
Tru64 UNIX
Guide to Realtime Programming

Part Number: AA-RH9TC-TE

August 2000

Product Version: Tru64 UNIX Version 5.1 or higher

This guide describes how to use POSIX 1003.1b functions to write
realtime applications that run on HP Tru64 UNIX systems. This guide is
intended for experienced application programmers.

Hewlett-Packard Company
Palo Alto, California

© 2000 Hewlett-Packard Company

Motif®, OSF/1®, UNIX®, X/Open®, and The Open Group™ are trademarks of The Open Group in the
U.S. and/or other countries. All other product names mentioned herein may be the trademarks of their
respective companies.

Confidential computer software. Valid license from Compaq Computer Corporation, a wholly owned
subsidiary of Hewlett-Packard Company, required for possession, use, or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial
license.

None of Compaq, HP, or any of their subsidiaries shall be liable for technical or editorial errors or omissions
contained herein. The information is provided “as is” without warranty of any kind and is subject to
change without notice. The warranties for HP or Compaq products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as constituting
an additional warranty.

Contents

About This Guide

1 Introduction to Realtime Programming
1.1 Realtime Overview 1–1
1.2 Tru64 UNIX Realtime System Capabilities 1–4
1.2.1 The Value of a Preemptive Kernel 1–4
1.2.1.1 Nonpreemptive Kernel 1–5
1.2.1.2 Preemptive Kernel 1–5
1.2.1.3 Comparing Latency 1–6
1.2.2 Fixed-Priority Scheduling Policies 1–7
1.2.3 Realtime Clocks and Timers 1–9
1.2.4 Memory Locking 1–9
1.2.5 Asynchronous I/O 1–10
1.2.6 Synchronized I/O 1–10
1.2.7 Realtime Interprocess Communication 1–11
1.3 Process Synchronization 1–12
1.3.1 Waiting for a Specified Period of Time or an Absolute

Time 1–13
1.3.2 Waiting for Semaphores 1–13
1.3.3 Waiting for Communication 1–15
1.3.4 Waiting for Another Process 1–15
1.3.5 Realtime Needs and System Solutions 1–16
1.4 POSIX Standards 1–16
1.5 Enabling Tru64 UNIX Realtime Features 1–18
1.6 Building Realtime Applications 1–18
1.6.1 Defining the POSIX Environment 1–18
1.6.2 Compiling and Linking Realtime Applications 1–19
1.6.2.1 Compiling Realtime Applications 1–19
1.6.2.2 Compiling Realtime Applications That Use

Asynchronous I/O 1–20
1.6.2.3 Linking a Previously Compiled Realtime Application . 1–21

2 The Tru64 UNIX Scheduler
2.1 Scheduler Fundamentals 2–1
2.1.1 Schedulable Entities 2–1

Contents iii

2.1.2 Thread States 2–2
2.1.3 Scheduler Database 2–2
2.1.4 Quantum 2–2
2.1.5 Scheduler Transitions 2–2
2.2 Scheduling Policies 2–5
2.2.1 The Nature of the Work 2–5
2.2.2 Timesharing Scheduling 2–6
2.2.3 Fixed-Priority Scheduling 2–6
2.2.3.1 First-In/First-Out Scheduling 2–7
2.2.3.2 Round-Robin Scheduling 2–8
2.3 Process Priorities 2–9
2.3.1 Priorities for the nice Interface 2–10
2.3.2 Priorities for the Realtime Interface 2–11
2.3.3 Displaying Realtime Priorities 2–13
2.3.4 Configuring Realtime Priorities 2–14
2.4 Scheduling Functions 2–15
2.4.1 Determining Limits 2–16
2.4.2 Retrieving the Priority and Scheduling Policy 2–16
2.4.3 Setting the Priority and Scheduling Policy 2–17
2.4.4 Yielding to Another Process 2–19
2.5 Priority and Policy Example 2–20

3 Shared Memory
3.1 Memory Objects 3–1
3.1.1 Opening a Shared-Memory Object 3–3
3.1.2 Opening Memory-Mapped Files 3–4
3.1.3 Mapping Memory-Mapped Files 3–5
3.1.4 Using File Functions 3–7
3.1.5 Controlling Memory-Mapped Files 3–8
3.1.6 Removing Shared Memory 3–9
3.2 Locking Shared Memory 3–9
3.3 Using Shared Memory with Semaphores 3–10

