mykit/src /mykit/data /mykit/output

2–2 Creating Kit Directories

2.3 Populating the Source Directory

The components of a kit can be installed in any directory on the customer’s
system. However, guidelines exist for file placement. The standard system
directory structure separates files by function and use and is designed for
efficient organization.

This section discusses the following topics:

• Using standard directory structures (Section 2.3.1)

• Using context-dependent symbolic links (Section 2.3.2)

• Placing files in the kit source directory (Section 2.3.3)

• Setting up the sample product kit source directory (Section 2.3.4)

You can choose any method for populating the source hierarchy. For example,
you could create a Makefile to use with the make command, or you could
copy files with the cp command.

2.3.1 Using Standard Directory Structures

A standard directory structure has the following advantages:

• Avoids name conflicts

When a layered product installs a file that overwrites a file shipped by
another product, it is known as a name space conflict. Shipping the
files in the product-specific opt subdirectories of root, usr and var
avoids this conflict because each three-letter product code is unique
to a particular manufacturer. The product-specific directories for the
examples in this manual are /opt/OAT100, /usr/opt/OAT100, and
/usr/var/opt/OAT100.

_____________________ Note _____________________

Always place files to be installed into the var file system
under your kit’s /usr/var directory.

• Easy access to kit components

If disk partition restructuring or product maintenance becomes
necessary, it is easier to find all of your kit if its components are in
the /opt directories rather than scattered throughout the standard
directories.

Creating Kit Directories 2–3

• Serves multiple versions of the same product to different clients

Exporting software to share across a network is simplified and more
secure. You need to export only the specific directories under /opt,
/usr/opt, and /usr/var/opt that contain the product you want, then
create links on the importing system. You can set up a server with
multiple versions of a given product, using the links created on the client
systems to determine which version a given client uses. In this way,
you can maintain software for multiple dissimilar hardware platforms
on the same server.

Specific directory requirements exist for each type of product kit. In some
cases, additional files are required for the kit to build successfully.

• You do not need any additional installation files for a user product.

• Section 7.2 describes the additional installation files you need for a
kernel product. Figure 7–1 shows these files.

Install product files in product-specific subdirectories of the root (/), /usr,
and /usr/var directories, as described in the following list:

• Boot files reside under /opt

Files that are required at bootstrap time, such as device drivers, go
into in a product-specific subdirectory of the /opt directory, such as
/opt/OAT100. This also includes any files to be accessed before file
systems other than root are mounted.

• Read-only files reside under /usr/opt

Read-only files (such as commands), startup files (not modified by
individual users), or data files go into a product-specific subdirectory of
the /usr/opt directory, such as /usr/opt/OAT100.

• Read/write files reside under /usr/var/opt

Files that users can read and modify, such as data lists, go into a
product-specific subdirectory of the /usr/var/opt directory.

2.3.2 Using Context-Dependent Symbolic Links

If you are preparing a product kit that may run on a cluster, you need to
create context-dependent symbolic links (CDSLs) to member-specific files in
addition to using shared files in your product kit’s inventory.

• A member-specific file is used by a specific cluster member. The contents
of a member-specific file differ for each cluster member, and each
member has its own copy of a member-specific file.

For example, the sysconfigtab file contains information that can be
different for each cluster member, so the /etc/sysconfigtab file is a
CDSL that points to the member’s sysconfigtab file.

2–4 Creating Kit Directories

• A context-dependent symbolic link (CDSL) is a special kind of symbolic
link that points to a member-specific file. The CDSL references the
member-specific file for the member that accesses the CDSL to determine
its target.

• A shared file is used by all members of a cluster. There is only one copy
of a shared file.

For example, executable files may be shared by all cluster members.

This section provides the following information:

• When to use CDSLs in your product kit (Section 2.3.2.1)

• How to identify CDSLs (Section 2.3.2.2)

• How to create CDSLs for your product kit (Section 2.3.2.3)

• Restrictions on using CDSLs in your product kit (Section 2.3.2.4)

Figure 2–2 shows member-specific directories in the ODB product kit source
hierarchy.

Figure 2–2: Member-Specific Directories in Source Hierarchy

ZK-1768U-AI

usr

var

cluster

members

member0

opt

OAT100

cluster

members

member0

opt

OAT100

cluster

members

member0

opt

OAT100

src

OAT100

opt

OAT100

opt

OAT100

opt

Shared Files
and CDSLs

root
f i lesystem

usr
fi lesystem

var
fi lesystem

Member-Specif ic Files

Creating Kit Directories 2–5

______________________ Note _______________________

Layered product kits always should refer to CDSLs and not
to the corresponding member-specific files. Doing this isolates
CDSL awareness from the layered product and keeps it in the
file system hierarchy, making it easier for you to maintain and
upgrade your layered product kit. CDSL references access the
correct file whether the product is installed on a cluster or on
a single system, and continue to work if file types change in a
future version of the product.

For example, refer to the /usr/var/X11/Xserver.conf
file rather than the /usr/var/cluster/members/mem-
ber0/X11/Xserver.conf file. These are the same if the
/usr/var/X11/Xserver.conf file is a CDSL.

2.3.2.1 Knowing When to Use CDSLs

If your product kit might run on a cluster, you may need to create CDSLs.

• Use CDSLs if you need a file to be different on every machine running
the product kit software.

• Use shared files if the file is always the same on every machine running
the product kit software.

Do not make a directory into a CDSL. After a directory has been made
a CDSL, you cannot change it back to a regular directory. If a directory
contains all member-specific files, make each file a CDSL. This allows shared
files to be placed in the directory in a future version.

2.3.2.2 Identifying CDSLs

You can identify a CDSL by the presence of the {memb} variable in its
pathname. For example:

lrwxrwxrwx 1 root system 57 May 19 10:54 /etc/sysconfigtab -> \
../cluster/members/{memb}/boot_partition/etc/sysconfigtab

______________________ Note _______________________

The backslash (\) character in this example indicates line
continuation, and is not present in the actual output.

2–6 Creating Kit Directories

To resolve a CDSL’s pathname, the kernel replaces the {memb} variable with
the string memberN, where N is the member ID of the cluster member that
is referencing the file. If a cluster member with member ID 2 is accessing
the /etc/sysconfigtab file in this example, the pathname is resolved to
/cluster/members/member2/boot_partition/etc/sysconfigtab.

______________________ Note _______________________

Single systems always resolve the {memb} variable to member0.

2.3.2.3 Creating CDSLs

Follow these steps to create CDSLs:

1. Identify files in your kit that need to be member-specific. Looking at the
sample OAT100 product kit source hierarchy shown in Figure 2–3, these
member-specific files are odb.conf and odb_log.

2. Determine the file system where the CDSLs should reside: root, usr, or
usr/var. The odb.conf file is in the root file system, and the odb_log
file is in the usr/var file system.

3. Log in as root or use the su command to gain superuser privileges.

4. Create the necessary parent directories for the CDSLs in your source
hierarchy. For example:

mkdir -p /mykit/src/opt/OAT100
mkdir -p /mykit/src/usr/var/opt/OAT100/log_files

5. Create the necessary member-specific directories in your source
hierarchy. For example:

mkdir -p /mykit/src/cluster/members/member0/opt/OAT100
mkdir -p /mykit/src/usr/var/cluster/members/member0/opt/OAT100/log_files

6. Copy member-specific files to the member-specific areas you created in
the previous step. For example, if your developer-supplied files are
under /mnt, use commands similar to the following:

cd /mykit/src/cluster/members/member0/opt/OAT100
cp /mnt/opt/OAT100/odb.conf .
cd /mykit/src/usr/var/cluster/members/member0/opt/OAT100/log_files
cp /mnt/usr/var/opt/OAT100/log_files/odb_log .

____________________ Note _____________________

Member-specific files are always shipped in member0.

Creating Kit Directories 2–7

7. Use the ln -s command to create the necessary CDSLs in your source
hierarchy. For example:

cd /mykit/src/opt/OAT100
ln -s ../../cluster/members/{memb}/opt/OAT100/odb.conf
cd /mykit/src/usr/var/opt/OAT100/log_files
ln -s ../../../cluster/members/{memb}/opt/OAT100/log_files/odb_log

Although you created cluster/members/member0 directories, you
linked to cluster/members/{memb} directories. When your product
kit is installed, this lets the kernel resolve the {memb} variable to
memberN, where N is the member ID of the cluster member that is
referencing the file. Single systems are always member0.

8. Use the ls -l command to verify the CDSLs. For example:

ls -l /mykit/src/opt/OAT100/odb.conf
lrwxrwxrwx …odb.conf -> ../../cluster/members/{memb}/opt/OAT100/odb.conf
ls -l /mykit/src/usr/var/opt/OAT100/log_files/odb_log
lrwxrwxrwx …odb_log -> \

../../../cluster/members/{memb}/opt/OAT100/log_files/odb_log

_____________________ Caution _____________________

Do not use the mkcdsl command to make CDSLs when you are
creating product kits.

2.3.2.4 Restrictions

The following restrictions apply when you use CDSLs in product kits:

• If you are creating a product kit to run on a version of the operating
system prior to Version 5.0, you cannot use CDSLs.

• If the system where you are creating a product kit is running a version of
the operating system prior to Version 5.0, you can use CDSLs in your
product kit, but you must test the kit on a system running Version 5.0
or higher of the operating system.

• If you are creating a product kit on a cluster member running Version
5.0A or higher of the operating system, CDSLs cannot be resolved to the
member-specific areas in the cluster/members/member0 directories.
The kernel resolves {memb} to the cluster ID of the member where you
are creating the kit, memberN.

2–8 Creating Kit Directories

2.3.3 Placing Files in the Kit Source Directory

Files in the kit source directory hierarchy should match their intended
installation location under the root (/), /usr, and /var file systems. Plan
to install all of your kit files in product-specific subdirectories in the /opt,
/usr/opt, and /usr/var/opt directories to prevent name space conflicts
with the base operating system and other layered products.

Table 2–1 shows where to place kit files that will be installed in the root
(/), /usr, and /var file systems:

Table 2–1: File Locations in Kit Directories
Location in Kit src Directory Installed File System

opt/PRODCODE root (/)

usr/opt/PRODCODE /usr

usr/var/opt/PRODCODE /usr/var

If you overwrite base operating system files, you may encounter the following
problems:

• Your product can be corrupted during an Update Installation of the
operating system. The Update Installation will overwrite any file that
is on the system with the version of the file shipped with the operating
system.

• An Update Installation may not complete successfully if you overwrite a
base operating system file. This can make the system unusable.

• Your product may have to be removed from the system to complete an
Update Installation. Your product would have to be reinstalled after the
Update Installation is completed.

• Removing your product corrupts the operating system.

Creating Kit Directories 2–9

2.3.4 Setting Up the Sample Product Kit Source Directory

Figure 2–3 shows how the Orpheus Document Builder (ODB) product
is installed in the standard directory structure, under /opt, /usr/opt,
and /usr/var/opt. The directories shown between the src and the
OAT* directories are the existing directories on the customer’s system. All
directories and files created by the product are shipped under the OAT*
directories. In this example, directory names begin with OAT because OAT is
the three-letter product code assigned to Orpheus Authoring Tools, Inc..

______________________ Note _______________________

File attributes (ownership and permissions) for files and
directories in the kit’s source hierarchy must be set exactly as
they should be on the customer’s system. This means that you
must be superuser when populating the source hierarchy so that
you can change these file attributes.

Do not attempt to circumvent this requirement by setting file
attributes in your subset control programs. If a superuser on the
customer’s system runs the fverify command on your subsets,
attributes that have been modified by the subset control programs
are reset to their original values in the kit’s master inventory files.

Figure 2–3 shows a sample source directory for the OAT product.

2–10 Creating Kit Directories

Figure 2–3: Sample Product Kit Source Directory

ZK-1201U-AI

log_files

log_files

templates

bin

usr

odb_start

odb_templateodb_log

odb.conf
OAT100sbin

varopt

OAT100

opt

cluster

members

member0

opt

OAT100

cluster

members

member0

opt

OAT100
odb.conf

odb_recover

odb_log

src

OAT100

opt

1A

1B

4B

4A

2

3

5

The following files have been provided by the ODB developers for the OAT
kit. Each of these files has a path and an associated description, and must
be placed correctly in the source hierarchy for the OAT product to build
successfully.

1 /odb.conf — the ODB product configuration file

If the product kit can be installed on a cluster, each cluster member
must have its own copy of the configuration file. To accommodate this
requirement, create a context-dependent symbolic link (CDSL) targeted
to the member-specific file.

Creating Kit Directories 2–11

A. The context-dependent symbolic link (CDSL) for
the odb.conf file is linked to the member-specific
cluster/members/{memb}/opt/OAT100/odb.conf file. This
CDSL is installed in the root file system and placed in the
opt/OAT100 source directory.

B. The member-specific file odb.conf can differ on each cluster
member. This file is installed in the cluster member’s root file system
and is placed in the cluster/members/member0/opt/OAT100
source directory.

See Section 2.3.2 for information about CDSLs.

2 /sbin/odb_recover — a utility to recover corrupt ODB documents
when the system boots. The odb_recover script executes when the
system boots and the /usr file system may not be mounted.

This file is installed in the root file system and is placed in the
opt/OAT100/sbin source directory.

3 /usr/bin/odb_start — the ODB product startup script. The
odb_start script is a user command.

This file is installed in the /usr file system and is placed in the
usr/opt/OAT100/bin source directory.

4 /usr/var/log_files/odb_log — the ODB product log file

If the product kit can be installed on a cluster, each cluster member
must have its own copy of the log file. To accommodate this requirement,
create a context-dependent symbolic link (CDSL) targeted to a
member-specific file.

A. The context-dependent symbolic link (CDSL) for the odb_log
file is linked to the member-specific usr/var/cluster/mem-
bers/{memb}/opt/OAT100/log_files/odb.log file. This
CDSL is installed in the /usr/var file system and placed in the
usr/var/opt/OAT100/log_files source directory.

B. The member-specific file odb_log can differ on each cluster
member. This file is installed in the cluster member’s /usr/var file
system and is placed in the /usr/var/cluster/members/mem-
ber0/opt/OAT100/log_files source directory.

See Section 2.3.2 for information about CDSLs.
5 /usr/var/templates/odb_template — a document template that

can be modified by a user.

This file is installed in the /var file system and is placed in the
usr/var/opt/OAT100/templates source directory.

2–12 Creating Kit Directories

Each of these files will be installed in the path provided by the kit developer.
They reside in the same relative location in the kit source directory with
opt/OAT100 inserted into the pathname.

For users to make effective use of your product after it is installed, they
should add the directories that contain your product commands to the search
path in their .profile or .login files. For example, the Orpheus Document
Builder (ODB) product is installed in the standard directory structure under
/opt, /usr/opt and /usr/var/opt. The src directory mirrors the root
(/) directory on the customer’s system. The commands for the product are
located in the /opt/OAT100/sbin and /usr/opt/OAT100/bin directories.
To use ODB commands without specifying the full path on the command line,
the user can add these directory names to the PATH environment variable.

You can ship a symbolic link to make commands accessible through the
standard directories. For example, the ODB kit contains the command
/usr/opt/OAT100/bin/odb_start. A symbolic link can be created from
/usr/bin/odb_start to /usr/opt/OAT100/bin/odb_start. This also
makes the odb_start command available to users as a part of their normal
search path, since /usr/bin is part of the standard path.

You can ship a symbolic link only if one of the following conditions apply:

• The symbolic link does not conflict with any base operating system file.

Using our example, it means that you could create the
/usr/bin/odb_start link only if the operating system does not already
contain a /usr/bin/odb_start file. If the operating system did contain
a /usr/bin/odb_start file, shipping the symbolic link would overwrite
an existing file on the customer’s operating system.

• The command name does not conflict with any standard operating
system command.

For example, if the /usr/opt/OAT100/bin/odb_start command is
shipped in the ODB kit and a command with the same name was part
of the standard operating system in /bin/odb_start, when a user
entered the odb_start command there would be a command name
conflict. Depending upon whether /bin or /usr/bin is first in the
search path, the user could be accessing the operating system version or
the symbolically linked ODB product version.

Creating Kit Directories 2–13

3
Preparing Subsets

In a product kit, a subset is the smallest installable entity compatible with
the setld utility. The kit developer specifies how many subsets are included
in the kit and what files each subset contains.

As a kit developer, you must perform the following tasks to build subsets
and associated control files:

1. Organize product files into subsets. (Section 3.1)

2. Create a master inventory file containing information about each file in
the subset. (Section 3.2)

3. Create a key file to define product attributes such as the product name,
product version, and subset definitions. (Section 3.3)

3.1 Grouping Files into Subsets

Files that are required for the product to work should be grouped together
by function. For example, if the product has two parts such as a user
interface and underlying functional code, you should group them into two
subsets. A file’s physical location is not necessarily a factor in determining
the subset to which it belongs.

Optional files also should be grouped together by function, but should be
grouped separately from mandatory files. This prevents unnecessary files
from being loaded when you install the mandatory subsets.

______________________ Note _______________________

Subset names are restricted to alphanumeric characters (A-Z,
a-z, 0-9) and the underscore character (_). If you use any other
characters in subset names, the setld utility may fail.

The fictitious ODB user product requires two subsets:

• OATODB100, a mandatory subset, contains the files needed to run the
product. This includes all product files except the odb_template file.

• OATODBTEMPS100, an optional subset, contains documentation templates
in the odb_template file.

Preparing Subsets 3–1

By placing the documentation templates in a separate subset, the customer’s
system administrator can choose not to install them if storage space is
limited.

Figure 3–1 shows how the files that make up the ODB product are grouped
into subsets. The physical location of a file is not necessarily a factor in
determining the subset to which it belongs.

Figure 3–1: ODB Product Subsets and Files

ZK-1216U-AI

log_files templates

bin

usr

odb_start

odb_templateodb_log

odb.conf
OAT100sbin

varopt

OAT100

opt

cluster

members

member0

opt

OAT100

cluster

members

member0

opt

log_files

OAT100

odb.conf

odb_recover

odb_log

src

OAT100

opt

OATODB100

OATODBTEMPS100

3–2 Preparing Subsets

3.2 Creating the Master Inventory File
After choosing subset names and deciding their contents, you have to create
a master inventory file to specify the subset names and the files that each
subset contains.

Table 3–1 describes the fields in the master inventory file.

Table 3–1: Master Inventory File
Field Description

Flags 16-bit unsigned integer

Bit 1 is the v (volatility) bit. When this bit is set, changes to
an existing copy of the file can occur either during or after kit
installation. The remaining bits are reserved, so valid values for
this field are 0 (protected) or 2 (unprotected). The volatility bit
usually is set for log files such as /usr/spool/mqueue/syslog.

Pathname The dot-relative (./path) path to the file.

Subset
identifier

The name of the subset that contains the file. Subset names consist
of the product code, subset mnemonic, and version number. You
must not include standard system directories in your subsets. In
the ODB master inventory file, several records specify directories
that are part of the standard system hierarchy. Instead of a
subset identifier, these records specify RESERVED; this keyword
prevents setld from overwriting existing directories.

Follow these steps to create a master inventory file:

1. You can create a master inventory file with your preferred text editor
or create the file with the touch command. The master inventory file
name must consist of the product code and version with the suffix .mi.
The file should be located in the data directory of the kit. For example:

% cd /mykit/data
% touch OAT100.mi

2. The first time you process a kit, the master inventory file is empty. You
must enter one record for each file that belongs on the kit. To get an
initial list of these files, use the newinv command with the file name
of the empty master inventory file and the pathname of the source
hierarchy’s top-level directory. For example, to invoke newinv on the
master inventory file for the ODB product, specify the pathname to the
source hierarchy as a relative path from the current directory (data),
similar to the following:
% newinv OAT100.mi ../src
Scanning new baselevel files...done.

Sorting inventories...done.

Joining...done.

Preparing Subsets 3–3

Awking...done.

*** THIS BUILD CONTAINS FILES THAT ARE NOT IN THE PREVIOUS BUILD ***

You will be placed in the editor with the file containing
the names of these new files.

If you wish these new files to become part of the product,
you must convert the line for the wanted files into
an inventory record.

Any records remaining in the file when you exit the editor
will become part of the new inventory.

Type <RETURN> when you are ready or CTRL/C to quit:

The newinv utility produces a list of files that are present in the source
hierarchy and opens a working copy of the master inventory file in
the vi editor (or the editor specified by your $EDITOR environment
variable) to make the required changes.

___________________ Caution ___________________

The first time that you run the newinv utility for a product
kit, the following files are created in the /mykit/data
directory in addition to the OAT100.mi file:

OAT100.mi.bkp
OAT100.mi.dead
OAT100.mi.extra
OAT100.mi.join
OAT100.mi.tmp

Do not modify or delete these additional files. They are used
during subsequent master inventory file updates with the
newinv utility.

3. First, remove the entries for any files that should not appear on the kit.
Second, add the flag and subset identifier to the entry for each file that
should appear in the kit.

3–4 Preparing Subsets

____________________ Note _____________________

Be extremely careful when you edit the master inventory file.
Separate fields in this file with a single Tab character, not
spaces. File names must not contain Space or Tab characters.

Use dot-relative pathnames for the files listed in the master
inventory file; do not use absolute pathnames. By default, the
setld utility operates from the system’s root (/) directory
unless you specify an alternate root with the −D option.

Example 3–1 shows that the ODB kit has two subsets:

• The OATODB100 subset contains mandatory commands and utilities

• The OATODBTEMPS100 subset contains optional document templates

Example 3–1: Sample ODB Kit Master Inventory File

0 ./cluster RESERVED 1
0 ./cluster/members RESERVED 1
0 ./cluster/members/member0 RESERVED 1
0 ./cluster/members/member0/opt RESERVED 1
0 ./cluster/members/member0/opt/OAT100 OATODB100 2
2 ./cluster/members/member0/opt/OAT100/odb.conf OATODB100 2 3
0 ./opt RESERVED 1
0 ./opt/OAT100 OATODB100 2
2 ./opt/OAT100/odb.conf OATODB100 2 3
0 ./opt/OAT100/sbin OATODB100 2
0 ./opt/OAT100/sbin/odb_recover OATODB100 2
0 ./usr RESERVED 1
0 ./usr/opt RESERVED 1
0 ./usr/opt/OAT100 OATODB100 2
0 ./usr/opt/OAT100/bin OATODB100 2
0 ./usr/opt/OAT100/bin/odb_start OATODB100 2
0 ./usr/var RESERVED 1
0 ./usr/var/cluster RESERVED 1
0 ./usr/var/cluster/members RESERVED 1
0 ./usr/var/cluster/members/member0 RESERVED 1
0 ./usr/var/cluster/members/member0/opt RESERVED 1
0 ./usr/var/cluster/members/member0/opt/OAT100 OATODB100 2
0 ./usr/var/cluster/members/member0/opt/OAT100/log_files OATODB100 2
0 ./usr/var/cluster/members/member0/opt/OAT100/log_files/odb_log OATODB100 2 4
0 ./usr/var/opt RESERVED 1
0 ./usr/var/opt/OAT100 OATODB100 2
0 ./usr/var/opt/OAT100/log_files OATODB100 2
0 ./usr/var/opt/OAT100/log_files/odb_log OATODB100 2 4
0 ./usr/var/opt/OAT100/templates OATODBTEMPS100 5
0 ./usr/var/opt/OAT100/templates/odb_template OATODBTEMPS100 5

Preparing Subsets 3–5

1 Add the RESERVED identifier to the directories shown. This tells
the setld utility not to overwrite the directory if it already exists
on the customer’s system.

2 Add the OATODB100 subset identifier to the files and directories
shown. This is the mandatory subset for the ODB product.

3 The odb.conf file is the ODB product configuration file. The
member-specific file resides in the ./cluster/members/mem-
ber0/opt/OAT100 directory, and the context-dependent symbolic
link (CDSL) resides in the ./opt/OAT100 directory. Change the
Flags field to 2 to show that this file can change either during or
after subset installation.

4 The odb_log file is the ODB product log file. The member-specific
file resides in the ./usr/var/cluster/members/mem-
ber0/opt/OAT100/log_files directory, and the CDSL resides in
the ./usr/var/opt/OAT100/log_files directory.

5 Add the OATODBTEMPS100 subset identifier to the files and
directories shown.

4. After you edit the file list and exit the editor, you see output similar
to the following:

Merging...done.

Sorting...done.

Master inventory update complete.

3–6 Preparing Subsets

3.3 Creating the Key File

The key file defines product attributes such as the product name, product
version, and subset definitions, as well as the name of the kit’s master
inventory file. It consists of a product attributes section and a subset
descriptor section. The key file name must consist of the product code and
version followed by .k, so that OAT100.k is the key file for the ODB kit.
Create the key file in the data directory of your kit-building directory
structure, for example: /mykit/data.

Example 3–2 shows the ODB product kit key file with the two sections
separated by two percent signs (%%) on their own line:

Example 3–2: Sample ODB Kit Key File

#
Product-level attributes 1
#
NAME=’Orpheus Document Builder’
CODE=OAT
VERS=100
MI=/mykit/data/OAT100.mi 2
COMPRESS=1 3
#
Subset definitions 4
#
%% 5
OATODB100 . 0 ’Document Builder Tools’ 6
OATODBTEMPS100 OATODB100|OSFDCMT??? 2 ’Document Builder Templates’ 7

1 The product attributes portion of the file describes the naming
conventions for the kit and provides kit-level instructions for the
kits command. This section of the key file consists of several
lines of attribute-value pairs as described in Table 3–2. The order
of these attribute-value pairs is not significant. Each attribute
name is separated from its value by an equal sign, for example:
attribute=value. You can include comment lines, which begin with a
pound sign, for example: # Comment line in key file.

2 The value of the MI attribute contains the path to the master inventory
file. This may be either an absolute path or a relative path from the
directory where the kits command is executed.

3 The COMPRESS attribute has a value of 0 for uncompressed subsets or 1
for compressed tar format subsets. If you do not specify this attribute,
the default is COMPRESS=0. User and kernel product kit subsets may
be compressed or uncompressed.

Preparing Subsets 3–7

4 The subset descriptor portion of the file describes each of the subsets in
the kit and provides subset-level instructions for the kits command.
This section contains one line for each subset in the kit. Each line
consists of four fields, each separated by a single Tab character.
Table 3–3 describes the subset descriptor fields.

5 Separate the product-level attributes and the subset definitions with
two percent signs (%%) on their own line. If this line is not present, the
kits utility terminates with an error message. You cannot include
comments after this line in the key file.

6 In this entry, the Dependency list field value for OATODB100 is . (dot),
meaning that the subset has no dependencies.

Set the Flags field to 0 (zero), indicating that the subset is mandatory.

7 In this entry, the OATODBTEMPS100 subset is optional; its FLAGS field
is set to 2 (two). This subset is dependent on both the OATODB100
subset, part of the ODB kit, and the OSFDCMT??? subset, part of the
base operating system. The ??? notation is a wildcard to specify any
version of the OSFDCMT subset.

Enclose the Subset Description field in single quotes, for example:
’Subset Description’.

The key file product attributes section describes the naming conventions
for the kit and provides kit-level instructions for the kits command. This
section consists of attribute-value pairs as described in Table 3–2. Each
attribute name is separated from its value by an equal sign (=). Comment
lines in this section begin with a pound sign (#).

Table 3–2: Key File Product Attributes
Attribute Description

NAME The product name; for example, ’Orpheus Document
Builder’. Enclose the product name in single quotation
marks (’) if it contains spaces.

CODE A unique three-character product code, for example, OAT. The
first character must be a letter. The first three letters of a
subset name must be the same as the product code. In this
guide, OAT is the three character code assigned to the fictional
Orpheus Authoring Tools, Inc. company.

Several product codes are reserved, including (but not limited
to) the following: DNP, DNU, EPI, FOR, LSP, ORT, OSF, SNA,
UDT, UDW, UDX, ULC, ULT, ULX, and UWS.

Send electronic mail to product@dssr.sqp.zko.dec.com
to request a product code.

3–8 Preparing Subsets

Table 3–2: Key File Product Attributes (cont.)

Attribute Description

VERS A three-digit version code; for example, 100. The setld
utility interprets this version code as 1.0.0. The first digit
should reflect the product’s major release number, the second
the minor release number, and the third the upgrade level,
if any. The version number cannot be lower than 100. The
version number is assigned by the kit developer.

MI The name of the master inventory file. If the master inventory
file is not in the same directory where the kits utility is run,
you must specify the explicit relative path from the directory
where you are running the kits utility to the directory
where the master inventory file resides. The file name of the
product’s master inventory file consists of the product code and
version plus the .mi extension. You create and maintain the
master inventory file with the newinv utility.

ROOT Not shown in the example. The operating system has reserved
this optional attribute for the base operating system. ROOT
has a string value that names the root image file. Do not
use this attribute for a layered product.

COMPRESS An optional flag that you set to 1 if you want to create compressed
subset files. For kits in Direct CD−ROM (DCD) format, you
must set this flag to 0 (zero) and make sure that the FLAGS
field in the subset descriptors has bit 2 set to 1 to indicate
that the subset is not compressed (see Table 3–3). Compressed
files require less space on the distribution media (sometimes
as little as 40 percent of the space required by uncompressed
files), but they take longer to install than uncompressed
files. If missing, this flag defaults to 0 (zero).

Preparing Subsets 3–9

The key file subset descriptor section describes each of the subsets in the kit
and provides subset-level instructions for the kits command. This section
contains one line for each subset in the kit and consists of four fields, each
separated by a single Tab character. You cannot include comments in this
section of the key file. Table 3–3 describes the subset descriptor fields.

Table 3–3: Key File Subset Descriptors
Field Description

Subset identifier A character string up to 80 characters in length, composed
of the product code (for example, OAT), a mnemonic
identifying the subset (for example, ODB), and the
three-digit version code (for example, 100). In this example,
the subset identifier is OATODB100. All letters in the
subset identifier must be uppercase.

Dependency list Either a list of subsets upon which this subset is dependent
(OATODB100|OSFDCMT520), or a single period (.) indicating
that there are no subset dependencies. Separate multiple
subset dependencies with a pipe character (|).

Flags A 16-bit unsigned integer; the operating system defines the
use of the lower 8 bits. See Table 3–4 for a list of values.

Set bit 0 to indicate whether the subset can be removed
(0=removable, 1=protected).

Set bit 1 to indicate whether the subset is optional
(0=mandatory, 1=optional).

Set bit 2 to indicate compression (0=compressed,
1=uncompressed).

Bits 3-7 are reserved for future use. You can use
bits 8-15 to relay special subset-related information
to your subset control program.

Subset description A short description of the subset, delimited by single
quotation marks (’), for example: ’Document Builder
Tools’. The percent sign (%) is reserved in this field;
do not use it for layered products.

3–10 Preparing Subsets

Table 3–4 describes the subset properties indicated by the key file subset
descriptor Flags field values. For example, if the Flags field value is 5, the
subset is protected, mandatory, and uncompressed.

Table 3–4: Flags Field Values and Subset Properties
Bit 0 Bit 1 Bit 2

Removable Protected Mandatory Optional Compressed Uncompressed

0 × × ×

1 × × ×

2 × × ×

3 × × ×

4 × × ×

5 × × ×

6 × × ×

7 × × ×

After preparing your subsets as described in this chapter, proceed as follows:

• If you are creating subset control programs, go to Chapter 4.

• If you are not creating subset control programs, go to Chapter 5.

Preparing Subsets 3–11

4
Creating Subset Control Programs

A subset control program (SCP) is called by the setld utility when installing
or deleting your product kit. This chapter describes common tasks required
to write subset control programs.

______________________ Note _______________________

This chapter applies only if you are creating a subset control
program. Subset control programs are optional for user product
kits and required for kernel product kits. If you are not creating a
subset control program, go to Chapter 5.

This chapter discusses the following topics:

• Introducing subset control programs (Section 4.1)

• Creating SCP source files (Section 4.2)

• Setting up initial SCP processing (Section 4.3)

• Working in a cluster environment (Section 4.4)

• Working in a DMS environment (Section 4.5)

• Associating SCP tasks with setld processing phases (Section 4.6)

• Determining subset installation status (Section 4.7)

• Stopping the installation (Section 4.8)

• Creating SCPs for different types of product kits (Section 4.9)

4.1 Introducing Subset Control Programs

A subset control program (SCP) performs special tasks beyond the basic
installation tasks managed by the setld utility. The following list includes
some of the reasons why you might write a subset control program:

• Some of your kit’s files have to be customized before the product will
work properly.

• You want to register a device driver and statically or dynamically
configure it.

Creating Subset Control Programs 4–1

• You need to establish nonstandard permissions or ownership for certain
files.

• Your kit requires changes in system files such as /etc/passwd.

A subset control program can perform all of these tasks.

_____________________ Caution _____________________

Code your subset control program so that it can run more than
once without causing operational problems. This does not mean
that you must repeat the SCP tasks, but that multiple executions
will not cause the SCP to fail or to corrupt existing files.

Remove any code from existing SCPs that refers to subset-id.lk
or subset-id.dw files.

• Use the DEPS field in the subset control file (subset_id.ctrl)
for subset dependency processing.

Do not use the subset-id.lk files to determine subset
dependencies.

• Use the library routines described in Table 4–3 to determine if
a subset is installed.

• In the current version of the operating system, subset-id.dw
files are no longer created. Use the library routines described
in Table 4–3 to determine if a subset is corrupt.

See Section 4.7 for more information about determining subset
installation status.

4.2 Creating SCP Source Files

Create one subset control program for each subset that requires special
handling during installation. You can write the program in any programming
language, but your subset control program must be executable on all
platforms on which the kit can be installed. If your product works on more
than one hardware platform, you cannot write your subset control program
in a compiled language. For this reason, it is recommended that you write
your subset control program as a script for /sbin/sh. All of the examples in
this chapter are written in this way.

Keep your subset control programs short. If written as a shell script, a
subset control program should be under 100 lines in length. If your subset
control program is lengthy, it is likely that you are trying to make up for a
deficiency in the architecture or configuration of the product itself.

4–2 Creating Subset Control Programs

______________________ Note _______________________

Subset control programs should not require any interactive
responses, and should not generate errors when run repeatedly.

Place all subset control programs that you write in the scps directory,
a subdirectory of the data directory. Each subset control program’s file
name must match the subset name to which it belongs, and it must end
with the scp suffix. For example, the ODB product defines two subsets,
named OATODB100 and OATODBTEMPS100. If each of these subsets required
a subset control program, the source file names would be OATODB100.scp
and OATODBTEMPS.scp.

When you produce the subsets as described in Chapter 5, the kits utility
copies the subset control programs from the ./data/scps directory
to the ./output/instctrl directory. If a subset has no SCP, the
kits utility creates an empty subset control program file for it in the
./output/instctrl directory.

4.3 Setting Up Initial SCP Processing

Your subset control program should perform the following tasks within the
program:

• Including library routines (Section 4.3.1)

• Setting global variables (Section 4.3.2)

The following sections describe the resources available to perform these
tasks.

4.3.1 Including Library Routines in Your SCP

The operating system provides a set of routines in the form of Bourne shell
script code located in the /usr/share/lib/shell directory. Do not copy
these routines into your subset control program. This would prevent your
kit from receiving the benefit of enhancements or bug fixes made in future
releases. Use the following syntax to include these library routines:

SHELL_LIB=${SHELL_LIB:-/usr/share/lib/shell}
. $SHELL_LIB/lib_name

This specific coding lets you use newer versions of the shell library if they
are present in alternate locations.

In the previous example, lib_name is one of the shell scripts specified in
one or more of the following tables.

Creating Subset Control Programs 4–3

Table 4–1 lists library routines in the libscp shell script.

Table 4–1: SCP Library Routines
Purpose Library Routine

Architecture determination STL_ArchAssert

Dependency locking STL_LockInita

STL_DepLocka

STL_DepUnLocka

Dataless environment determination STL_IsDataless

STL_NoDataless

Forward symbolic linking STL_LinkCreateb

STL_LinkRemoveb

Backward symbolic linking STL_LinkInit

STL_LinkBack

SCP initialization STL_ScpInit
a Do not use this library routine. It is provided for backward compatibility only. Use the DEPS field in the
subset control file (subset_id.ctrl) for subset dependency processing.
b Do not use this library routine. It is provided for backward compatibility only.

Table 4–2 lists library routines in the libinstall shell script.

Table 4–2: Installation Library Routines
Purpose Library Routine

Cluster member identification INST_GetMemberID

4–4 Creating Subset Control Programs

Table 4–3 lists library routines in the libswdb shell script.

Table 4–3: Software Database Library Routines
Purpose Library Routine

Installed subsets SWDB_FindInstalledSubsets

3–digit version number SWDB_FindInstalledVersions

SWDB_FindLatestVersions

Product name in subset control file
(subset_id.ctrl)

SWDB_GetProductName

Subset installation status SWDB_CompareStatesa

SWDB_GetStatea

SWDB_IsCorrupta

SWDB_IsInstalleda

Subset dependencies SWDB_IsLockeda

SWDB_ListLockingSubsets
a For more information about this library routine, see Section 4.7.

4.3.2 Setting Global Variables

You can call the STL_ScpInit routine to define these variables and initialize
them to their values for the current subset. This routine eliminates the need
to hard code subset information in your subset control program.

______________________ Note _______________________

Use the STL_ScpInit routine to initialize global variables at the
beginning of all setld utility processing phases in your SCP
except the M phase. The control file is not read before the M phase.

All predefined global variable names begin with an underscore (_)
for easier identification.

Creating Subset Control Programs 4–5

Table 4–4 lists global variables that the subset control program can use to
access information about the current subset.

Table 4–4: STL_ScpInit Global Variables
Variable Description

_SUB Subset identifier, for example, OATODB100

_DESC Subset description, for example, Document Builder Tools

_PCODE Product code, for example, OAT

_VCODE Version code, for example, 100

_PVCODE Concatenation of product code and version code, for
example, OAT100

_PROD Product description, for example, Orpheus Document Builder

_ROOT The root directory of the installation

_SMDB The location of the subset control files, ./usr/.smdb.

_INV The inventory file, for example, OATODB100.inv

_CTRL The subset control file, for example, OATODB100.ctrl

_OPT The directory specifier /opt/

_ORGEXT File extension for files saved by the STL_LinkCreate
routine, set to pre$_PVCODEa

_OOPS The NULL string, for dependency processingb

a Do not use the STL_LinkCreate routine. It is provided for backward compatibility only.
b Do not use this global variable. It is provided for backward compatibility only. Use the DEPS field in the
subset control file (subset_id.ctrl) for subset dependency processing.

4.4 Working in a Cluster Environment

A cluster is a loosely coupled collection of servers that share storage and
other resources that make applications and data highly available. A
cluster consists of communications media, member systems, peripheral
devices, and applications. The systems within a cluster communicate over a
high-performance interconnect.

A TruCluster Server is a highly integrated synthesis of Tru64 UNIX software,
AlphaServer™ systems, and storage devices that operate as a single virtual
system. The cluster file system (CFS) makes the shared root, usr, and var
file systems visible and available to all cluster members. Cluster members
can share resources, data storage, and clusterwide file systems under a
single security and management domain, yet they can boot or shut down
independently without disrupting the cluster’s services to clients.

4–6 Creating Subset Control Programs

TruCluster Server includes a cluster alias for the Internet protocol suite
(TCP/IP) so that a cluster appears as a single system to its network clients
and peers.

For more information about clusters, see the TruCluster Server
documentation set.

______________________ Note _______________________

This manual uses the term current member to mean the
cluster member where an operation is taking place. This is not
necessarily the cluster member where that operation was invoked.

When you create your subset control programs, consider the following
restrictions so that your SCP tasks do not cause operational problems:

• Any setld utility phase of your SCP must be able to run more than once
without causing operational problems. This does not mean that you
must repeat the SCP tasks, but that multiple executions will not cause
the SCP to fail or corrupt existing files.

• In a cluster, some setld utility phases will run on each cluster member.
Any changes made by the SCP must first determine if the change already
has been made to that cluster member. If so, the SCP should not attempt
to make the change again.

• The SCP should never change the file type of an existing CDSL.

Do not try to change a CDSL to a file or directory. This would create a
shared file where the cluster expects to find a link to a member-specific
file and would cause cluster-wide problems.

• The SCP should never change base operating system or cluster inventory.

• The SCP should not decline a delete operation.

If a deconfiguration fails, report the error and continue the deletion, but
do not exit with a nonzero status. The user must fix the problem after
the software is removed.

Table 4–5 describes how setld utility phases behave when your SCP runs
on a cluster.

Creating Subset Control Programs 4–7

Table 4–5: SCP Operations on a Cluster
setld Phase Cluster Behavior

all phases All phases of setld utility processing must be able to run more than
once without causing operational problems.
This does not mean that you must repeat the SCP tasks, but that
multiple executions will not cause the SCP to fail.

M Runs only on the cluster member where you run the setld
utility, which invokes the SCP on that member.

PRE_L Runs only once for the entire cluster. If you must run an operation
on each cluster member, do it in the C INSTALL phase.a

POST_L Runs only once for the entire cluster. If you must run an operation
on each cluster member, do it in the C INSTALL phase.a

C INSTALL Runs multiple times, once on each cluster member.
If your SCP needs to access member-specific files, perform those
operations here.

C DELETE Runs multiple times, once on each cluster member.
Always return a zero exit status from the C DELETE phase. A
nonzero status tells the setld utility not to delete the software, but
if the setld utility has run the C DELETE phase on other cluster
members then the software already may be marked as corrupt.
If the operation fails, report the error and continue processing. The
user must fix the problem after the software is removed.b

PRE_D Runs only once for the entire cluster. If you must run an operation
on each cluster member, do it in the C DELETE phase.a

Always return a zero exit status from the PRE_D phase. A nonzero
status tells the setld utility not to delete the software, but since the
setld utility has run the C DELETE phase on other cluster members
then the software already may be marked as corrupt.
If the operation fails, report the error and continue processing. The
user must fix the problem after the software is removed.b

POST_D Runs only once for the entire cluster. If you must run an operation
on each cluster member, do it in the C DELETE phase.a

Always return a zero exit status from the POST_D phase. If the
operation fails, report the error and continue processing. The user
must fix the problem after the software is removed.b

V No cluster-specific restrictions.
a There may be circumstances where you must run an operation on each cluster member in this phase. It
is possible to include code here that will execute on each cluster member, but it is not recommended as a
standard practice.
b See the Installation Guide and setld(8) for recovery information.

4–8 Creating Subset Control Programs

4.5 Working in a Dataless Environment

In a Dataless Management Services (DMS) environment, one computer acts
as a server by storing the operating system software on its disk. Other
computers, called clients, access this software across the Local Area Network
(LAN) rather than from their local disks. See Sharing Software on a Local
Area Network for more information about DMS.