4 Memory Locking
4.1 Memory Management 4–1
4.2 Memory-Locking and Unlocking Functions 4–2
4.2.1 Locking and Unlocking a Specified Region 4–3
4.2.2 Locking and Unlocking an Entire Process Space 4–6

iv Contents

5 Signals
5.1 Overview of Signals 5–1
5.2 POSIX Signal Functions 5–2
5.3 Signal-Handling Basics 5–3
5.3.1 Specifying a Signal Action 5–6
5.3.2 Setting Signal Masks and Blocking Signals 5–8
5.3.3 Suspending a Process and Waiting for a Signal 5–10
5.3.4 Setting Up an Alternate Signal Stack 5–11
5.4 Realtime Signal Handling 5–11
5.4.1 Additional Realtime Signals 5–14
5.4.2 Queuing Signals to a Process 5–14
5.4.2.1 The siginfo_t Structure 5–15
5.4.2.2 The ucontext_t and sigcontext Structures 5–16
5.4.2.3 Sending a Realtime Signal with the sigqueue

Function 5–17
5.4.3 Asynchronous Delivery of Other Realtime Signals 5–17
5.4.4 Responding to Realtime Signals Using the sigwaitinfo and

sigtimedwait Functions 5–18

6 Clocks and Timers
6.1 Clock Functions 6–2
6.1.1 Retrieving System Time 6–3
6.1.2 Setting the Clock 6–4
6.1.3 Converting Time Values 6–4
6.1.4 System Clock Resolution 6–6
6.1.5 High-Resolution Clock 6–6
6.2 Types of Timers 6–7
6.3 Timers and Signals 6–7
6.4 Data Structures Associated with Timing Facilities 6–8
6.4.1 Using the timespec Data Structure 6–8
6.4.2 Using the itimerspec Data Structure 6–9
6.4.3 Using the sigevent Data Structure 6–10
6.5 Timer Functions 6–11
6.5.1 Creating Timers 6–12
6.5.2 Setting Timer Values 6–12
6.5.3 Retrieving Timer Values 6–14
6.5.4 Getting the Overrun Count 6–14
6.5.5 Disabling Timers 6–15
6.6 High-Resolution Sleep 6–15
6.7 Clocks and Timers Example 6–15

Contents v

7 Asynchronous Input and Output
7.1 Data Structures Associated with Asynchronous I/O 7–2
7.1.1 Identifying the Location 7–2
7.1.2 Specifying a Signal 7–3
7.2 Asynchronous I/O Functions 7–4
7.2.1 Reading and Writing 7–4
7.2.2 Using List-Directed Input/Output 7–6
7.2.3 Determining Status 7–7
7.2.4 Canceling I/O 7–8
7.2.5 Blocking to Completion 7–9
7.2.6 Asynchronous File Synchronization 7–9
7.3 Asynchronous I/O to Raw Devices 7–10
7.4 Asynchronous I/O Examples 7–10
7.4.1 Using the aio Functions 7–10
7.4.2 Using the lio_listio Function 7–14

8 File Synchronization
8.1 How to Ensure Data or File Integrity 8–2
8.1.1 Using Function Calls 8–2
8.1.2 Using File Descriptors 8–2

9 Semaphores
9.1 Overview of Semaphores 9–1
9.2 The Semaphore Interface 9–2
9.2.1 Creating and Opening a Semaphore 9–3
9.2.2 Locking and Unlocking Semaphores 9–5
9.2.3 Priority Inversion with Semaphores 9–6
9.2.4 Closing a Semaphore 9–6
9.3 Semaphore Example 9–7

10 Messages
10.1 Message Queues 10–1
10.2 The Message Interface 10–2
10.2.1 Opening a Message Queue 10–3
10.2.2 Sending and Receiving Messages 10–5
10.2.3 Asynchronous Notification of Messages 10–7
10.2.4 Prioritizing Messages 10–7
10.2.5 Using Message Queue Attributes 10–8
10.2.6 Closing and Removing a Message Queue 10–8

vi Contents

10.3 Message Queue Examples 10–8

11 Realtime Performance and System Tuning
11.1 Realtime Responsiveness 11–1
11.1.1 Interrupt Service Routine Latency 11–2
11.1.2 Process Dispatch Latency 11–2
11.2 Improving Realtime Responsiveness 11–3

A Tru64 UNIX Realtime Functional Summary

Index

Examples
2–1 Initializing Priority and Scheduling Policy Fields 2–18
2–2 Using Priority and Scheduling Functions 2–20
3–1 Including a Shared-Memory Object 3–4
3–2 Locking a Memory Object 3–9
4–1 Aligning and Locking a Memory Segment 4–5
4–2 Using the mlockall Function 4–7
5–1 Sending a Signal to Another Process 5–3
5–2 Sending a Realtime Signal to Another Process 5–12
5–3 Using the sigwaitinfo Function 5–19
5–4 Using the sigwaitinfo Function 5–20
6–1 Returning Time 6–3
6–2 Using Timers 6–15
7–1 Using Asynchronous I/O 7–10
7–2 Using lio_listio in Asynchronous I/O 7–14
9–1 Locking a Semaphore 9–6
9–2 Using Semaphores and Shared Memory 9–8
10–1 Opening a Message Queue 10–5
10–2 Using Message Queues to Send Data 10–8
10–3 Using Message Queues to Receive Data 10–10