The setld utility uses an alternate root directory in a Dataless Management
Services (DMS) environment. To make your subset control program DMS
compliant, use dot-relative pathnames for file names and full absolute
pathnames starting from root (/) for commands in your subset control
program. This ensures that the proper command is executed when running
on either the server or the client in the dataless environment.

The following example shows the default path for SCP processing commands
to be run from the server in a DMS environment:

/sbin:/usr/lbin:/usr/sbin:/usr/bin:.

A subset control program may need to perform differently in a dataless
environment or disallow installation of the subset on such a system. If the
product will be installed onto a DMS server, use relative pathnames in your
SCP. The dataless environment root is the DMS area rather than the DMS
server’s root file system.

_____________________ Caution _____________________

When running on a dataless client, the /usr area is not writable.
You cannot install the product kit if any files reside in the /usr
directory. Make sure the subset control program does not attempt
to write to any files located in the /usr directory.

You can use the following routines to perform SCP processing in dataless
environments:

STL_IsDataless

Determines if a subset is being installed into a dataless environment.

STL_NoDataless

Declines installation of a subset into a dataless environment.

Creating Subset Control Programs 4–9

4.6 Associating SCP Tasks with setld Utility Phases

The setld utility invokes the subset control program during different
phases of its processing. The SCP can perform certain tasks during any of
these phases, such as creating or deleting a file or displaying messages.
Other tasks that may be required, such as creating links, should be
performed only during specific phases.

Some tasks must take place during specific phases. For example, creating
links between product files and the standard directory structure occurs
during the POST_L phase.

Figure 4–1 shows setld utility time lines for the −l, −d, and −v options.

Figure 4–1: Time Lines for setld Utility Phases
Display subset menu Load subsets Configure subsets

setld -l

ZK-1220U-AI

M PRE_L POST_L C INSTALL

Delete subsets

Check subset existence

setld -d

C DELETE PRE_D POST_D

setld -v

V

Determine if subset
belongs in menu

Reverse
C INSTALL actions

Run installation
verification program

Analyze
system

Create links
Lock subsets

Configure product

Reverse
POST_L actions

Reverse PRE_L
actions

Runs only on cluster
member where SCP is

invoked

Runs only once for
entire cluster

Runs only once for
entire cluster

Runs only once for
entire cluster

No cluster restrictions

Runs only once for
entire cluster

Runs once on
each cluster member

Runs once on
each cluster member

Run member-specific
operations here

Run member-specific
operations here

4–10 Creating Subset Control Programs

The actions taken by the setld utility are shown above the time lines. The
SCP actions taken during each setld processing phase are shown below the
time lines, along with any restrictions when the SCP is run on a cluster.

When the setld utility enters a new phase, it first sets the ACT environment
variable to a corresponding value, then invokes the subset control program.
The SCP determines the value of the ACT environment variable and any
command line arguments to determine the required action.

______________________ Note _______________________

Do not include wildcard characters in your subset control
program’s option-parsing routine. Write code only for the cases
the subset control program actually handles. For example,
the subset control programs in this chapter provide no code
for several conditions under which they could be invoked, for
example, the V phase.

The following sections describe the tasks that a subset control program may
perform in each setld processing phase:

• Displaying the subset menu: M phase (Section 4.6.1)

• Before loading the subset: PRE_L phase (Section 4.6.2)

• After loading the subset: POST_L phase (Section 4.6.3)

• Configuring after securing the subset: C INSTALL phase (Section 4.6.4)

• Deconfiguring before deleting a subset: C DELETE phase (Section 4.6.5)

• Before deleting a subset: PRE_D phase (Section 4.6.6)

• After deleting a subset: POST_D phase (Section 4.6.7)

• Verifying the subset: V phase (Section 4.6.8)

_____________________ Caution _____________________

Any setld utility phase of your SCP must be able to run more
than once without causing operational problems. This does not
mean that you must repeat the SCP tasks, but that multiple
executions will not cause the SCP to fail.

See setld(8) and stl_scp(4) for more information about the setld utility
and conventions for subset control programs.

Creating Subset Control Programs 4–11

4.6.1 Displaying the Subset Menu (M Phase)

Whenever it performs an operation, the setld utility uses the M phase
to determine if the subset should be included in that operation. Before
displaying the menu, setld sets the ACT environment variable to M and
calls the subset control program for each subset. At this time, the subset
control program can determine whether to include its subset in the menu.
The subset control program should return a value of 0 (zero) if the subset
can be included in the menu.

______________________ Note _______________________

In a cluster environment, the M phase runs only on the cluster
member where the setld utility is invoked.

Example 4–1 shows a sample setld installation menu, listing the subsets
available for installation.

Example 4–1: Sample setld Installation Menu

1) Kit One Name: Subset Description
2) Kit Two Name: Subset Description
3) Kit Three Name: Subset Description
4) Kit Four Name: Subset Description
5) ALL of the above
6) CANCEL selections and redisplay menus
7) EXIT without installing any subsets

Enter your choices or press RETURN to redisplay menus.

Choices (for example, 1 2 4-6):

When it calls the subset control program during this phase, the setld utility
passes one argument, which can have one of two values:

• The −l argument indicates that the operation is a subset load.

• The −x argument is reserved for extraction of the subset into a RIS
server’s product area.

When setld extracts a subset into a RIS server’s product area, the server
also executes the subset control program to make use of the program’s code
for the M phase of installation. You should code the M phase to detect the
difference between extraction of the subset into a RIS area and loading of
the subset for use of its contents. To make this determination, determine
the value of the $1 command argument (either −x for RIS extraction or −l
for loading). For RIS extraction, the subset control program should take no
action during the M phase. When loading subsets, the SCP should perform
a machine test.

4–12 Creating Subset Control Programs

The following Bourne shell example illustrates one way to code the M phase.
In Example 4–2, the subset control program is determining the type of
processor on which it is running. In this example, there is no special code for
the RIS extract case.

Example 4–2: Sample Test for Alpha Processor During M Phase

#
The ACT variable is set by setld and determines which
phase of the SCP should be executed.
#
case $ACT in
#
This is the menu phase of the SCP
#
M)
#
Setld invokes the M phase with an argument and if
the argument is "-l" it means that a software load
is occurring.
#
case $1 in
-l)
#
Examine the machine architecture to be sure
that this software is being installed on an
alpha machine. If it is not, exit with an
error status so that setld will not display
this subset on the menu of subsets to load.
#
ARCH=‘./bin/machine‘
["$ARCH" = alpha] || exit 1
;;
esac
;;
.
.
.

In Example 4–2, the SCP returns the following codes to the setld utility:

0 - display the subset in the menu
1 - do not display the subset in the menu

______________________ Note _______________________

Installation for a dataless client uses the client’s local copy of the
machine shell script even though the installation is performed in
a DMS area on the server. See Section 4.5 and Sharing Software
on a Local Area Network for more information about DMS.

Creating Subset Control Programs 4–13

4.6.2 Before Loading the Subset (PRE_L Phase)

After presenting the menu and before loading the subset, the setld utility
sets the ACT environment variable to PRE_L and calls the subset control
program. At this time, the subset control program can take any action
required to prepare the system for subset installation, such as protecting
existing files.

______________________ Note _______________________

In a cluster environment, the PRE_L phase is run only once for the
whole cluster. If you must run member-specific operations when
your subset is loaded, include the code in the C INSTALL phase.

Do not decline software loading because of one cluster member.

Use the DEPS field in the subset control file (subset_id.ctrl)
for subset dependency processing.

If you overwrite base operating system files, you may encounter the following
problems:

• Your product can be corrupted during an Update Installation of the
operating system. The Update Installation will overwrite any file that
is on the system with the version of the file shipped with the operating
system.

• An Update Installation may not complete successfully if you overwrite a
base operating system file. This can make the system unusable.

• Your product may have to be removed from the system to complete an
Update Installation. Your product would have to be reinstalled after the
Update Installation is completed.

• Removing your product corrupts the operating system.

If your subset control program is designed to overwrite existing files, it first
should make a backup copy of the original file during the PRE_L phase and
restore the copy in the POST_D phase described in Section 4.6.7.

4–14 Creating Subset Control Programs

In Example 4–3, the subset control program examines a list of files to be
backed up if they already exist on the system. If it finds any, it creates a
backup copy with an extension of .OLD.

Example 4–3: Sample Backup of Existing Files During PRE_L Phase

.

.

.
#
Here is a list of files to back up if found on
the installed system.
#
BACKUP_FILES="\
./usr/var/opt/$_PVCODE/templates/odb_template \ 1
./usr/var/opt/$_PVCODE/log_files/odb_log" 1

.

.

.
#
The ACT variable is set by setld and determines which
phase of the SCP should be executed.
#
case $ACT in

.

.

.
#
This is the pre-load phase of the SCP
#
PRE_L)
#
Loop through the list of backup files and create
backup copies for any file that is found on the
system.
#
for FILE in $BACKUP_FILES
do
#
If the file to be backed up exists, create
a backup copy with a .OLD extension.
#
if [-f $FILE -a ! -f $FILE.OLD]
then
cp $FILE $FILE.OLD 2

fi
done
;;

.

.

.

1 The STL_ScpInit routine sets the value of the $_PVCODE global
variable to OAT100. Using this variable allows the SCP to be used for the
next version of the product, OAT200, without changing the pathnames.

2 A backup copy is made if the specified file exists and if a backup copy
does not already exist. This will be restored in the POST_D phase.

In Example 4–3, the SCP returns the following codes to the setld utility:

0 - load the subset
1 - do not load the subset

Creating Subset Control Programs 4–15

4.6.3 After Loading the Subset (POST_L Phase)

After loading the subset, the setld utility sets the ACT environment variable
to POST_L and calls the subset control program for each subset. At this time
the subset control program can make any modifications required to subset
files that usually are protected from modification when the installation is
complete. The subset control program should create backward links at this
time.

______________________ Note _______________________

In a cluster environment, the POST_L phase is run only once for
the whole cluster. If you must run member-specific operations
when your subset is loaded, include the code in the C INSTALL
phase.

Do not decline software configuration because of one cluster
member.

Sometimes you may need to create links within your product–specific
directories that refer to files in the standard hierarchy. Such backward
links must be created carefully because the layered product directories
themselves can be symbolic links. This means that you cannot rely on
knowing in advance the correct number of directory levels (../) to include
when you create your backward links. For example, /var is frequently a
link to /usr/var.

When a kit is installed on a Network File System (NFS) server, the SCP
should make the backward links in the server’s kit area. When the server’s
kit area is exported to clients, the links are already in place and you do
not need to create any backward links in the client area. This is done so
that installation on an NFS client cannot overwrite any existing backward
links in the server’s kit areas. You do not run the subset control program
on an NFS client. Your subset control program should create and remove
backward links in the POST_L and PRE_D phases, respectively.

_____________________ Caution _____________________

NFS clients importing products with backward links must have
directory hierarchies that exactly match those on the server.
Otherwise, the backward links fail.

4–16 Creating Subset Control Programs

Use the STL_LinkInit and STL_LinkBack routines to create backward
links as follows, and use the rm command to remove them:

STL_LinkInit

Used in the POST_L phase to establish internal variables for the
STL_LinkBack routine. Before you use STL_LinkBack to create a link,
you must execute STL_LinkInit once. This routine has no arguments
and returns no status.

STL_LinkBack link_file file_path link_path

Creates a valid symbolic link from your product area (under /usr/opt
or /usr/var/opt) to a directory within the standard UNIX directory
structure. In this example, link_file is the file to link, file_path is
the dot-relative path of the directory where the file actually resides, and
link_path is the dot-relative path of the directory where you should
place the link. You can use STL_LinkBack repeatedly to create as many
links as required. This routine returns no status.

The SCP in Example 4–4 uses STL_LinkBack in the POST_L phase to
create a link named /opt/OAT100/sbin/ls. This link refers to the real file
/sbin/ls. The SCP removes the link in the PRE_D phase.

Example 4–4: Sample Backward Link Creation During POST_L Phase

case $ACT in
.
.
.

#
This is the post-load phase of the SCP
#
POST_L)
#
Initializes the variables so that STL_LinkBack can be executed
#
STL_LinkInit
#
Create a symbolic link in the ./opt/$_PVCODE/sbin
directory that points to the ./sbin/ls file.
#
STL_LinkBack ls ./sbin ./opt/$_PVCODE/sbin 1
;;
PRE_D)
#
Remove the links created in the POST_L phase
#
rm -f ./opt/$_PVCODE/sbin/ls 2

;;
.
.
.

Creating Subset Control Programs 4–17

1 The STL_LinkBack routine creates a backward link in the
product-specific area, as described in the comment above the code. The
STL_ScpInit routine sets the value of the $_PVCODE global variable
to OAT100. Using this variable allows the SCP to be used for the next
version of the product, OAT200, without changing the pathnames.

2 The SCP uses the rm command to remove the links created in the
POST_L phase.

In Example 4–4, the SCP returns the following codes to the setld utility:

0 - continue subset configuration
1 - terminate subset configuration; leave the subset corrupt

The setld utility creates an empty subsetID.lk lock file when it loads
a subset. After successful installation, that subset is then available for
dependency processing and locking is performed when other subsets are
installed later. A subset’s lock file can then contain any number of records,
each naming a single dependent subset.

For example, the ODB kit requires that some version of the Orpheus
Document Builder base product must be installed for the ODB product to
work properly. Suppose that the OATBASE200 subset is present. When the
setld utility installs the OATODBTEMPS100 subset from the ODB kit, it
inserts a record that contains the subset identifier OATODBTEMPS100 into
the OATBASE200.lk file. When the system administrator uses the setld
utility to remove the OATBASE200 subset, the setld utility examines
OATBASE200.lk and finds a record that indicates that OATODBTEMPS100
depends on OATBASE200, displays a warning message, and requires
confirmation that the user really intends to remove the OATBASE200 subset.

If the administrator removes the OATODBTEMPS100 subset, the setld utility
removes the corresponding record from the OATBASE200.lk file. Thereafter,
the administrator can remove the OATBASE200 subset without causing a
dependency warning.

The SCP uses the DEPS field in the subset control file (subset-id.ctrl) to
perform dependency locking.

4–18 Creating Subset Control Programs

4.6.4 After Securing the Subset (C INSTALL Phase)

After securing the subset, the setld utility sets the ACT environment
variable to C (configuration) and calls the subset control program for
each subset, passing INSTALL as an argument. At this time, the subset
control program can perform any configuration operations required for
product-specific tailoring. For example, a kernel kit can statically or
dynamically configure a device driver at this point.

The setld utility enters the C INSTALL phase when setld is invoked with
the −l (load) option.

______________________ Note _______________________

In a cluster environment, the C INSTALL phase runs multiple
times, once on each cluster member. You must be able to run any
SCP operations in the C INSTALL phase more than once without
causing a problem.

If your SCP needs to access member-specific files, perform those
operations during the C INSTALL phase.

The subset control program cannot create a layered product’s symbolic links
during the C INSTALL phase.

Example 4–5 shows the C INSTALL portion of the SCP that issues a message
upon successful subset installation.

Example 4–5: Sample Message Output During C INSTALL Phase

The ACT variable is set by setld and determines which
phase of the SCP should be executed.
#
case $ACT in
.
.
.
#
This is the configuration phase of the SCP
#
C)
#
Setld invokes the C phase with an argument that is
either INSTALL or DELETE. The INSTALL argument is
used on a setld load, while the DELETE argument is
used on a setld delete.
#
case $1 in
INSTALL) 1
#
Output a message letting the user know
that they should check the odb.conf file
before using the product.
#

echo "

Creating Subset Control Programs 4–19

Example 4–5: Sample Message Output During C INSTALL Phase (cont.)

The installation of the $_DESC ($_SUB) 2
software subset is complete.
Please check the /opt/$_PVCODE/odb.conf file before 3
using the $_DESC product." 2
;;
.
.
.
esac
;;
.
.
.

1 During the C phase, the SCP determines if the first argument passed by
the setld utility has the value of INSTALL. If so, the program displays
a message indicating that the installation is complete.

2 The STL_ScpInit routine sets the value of the $_DESC global variable
to Orpheus Document Builder and the $_SUB global variable to
OATODB100, resulting in the following message:

The installation of the Orpheus Document Builder (OATODB100)
software subset is complete.
Please check the /opt/OAT100/odb.conf file before
using the Orpheus Document Builder product."

3 The STL_ScpInit routine sets the value of the $_PVCODE global
variable to OAT100. Using this variable allows the SCP to be used for the
next version of the product, OAT200, without changing the pathnames.

In Example 4–5, the SCP returns the following codes to the setld utility:

0 - successful load and configure
1 - unsuccessful load and configure; leave the subset corrupt

4–20 Creating Subset Control Programs

4.6.5 Before Deleting a Subset (C DELETE Phase)

When the user invokes the setld utility with the −d option, the utility sets
the ACT environment variable to C and calls the subset control program
for each subset, passing DELETE as an argument. At this time, the subset
control program can make configuration modifications to remove evidence
of the subset’s existence from the system. For example, a kernel kit would
deconfigure a statically or dynamically configured driver during this phase.
The C DELETE phase should reverse any changes made during the C
INSTALL phase.

______________________ Note _______________________

In a cluster environment, the C DELETE phase runs multiple
times, once on each cluster member. You must be able to run any
SCP operations in the C DELETE phase more than once without
causing a problem.

The SCP always should return a zero exit status in the C DELETE
phase. A nonzero return status tells the setld utility not to
delete the software, but if the SCP has run the C DELETE phase
on other cluster members the software already may be marked
as corrupt.

If an operation fails, report the error and continue processing.
The user must fix the problem after the software is removed.

The subset control program cannot remove a layered product’s links during
the C DELETE phase.

Example 4–6 shows the C DELETE portion of the SCP that would reverse
any changes made during the C INSTALL phase.

Example 4–6: Sample C DELETE Phase

#
The ACT variable is set by setld and determines which
phase of the SCP should be executed.
#
case $ACT in
.
.
.
#
This is the configuration phase of the SCP
#
C)
#
Setld invokes the C phase with an argument that is
either INSTALL or DELETE. The INSTALL argument is
used on a setld load, while the DELETE argument is
used on a setld delete.
#

Creating Subset Control Programs 4–21

Example 4–6: Sample C DELETE Phase (cont.)

case $1 in
INSTALL)
#
Output a message letting the user know
that they should check the odb.conf file
before using the product.
#

echo "
The installation of the $_DESC ($_SUB)
software subset is complete.
Please check the /opt/$_PVCODE/odb.conf file before
using the $_DESC product."
;;
DELETE)

;; 1
esac

;;
.
.
.

1 This phase should reverse any changes made during the C INSTALL
phase. Since no changes were made in Example 4–5, no action is taken
in the C DELETE phase.

In Example 4–6, the SCP returns the following codes to the setld utility:

0 - continue with the deletion
1 - terminate the deletion

4.6.6 Before Deleting a Subset (PRE_D Phase)

When the user invokes the setld utility with the −d option, the utility
sets the ACT environment variable to PRE_D and calls the subset control
program for each subset. At this time, the subset control program can
reverse modifications made during the POST_L phase of installation, such as
removing links.

4–22 Creating Subset Control Programs

______________________ Note _______________________

In a cluster environment, the PRE_D phase runs only once for the
entire cluster. If you must run member-specific operations when
your subset is deleted, include the code in the C DELETE phase.

The SCP always should return a zero exit status in the PRE_D
phase. A nonzero return status tells the setld utility not to
delete the software, but since the SCP has run the C DELETE
phase the software is already marked as corrupt.

If an operation fails, report the error and continue processing.
The user must fix the problem after the software is removed.

The SCP uses the DEPS field in the subset control file (subset-id.ctrl)
to perform dependency unlocking.

In Example 4–4, the SCP used STL_LinkBack in the POST_L phase to
create the /opt/OAT100/sbin/ls link, referring to the /sbin/ls file.
Example 4–7 shows the SCP removing this link in the PRE_D phase.

Example 4–7: Sample PRE_D Phase Reversal of POST_L Phase Actions

case $ACT in
.
.
.

#
This is the pre-deletion phase of the SCP
#
PRE_D)
#
Remove the links created in the POST_L phase
#
rm -f ./opt/$_PVCODE/sbin/ls 1
;;

.

.

.

1 The SCP uses the rm command to remove the links created in the
POST_L phase.

In Example 4–7, the SCP returns the following codes to the setld utility:

0 - continue with the deletion
1 - terminate the deletion

Creating Subset Control Programs 4–23

4.6.7 After Deleting a Subset (POST_D Phase)

During the POST_D phase, after deleting a subset, the setld utility sets the
ACT environment variable to POST_D and calls the subset control program
for each subset. At this time the subset control program can reverse any
modifications made during the PRE_L phase of installation.

______________________ Note _______________________

In a cluster environment, the POST_D phase is run only once for
the whole cluster. If you must run member-specific operations
when your subset is deleted, include the code in the C DELETE
phase.

The SCP always should return a zero exit status in the POST_D
phase. A nonzero return status tells the setld utility not to
delete the software, but the subset already has been removed.
This causes cluster corruption.

If an operation fails, report the error and continue processing.
The user must fix the problem after the software is removed.

In Example 4–8, the subset control program examines a list of files to be
backed up if they already exist on the system. If it finds any, it restores
the backup copy.

Example 4–8: Sample File Restoration During POST_D Phase

.

.

.
#
Here is a list of files to back up if found on the installed system.
#

BACKUP_FILES="\
./usr/var/opt/$_PVCODE/templates/odb_template \ 1
./usr/var/opt/$_PVCODE/log_files/odb_log"

#
The ACT variable is set by setld and determines which
phase of the SCP should be executed.
#
case $ACT in

.

.

.
#
This is the post-deletion phase of the SCP
#

POST_D)

#
Restore the backup copies created during the PRE_L phase
#

4–24 Creating Subset Control Programs

Example 4–8: Sample File Restoration During POST_D Phase (cont.)

for FILE in $BACKUP_FILES
do
[-f $FILE.OLD] &&
mv $FILE.OLD $FILE 2

done
;;

.

.

.
esac

1 The STL_ScpInit routine sets the value of the $_PVCODE global
variable to OAT100. Using this variable allows the SCP to be used for the
next version of the product, OAT200, without changing the pathnames.

2 Restores any files backed up in the PRE_L phase, as shown in
Example 4–3.

In Example 4–8, the SCP returns the following codes to the setld utility:

0 - deletion was successful; no errors
1 - errors during deletion, software was removed

4.6.8 Verifying the Subset (V Phase)

When the user invokes the setld utility with the −v option, the utility sets
the ACT environment variable to V and calls the subset control program for
the subset. Any V phase processing included in the subset control program is
executed at this time.

The setld utility determines the existence of the installed subset and if the
subset exists, the setld utility verifies the size and checksum information
for each file in the subset. The setld utility does not execute subset control
program V phase processing during the installation process.

Creating Subset Control Programs 4–25

4.7 Determing Subset Installation Status

Subset installation status can drive conditional actions in subset control
programs, and accurately determining this status is especially important for
recovery processing.

The following topics are discussed in this section:

• How the current version of the operating system defines installation and
determines subset status (Section 4.7.1)

• Internal installation states and how they reflect software subset status
(Section 4.7.2)

• Using subset installation status library routines in your SCP
(Section 4.7.3)

4.7.1 Defining Installation and Subset Status

In the current operating system environment that includes TruCluster
Server, software installation status is defined as follows:

• A subset is loaded when its software is copied onto the system

• A subset is installed after it is loaded and its SCP has completed
successfully

A software subset can be loaded on one cluster member, corrupt on
another, and fully installed and configured on a third. The subset.lk
and subset.dw files are no longer sufficient to describe software subset
installation status.

The setld utility generates a r, subset.sts, for each subset. This file
describes the subset’s current installation state and reflects the success or
failure of specific phases of the installation or deletion process. The setld
utility removes the subset status file when it deletes the software subset.

Each /usr/.smdb./subset.sts file is a context-dependent
symbolic link (CDSL) to the corresponding /usr/cluster/mem-
bers/{memb}/.smdb./subset.sts file.

The subset.lk file still exists but now is used only to list dependent subsets.

4.7.2 Understanding Internal Codes for Installation States

Subset installation status corresponds to setld utility processing phases
as shown in Figure 4–1. Internal states are provided to describe software
subset installation status.

4–26 Creating Subset Control Programs

_____________________ Caution _____________________

Although subset installation status is reflected in more than one
place, your SCP must use these internal states to determine
subset installation status. Do not use the contents of the subset
status file or the output of the setld -i command.

Table 4–6 describes these internal code states:

Table 4–6: Software Subset Installation Status
Internal Code State Description

_not_installed The software is not on the system. Either the subset
was not installed or it was deleted successfully.

_deleting The setld utility is in the process of deleting the
software. The setld -d process has not completed
or failed to delete the subset.

_pre_load_failed The setld utility failed in the PRE_L phase. Although
the software did not load onto the system, some
system changes may have been made.

_pre_load_completed The setld utility finished the PRE_L phase and the
software is ready to load onto the system.

_verify_failed The software is loaded onto the system, but one or
more of the files failed the verification process and
the software is not installed and cannot be used. The
verification process compares the size and checksum of
the file on the system against the inventory record. If
either value does not match, the file fails verification.

_verify_completed a The software is loaded onto the system; all of the
subset files are present and verified. The software
is not yet installed on the system, as the POST_L
and C INSTALL phases must run and protected
system files must be moved into place.

_post_load_failed The software is loaded onto the system but the setld
utility failed in the POST_L phase. The subset files
are present but the software is not installed.

_post_load_completed The software is loaded onto the system and the
setld utility completed the POST_L phase. The
subset files are present and the software is ready to
be configured in the C INSTALL phase.

_populate_failed The software is loaded onto the cluster, the setld
utility completed the POST_L phase, but the copying
of member-specific files to the current cluster
member failed or did not complete.

Creating Subset Control Programs 4–27

Table 4–6: Software Subset Installation Status (cont.)

Internal Code State Description

_populate_completed The software is loaded onto the cluster, the setld utility
completed the POST_L phase, and all member-specific
files were copied to the current cluster member. The
software is ready to be configured in the C INSTALL
phase on the current cluster member.

_c_install_failed The software is loaded onto the system but the setld
utility failed in the C INSTALL phase. The subset files
are present but the software is not configured or installed.

_c_install_completed The setld utility completed the C INSTALL phase
and the software is installed on the system. There
are no other installation steps required by the
setld utility, although the software may require
additional setup before use.

any other value The subset status file is corrupted and an unsupported
string cannot be mapped to a valid state. This
is a serious condition and may require that you
remove and reinstall the software.

a In previous versions of the operating system, software that reached this point was considered installed as
long as the POST_L and C INSTALL phases did not fail, whether or not they actually ran and completed.

_____________________ Caution _____________________

Subset control programs (SCPs) cannot use the subset.lk and
subset.dw files to determine if a subset is installed.

The distinction between whether a subset is loaded or installed is important
because existing SCPs can fail if they only determine the existence of
subset.lk files. For example:

• If your software is dependent upon another subset being
installed, confirm that the other subset’s installation status is
_c_install_completed.

• If your software requires that another subset’s files are present on the
system, you only need to confirm that the other subset’s installation
status is _verify_completed.

See Section 4.7.3 for information about using subset installation status
library routines to determine subset installation status.

See stl_sts(4) for more information about subset status files.

See setld(8) for more information about how the setld utility processes
and displays software subsets.

4–28 Creating Subset Control Programs

4.7.3 Using Subset Installation Status Library Routines

Library routines for determining subset installation status are located in
the /usr/share/lib/shell/libswdb shell script. These routines are
applicable to both single systems and clusters.

_____________________ Caution _____________________

Do not use subset status file values or output from the setld
-i command to determine software subset installation status.
Although these values correspond to the internal code state
reflecting subset status, they are not identical and are subject to
change. Use the supplied library routines to determine subset
installation status in your SCPs.

To use these library routines in your subset control program, you first must
source the library shell script as in the following example:

SHELL_LIB=${SHELL_LIB:-/usr/share/lib/shell}
. $SHELL_LIB/libswdb

The /usr/share/lib/shell/libswdb shell script includes the following
library routines:

SWDB_IsInstalled subset

Returns 0 if subset is installed (in the _c_install_completed
state) on the current member, otherwise returns 1.

Example:
SWDB_IsInstalled OSFBASE520

SWDB_IsLocked subset

Returns 0 if subset is installed and required by another subset,
otherwise returns 1, indicating either that subset is not installed or
that subset is installed but that no other subset is dependent upon it.

Example:

SWDB_IsLocked OSFBASE520

SWDB_IsCorrupt subset

Returns 0 if subset either failed to load or if the SCP failed in one of
the setld utility phases, otherwise returns 1.

Example:

SWDB_IsCorrupt OSFBASE520

Creating Subset Control Programs 4–29

SWDB_GetState subset

Returns the internal code state reflecting the installation status of
subset.

Example:
STATE=‘SWDB_GetState OSFBASE520‘

This example retrieves the current state of the OSFBASE520 subset and
stores the value in the STATE variable. See Table 4–6 for descriptions
of subset installation status internal code states.

SWDB_CompareStates state1 state2

Returns 0 if state1 is before state2 in the setld utility processing
sequence, 1 if state1 is the same as state2, or 2 if state1 is after
state2.

Use the results of SWDB_GetState as one of the arguments to the
SWDB_CompareStates library routine to compare a subset’s internal
code state with a fixed code state. This lets you know if the subset
status has reached a particular code state and reflects the progress of
the subset installation. This routine is useful in determining where to
resume processing during a recovery procedure.

Example:

STATE=‘SWDB_GetState OSFBASE520‘
SWDB_CompareStates $STATE _verify_completed

This example determines if the OSFBASE520 subset has reached the
_verify_completed state on the current member.

The following list shows samples of old SCP code along with new code that
uses the new library routines to determine subset installation status.

• In the first case, the SCP must determine if the OSFBASE520 subset
is installed.

– Old SCP code determines if the OSFBASE520.lk file exists and is a
regular file. For example:

[-f OSFBASE520.lk] && {
… code to execute if software is installed…
}

4–30 Creating Subset Control Programs

– New SCP code uses the SWDB_IsInstalled routine and looks for a
return code of 0. For example:

SWDB_IsInstalled OSFBASE520
["$?" = "0"] && {
… code to execute if software is installed…
}

• In the second case, the SCP must determine if the OSFBASE520 subset
is corrupt.

– Old SCP code determines if the OSFBASE520.dw file exists. For
example:

[-f OSFBASE520.dw] && {
… code to execute if software is corrupt…
}

– New SCP code uses the SWDB_IsCorrupt routine and looks for a
return code of 0. For example:

SWDB_IsCorrupt OSFBASE520
["$?" = "0"] && {
… code to execute if software is corrupt…
}

• In the third case, the SCP must determine if the software is loaded
regardless of whether it is installed.

– This case did not exist in previous versions of the operating system.

– New SCP code uses the SWDB_GetState and SWDB_CompareState
routines and looks for a return code that is not zero. For example:

STATE=‘SWDB_GetState OSFBASE520‘
SWDB_CompareStates $STATE _verify_loaded
["$?" != "0"] && {
… code to execute if software is loaded …
}

4.8 Stopping the Installation

Depending on the tests performed, your subset control program could decide
to stop the installation or deletion of its subset. For example, if it finds a
later version of the product already installed, the subset control program
can stop the process.

To stop the installation or deletion of the subset, the subset control program
must return a nonzero status to the setld utility when it exits the phase.
If the subset control program returns a status of 0 (zero), the setld utility
continues, assuming that the SCP is satisfied.

Creating Subset Control Programs 4–31

4.9 Creating SCPs for Different Product Kit Types

This section provides examples of subset control programs for each of the
different product kit types. The following topics are discussed:

• Creating SCPs for user product kits (Section 4.9.1)

• Creating SCPs for kernel product kits (Section 4.9.2)

4.9.1 Creating User Product Kit SCPs

User product kits do not require subset control programs. You may need to
provide one if your user product requires special installation tasks.

Example 4–9 shows a subset control program for the ODB user product,
illustrating the types of operations that can be performed during different
setld phases and illustrating one method of using the value of the ACT
environment variable to determine what actions to perform.

Example 4–9: Sample ODB User Product SCP

#!/sbin/sh
#
Load all of the standard SCP library routines
#
SHELL_LIB=${SHELL_LIB:-/usr/share/lib/shell}
. $SHELL_LIB/libswdb
#
Initialize the global variables, except in the M phase
#
if ["$ACT" != "M"]
then
STL_ScpInit
fi
#
Here is a list of files to back up if found on
the installed system.
#
BACKUP_FILES="\
./usr/var/opt/$_PVCODE/templates/odb_template \
./usr/var/opt/$_PVCODE/log_files/odb_log"
#
The ACT variable is set by setld and determines which
phase of the SCP should be executed.
#
case $ACT in
#
This is the menu phase of the SCP
#
M)
#
Setld invokes the M phase with an argument and if
the argument is "-l" it means that a software load
is occurring.
#
case $1 in
-l)
#
Examine the machine architecture to be sure

4–32 Creating Subset Control Programs

Example 4–9: Sample ODB User Product SCP (cont.)

that this software is being installed on an
alpha machine. If it is not, exit with an
error status so that setld will not display
this subset on the menu of subsets to load.
#
ARCH=‘./bin/machine‘
["$ARCH" = alpha] || exit 1
;;
esac
;;
PRE_L)
#
Loop through the list of backup files and create
backup copies for any file that is found on the
system.
#
for FILE in $BACKUP_FILES
do
#
If the file to be backed up exists, create
a backup copy with a .OLD extension.
#
if [-f $FILE]
then
cp $FILE $FILE.OLD

fi
done
;;
POST_L)
#
Initializes the variables so that the STL_LinkBack
routine can be executed
#
STL_LinkInit
#
Create a symbolic link in the ./opt/$_PVCODE/sbin
directory that points to the ./sbin/ls file.
#
STL_LinkBack ls ./sbin ./opt/$_PVCODE/sbin
;;
PRE_D)
#
Remove the links created in the POST_L phase
#
rm -f ./opt/$_PVCODE/sbin/ls
;;
POST_D)
#
Restore the backup copies created during the PRE_L phase
#
for FILE in $BACKUP_FILES
do
[-f $FILE.OLD] &&
mv $FILE.OLD $FILE

done
;;
C)
#
Setld invokes the C phase with an argument that is
either INSTALL or DELETE. The INSTALL argument is
used on a setld load, while the DELETE argument is

Creating Subset Control Programs 4–33

Example 4–9: Sample ODB User Product SCP (cont.)

used on a setld delete.
#
case $1 in
INSTALL)
#
Output a message letting the user know
that they should check the odb.conf file
before using the product.
#
echo "

The installation of the $_DESC ($_SUB)
software subset is complete.

Please check the /opt/$_PVCODE/odb.conf file before
using the $_DESC product."
;;
DELETE)
;;
esac
;;
esac
exit 0

4.9.2 Creating Kernel Product Kit SCPs

In addition to the optional processing described in Section 4.6, a subset
control program for a kernel product such as a device driver also must
configure the driver into the kernel. When building subset control programs
for a kernel product, you can choose one of the following configuration
strategies:

• Write one subset control program for a kit that contains the software
subset associated with the single binary module for a statically
configured driver.

• Write one subset control program for a kit that contains the software
subset associated with the single binary module for a dynamically
configured driver.

• Write one subset control program for a kit that contains the software
subsets associated with the device driver that can be statically or
dynamically configured.

Example 4–10 shows the subset control program for the single binary module
associated with the odb_kernel driver. The user can choose to configure
this single binary module into the kernel either statically or dynamically.
The subset control program runs the doconfig utility to configure the
driver into the kernel.

4–34 Creating Subset Control Programs

Example 4–10: Sample ODB Kernel Product SCP

#!/sbin/sh
#
Load all of the standard SCP library routines
#
SHELL_LIB=${SHELL_LIB:-/usr/share/lib/shell}
. $SHELL_LIB/libswdb
Load the standard Error library routines
(location of the Error routine)
#
. $SHELL_LIB/Error
#
Load the standard String library routines
(location of the ToUpper routine)
#
. $SHELL_LIB/Strings
#
This routine rebuilds the static kernel
#
Rebuild_Static_Kernel()
{
HNAME=‘/sbin/hostname -s‘
HOSTNAME=‘ToUpper $HNAME‘
if doconfig -c $HOSTNAME
then
echo "\nThe /sys/${HOSTNAME}/vmunix kernel has been"
echo "moved to /vmunix and the changes will take effect"
echo "the next time the system is rebooted."
return 0
else
Error "

An error occurred while building the static kernel."
return 1
fi
}
KERNEL=/cluster/members/{memb}/boot_partition/vmunix
#
Initialize the global variables, except in M phase
#
if ["$ACT" != "M"]
then
STL_ScpInit
fi
#
The ACT variable is set by setld and determines which
phase of the SCP should be executed.
#
case $ACT in
C)
#
The kreg database file where all of the kernel
layered products are registered.
#
KREGFILE=./usr/sys/conf/.product.list
case $1 in
INSTALL)
#
Merge the graphics support into the existing
/etc/sysconfigtab file
#
sysconfigdb -m -f ./opt/$_PVCODE/etc/sysconfigtab odb_graphics
echo "*** $_DESC Product Installation Menu ***\n"
echo "1. Statically configure the graphics support"

Creating Subset Control Programs 4–35

Example 4–10: Sample ODB Kernel Product SCP (cont.)

echo "2. Dynamically configure the graphics support"
echo "\nType the number of your choice []: \c"
read answer
case ${answer} in
1)
#
Determine if the product is already registered
with the kreg database, and if it is, skip
registering it.
#
grep -q $_SUB $KREGFILE
if ["$?" != "0"]
then
#
Register the product with the
kernel using kreg
#
/sbin/kreg -l $_PCODE $_SUB \
./opt/$_PVCODE/sys/BINARY

fi
#
Rebuild the static kernel
#
Rebuild_Static_Kernel
#
Successful rebuild, so back up the existing
kernel and move the new one into place.
#
if ["$?" = "0"]
then
#
Make a backup copy of the kernel
as it existed prior to installing
this subset. Since a subset can
be installed more than once (due to
load/configuration failures or even
because the user removed files) make
sure that the backup does not already
exist.
#
if [! -f $KERNEL.pre_${_SUB)
then
mv $KERNEL $KERNEL/pre_${_SUB)

fi

#
Move the new kernel into place
#
mv /sys/${HOSTNAME}/vmunix /vmunix
#
Place a marker on the system so that
upon subset removal the SCP can
determine if it needs to remove a
static or dynamic configuration.
#
touch ./opt/$_PVCODE/sys/BINARY/odb_graphics_static
fi
;;

2)
#
Dynamically load the odb_graphics subsystem

4–36 Creating Subset Control Programs

Example 4–10: Sample ODB Kernel Product SCP (cont.)

into the kernel
#
sysconfig -c odb_graphics
;;

esac
;;
DELETE)
#
If the marker is present then the kernel option
was added statically.
#
if [-f ./opt/$_PVCODE/sys/BINARY/odb_graphics_static]
then
#
Clean-up the marker
#
rm -f ./opt/$_PVCODE/sys/BINARY/odb_graphics_static
#
Deregister the product using kreg
#
/sbin/kreg -d $_SUB
#
Rebuild the static kernel
#
Rebuild_Static_Kernel
#
Successful rebuild, remove the old backup
copy that was created when we installed.
#
if ["$?" = "0"]
then
mv /sys/${HOSTNAME}/vmunix /vmunix
rm -f $KERNEL.pre_${_SUB}
fi

else
#
Unload the dynamic kernel module
#
sysconfig -u odb_graphics

fi
#
Remove the entry from the /etc/sysconfigtab file
#
sysconfigdb -d odb_graphics
;;
esac
;;
esac
exit 0

Creating Subset Control Programs 4–37

5
Producing and Testing Subsets

After preparing your subsets as described in Chapter 3 (and optionally
creating subset control programs as described in Chapter 4), perform the
following tasks to produce your subsets:

1. Run the kits utility to produce subsets and control files (Section 5.1)

2. Test your subsets to make sure that they can be installed, that the
product works, and that the kit can be deleted Section 5.2)

3. Optionally, update your kit inventory after producing subsets
(Section 5.2)

5.1 Running the kits Utility

After you create the master inventory and key files as described in Chapter 3,
run the kits utility to produce subsets and control files. The kits utility
creates the following files:

• The compression flag file (Section 5.1.1)

• The image data file (Section 5.1.2)

• The subset control files (Section 5.1.3)

• The subset inventory files (Section 5.1.4)

_____________________ Caution _____________________

Do not create these files before you run the kits utility.

Use the following syntax for the kits command:

kits key-file input-path output-path [subset]...

key-file

This mandatory parameter is the pathname of the key file created
in Section 3.3.

input-path

This mandatory parameter specifies the top of the file hierarchy that
contains the source files.

Producing and Testing Subsets 5–1

output-path

This mandatory parameter specifies the directory used to store the
subset images and data files produced.

subset

This optional parameter specifies the name of an individual subset to
be built. You may specify multiple subsets in a space-separated list. If
you use the subset argument, the kits utility assumes the following:

• Only the subsets named as arguments to this parameter are to be
built.

• The key-file contains descriptors for each of the named subsets.

• All other subsets in the product have been built already.

• The output-path directory contains images of the previously
built subsets.

If you do not use the subset argument, the kits utility builds all
subsets listed in the key file.

See kits(1) for more information.

______________________ Note _______________________

The master inventory file (*.mi) and the key file (*.k) are
typically in the same directory. If they are not, the MI= attribute
in the key file must contain the explicit relative path from the
directory where you are running the kits utility to the directory
where the master inventory file resides. The scps directory
that contains any subset control programs must be in the same
directory where the kits utility is invoked.

Example 5–1 shows a sample of using the kits utility to build the subsets
for the ODB product kit:

Example 5–1: Using the kits Utility to Build ODB Subsets

cd /mykit/data
kits OAT100.k ../src ../output
%%
Creating 2 Orpheus Document Builder subsets.
1 Subset OATODB100 1

Generating media creation information...done
Creating OATODB100 control file...done.
Making tar image...done. 2
Compressing 3

OATODB100: Compression: 92.64%
-- replaced with OATODB100.Z

5–2 Producing and Testing Subsets

Example 5–1: Using the kits Utility to Build ODB Subsets (cont.)