Figures
1–1 Nonpreemptive Kernel 1–6
1–2 Preemptive Kernel 1–7
2–1 Order of Execution 2–3
2–2 Process Events 2–4
2–3 Preemption — Finishing a Quantum 2–9

Contents vii

2–4 Priority Ranges for the nice and Realtime Interfaces 2–12
4–1 Memory Allocation with mlock 4–4
4–2 Memory Allocation with mlockall 4–7
5–1 Signal Mask That Blocks Two Signals 5–9

Tables
1–1 Realtime Needs and System Solutions 1–16
2–1 Priority Ranges for the nice Interface 2–10
2–2 Priority Ranges for the Tru64 UNIX Realtime Interface 2–11
3–1 Memory-Mapping Functions 3–2
3–2 Status Flags and Access Modes for the shm_open Function .. . 3–3
3–3 File Functions Used with Memory-Mapped Files 3–7
5–1 POSIX 1003.1 Signal Functions 5–2
5–2 POSIX 1003.1b Signal Functions 5–3
5–3 POSIX Signals 5–5
6–1 Values Used in Setting Timers 6–9
10–1 Status Flags and Access Modes for the mq_open Function 10–3
A–1 Process Control Functions A–2
A–2 P1003.1b Priority Scheduling Functions A–2
A–3 P1003.1b Clock Functions A–3
A–4 Date and Time Conversion Functions A–3
A–5 P1003.1b Timer Functions A–3
A–6 BSD Clock and Timer Functions A–4
A–7 P1003.1b Memory-Locking Functions A–4
A–8 System V Memory-Locking Function A–4
A–9 P1003.1b Asynchronous I/O Functions A–4
A–10 POSIX Synchronized I/O Functions A–5
A–11 BSD Synchronized I/O Function A–5
A–12 P1003.1b Message Functions A–5
A–13 P1003.1b Shared-Memory Functions A–6
A–14 P1003.1b Semaphore Functions A–6
A–15 POSIX 1003.1b Realtime Signal Functions A–6
A–16 Signal Control and Other Signal Functions A–6
A–17 sigsetops Primitives A–7
A–18 Process Ownership Functions A–7
A–19 Input and Output Functions A–7
A–20 Device Control Functions A–8
A–21 System Database Functions A–8

viii About This Guide

About This Guide

This guide is designed for programmers who are using computer systems
running the HP Tru64 UNIX operating system and want to use realtime
functions. Users may be writing new realtime applications or they may be
porting existing realtime applications from other systems.

This guide explains how to use POSIX 1003.1b (formerly POSIX 1003.4 Draft
14) functions in combination with other system and library functions to write
realtime applications. This guide does not attempt to teach programmers
how to write applications.

This guide does not present function syntax or reference information. The
online reference pages present syntax and explanations of POSIX 1003.1b
functions.

Audience

This guide is for application programmers or system engineers who are
already familiar with the C programming language. The audience using
realtime features is expected to have experience with UNIX operating
systems. They also should have experience with UNIX program development
tools.

Organization

This guide contains the following chapters:

Chapter 1 Introduction to Realtime Programming
Describes the realtime functionality supported by the Tru64 UNIX
operating system.

Chapter 2 The Tru64 UNIX Scheduler
Describes the use of P1003.1b functions to determine and set priority
for processes in your application. This chapter also describes the
priority scheduling policies provided by the Tru64 UNIX operating
system.

Chapter 3 Shared Memory
Describes the creation and use of P1003.1b shared memory for
interprocess communication.

About This Guide ix

Chapter 4 Memory Locking
Describes the use of P1003.1b functions for locking and unlocking
memory.

Chapter 5 Signals
Describes the creation and use of POSIX 1003.1b realtime signals
for interprocess communication.

Chapter 6 Clocks and Timers
Describes use of P1003.1b functions for constructing and using
high-resolution clocks and timers.

Chapter 7 Asynchronous Input and Output
Describes the use of P1003.1b functions for asynchronous input and
output.

Chapter 8 File Synchronization
Describes the use of POSIX 1003.1b functions for synchronized input
and output.

Chapter 9 Semaphores
Describes the creation and use of P1003.1b semaphores for
interprocess synchronization. An example illustrates how to use
semaphores and shared memory in combination.

Chapter 10 Messages
Describes the creation and use of message queues for interprocess
communication and synchronization in realtime applications.

Chapter 11 Realtime Performance and System Tuning
Describes tuning techniques for improving realtime system
performance.