*** Finished creating media image for OATODB100. ***

2 Subset OATODBTEMPS100 1
Generating media creation information...done
Creating OATODBTEMPS100 control file...done.
Making tar image...done.
Compressing 3

OATODBTEMPS100: Compression: 98.39%
-- replaced with OATODBTEMPS100.Z

Null subset control program created for OATODBTEMPS100.

*** Finished creating media image for OATODBTEMPS100. ***

Creating OAT.image 4

Creating INSTCTRL 5
a OAT.image 1 Blocks
a OAT100.comp 0 Blocks
a OATODB100.ctrl 1 Blocks
a OATODB100.inv 2 Blocks
a OATODB100.scp 7 Blocks
a OATODBTEMPS100.ctrl 1 Blocks
a OATODBTEMPS100.inv 0 Blocks
a OATODBTEMPS100.scp 0 Blocks

Media image production complete.

In Example 5–1, the kits utility performs the following steps and reports
its progress:

1 Creates the subsets.

2 If the subset is not in DCD format, creates a tar image of the subset.

3 Compresses each subset if you set the key file’s COMPRESS attribute to 1

4 Creates the image data file OAT.image.

5 Creates the INSTCTRL file, which contains a tar image of all the
following installation control files:

• Compression flag file product-id.comp

• Image data file product-code.image

• Subset control file subset-id.ctrl

• Subset inventory file subset-id.inv

• Subset control program file subset-id.scp

If you created an SCP, the kits utility copies it from the kit’s
data/scps directory to the kit’s output/instctrl directory. If
not, the kits utility creates an empty subset-id.scp file in the
kit’s output/instctrl directory.

Producing and Testing Subsets 5–3

These files are described in Table 5–1.

The INSTCTRL file is placed in the output directory.

Table 5–1 shows the installation control files in the instctrl directory
after you run the kits utility.

Table 5–1: Installation Control Files in the instctrl Directory
File Description

product-id.comp Compression flag file. This empty file is created
only if you set the key file’s COMPRESS attribute to
1. The ODB kit’s compression flag file is named
OAT100.comp. The contents of the compression
flag file are described in Section 5.1.1.

product-code.image Image data file. This file contains size and checksum
information for the subsets. The ODB kit’s image
data file is named OAT.image. The contents of the
image data file are described in Section 5.1.2.

subset-id.ctrl Subset control file. This file contains the setld
utility control information. There is one subset
control file for each subset. The ODB kit’s subset
control files are named OATODB100.ctrl and
OATODBTEMPS100.ctrl. The contents of the subset
control file are described in Section 5.1.3.

subset-id.inv Subset inventory file. This file contains an inventory
of the files in the subset. Each record describes
one file. There is one subset inventory file for each
subset. The ODB kit’s subset inventory files are
named OATODB100.inv and OATODBTEMPS100.inv.
The contents of the subset inventory file are
described in Section 5.1.4.

subset-id.scp Subset control program (SCP) . If you created subset
control programs for your kit, these files are copied
from the scps directory to the instctrl directory.
There is one subset control program for each subset;
if you have not created a subset control program for
a subset, the kits utility creates a blank file. The
ODB kit’s subset control program files are named
OATODB100.scp and OATODBTEMPS100.scp. Subset
control programs are described in Chapter 4.

Figure 5–1 shows the contents of the output directory after you run the
kits utility.

5–4 Producing and Testing Subsets

Figure 5–1: ODB output Directory

instctrl

output

ZK-1218U-AI

OAT.image

OAT.image

OAT100.comp

OATODB100.ctrl

OATODB100.inv

OATODB100.scp

OATODBTEMPS100.ctrl

OATODBTEMPS100.inv

OATODBTEMPS100.scp

OATODB100

OATODBTEMPS100

INSTCTRL
compressed subsets-
only appear if you
select COMPRESS
in the key file.

The subset files and the files in the instctrl directory are constituents of
the final kit. The following sections describe the contents of the installation
control files created by the kits utility.

5.1.1 Compression Flag File

The compression flag file is an empty file whose name consists of the product
code and the version number with the string .comp as a suffix; for example,
OAT100.comp. The kits utility creates a compression flag file if the key
file’s COMPRESS attribute is set to 1.

5.1.2 Image Data File

The image data file is used by the setld utility to verify subset image
integrity before starting the actual installation process. The image data file
name consists of the product code with the string .image as a suffix. The
image data file contains one record for each subset in the kit, with three
fields in each record.

Producing and Testing Subsets 5–5

Table 5–2 describes the image data file.

Table 5–2: Image Data File Field Descriptions
Field Description

Checksum The modulo-65536 (16-bit) checksum of the subset file,
as provided by the sum utility. If the file is compressed,
the checksum after compression.a

Size The size of the subset file in kilobytes. If the file is
compressed, the size after compression.

Subset
identifier

The product code, subset mnemonic, and version number.
For example, OATODB100.

a See sum(1) for more information.

Example 5–2 shows the OAT.image image data file for the ODB kit:

Example 5–2: Sample Image Data File

13601 10 OATODB100
12890 10 OATODBTEMPS100

5.1.3 Subset Control Files

The setld utility uses the subset control files as a source of descriptive
information about subsets. The subset control file’s name consists of the
subset name followed by the suffix .ctrl, for example: OATODB100.ctrl.

______________________ Note _______________________

Do not confuse subset control files with subset control programs
(SCPs). Subset control programs are described in Chapter 4.

Subset control file fields are described in Table 5–3.

Table 5–3: Subset Control File Field Descriptions
Field Description

NAME Specifies the product name. This value is from the
Name field in the Key File.

DESC Briefly describes the subset. This value is from the Subset Description
field in the Subset Descriptor section of the Key File.

ROOTSIZE Specifies (in bytes) the space the subset requires in
the root (/) file system.

USRSIZE Specifies (in bytes) the space the subset requires in the usr file
system. This value is calculated by the kits utility.

5–6 Producing and Testing Subsets

Table 5–3: Subset Control File Field Descriptions (cont.)

Field Description

VARSIZE Specifies (in bytes) the space the subset requires in the var file
system. This value is calculated by the kits utility.

NVOLS Specifies disk volume identification information as two
colon-separated integers (the volume number of the disk that contains
the subset archive and the number of disks required to contain the
subset archive). This value is calculated by the kits utility.

MTLOC Specifies the tape volume number and subset’s location on the
tape as two colon-separated integers (the volume number of the
tape that contains the subset archive and the file offset at which
the subset archive begins). On tape volumes, the first three
files are reserved for a bootable operating system image and are
not used by the setld utility. An offset of 0 (zero) indicates the
fourth file on the tape. The fourth file is a tar archive named
INSTCTRL, which contains the kit’s installation control files (listed
in Table 5–1). This value is calculated by the kits utility.

DEPS Specifies either a list of subsets upon which this subset is dependent
(DEPS="OATODB100 OSFDCMT520"), or a single period (DEPS=".")
indicating that there are no subset dependencies. If there is more
than one subset dependency, each subset name is separated by a
Space character. This value is from the Dependency List field in the
Subset Descriptor section of the Key file.
You may use the following wildcard characters when you specify
subset names in the DEPS field:

• An asterisk (*) represents any number of characters. For example,
OAT*100 will match OAT100, OATODB100, OATODBTEMPS100,
and so on.

• A question mark (?) represents a single numeric character. For
example, OATODB1?? matches OATODB100, OATODB101, and so on
up to OATODB199.

FLAGS Specifies the value in the flags field of the subsets record
in the key file. This value is from the Flags field in the
Subset Descriptor section of the Key file.

Bit 0 indicates whether the subset can be removed
(0=removable, 1=protected).

Bit 1 indicates whether the subset is mandatory (0=manda-
tory, 1=optional).

Bit 2 indicates whether the subset is compressed (0=com-
pressed, 1=uncompressed).

Bits 3 to 7 are reserved; bits 8 to 15 are undefined.

Producing and Testing Subsets 5–7

Example 5–3 shows the OATODB100.ctrl subset control file for the ODB
kit’s OATODB100 subset:

Example 5–3: Sample Subset Control File

NAME=’Orpheus Document Builder OATODB100’
DESC=’Document Builder Tools’
ROOTSIZE=16668
USRSIZE=16459
VARSIZE=16384
NVOLS=1:0
MTLOC=1:1
DEPS="."
FLAGS=0

5.1.4 Subset Inventory File

The subset inventory file describes each file in the subset, listing its size,
checksum, permissions, and other information. The subset inventory file’s
name consists of the subset name followed by the suffix .inv, for example:
OATODB100.inv. The kits utility generates this information, reflecting
the exact state of the files in the source hierarchy from which the kit was
built. The setld utility uses the information to duplicate that state, thus
transferring an exact copy of the source hierarchy to the customer’s system.
Table 5–4 describes subset inventory file fields.

Each record of the inventory is composed of 12 fields, each separated by
single Tab characters. Table 5–4 describes the contents of these fields.

Table 5–4: Subset Inventory File Field Descriptions
Name Description

Flags A 16-bit unsigned integer.

Bit 1 is the v (volatility) bit. When this bit is set, changes
to an existing copy of the file can occur either during or
after kit installation. The volatility bit usually is set for log
files such as /usr/spool/mqueue/syslog. Valid values
for this field are 0 (protected) or 2 (unprotected).

Size The actual number of bytes in the file.

Checksum The modulo-65536 (16-bit) checksum of the file.

uid The user ID of the file’s owner.

gid The group ID of the file’s owner.

Mode The six-digit octal representation of the file’s mode.

Date The file’s last modification date.

Revision The version code of the product that includes the file.

5–8 Producing and Testing Subsets

Table 5–4: Subset Inventory File Field Descriptions (cont.)

Name Description

Type A letter that describes the file:

b − Block device.

c − Character device.

d − Directory containing one or more files.

f − Regular file. For regular files with a link count
greater than one, see file type l.

l − Hard link. Other files in the inventory have the
same inode number. The first (in ASCII collating
sequence) is listed in the referent field.

p − Named pipe (FIFO).

s − Symbolic link.

Pathname The dot-relative (./) pathname of the file.

Referent For file types l and s, the path to which the file is
linked; for types b and c, the major and minor numbers
of the device; for all other types, none.

Subset identifier The name of the subset that contains the file.

Example 5–4 shows the OATODB100.inv inventory file for the ODB kit’s
OATODB100 subset.

Example 5–4: Sample ODB Product Subset Inventory File

0 512 00000 0 0 040755 5/15/00 100 d\
./cluster/members/member0/opt/OAT100 none OATODB100
2 44 56771 0 0 100644 5/15/00 100 f\
./cluster/members/member0/opt/OAT100/odb.conf none OATODB100
0 512 56771 0 0 040755 5/15/00 100 d\
./opt/OAT100 none OATODB100
2 51 00000 0 0 120777 5/15/00 100 s\
./opt/OAT100/odb.conf\
../../../cluster/members/{memb}/opt/OAT100/odb.conf OATODB100
0 512 00000 0 0 040755 5/15/00 100 d\
./opt/OAT100/sbin none OATODB100
0 28 06280 0 0 100644 5/15/00 100 f\
./opt/OAT100/sbin/odb_recover none OATODB100
0 512 06280 0 0 040755 5/15/00 100 d\
./usr/opt/OAT100 none OATODB100
0 512 06280 0 0 040755 5/15/00 100 d\
./usr/opt/OAT100/bin none OATODB100
0 27 33168 0 0 100644 5/15/00 100 f\
./usr/opt/OAT100/bin/odb_start none OATODB100
0 512 33168 0 0 040755 5/15/00 100 d\
./usr/var/cluster/members/member0/opt/OAT100 none OATODB100
0 23 43390 0 0 100644 5/15/00 100 f\
./usr/var/cluster/members/member0/opt/OAT100/odb_log none OATODB100
0 512 43390 0 0 040755 5/15/00 100 d\
./usr/var/opt/OAT100 none OATODB100

Producing and Testing Subsets 5–9

Example 5–4: Sample ODB Product Subset Inventory File (cont.)

0 512 43390 0 0 040755 5/15/00 100 d\
./usr/var/opt/OAT100/log_files none OATODB100
0 58 00000 0 0 120777 5/15/00 100 s\
./usr/var/opt/OAT100/log_files/odb_log\
../../../usr/var/cluster/members/{memb}/opt/OAT100/odb_log OATODB100

______________________ Note _______________________

The backslashes (\) in Example 5–4 indicate line continuation
and are not present in the actual file.

Fields are separated by single Tab characters.

5.2 Testing Subsets
You must test your subsets to ensure that they can be loaded onto a running
system, that the product runs on the system, and that the subsets can be
deleted. You must perform these tests in the following sequence::

1. Loading all of the subsets onto a running system. (Section 5.2.1)

2. Deleting all of the subsets from a running system. (Section 5.2.2)

3. If your kit includes optional subsets, loading only the mandatory subsets
onto a running system. (Section 5.2.3)

4. If your kit can be run in a cluster environment, testing on a cluster.
(Section 5.2.4)

See the Installation Guide for information about recovering from software
load and delete failures.

5.2.1 Loading All Subsets

The examples in this section assume that your kit consists of the mandatory
OATODB100 subset and the optional OATODBTEMPS100 subset, and that it
resides in the /mykit/output directory.

Follow these steps to load all subsets:

1. Log in to the system as root or use the su command to gain superuser
privileges.

2. Use the setld utility to load all of your subsets onto the system, as
in the following example:
setld -l /mykit/output

5–10 Producing and Testing Subsets

3. When prompted, select the option to install all subsets from the setld
installation menu.

4. Verify that all files in your subsets were loaded. If any files are missing,
check the master inventory file. Subset inventory files are created from
master inventory file entries.

5. Verify each file’s installed location, permissions, owner, and group.
The setld utility uses the information in the subset inventory file to
determine these attributes. If any are incorrect, modify the file in the
source directory and rebuild the master inventory file and the subsets.

6. If you supplied SCP files, verify any actions that should have occurred
in the M, PRE_L, POST_L, and C INSTALL phases. See Section 4.6 for
discussions of SCP tasks associated with these phases.

7. After successful installation, test all commands or utilities included
with your product. Since file locations may have changed, especially if
you installed in the /opt, /usr/opt, or /usr/var/opt directories,
it is important that you test your product thoroughly to verify that
everything works correctly.

8. Repeat the test to confirm that the SCP does not fail when it runs more
than once.

a. Use the setld -l command to reload all of your subsets onto
the system.

b. Verify that all files in your subsets were loaded. If any files are
missing, check the master inventory file.

c. Verify each file’s installed location, permissions, owner, and group.
If any are incorrect, modify the file in the source directory and
rebuild the master inventory file and the subsets.

d. If you supplied SCP files, verify any actions that should have
occurred in the M, PRE_L, POST_L, and C INSTALL phases. See
Section 4.6 for discussions of SCP tasks associated with these
phases.

e. After successful installation, test all commands or utilities included
with your product.

Producing and Testing Subsets 5–11

5.2.2 Removing All Subsets

The examples in this section assume that your kit consists of the mandatory
OATODB100 subset and the optional OATODBTEMPS100 subset, and that it
resides in the /mykit/output directory.

Follow these steps to remove all subsets:

1. Log in to the system as root or use the su command to gain superuser
privileges.

2. Use the setld utility to delete all of your subsets from the system, as
in the following example:

setld -d OATODB100 OATODBTEMPS100

3. Verify that all files loaded onto your system in Section 5.2.1 were
deleted.

4. If you supplied SCP files, verify any actions that should have occurred
in the C DELETE, PRE_D, and POST_D phases. See Section 4.6 for
discussions of SCP tasks associated with these phases.

5.2.3 Loading Mandatory Subsets Only

The examples in this section assume that your kit consists of the mandatory
OATODB100 subset and the optional OATODBTEMPS100 subset, and that it
resides in the /mykit/output directory.

Follow these steps to load only the mandatory subsets:

1. Log in to the system as root.

2. Use the setld utility to load all of your subsets onto the system, as
in the following example:

setld -l /mykit/output

3. When prompted, select the option to install only mandatory subsets
from the setld installation menu.

4. Verify that all mandatory files in your subsets were loaded. If any files
are missing, check the master inventory file. Subset inventory files are
created from master inventory file entries.

5. Verify each file’s installed location, permissions, owner, and group.
The setld utility uses the information in the subset inventory file to
determine these attributes. If any are incorrect, modify the file in the
source directory and rebuild the master inventory file and the subsets.

5–12 Producing and Testing Subsets

6. If you supplied SCP files, verify any actions that should have occurred
in the M, PRE_L, POST_L, and C INSTALL phases. See Section 4.6 for
discussions of SCP tasks associated with these phases.

7. After successful installation, test all commands or utilities included
with your product. Since file locations may have changed, especially if
you installed in the /opt, /usr/opt, or /usr/var/opt directories,
it is important that you test your product thoroughly to verify that
everything works correctly.

If your product does not work correctly, some of the files in your optional
subsets may need to be moved to mandatory subsets.

5.2.4 Testing in a Cluster

To test your product kit in a cluster, you must ensure that your subsets can
be loaded onto a running cluster, that the product runs on the cluster, and
that the subsets can be deleted from the cluster. You must perform these
tests in the following sequence:

1. Loading all of the subsets onto a cluster. (Section 5.2.4.1)

2. Deleting all of the subsets from a cluster. (Section 5.2.4.2)

The examples in this section assume that your kit consists of the mandatory
OATODB100 subset and the optional OATODBTEMPS100 subset and that it
resides in the /mykit/output directory.

5.2.4.1 Loading the Kit onto a Cluster

Follow these steps to load the product kit onto a cluster:

1. Log in to the cluster as root.

2. Use the setld utility to load all of your subsets onto the cluster, as
in the following example:

setld -l /mykit/output

3. When prompted, select the option to install all subsets from the setld
installation menu.

4. Verify that all files in your subsets were loaded. If any files are missing,
check the master inventory file. Subset inventory files are created from
master inventory file entries.

5. Verify each file’s installed location, permissions, owner, and group.
The setld utility uses the information in the subset inventory file to
determine these attributes. If any are incorrect, modify the file in the
source directory and rebuild the master inventory file and the subsets.

Producing and Testing Subsets 5–13

6. Perform the following checks on each cluster member:

a. Verify each member-specific file’s location, permissions, owner,
and group. The setld utility uses the information in the subset
inventory file to determine these attributes. If any are incorrect,
modify the file in the source directory and rebuild the master
inventory file and the subsets.

b. Verify that each CDSL can be accessed and that it contains the
correct information for each member.

c. If you supplied SCP files, verify any actions that should have
occurred in the M, PRE_L, POST_L, and C INSTALL phases. See
Section 4.6 for discussions of SCP tasks associated with these
phases.

d. After successful installation, test all commands or utilities included
with your product. Since file locations may have changed, especially
if you installed in the /opt, /usr/opt, or /usr/var/opt
directories, it is important that you test your product thoroughly to
verify that everything works correctly.

5.2.4.2 Deleting the Kit from a Cluster

Follow these steps to delete the kit from a cluster:

1. Log in to the cluster as root or use the su command to gain superuser
privileges.

2. Use the setld utility to delete all of your subsets from the cluster, as
in the following example:

setld -d OATODB100 OATODBTEMPS100

3. Verify that all files loaded onto your system in Section 5.2.1 were
deleted.

4. Perform the following checks on each cluster member:

a. Verify that each member-specific file was removed.

b. If you supplied SCP files, verify any actions that should have
occurred in the C DELETE, PRE_D, and POST_D phases. See
Section 4.6 for discussions of SCP tasks associated with these
phases.

c. Verify that all files not in the inventory are deleted. This includes
any files created when your kit was installed.

5–14 Producing and Testing Subsets

5.3 Updating Inventory After Creating Subsets

You may have to update the master inventory file after you have created
subsets. For example, kernel product kits require additional files, some
of which must be added to your kit’s inventory. If you create or modify a
subset control program after you run the kits utility, you also must update
the subset’s master inventory file.

Run the newinv utility to update the master inventory file, using the
existing master inventory file as input. The newinv utility performs the
following additional steps:

1. Creates a backup file, inventory-file.bkp.

2. Finds all the file and directory names in the source hierarchy.

3. Produces the following sorted groups of records:

• Records that contain pathnames only, representing files now present
that were not in the previous inventory (new records).

• Records that represent files now present that were also present in
the previous inventory. This list is empty the first time you create
the inventory.

• Records that were in the previous inventory but are no longer
present (defunct records). This list is also empty the first time you
create the inventory.

4. Lets you edit the group of defunct records, deleting records for files
that no longer belong in the kit.

5. Lets you edit the group of new records by adding the flags and subset
identification fields (see Table 3–1).

6. Merges the three groups of records and sorts the result to produce a
finished master inventory file that matches the source hierarchy.

Run the newinv utility to update the master inventory file any time that you
add, modify, or remove files in the kit’s source directory. After you update
the master inventory file, run the kits utility as described in Section 5.1 to
produce updated subsets and control files.

Producing and Testing Subsets 5–15

6
Producing User Product Kits

This chapter tells you how to produce a user product kit. A user product runs
in user space. This includes commands and utilities as well as applications
such as text editors and database systems. Users interact directly with user
products through commands or window interfaces.

______________________ Note _______________________

The information in this chapter describes how to produce user
product kits. If you want to create a kernel product kit, go to
Chapter 7.

Follow these steps to create and test a user product kit:

1. Read Chapter 1 for an overview of product kits.

2. Design the kit directory structure as described in Chapter 2.

3. Prepare subsets and associated control files as described in Chapter 3.

4. Optionally, create subset control programs (Chapter 4). Subset control
programs are optional for user product kits.

5. Produce and test subsets as described in Chapter 5.

6. Create the kit distribution media as described in Section 6.2.

7. Test the distribution media as described in Section 6.3.

No additional installation files are required for user product kits.

6.1 Overview

A user product is a layered product that contains software run directly by
users. Commands and utilities are in this category, as are applications such
as text editors and database systems. Users interact directly with user
products through such means as commands or graphical interfaces.

Producing User Product Kits 6–1

6.2 Producing Distribution Media

After you have tested the subsets as described in Section 5.2, you can
produce the distribution media.

Distribution media production consists of the following tasks:

1. Edit the /etc/kitcap file. (Section 6.2.1)

2. Build the user product kit on the distribution media:

• Use the gendisk utility to build a kit on disk media (Section 6.2.2)

• Use the gentapes utility to build a tar format kit on magnetic
tape (Section 6.2.3)

Produce user product kits in tar format. You can use direct CD-ROM (DCD)
format if you require access to kit files before or during installation, but
installation time for DCD format kits is slower than for tar format kits.

• tar format

In tar format, the product files in each subset are written to the
distribution media as a single file. During installation, the setld
utility uncompresses the files and moves them onto the target system,
preserving the files’ original directory structure. Kits distributed in tar
format install more quickly and consume less space on the distribution
media.

• direct CD-ROM (DCD) format

In DCD format, the files are written to the distribution media as a
UNIX file system where the product files are organized into a directory
structure that mirrors the target system. Subsets distributed in DCD
format cannot be compressed.

You can distribute user product kits on diskette, CD-ROM, or magnetic
tape, as follows:

• Diskette

Diskettes are a good media for testing purposes or for small products.
The product must fit on a single diskette; it cannot span multiple
diskettes. Use the gendisk utility to produce kits for diskette media.

• CD-ROM

CD-ROM media can support large kits or multiple kits on a single
media. The kit is first produced on the hard disk, then written onto
the CD-ROM. Use the gendisk utility to produce the master kit on
hard disk. Follow the CD-ROM manufacturer’s instructions for writing
the kit onto the CD-ROM media.

6–2 Producing User Product Kits

• Magnetic tape

You can distribute kits for user products on magnetic tape. Tape media
does not support DCD format. Use the gentapes utility to produce kits
for magnetic tape media.

Figure 6–1 shows the types of file formats and distribution media that are
available for user product kits.

Figure 6–1: User Product Kit File Formats

Tape Media

ZK-1215U-AI

 User product
kit

tar format

Disk Media

DCD format

4mm tape diskette CD-ROM disk

6.2.1 Editing the /etc/kitcap File

The gendisk and gentapes utilities refer to the /etc/kitcap file, a
database containing information about the kits to be built on the system.
Each record contains a product code and the names of the directories, files,
and subsets that make up the product kit. Before you can build your kit, you
must add a media descriptor record to the /etc/kitcap database.

Producing User Product Kits 6–3

______________________ Note _______________________

If you use the gendisk utility to produce your kit on disk
distribution media, you can specify an alternate kit descriptor
database. See gendisk(1) for more information.

Use the following conventions when you add a record to the /etc/kitcap
file:

• Separate the first field from the rest of the record by a colon (:) for disk
media descriptors and by a pipe character (|) for tape media descriptors.

• Separate all other fields with colons (:).

• Indicate continuation with a backslash (\) at the end of the line.

• Lines starting with a pound sign (#) are comments and are ignored.

• Comments within the record start with pound sign (#) and end with a
colon (:). Use this feature sparingly.

The contents of a kitcap record differ depending on whether you are
producing disk or tape media. You must add one record for each media type
on which you plan to distribute your kit.

The contents of the record also can depend on the product type you are
delivering. See kitcap(4) for more information about the contents of the
/etc/kitcap file.

6.2.1.1 Disk Media Descriptor

Create a disk media kitcap record when you produce kits for distribution
on diskette or CD-ROM. The kitcap record for disk media contains the
following elements:

• The kit name, consisting of two parts:

– The product code, consisting of the product code and version number
specified in the CODE and VERS fields of the kit’s key file. See
Section 3.3 for information about the key file.

– The media code HD to indicate disk media. This element is followed
by a colon (:).

• The partition on the disk media where the product should be placed. The
partition is a letter between a and h. Partition c is used most often,
as it spans the entire disk.

• The destination directory for the subsets on the disk media. This allows
a hierarchical structure so you can put multiple products on one disk, or
put parts of one product on different areas of the same disk. You can use
multiple destination directories in a kitcap record.

6–4 Producing User Product Kits

• The product description. This entry is taken from key file NAME field.
Replace any spaces with an underscore (_) character, for example:
Product Description becomes Product_Description.

• The name of the output directory where you created the kit, where the
gendisk utility can find the product subsets.

• The instctrl directory, relative to the output directory specification.

• The names of the subsets that make up the kit.

See kitcap(4) for more detailed information about the disk media record
format.

See Section 3.3 for information about the key file.

Example 6–1 shows the record to be added to the /etc/kitcap file to
produce the ODB kit on disk media:

Example 6–1: Sample Disk Media Descriptor for User Product

OAT100HD:c:/:\
dd=/OAT100:Orpheus_Document_Builder:/mykit/output:\
instctrl:OATODB100:OATODBTEMPS100

Based on the information shown in Example 6–1, the gendisk utility
places the kit on the c partition in the / (root) directory of the disk media.
The product description is Orpheus_Document_Builder and the output
directory where you created the kit is /mykit/output. The kit consists of
two subsets: OATODB100 and OATODBTEMPS100.

6.2.1.2 Tape Media Descriptor

The kitcap record for tape media contains the following elements:

• The kit name, consisting of two parts:

– Product code, consisting of the product code and version number
specified in the CODE and VERS fields of the kit’s key file. See
Section 3.3 for information about the key file.

– The media code, either TK for TK50 tapes or MT for 9-track magnetic
tape. This element is followed by a pipe character (|).

• Product description. This entry is taken from the NAME field of the key
file.

Producing User Product Kits 6–5

• Name of the output directory where you created the kit, where the
gentapes utility can find the subsets.

Since the gentapes utility can take subsets from multiple products and
merge them on tape as a combined product, you can specify multiple
directories where the gentapes utility can find the subsets. There must
be one directory entry for each kitcap descriptor.

• Three empty SPACE files to ensure compatibility with operating system
kits. To create the SPACE file in the output area of the kit directory
structure, use comments similar to the following:

cd /mykit/output
touch space
tar -cf SPACE space

• The INSTCTRL image in the output directory containing setld control
information.

• The names of the subsets that make up the kit. Each subset listed must
be stored in one of the specified directories.

• Optional volume identifiers %%N, followed by the names of the subsets to
be placed on that volume. You can use multiple tapes.

See kitcap(4) for more detailed information about the tape media record
format.

Example 6–2 shows the record to be added to the /etc/kitcap file to
produce the ODB kit on TK50 tapes:

Example 6–2: Sample Tape Media Descriptor for User Product

OAT100TK|Orpheus Document Builder: \
/mykit/output:SPACE:SPACE:SPACE: \
INSTCTRL:OATODB100:OATODBTEMPS100

The product name, OAT100, is the same name that appears in the key file.
The product description, Orpheus Document Builder, also appears in
the key file. The name of the output directory is /mykit/output, and
three SPACE files are included for compatibility with operating system
kits. The last line of the record contains the INSTCTRL image in the output
directory and the names of the subsets that make up the kit: OATODB100
and OATODBTEMPS100.

6–6 Producing User Product Kits

6.2.2 Building a User Product Kit on Disk Media

After the product subsets are located in the output area of the kit directory
structure, use the gendisk utility to produce the kit on a disk.

______________________ Note _______________________

The gendisk utility supports diskettes but does not let you
create a chained diskette kit. A kit written to diskette must fit
on a single diskette or be packaged as a set of kits on separate
diskettes.

Use the following syntax for the gendisk command:

gendisk [-d] [-i] [-k filename] [-w] [-v] [hostname:] prodID devname

______________________ Note _______________________

If you do not use either the -w or -v options, the gendisk utility
writes and then verifies the product media.

-d

Creates a distribution disk in direct CD format. This means that the
distribution disk contains uncompressed file systems that are laid out
just as the software is installed on the system.

____________________ Note ____________________

We recommend that you do not use the -d option when you
use the gendisk utility to produce user product kits.

-i

Creates a distribution disk in ISO 9660 format. This means that the
distribution disk contains an ISO 9660-compliant CD-ROM file system
(CDFS).

-k filename

Uses an alternate kit descriptor database, filename, on the local
system. You may use either a full absolute pathname or a relative
pathname from the directory where you run the gendisk utility. The
file does not have to be named kitcap.

Producing User Product Kits 6–7

-w

Writes the product media without verification, if used without the -v
option. If used with the -v option, the gendisk utility writes and
then verifies the product media.

-v

Verifies the product media without writing it first, if used without the
-w option. This assumes that you already have written kit files to the
distribution media. If used with the -w option, the gendisk utility
writes and then verifies the product media.

hostname:

The optional hostname: operand is the name of a remote machine that
contains the kit descriptor database. The gendisk utility searches the
kit descriptor database on the remote machine for the kit identifier
(prodIDHD) and uses it to create the distribution media. The colon (:)
is a required delimiter for TCP/IP networks, and space is permitted
between the colon and the prodID. For example, if the product code is
OAT100 and you are using the kit descriptor database on node mynode,
use mynode:OAT100 for this option.

prodID

The mandatory prodID operand is a kit identifier consisting of the
product code and version number specified in the CODE and VERS fields
of the kit’s key file. See Section 3.3 for information about the key file.

devname

The mandatory devname operand specifies the device special file name
for a raw or character disk device such as /dev/rdisk/dsk1. The
gendisk utility uses the disk partition specified in the kit descriptor
and ignores any partition specified on the command line.

The command shown in Example 6–3 creates a tar format user product kit
for OAT100 on dsk0:

Example 6–3: Sample gendisk Command for User Product

gendisk OAT100 /dev/rdisk/dsk0

See gendisk(1) for more information about this utility.

6–8 Producing User Product Kits

6.2.3 Building a User Product Kit on Magnetic Tape

After the product subsets are located in the output area of the kit directory
structure, use the gentapes utility to build the kit on magnetic tape.

Use the following syntax for the gentapes command:

/usr/bin/gentapes [-w | -v] [hostname:] prodID devname
-w

Writes the product media without verification. Do not use the -w
option with the -v option.

-v

Verifies the product media without writing it first. Do not use the -v
option with the -w option.

hostname:

The optional hostname: argument is the name of a remote network
machine that contains the kit descriptor database. The gentapes
utility searches the kit descriptor database on the remote machine for
the kit identifier (prodID[TK|MT]) and uses it to create the media.
The colon (:) is a required delimiter for TCP/IP networks, and space
is permitted between the colon and the prodID. For example, if the
product code is OAT100, and the kitcap file to be used is on node
mynode, use mynode:OAT100 for this option.

prodID

The mandatory prodID operand is a kit identifier consisting of the
product code and version number specified in the CODE and VERS fields
of the kit’s key file. See Section 3.3 for information about the key file.

devname

The mandatory devname operand specifies the device special file
name for a no-rewind tape device such as /dev/ntape/tape0l. The
gentapes utility uses the default tape density for the device and
ignores any suffix specified on the command line.

______________________ Note _______________________

If you do not use either the -w or -v option, the gentapes utility
writes the tape, rewinds it, and then verifies the files in the kit
descriptor.

Producing User Product Kits 6–9

The command shown in Example 6–4 creates a tar format user product kit
for OAT100 on the magnetic tape in /dev/ntape/dat:

Example 6–4: Sample gentapes Command for User Product

gentapes OAT100 /dev/ntape/dat

See gentapes(1) for more information about this utility.

6.3 Testing the Distribution Media

Before shipping a user product kit to customers, you should test the kit with
the same procedures that your customers will use on configurations that
resemble your customers’ systems.

Use the setld utility to test a user product kit as described in the following
procedure for the OAT100 kit:

1. Log in to the system as root or use the su command to gain superuser
privileges.

2. Place the CD−ROM in the drive.

3. Create a directory to be the media mount point, such as /cdrom:

mkdir /cdrom

4. Mount the CD−ROM on /cdrom. For example, if the CD−ROM device is
located on the c partition of cdrom0, enter the following command:

mount -r /dev/disk/cdrom0c /cdrom

After mounting the CD−ROM, you can change to the /cdrom directory
and view the directories on the CD−ROM.

5. Install the user product subsets:

setld -l /cdrom/OAT100/kit

*** Enter subset selections ***

The following subsets are mandatory and will be installed automatically
unless you choose to exit without installing any subsets:

* Document Builder Tools

The subsets listed below are optional:

- Other:
1) Document Builder Templates

6–10 Producing User Product Kits

Or you may choose one of the following options:

2) ALL mandatory and all optional subsets
3) MANDATORY subsets only
4) CANCEL selections and redisplay menus
5) EXIT without installing any subsets

Estimated free diskspace(MB) in root:54.5 usr:347.0

Enter your choices or press RETURN to redisplay menus.

Choices (for example, 1 2 4-6): 2

You are installing the following mandatory subsets:

Document Builder Kernel Support
Document Builder Tools

You are installing the following optional subsets:

- Other:
Document Builder Templates

Estimated free diskspace(MB) in root:54.5 usr:347.0

Is this correct? (y/n): y

Checking file system space required to install selected subsets:

File system space checked OK.

3 subset(s) will be installed.

Loading subset 1 of 2 ...

Document Builder Tools
Copying from /mykit/output (disk)
Verifying

Loading subset 2 of 2 ...

Document Builder Templates
Copying from /mykit/output (disk)
Verifying

2 of 2 subset(s) installed successfully.

Configuring "Document Builder Tools" (OATODB100)

The installation of the Document Builder Tools (OATODB100)
software subset is complete.

Please check the /opt/OAT100/odb.conf file before
using the Document Builder Tools product.

Configuring "Document Builder Templates" (OATODBTEMPS100)

#

The setld utility displays prompts and messages to guide you through
the process of selecting the subsets you want to install. As each subset
is loaded, the setld utility calls the subset control program as needed.

Producing User Product Kits 6–11

6. After the installation finishes, unmount the CD−ROM:

umount /cdrom

7. Verify that the installed product functions correctly.

See the Installation Guide and setld(8) for more information about using
the setld utility to install layered products.

6–12 Producing User Product Kits

7
Producing Kernel Product Kits

This chapter tells you how to produce a kernel product kit, what additional
files are required, and how to test the kit installation.

______________________ Note _______________________

The information in this chapter describes how to produce kernel
product kits. If you want to create a user product kit, go to
Chapter 6.

Follow these steps to create and test a kernel product kit:

1. Read Chapter 1 for an overview of product kits.

2. Design the kit directory structure as described in Chapter 2.

3. Prepare subsets and associated control files as described in Chapter 3.

4. Create subset control programs (Chapter 4). Subset control programs
are required for kernel product kits.

5. Produce and test subsets as described in Chapter 5.

6. Create additional installation files as described in Section 7.2.

7. Rerun the newinv utility as described in Section 5.3 to update the
master inventory file with the additional installation files.

8. Rerun the kits utility as described in Chapter 5 to produce updated
subsets and control files.

9. Create the kit distribution media as described in Section 7.3.

10. Test the distribution media as described in Section 7.4.

7.1 Overview

A kernel product is a layered product that contains kernel support. Users do
not run kernel products directly; the operating system and utilities access
kernel products to perform their work. For example, a device driver is one
common type of kernel product. A user runs an application or utility, which
generates system requests to perform operations such as opening a file or
writing data to a disk. The system determines which device driver should
service this request and then calls the required driver interface.

Producing Kernel Product Kits 7–1

The kernel modules and the kit support files are distributed as part
of the kernel product kit, and can be installed either directly from the
distribution media or loaded onto a Remote Installation Services (RIS) area
for installation by RIS clients over a local area network (LAN).

_____________________ Caution _____________________

The following restrictions apply to kernel product kits that
support hardware provided by outside manufacturers, commonly
referred to as third party hardware support:

• Third party hardware devices are not supported in clusters
environments.

• Third party storage devices are supported as data devices only.
Boot support is not available for third party storage devices.

• Third party graphics devices can be supported, but the
device reverts to VGA mode after an Update Installation if
that device’s support is not included in the update package.
Reinstalling the device’s kernel kit after the Update
Installation can restore full graphics support.

• Third party platforms can be supported, but only for Full
Installation.

If the system kernel is destroyed, you cannot restore it from
genvmunix. You would have to do a Full Installation of the
operating system and reinstall the third party platform
support.

With the number of restrictions on third party platform
support, we recommend that all third party platform
support be delivered by the new hardware delivery (NHD)
process. For more information, please send electronic mail to
upmbosstaff@compaq.com.

7–2 Producing Kernel Product Kits

7.2 Creating Additional Installation Files

The files needed to build a kernel product kit depend on whether the kit
will be configured statically or dynamically on the customer’s system. For
example:

• A statically configured product is linked statically into the kernel at
build (or bootlink) time and configured at boot time. A static product can
be built from source files, binary objects, modules, or all three.

• A dynamically configured product is loaded into a running kernel after it
has been booted. It is not part of the permanent kernel and is configured
when it is loaded. It must be reloaded after each boot of the system. A
dynamic product can be built from source files, binary objects, modules,
or all three.

______________________ Note: ______________________

A module that can be loaded dynamically also can be linked
statically. The only difference is the call to configure the product.
For more information on static and dynamic drivers, see the
Writing Device Drivers manual.

Figure 7–1 shows the files that make up the ODB product kit source
directory. Additional kernel product files are highlighted.

Producing Kernel Product Kits 7–3

Figure 7–1: Kernel Product Source Directory

ZK-1555U-AI

log_files

log_files

templates

bin

usr

odb_start

odb_template

odb_log

odb.conf

OAT100sbin

varopt

OAT100

opt

cluster

members

member0

opt

OAT100

cluster

members

member0

opt

OAT100
odb.conf

odb_recover

odb_log

src

OAT100

opt

sys

BINARY

odb_printer.mod

additional files
for kernel

product kit

sysconfigtab

etc

files

7A

1A

4A

4B

1B

6

2

3

5

8

etc

7B

files

sysconfigtab

______________________ Note _______________________

The files locations in the following list describe where you would
find the files when you receive the product from the kit developer.
Figure 7–1 shows where these files are located in the actual kit
source hierarchy.

7–4 Producing Kernel Product Kits

1 /odb.conf — the ODB product configuration file.

If your product kit may run on a cluster, each cluster member must
have its own configuration file. To accommodate this requirement,
create a context-dependent symbolic link (CDSL) targeted to the
member-specific file.

A. The context-dependent symbolic link (CDSL) for
the odb.conf file is linked to the member-specific
cluster/members/{memb}/opt/OAT100/odb.conf file. This
CDSL is installed in the root file system and placed in the
opt/OAT100 source directory.

B. The member-specific file odb.conf file can differ on each cluster
member. This file is installed in the cluster member’s root file system
and is placed in the cluster/members/member0/opt/OAT100
source directory.

2 /sbin/odb_recover — a utility to recover corrupt ODB documents
when the system boots.

The odb_recover script executes when the system boots and the /usr
file system may not be mounted. This file is installed in the root file
system and is placed in the opt/OAT100/sbin source directory.

3 /usr/bin/odb_start — the ODB product startup script.

The odb_start script is a user command. This file is installed in the
/usr file system and is placed in the usr/opt/OAT100/bin source
directory.

4 /usr/var/log_files/odb_log — the ODB product log file.

If the product kit can be installed on a cluster, each cluster member
must have its own copy of the log file. To accommodate this requirement,
create a context-dependent symbolic link (CDSL) targeted to a
member-specific file.

A. The context-dependent symbolic link (CDSL) for the odb_log
file is linked to the member-specific usr/var/cluster/mem-
bers/{memb}/opt/OAT100/log_files/odb_log file. This
CDSL is installed in the /usr/var file system and placed in the
usr/var/opt/OAT100/log_files source directory.

B. The member-specific file odb_log file can differ on each cluster
member. This file is installed in the cluster member’s /usr/var file
system and is placed in the /usr/var/cluster/members/mem-
ber0/opt/OAT100/log_files source directory.

See Section 2.3.2 for information about CDSLs.

Producing Kernel Product Kits 7–5

5 /usr/var/templates/odb_template — a document template that
can be modified by a user.

This file is installed in the /var file system and is placed in the
usr/var/opt/OAT100/templates source directory.

6 /etc/files — the files file fragment contains information about the
location of the source code and modules associated with the driver, tags
indicating when the driver is loaded into the kernel, and whether the
source or binary form of the driver is supplied to the customer.

____________________ Note _____________________

This is not a complete /etc/files file.

7 /etc/sysconfigtab — the sysconfigtab file fragment contains
device special file information, bus option data, and information on
contiguous memory usage for statically and dynamically configured
drivers.

____________________ Note _____________________

This is not a complete /etc/sysconfigtab file.

The sysconfigtab file fragment gets appended to the
/etc/sysconfigtab database when the kernel product kit is installed.
See sysconfigtab(4) for more information.

If the product kit can be installed on a cluster, each cluster member
must have its own copy of the sysconfigtab file fragment. To
accommodate this requirement, create a context-dependent symbolic
link (CDSL) targeted to the member-specific file.

A. The context-dependent symbolic link (CDSL) for the
sysconfigtab file fragment is linked to the member-specific
cluster/members/{memb}/opt/OAT100/etc/sysconfigtab
file. This CDSL is installed in the root file system and placed in the
opt/OAT100/etc source directory.

7–6 Producing Kernel Product Kits

B. The member-specific sysconfigtab file can differ
on each cluster member. This file is installed in the
cluster member’s root file system and is placed in the
cluster/members/member0/opt/OAT100/etc source directory.

See Section 2.3.2 for information about CDSLs.

8 /sys/BINARY/odb_printer.mod — the object module file containing
the single binary module for the ODB kernel product.

A kernel product kit requires you to include the following files on the
distribution media to make the kernel product accessible during installation:

• The files file fragment (Section 7.2.1)

• The sysconfigtab file fragment (Section 7.2.2)

• The driver.mod object module file (Section 7.2.3)

• The *.c (source) and *.h (header) files (Section 7.2.4)

• The device.mth method files (Section 7.2.5)

7.2.1 The files File Fragment

The files file fragment contains information about the location of the
source code and modules associated with the driver, tags indicating when
the driver is loaded into the kernel, and whether the source or binary form
of the driver is supplied to the customer. You need to edit this file if the
kit development directory structure differs from the driver development
directory structure or if you must change the driver name for any reason.

_____________________ Caution _____________________

The files file fragment must be in the same directory as the
kernel modules or the kreg and doconfig utilities will not work
properly.

Figure 7–2 shows which fields within the files file fragment need to
change.

Producing Kernel Product Kits 7–7

Figure 7–2: Editing the files File Fragment

This is the files file fragment for the /dev/none driver
used to produce the single binary module.
#
MODULE/STATIC/odb_graphics standard Binary

io/OAT100/odb_graphics.c module odb_graphics

file fragment

Edit this field to make it match
the kit development directory
structure

Edit these fields to change
the driver name

files

ZK-1199U-AI

7.2.2 The sysconfigtab File Fragment

The sysconfigtab file fragment contains device special file information,
bus option data information, and information on contiguous memory usage
for statically and dynamically configured drivers. When the user installs a
kernel product kit, the driver’s sysconfigtab file fragment gets appended
to the /etc/sysconfigtab database. You should place this file fragment in
a product directory, such as /opt/OAT100/etc.

You do not need to change the sysconfigtab file fragment unless you
change the driver (subsystem) name. The driver name appears in three
places within the file, as shown in Figure 7–3. In the example, the driver
runs on a TURBOchannel bus (indicated by the TC_Option entry), but a
similar set of bus options would be specified for other bus types.

Figure 7–3: Editing the sysconfigtab File Fragment

sysconfigtab file fragment

odb_graphics:

Device_Dir = /dev
Device_Char_Major = ANY
Device_Char_Minor = 0
Device_Char_Files = none
Device_User = root
Device_Group = 0
Device_Mode = 666
Device_Major_Req = Same

Type C, Adpt_Config N

ZK-1203U-AI

Edit these items to point to
the correct driver name

TC_Option = Modname ÕNone Õ, Driver_Name odb_graphics,

 Module_Config_Name = odb_graphics

See sysconfigtab(4) for more information about the /etc/sysconfigtab
file.

7–8 Producing Kernel Product Kits

7.2.3 The Object Module File

The driver.mod object module file contains the single binary module for
both statically and dynamically configured drivers. Include this file in a
product directory, such as /opt/OAT100/sys/BINARY, in the root (/)
file system.

_____________________ Caution _____________________

You cannot use RIS to link compressed modules. Use the file
command to determine if a file is compressed. You see output
similar to the following:
file odb_graphics.mod
odb_graphics.mod:

alpha compressed COFF executable or object module not stripped

7.2.4 The Source and Header Files

The *.c (source) and *.h (header) files contain the source code for
the device driver. Include these files in a product directory, such as
/usr/opt/OAT100/src, when the driver is statically configured and
distributed in source form.

7.2.5 The Method Files

The device.mth method files contain driver methods that are called
during automatic configuration to create device special files for dynamically
configured drivers. The subset control program creates links to these
device special files in the customer’s subsys directory when the driver is
installed. The driver method files are on the distribution media and are not
installed onto the customer’s system. The device driver developer can tell
you which method files the subset control program should link to, typically
/subsys/device.mth. Link the method in a device driver kernel kit only if
the driver needs to have device special files created for its devices.

7.3 Producing Distribution Media
After you have tested the subsets, you can produce the distribution media.
Distribution media production consists of the following tasks:

1. Rerun the newinv utility to update the master inventory file with the
additional installation files. (Section 5.3)

2. Rerun the kits utility to produce updated subsets and control files.
(Chapter 5)

3. Edit the /etc/kitcap file. (Section 7.3.1)

Producing Kernel Product Kits 7–9

4. Build the kernel product kit on the distribution media.

• Use the gendisk utility to build a kit on disk media. (Section 7.3.2)

• Use the gentapes utility to build a tar format kit on magnetic
tape. (Section 7.3.3)

You can produce the kernel product kit in either tar format or direct
CD-ROM (DCD) format. Installation time for tar format kits is faster than
for DCD format kits.

• If your product kit does not access kernel modules during boot, use the
tar format to compress your kit and save space on the media.

In tar format, the product files in each subset are written to the
distribution media as a single file. During installation, the setld
utility uncompresses the files and moves them onto the target system,
preserving the files’ original directory structure. Kits distributed in tar
format install more quickly and consume less space on the distribution
media.

• If your product kit accesses kernel modules during the boot process,
you must use the DCD format and cannot produce the kit on magnetic
tape media.

In DCD format, the files are written to the distribution media as a
UNIX file system where the product files are organized into a directory
structure that mirrors the target system. Subsets distributed in DCD
format cannot be compressed.

You can distribute kernel product kits on diskette, CD-ROM, or magnetic
tape, as follows:

• Diskettes are good for testing purposes or for small products. The
product must fit on a single diskette; it cannot span multiple diskettes.
Use the gendisk utility to produce kits for diskette media.

• CD-ROMs can support large kits or multiple kits on a single media. The
kit is first produced on the hard disk, then written onto the CD-ROM.
Use the gendisk utility to produce the master kit on hard disk. Follow
the CD-ROM manufacturer’s instructions for writing the kit onto the
CD-ROM media.

• Magnetic tape

Magnetic tape can be used for kernel product distribution if you do not
need to access the kernel modules during the boot process. You must
use tar format; magnetic tape does not support DCD format. Use the
gentapes utility to produce kits for magnetic tape media.

Figure 7–4 shows the file formats and distribution media available for
kernel product kits.

7–10 Producing Kernel Product Kits

Figure 7–4: Kernel Product Kit File Formats

Tape Media

ZK-1552U-AI

 Kernel product
kit

tar format

Disk Media

DCD format

4mm tape diskette CD-ROM disk

7.3.1 Editing the /etc/kitcap File

The gendisk and gentapes utilities refer to the /etc/kitcap file, a
database containing information about the kits to be built on the system.
Each record contains a product code and the names of the directories, files,
and subsets that make up the product kit. Before you can build your kit, you
must add a media descriptor record to the /etc/kitcap database.

______________________ Note _______________________

If you use the gendisk utility to produce your kit on disk
distribution media, you can specify an alternate kit descriptor
database. See gendisk(1) for more information.

Use the following conventions when you add a record to the /etc/kitcap
file:

• Separate the first field from the rest of the record by a colon (:) for disk
media descriptors and by a pipe character (| for tape media descriptors.

• Separate all other fields with colons (:).

Producing Kernel Product Kits 7–11

• Indicate continuation with a backslash (\) at the end of the line.

• Lines starting with a pound sign (#) are comments and are ignored.

• Comments within the record start with pound sign (#) and end with a
colon (:). Use this feature sparingly.

The contents of a kitcap record differ depending on whether you are
producing disk or tape media. You must add one record for each media type
on which you plan to distribute your kit.

The contents of the record also depend on the product type you are
delivering. For example, the kitcap record for a kernel product may require
the kk=true parameter and the rootdd= option. See kitcap(4) for more
information about the contents of the /etc/kitcap file.

7.3.1.1 Disk Media Descriptor

Create a disk media kitcap record when you produce kits for distribution
on diskette or CD-ROM. The kitcap record for disk media contains the
following elements:

• The kit name, consisting of two parts:

– The product code, consisting of the product code and version
number specified in the CODE and VERS fields of the kit’s key file
(prodcode.k).

– The media code HD to indicate disk media. This element is followed
by a colon (:).

• The partition on the disk media where the product should be placed. The
partition is a letter between a and h. Partition c is used most often,
as it spans the entire disk.

• The destination directory for the subsets on the disk media. This allows
a hierarchical structure so you can put multiple products on one disk, or
put parts of one product on different areas of the same disk. You can use
multiple destination directories in a kitcap record.

The destination directory field also may include these parameters:

– kk=true

Indicates that the kit is needed during the boot process. When
the gendisk utility finds this option, it automatically generates a
kitname.kk file.

– rootdd=dirname

Specifies kit file placement on the distribution media, relative to
the kit-specific directory such as /OAT100/kit. For example,
rootdd=.. would place the kit’s root under the /OAT100 directory.

7–12 Producing Kernel Product Kits

• The product description. This entry is taken from key file NAME field.
Replace any spaces with an underscore (_) character, for example:
Product Description becomes Product_Description.

• The name of the output directory where you created the kit, where the
gendisk utility can find the product subsets.

• The instctrl directory, relative to the output directory specification.

• The names of the subsets that make up the kit.

See kitcap(4) for more information about the disk media record format.

See Section 3.3 for information about the key file.

Example 7–1 shows the record to be added to the /etc/kitcap file to
produce the ODB kit on disk media:

Example 7–1: Sample Disk Media Descriptor for Kernel Product

OAT100HD:c:\
dd=/OAT100:Orpheus_Document_Builder:/mykit/output:\
instctrl:OATODB100:OATODBTEMPS100:OATODBKERNEL100

Based on the information shown in Example 7–1, the gendisk utility places
the kit on the c partition in the / (root) directory of the disk media. The
product description is Orpheus_Document_Builder and the kit output
directory is named /mykit/output. The kit consists of three subsets:
OATODB100, OATODBTEMPS100, and OATODBKERNEL100.

7.3.1.2 Tape Media Descriptor

The kitcap record for tape media contains the following elements:

• The kit name, consisting of two parts:

– Product code, consisting of the product code and version number
specified in the CODE and VERS fields of the kit’s key file
(prodcode.k).

– The media code, either TK for TK50 tapes or MT for 9-track magnetic
tape. This element is followed by a pipe character (|).

• Product description. This entry is taken from the NAME field of the key
file.

Producing Kernel Product Kits 7–13

• Name of the output directory where you created the kit, where the
gentapes utility can find the subsets.

Since the gentapes utility can take subsets from multiple products and
merge them on tape as a combined product, you can specify multiple
directories where the gentapes utility can find the subsets. There must
be one directory entry for each kitcap descriptor.

• Three empty SPACE files to ensure compatibility with operating system
kits. To create the SPACE file in the output area of the kit directory
structure, issue the following commands:

cd /mykit/output
touch space
tar -cf SPACE space

• The INSTCTRL image in the output directory containing setld control
information.

• The names of the subsets that make up the kit. Each subset listed must
be stored in one of the specified directories.

• Optional volume identifiers %%N, followed by the names of the subsets to
be placed on that volume. You can use multiple tapes.

See kitcap(4) for more detailed information about the tape media record
format.

Example 7–2 shows the record to be added to the /etc/kitcap file to
produce the ODB kit on TK50 tapes:

Example 7–2: Sample Tape Media Descriptor

OAT100TK|Orpheus Document Builder:\
/mykit/output:SPACE:SPACE:SPACE:\
INSTCTRL:OATODB100:OATODBTEMPS100:OATODBKERNEL100

The product name, OAT100, is the same name that appears in the key file.
The product description, Orpheus Document Builder also appears in the
key file. The name of the output directory is specified as /mykit/output,
and three SPACE files are included for compatibility with operating system
kits. The last line of the record contains the INSTCTRL image in the output
directory and the names of the subsets that make up the kit: OATODB100,
OATODBTEMPS100, and OATODBKERNEL100.

7–14 Producing Kernel Product Kits

7.3.2 Building a Kernel Product Kit on Disk Media

When the product subsets are located in the output area of the kit directory
structure, use the gendisk utility to create the kit on a disk.

______________________ Note _______________________

The gendisk utility supports diskettes but does not allow you to
create a chained diskette kit. A kit written to diskette must fit
on a single diskette or be packaged as a set of kits on separate
diskettes.

Use the following syntax for the gendisk command:

gendisk [-d] [-i] [-k filename] [-w] [-v] [hostname:] prodID devname

-d

Creates a distribution disk in direct CD (DCD) format. This means
that the distribution disk contains uncompressed file systems that
are arranged in the same way as the software will be installed on the
system.

-i

Creates a distribution disk in ISO 9660 format. This means that the
distribution disk contains an ISO 9660-compliant CD-ROM file system
(CDFS).

-k filename

Uses an alternate kit descriptor database, filename, on the local
system. You may use either a full absolute pathname or a relative
pathname from the directory where you run the gendisk utility. You
do not have to name the file kitcap.

-w

If used without the -v option, writes the product media without
verification. If used with the -w option, the gendisk utility writes and
then verifies the product media.

-v

If used without the -w option, verifies the product media without
writing it first. This assumes that you already have written kit files to
the distribution media. If used with the -w option, the gendisk utility
writes and then verifies the product media.

Producing Kernel Product Kits 7–15

hostname:

The optional hostname: operand is the name of a remote machine
that contains the kitcap file. The utility searches the /etc/kitcap
file on the remote machine for the prodID and uses it for creating the
media. The colon (:) is a required delimiter for TCP/IP networks, and
space is permitted between the colon and the prodID. For example,
if the product code is OAT100 and you are using the kit descriptor
database on node mynode, use mynode:OAT100 for this option.

prodID

The mandatory prodID operand is a kit identifier consisting of the
product code and version number specified in the CODE and VERS fields
of the kit’s key file. See Section 3.3 for information about the key file.

devname

The mandatory devname operand specifies the device special file name
for a raw or character disk device such as /dev/rdisk/dsk1. The
gendisk utility uses the disk partition specified in the kit descriptor
and ignores any partition specified on the command line.

______________________ Note _______________________

If you do not use either the -w or -v options, the gendisk utility
writes and then verifies the product media.

The command shown in Example 7–3 creates a tar format kernel product
kit for OAT100 on dsk0:

Example 7–3: Sample gendisk Command

gendisk OAT100 /dev/rdisk/dsk0

See gendisk(1) for more information.

7–16 Producing Kernel Product Kits

7.3.3 Building a Kernel Product Kit on Magnetic Tape

When the product subsets are located in the output area of the kit directory
structure, use the gentapes utility to create the kit on magnetic tape. Use
the following syntax for the gentapes command:

gentapes [-w | -v] [hostname:] prodID devname
-w

Writes the product media without verification. Do not use the -w
option with the -v option.

-v

Verifies the product media without writing it first. Do not use the -v
option with the -w option.

hostname:

The optional hostname: argument is the name of a remote network
machine that contains the kit descriptor database. The gentapes
utility searches the kit descriptor database on the remote machine for
the kit identifier (prodID[TK|MT]) and uses it to create the media.
The colon (:) is a required delimiter for TCP/IP networks, and space
is permitted between the colon and the prodID. For example, if the
product code is OAT100 and you are using the kit descriptor database
on node mynode, use mynode:OAT100 for this option.

prodID

The mandatory prodID operand is a kit identifier consisting of the
product code and version number specified in the CODE and VERS fields
of the kit’s key file. See Section 3.3 for information about the key file.

devname

The mandatory devname operand specifies the device special file
name for a no-rewind tape device such as /dev/ntape/tape0l. The
gentapes utility uses the default tape density for the device and
ignores any suffix specified on the command line.

______________________ Note _______________________

If you do not use either the -w or -v option, the gentapes utility
writes the tape, rewinds it, and then verifies the files in the kit
descriptor.

Producing Kernel Product Kits 7–17

The command shown in Example 7–4 creates a tar format user product kit
for OAT100 on the magnetic tape in /dev/ntape/dat:

Example 7–4: Sample gentapes Command

gentapes OAT100 /dev/ntape/dat

See gentapes(1) for more information about this utility.

7.4 Testing the Distribution Media
Before shipping a kernel product kit to customers, you should test the kit
with the same procedures that your customers will use on configurations
that resemble your customers’ systems.

Run the following tests to test a kernel product kit:

1. Use the setld utility to verify that the subsets have been built correctly
and that the files get installed into the correct locations on the target
system. (Section 7.4.1)

2. Use the ris utility to add a kernel product kit into a RIS area and
verify that the correct files are present on the kit. Then, register the
client system to the RIS area and use the setld -l command to install
the product on the client system. (Section 7.4.2)

7.4.1 Testing a Kernel Product Kit with the setld Utility

Use the setld utility to test a kernel product kit as described in the
following procedure for the OAT100 kit:

1. Log in to the system as root or use the su command to gain superuser
privileges.

2. Place the CD−ROM in the drive.

3. Create a directory to be the media mount point, such as /cdrom:

mkdir /cdrom

4. Mount the CD−ROM on /cdrom. For example, if the CD−ROM device is
located on the c partition of cdrom0, enter the following command:

mount -r /dev/disk/cdrom0c /cdrom

5. Use the setld utility to install the kernel product subsets:

setld -l /cdrom/OAT100/kit

Your session looks similar to the following:
*** Enter subset selections ***

7–18 Producing Kernel Product Kits

The following subsets are mandatory and will be installed automatically
unless you choose to exit without installing any subsets:

* Document Builder Kernel Support
* Document Builder Tools

The subsets listed below are optional:

- Other:
1) Document Builder Templates

Or you may choose one of the following options:

2) ALL mandatory and all optional subsets
3) MANDATORY subsets only
4) CANCEL selections and redisplay menus
5) EXIT without installing any subsets

Estimated free diskspace(MB) in root:54.5 usr:347.0

Enter your choices or press RETURN to redisplay menus.

Choices (for example, 1 2 4-6): 2

You are installing the following mandatory subsets:

Document Builder Kernel Support
Document Builder Tools

You are installing the following optional subsets:

- Other:
Document Builder Templates

Estimated free diskspace(MB) in root:54.5 usr:347.0

Is this correct? (y/n): y

Checking file system space required to install selected subsets:

File system space checked OK.

3 subset(s) will be installed.

Loading subset 1 of 3 ...

Document Builder Tools
Copying from /cdrom/OAT100/kit (disk)
Verifying

Loading subset 2 of 3 ...

Document Builder Templates
Copying from /cdrom/OAT100/kit (disk)
Verifying

Loading subset 3 of 3 ...

Document Builder Kernel Support
Copying from /cdrom/OAT100/kit (disk)
Verifying

3 of 3 subset(s) installed successfully.

Producing Kernel Product Kits 7–19

Configuring "Document Builder Tools" (OATODB100)

The installation of the Document Builder Tools (OATODB100)
software subset is complete.

Please read the /opt/OAT100/README.odb file before
using the Document Builder Tools product.

Configuring "Document Builder Templates" (OATODBTEMPS100)

Configuring "Document Builder Kernel Support" (OATODBKERNEL100)

*** Document Builder Kernel Support Product Installation Menu ***

1. Statically configure the graphics support
2. Dynamically configure the graphics support

Type the number of your choice []: 1

*** KERNEL CONFIGURATION AND BUILD PROCEDURE ***

Saving /sys/conf/TEST01 as /sys/conf/TEST01.bck

Do you want to edit the configuration file? (y/n) [n]: n

*** PERFORMING KERNEL BUILD ***
Working....Fri May 9 14:49:25 EDT 2001

The new kernel is /sys/TEST01/vmunix

The /sys/TEST01/vmunix kernel has been
moved to /vmunix and the changes will take effect
the next time the system is rebooted.
#

The setld utility displays prompts and messages to guide you through
the process of selecting the subsets you want to install. As each subset
is loaded, the setld utility calls the subset control program as needed,
including static or dynamic driver configuration. Figure 7–5 shows the
steps the subset control program takes to statically configure the driver.

7–20 Producing Kernel Product Kits

Figure 7–5: Static Configuration of a Driver

ZK-1213U-AI

 /

usr

OAT100

opt

.product. l ist
NAME.l ist

sysconfigtab

sysconfigtab
f i le fragment

none.mod

fi les

conf

sysconfigdb adds the
sysconfigtab file fragment
to the /etc/sysconfigtab
database

kreg adds driver to:
/usr/sys/conf/ .product. l ist
and /usr/sys/conf/NAME.l ist

 sys

etc

6. When the installation is complete, unmount the CD−ROM:

umount /cdrom

7. If the product was configured statically, restart the system with the
new kernel:

/usr/sbin/shutdown −r now

When the system restarts, the device driver is available on the system.

8. Verify that the installed product functions correctly.

9. Delete the ODB subsets with the setld -d command.

setld -d OATODB100 OATODBTEMPS100 OATODBKERNEL100

You see output similar to the following:

Deleting "Document Builder Templates" (OATODBTEMPS100).

*** KERNEL CONFIGURATION AND BUILD PROCEDURE ***

Saving /sys/conf/TEST01 as /sys/conf/TEST01.bck

Do you want to edit the configuration file? (y/n) [n]: n

*** PERFORMING KERNEL BUILD ***
Working....Fri May 9 14:55:31 EDT 2001

The new kernel is /sys/TEST01/vmunix

Producing Kernel Product Kits 7–21

The /sys/TEST01/vmunix kernel has been
moved to /vmunix and the changes will take effect
the next time the system is rebooted.

Deleting "Document Builder Kernel Support" (OATODBKERNEL100).

Deleting "Document Builder Tools" (OATODB100).
#

10. Use the shutdown command to restart the system, ensuring that it
reboots with the new kernel after the product is removed:

/usr/sbin/shutdown −r now

When the system restarts, the product should not be available on the
system.

See Installation Guide and the setld(8) for more information about using
the setld utility to install layered products.

7.4.2 Testing a Kernel Product Kit in a RIS Area

Use the ris utility to test a kernel product kit on a RIS server as described
in the following procedure for the OAT100 kit. See Sharing Software on a
Local Area Network manual for more information about Remote Installation
Services (RIS).

1. Log in to the RIS server as root or use the su command to gain
superuser privileges.

2. Place the CD−ROM in the drive.

3. Create a directory to be the media mount point, such as /cdrom:

mkdir /cdrom

4. Mount the CD−ROM on /cdrom. For example, if the CD−ROM device
were located on the c partition of cdrom0, enter the following command:

mount -r /dev/disk/cdrom0c /cdrom

7–22 Producing Kernel Product Kits

5. Enter /usr/sbin/ris to start the ris utility.

You see the RIS Utility Main Menu:

*** RIS Utility Main Menu ***

Choices without key letters are not available.

) ADD a client
) DELETE software products

i) INSTALL software products
) LIST registered clients
) MODIFY a client
) REMOVE a client
) SHOW software products in remote installation environments

x) EXIT

Enter your choice:

6. Enter i to select Install software products. You see the RIS
Software Installation Menu:

RIS Software Installation Menu:
1) Install software into a new area
2) Add software into an existing area
3) Return to previous menu

Enter your choice:

7. Depending on your test environment, enter 1 to select Install
software into a new area or 2 to Add software into an
existing area.

8. Install the software as described in Sharing Software on a Local Area
Network.

To install the product kit from the RIS server onto the client system, first
register the client system with the RIS server and then use the setld utility
as described in the following procedure:

1. Log in to the RIS server as root or use the su command to gain
superuser privileges.

2. Enter /usr/sbin/ris to start the ris utility. You see the RIS Utility
Main Menu:

*** RIS Utility Main Menu ***

Choices without key letters are not available.

a) ADD a client
d) DELETE software products
i) INSTALL software products
) LIST registered clients
) MODIFY a client
) REMOVE a client

s) SHOW software products in remote installation environments
x) EXIT

Enter your choice:

Producing Kernel Product Kits 7–23

3. Enter a to select ADD a client.

4. Enter the client information as described in Sharing Software on a
Local Area Network.

5. Log in to the RIS client as root or use the su command to gain
superuser privileges.

6. Use the setld -l command to load the product subsets from the
RIS area. For example, if the RIS server is named test01, enter the
following command:

setld −l test01:

The setld utility displays prompts and messages to guide you through
the installation process as described in Sharing Software on a Local
Area Network.

See the Installation Guide and the setld(8) for more information on
using the setld utility to install layered products.

7–24 Producing Kernel Product Kits

Glossary

This glossary defines terms used in this manual.

A

attribute-value pair
In a product kit’s key file, attribute-value pairs specify the names and values
of the attributes of the kit, such as the name and version of the product.
Attribute-value pairs control how the kits utility builds the kit and how
the setld utility installs it.

B

Backus-Naur form
A conventional notation for describing context-free grammars, commonly
used for defining syntax in computer languages. It is named for John
Backus, developer of FORTRAN, and Peter Naur, developer of ALGOL. The
term BNF is often used to refer to grammar specifications based on this form.

See also postfix

backward link
A backward link is a symbolic link from the directories in a layered product
area to files in the standard hierarchy. The subset control program for a
product creates backward links during installation.

boot utility
The boot utility performs the initial installation and bootstrap of the
operating system. You invoke the boot utility from the >>> console prompt.
See your hardware documentation for information about valid parameters
for the boot utility on your system.

C

CDFS
A CD-ROM file system (CDFS) is formatted to be compliant with ISO 9660.
This lets you read a CD-ROM from multiple computer platforms.

See also ISO 9660

Glossary–1

CDSL
A context-dependent symbolic link (CDSL) is a special form of symbolic
link that dynamically resolves to a member-specific file, depending upon
the cluster member accessing the file. CDSLs make it possible to maintain
system-specific configuration and data files on file systems shared by the
cluster.

See also cluster, cluster member, member-specific file, shared file

cluster
A cluster is a loosely coupled collection of servers that share storage and
other resources, making applications and data highly available. A cluster
consists of communications media, member systems, peripheral devices,
and applications. The systems within a cluster communicate over a
high-performance interconnect.

See also cluster alias, cluster member

cluster alias
An IP address used to address all or a subset of the cluster members. A
cluster alias makes some or all of the systems in a cluster look like a single
system when viewed from outside the cluster.

See also cluster, cluster member

cluster member
A system configured with TruCluster Server software that is capable of
joining a cluster. A cluster member must be physically connected to both a
private physical bus for intracluster communications and to at least one
shared SCSI bus.

See also cluster

compression flag file
The compression flag file is an empty file whose name consists of the product
code and the version number with the string comp as a suffix; for example,
OAT100.comp. If the compression flag file exists, the setld utility knows
that the subset files are compressed.

context-dependent symbolic link
See CDSL

control file
One of a collection of files that the kits utility places in the instctrl
directory. These files include the compression flag file, image data file,
subset control file, subset inventory file, and subset control programs.

Glossary–2

D

Dataless Management Services
See DMS

DMS
Dataless Management Services. A service where a server maintains the root
(/), /usr, and /var file systems for client computer systems connected to
the server by a local area network (LAN).

data hierarchy
In the kit-building directory structure, the data hierarchy contains the
files that direct the setld utility in making subsets for the kit, such as
the master inventory and key files. An scps subdirectory contains subset
control programs written by the kit developer.

DCD format
A disk media format where files are written to any disk media (CD−ROM,
hard disk, or diskette) as a UNIX file system (UFS). Subsets distributed in
DCD format cannot be compressed.

See also tar format

dependency expression
A dependency expression is a postfix logical expression consisting of
subset identifiers and relational operators to describe the current subset’s
relationship to the named subsets. Subset control programs evaluate
dependency expressions under control of the setld utility.

See also Backus-Naur form, locking, postfix, subset dependency

direct CD-ROM format
See DCD format

distribution media
The distribution media for a product kit may be diskette, CD-ROM, or tape.
A hard disk is sometimes referred to as a distribution media because it is
used as the master copy for a CD-ROM kit.

E

/etc/sysconfigtab
See sysconfigtab database

/etc/kitcap
See kitcap database

Glossary–3

F

forward link
A forward link is a symbolic link that connects a product file in the /opt,
/usr/opt, or /var/opt directory to a standard UNIX directory, such as
/usr/bin. Forward links allow layered products to be installed in a central
location (the opt directories) and still be accessible to users through the
standard directory structure.

G

gendisk utility
The gendisk utility is used to produce disk distribution media for a product
kit. See gendisk(1) for more information.

See also kitcap database

gentapes utility
The gentapes utility is used to produce magnetic tape distribution media
for a product kit. See gentapes(1) for more information.

See also kitcap database

I

image data file
The image data file is used by the setld utility to verify subset image
integrity before starting the actual installation process, and contains one
record for each subset in the kit.

See also setld utility

installed subset status
For the purposes of determining software subset installation status, a
subset is installed after it is loaded and its subset control program (SCP)
has competed successfully.

See also loaded subset status, SCP, subset status file

ISO 9660
ISO 9660 is an international file system standard adopted by major
operating system manufacturers. A file system in this format can be read
by most of the standard operating systems. Multiple specification levels
allow different file naming conventions. ISO 9660-compliant file systems
usually are provided on CD-ROM media.

Glossary–4

K

kernel
The kernel is a software entity that runs in supervisor mode and does not
communicate with a device except through calls to a device driver.

kernel product
A kernel product is a layered product that runs in kernel space. Users do not
directly run kernel products, but the operating system and utilities access
them to perform their work.

See also layered product, user product

key file
A key file identifies the product that the kit represents. You create this file
in the data directory before running the kits utility.

kit
A kit is a collection of files and directories that represent one or more
layered products. It is the standard mechanism by which layered product
modifications are delivered and maintained on the operating system.

See also layered product

kitcap database
The kitcap file (located in /etc/kitcap) is a kit descriptor database for
the gentapes and gendisk utilities. This database contains product codes,
media codes, and the names of the directories, files, and subsets that make
up a product description used by these utilities to create distribution media.

The gentapes and gendisk utilities can specify substitute kitcap files
in alternate locations.

See also gendisk utility, gentapes utility

kit descriptor database
See kitcap database

kits utility
The kits utility creates subsets according to the specifications you define in
the master inventory file and key file.

See also key file, master inventory file, subset

Glossary–5

L

layered product
A layered product is an optional software product designed to be installed as
an added feature of the operating system.

See also kernel product, user product

loaded subset status
For the purposes of determining software subset installation status, a subset
is loaded when its software is copied onto the system. The subset control
program may not have completed and you cannot use the software yet.

See also installed subset status, SCP, subset status file

locking
In products installed by the setld utility, locking inserts a subset name in
the lock file of another subset. Any attempt to remove the latter subset
warns the user of the dependency. The user can choose whether to remove
the subset in spite of the dependency.

See also dependency expression, subset dependency

M

master inventory file
A master inventory file lists all the product files and the subsets in which
they belong. You create this file in the data directory by running the newinv
utility. The file must exist before you can create the product subsets.

See also newinv utility, subset

{memb}
A system variable used to support context-dependent symbolic links
(CDSLs). The kernel resolves the {memb} variable in a CDSL pathname to
the string memberN, where N is the member ID of the cluster member that is
referencing the link. If a cluster member with member ID 2 is accessing a
CDSL, the kernel resolves the {memb} variable in the pathname to member2.

See also CDSL, cluster, cluster member

member-specific file
A file used by a specific cluster member. The contents of a member-specific
file can differ for each cluster member, and each member has its own copy of
a member-specific file.

See also cluster, cluster member, shared file

Glossary–6

N

Network File System
See NFS

new hardware delivery
See NHD

newinv utility
The newinv utility creates the master inventory file from the list of files in
the current working directory. The list does not contain all the information
needed in the master inventory file. You must edit this file to include
information about the subsets to which the files belong.

See also master inventory file

NFS
Network File System, an open operating system that allows all network
users to access shared files stored on computers of different types. Users
can manipulate shared files as if they were stored locally on the user’s own
hard disk.

NHD
New hardware delivery (NHD) provides installable kernel support for new
hardware without requiring a new release of the operating system. NHD
kits are available on CD-ROM and from the World Wide Web, and include
installation instructions and release notes.

O

output hierarchy
The output hierarchy contains the result of the kit-building process,
including the subsets that make up the kit and installation control files to
direct the setld utility during the installation of the product.

P

postfix
A form of logical expression where the operators follow the operands, rather
than being placed between them. Also known as reverse Polish notation,
or RPN.

See also Backus-Naur form

Glossary–7

product code
A unique three-letter code that identifies the manufacturer of a product
kit. The examples in this manual use the OAT product code for the fictional
Orpheus Authoring Tools, Inc. You request a product code by electronic mail
to product@dssr.sqp.zko.dec.com.

product kit
See kit

R

Remote Installation Services
See RIS

RIS
Remote Installation Services. A remote software distribution method where
a server is set up to allow installation of software products over a local area
network (LAN). RIS clients are registered on the RIS server to allow them
access to specific software products. Using a RIS server makes installation
of layered products faster and easier for all the clients on the network.

S

SCP
Subset control program. A program written by the kit developer to perform
installation operations that the setld utility would not otherwise perform.
The setld utility invokes the subset control program several times during
the installation of the kit.

setld utility
The setld utility is the standard software management utility. It allows
you to load, delete, inventory, configure, and extract software subsets. See
setld(8) for more information.

shared file
A file used by all members of a cluster. There is only one copy of a shared file.

See also cluster, cluster member, member-specific file

source hierarchy
In the kit-building directory structure, the source hierarchy contains the
files that make up the product. These files are grouped into subsets by the
kits utility.

Glossary–8

subset
The smallest installable software kit module that is compatible with the
operating system’s setld software installation utility. It can contain files of
any type, usually related in some way.

subset control program
See SCP

subset dependency
A subset dependency is the condition under which a given subset requires
the presence (or absence) of other subsets in order to function properly.

See also dependency expression, locking

subset inventory file
The subset inventory file, generated by the kits utility, describes each file in
the subset to reflect the exact state of the files in the source hierarchy from
which the kit was built. The setld utility uses this file to duplicate that
state, transferring an exact copy of the source hierarchy to the customer’s
system.

See also kits utility, setld utility, source hierarchy, subset

subset status file
The subset status file (subset.sts) describes the subset’s current
installation state and reflects the success or failure of specific phases of the
installation or deletion process. The setld utility generates a subset status
file for each subset, and removes the file when deleting the subset.

The /usr/.smdb./subset.sts files are symbolic links to the
/usr/cluster/members/{memb}/.smdb./subset.sts files.

See also loaded subset status, installed subset status, SCP

sysconfigdb utility
The sysconfigdb utility is a system management tool that maintains the
sysconfigtab database.

See also sysconfigtab database

sysconfigtab database
The sysconfigtab database (located in the /etc/sysconfigtab file)
contains information about the attributes of subsystems, such as device
drivers. Device drivers supply attributes in sysconfigtab file fragments,
which get appended to the sysconfigtab database when the subset control
program calls the sysconfigdb utility during the installation of a kit.

See also sysconfigdb utility

Glossary–9

T

tar format
A media format where the product files belonging to the same subset are
written to the distribution media as a single file by the tar command.
During installation, the setld utility uncompresses the files, then moves
them onto the customer’s system, preserving the files’ original directory
structure. See tar(1) for more information.

See also DCD format

U

user product
A user product is a layered product that runs in user space. Commands,
utilities, and user applications fall into this category.

See also kernel product, layered product

Glossary–10

Index

A
ACT environment variable , 4–10

B
backup file

for master inventory file, 5–15
backward link, 4–16

(See also link)
creating, 4–16

bootstrap files, 2–4

C
C DELETE phase, 4–21
.c (source) files , 7–9
C INSTALL phase, 4–19
CD-ROM file system

(See CDFS)
CD–ROM

layered product distribution, 6–2,
7–10

CDSL, 2–4
creating, 2–7
identifying, 2–6
restrictions, 2–8
using, 2–6

cluster-related files, 2–4
compression flag file, 5–5
context-dependent symbolic link

(See CDSL)
.ctrl installation control file, 5–3

D
data hierarchy, 2–2
dataless environment

defined, 4–9
SCP for, 4–9
scp routines for, 4–9

DCD format
defined, 1–3
layered product files, 6–2, 7–10

dependency expression, 4–14
dependency list, 5–7t
dependency lock

creating, 4–14
Direct CD–ROM format

(See DCD format)
directory structure, 2–1

kernel product kit, 7–3
kit-building, 2–1
standard, 2–3

disk media
building a kit on, 6–7, 7–15
kitcap record, 6–4, 7–12

diskette
layered product distribution, 6–2,

7–10
distribution format

for user products, 6–2, 7–10
distribution media

producing, 1–6
dot-relative pathnames

in master inventory records, 3–3t
in subset inventory records, 5–9t

dynamic configuration, 7–3

Index–1

E
/etc/kitcap file, 6–3, 7–11
/etc/sysconfigtab database, 7–8

F
file

lock, 4–18
file permissions, 2–10n
files

cluster-related, 2–4
files file fragment, 7–7

G
gendisk utility

syntax, 6–7, 7–15
gentapes utility

preparing a kit on magnetic tape,
6–9, 7–17

global variables
setting in SCP, 4–5

H
.h (header) files, 7–9

I
image data file, 5–5
instctrl file, 5–3
instctrl subdirectory, 2–2

moving files into, 5–3
.inv installation control file, 5–3
ISO 9660

(See CDFS)

K
.k file

(See key file)
kernel

dynamic configuration, 7–3

static configuration, 7–3
kernel product

defined, 1–2
SCP, 4–34

kernel product kit, 7–1
additional files required for, 7–3
building on disk, 7–15
creating, 7–1
kit directory structure, 7–3
producing distribution media, 7–9
testing, 7–1, 7–18
testing in a RIS area, 7–22

key file
attribute descriptions, 3–8
contents, 3–7
defined, 3–7
in kit-building directory structure,

2–2
product attributes, 3–8
product attributes section, 3–7
sample, 3–7
subset descriptor section, 3–8
subset descriptors, 3–10

kit building process, 1–3
kit formats, 1–3
kit production files

creating, 1–5
kit structure

creating, 1–4
file permissions, 2–10n

kitcap record, 6–3, 7–11
disk media, 6–4, 6–5, 7–12, 7–13
for tape media, 6–5, 7–13
syntax, 6–3, 7–11

kits utility, 5–1

L
layered product, 1–1

(See also kernel product; user
product)

assigning product version number,
2–1

Index–2

defined, 1–1
obtaining product code, 2–1
physical location of files, 2–3
types of products, 1–2

layered product files
in DCD format, 6–2, 7–10
in tar format, 6–2, 7–10

library routines in SCPs, 4–3
link

creating backward, 4–16
removing, 4–22

lock file, 4–18
removing, 4–22

M
M phase, 4–12
master inventory file

creating, 3–3
defined, 3–3
field descriptions, 3–3t
in kit-building directory structure,

2–2
sample, 3–5
updating, 5–15

media
distribution

producing, 1–6
tape

building a kit on, 6–9, 7–17
{memb} variable, 2–6
member-specific file, 2–4
method file

kernel product, 7–9
.mi file

(See master inventory file)
mkcdsl command, 2–7
.mod object module file

compressing with objZ utility, 7–9
.mth method file, 7–9

N
newinv utility, 3–3, 5–15

O
object module file

kernel product kit, 7–9
ODB sample product, 1–2
ODB user product

SCP, 4–32
/opt directory, 2–4
output hierarchy, 2–2

P
POST_D phase, 4–24
POST_L phase, 4–16
PRE_D phase, 4–22
PRE_L phase, 4–14
product code

obtaining, 2–1
product kit

kernel, 7–1
testing, 1–6
user, 6–1

product subdirectories
naming, 2–1

product version number
assigning, 2–1

R
RIS

considerations in SCP, 4–12
installing a kernel product, 7–22

S
sample product

for illustration, 1–2
SCP, 4–1, 4–9

Index–3

creating, 1–5
creating source files, 4–2
determining machine architecture,

4–12
for /dev/none device driver, 4–34
including library routines, 4–3
invoking, 4–10
kernel product, 4–34
managing subset dependencies,

4–14
ODB user product, 4–32
RIS support, 4–12
setld phase

C DELETE, 4–21
C INSTALL, 4–19
POST_D, 4–24
POST_L, 4–16
PRE_D, 4–22
PRE_L, 4–14
V, 4–25

setld tasks
M phase, 4–12

setting global variables, 4–5
stopping the program, 4–31
user product, 4–32

.scp installation control file, 5–3
scps subdirectory

in kit-building directory structure,
2–2

location of subset control files, 4–2
setld utility

ACT environment variable, 4–10
C DELETE phase, 4–21
C INSTALL phase, 4–19
invoking SCP, 4–10
lock files, 4–18
M phase, 4–12
POST_D phase, 4–24
POST_L phase, 4–16
PRE_D phase, 4–22
PRE_L phase, 4–14
testing a kernel product, 7–18
testing subsets, 5–10
testing user product kit, 6–10

V phase, 4–25
shared file, 2–4
software subsets for kits, 3–1
source file

kernel product, 7–9
SCP, 4–2

source hierarchy, 2–2
file permissions, 2–10n

SPACE file, 6–6, 7–14
standard directory structure, 2–3
static configuration, 7–3
STL_IsDataless shell, 4–9
STL_LinkBack shell, 4–17
STL_LinkInit shell, 4–17
STL_NoDataless shell, 4–9
STL_ScpInit shell, 4–5
subset

compressing, 5–3
creating, 1–5
creating with kits utility, 5–1
dependencies, 5–7t
dependency, 4–14
locking, 4–14, 4–18
moving onto distribution media,

6–2, 7–9
tar image, 5–3
testing, 1–6

subset control file
field descriptions, 5–6

subset control files for kits, 3–1
subset control program

(See SCP)
for dataless environment, 4–9

subset inventory file, 5–8
subsets

testing with setld utility, 5–10
sysconfigtab file fragment

kernel product, 7–8

T
tape media

building a kit on, 6–9, 7–17
kitcap record, 6–5, 7–13

Index–4

layered product distribution, 6–3,
7–10

tar format
layered product files, 6–2, 7–10
producing kits in, 1–3

test subsets, 1–6
testing

kernel product in RIS area, 7–22
kernel product kit, 7–18
user product kit, 6–10

U
user product

defined, 1–2
SCP, 4–32

user product kit, 6–1
building on disk, 6–7
creating, 6–1
producing distribution media, 6–2
testing, 6–1, 6–10

/usr/opt directory, 2–4
/usr/share/lib/shell/libscp library,

4–3
/usr/var/opt directory, 2–4

V
V phase, 4–25
verification

subset installation, 4–25

Index–5