Appendix A Tru64 UNIX Realtime Functional Summary
Provides tables of commands and functions useful for realtime
application development.

Related Documents

The following documents are relevant to writing realtime applications:

• P1003.1b function reference pages

• POSIX Conformance Document

• Programmer’s Guide

• Guide to the POSIX Threads Library

• Installation Guide

• System Configuration and Tuning

• System Configuration Supplement: OEM Platforms

x About This Guide

• Writing Software for the International Market

• Device Driver Kit documentation (available separately from the base
operating system)

• The C Programming Language, by Kernighan and Ritchie

• IEEE Standard Portable Operating System Interface for Computer
Environments manuals, published by the Institute of Electrical and
Electronics Engineers, Inc.

Icons on Tru64 UNIX Printed Manuals

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the manuals to help specific audiences quickly find the manuals
that meet their needs. (You can order the printed documentation from HP.)
The following list describes this convention:

G Manuals for general users

S Manuals for system and network administrators

P Manuals for programmers

R Manuals for reference page users

Some manuals in the documentation help meet the needs of several
audiences. For example, the information in some system manuals is also
used by programmers. Keep this in mind when searching for information
on specific topics.

The Documentation Overview provides information on all of the manuals in
the Tru64 UNIX documentation set.

Reader’s Comments

HP welcomes any comments and suggestions you have on this and other
Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

Please include the following information along with your comments:

About This Guide xi

• The full title of the manual and the order number. (The order number
appears on the title page of printed and PDF versions of a manual.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate HP technical support office. Information
provided with the software media explains how to send problem reports to
HP.

Conventions

This guide uses the following conventions:

% A percent sign represents the C shell system prompt.

A number sign represents the default superuser prompt.

% cat Boldface type in interactive examples indicates typed user input.

file Italic (slanted) type indicates variable values, placeholders,
and function argument names.

. . . Horizontal ellipsis indicates that the preceding item can
be repeated one or more times. It is used in syntax
descriptions and function definitions.

...
A vertical ellipsis indicates that a portion of an example
that would normally be present is not shown.

cat(1) A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(1)
indicates that you can find information on the cat command
in Section 1 of the reference pages.

xii About This Guide

1
Introduction to Realtime Programming

A realtime application is one in which the correctness of the application
depends on the timeliness and predictability of the application as well as on
the results of computations. To assist the realtime application designer in
meeting these goals, Tru64 UNIX provides features that facilitate efficient
interprocess communication and synchronization, a fast interrupt response
time, asynchronous input and output (I/O), memory management functions,
file synchronization, and facilities for satisfying timing requirements. Tru64
UNIX provides realtime facilities as part of the standard kernel and optional
subsets.

Realtime applications are becoming increasingly important in our daily lives
and can be found in such diverse environments as the automatic braking
system on an automobile, a lottery ticket system, or robotic environmental
samplers on a space station. The use of realtime programming techniques
is rapidly becoming a common means for improving the predictability of
our technology.

This chapter includes the following sections:

• Realtime Overview, Section 1.1

• Tru64 UNIX Realtime System Capabilities, Section 1.2

• Process Synchronization, Section 1.3

• POSIX Standards, Section 1.4

• Enabling Tru64 UNIX Realtime Features, Section 1.5

• Building Realtime Applications, Section 1.6

1.1 Realtime Overview

Realtime applications provide an action or an answer to an external event in
a timely and predictable manner. While many realtime applications require
high-speed compute power, realtime applications cover a wide range of tasks
with differing time dependencies. Timeliness has a different definition in
each realtime application. What may be fast in one application may be slow
or late in another. For example, an experimenter in high-energy physics
needs to collect data in microseconds while a meteorologist monitoring the
environment might need to collect data in intervals of several minutes.

Introduction to Realtime Programming 1–1

However, the success of both applications depends on well-defined time
requirements.

The concept of predictability has many connotations, but for realtime
applications it generally means that a task or set of tasks can always
be completed within a predetermined amount of time. Depending on
the situation, an unpredictable realtime application can result in loss of
data, loss of deadlines, or loss of plant production. Examples of realtime
applications include process control, factory automation robotics, vehicle
simulation, scientific data acquisition, image processing, built-in test
equipment, music or voice synthesis, and analysis of high-energy physics.

To have control over the predictability of an application, the programmer
must understand which time bounds are significant. For example, an
understanding of the average time it takes for a context switch does not
guarantee task completion within a predictable timeframe. Realtime
programmers must know the worst-case time requirements so that they can
design an application that will always meet worst-case deadlines.

Realtime systems also use techniques to reduce the hazards associated with
a worst-case scenario. In some situations, a worst-case realtime deadline
may be significantly faster than the nonrealtime, average time.

Realtime applications can be classified as either hard or soft realtime. Hard
realtime applications require a response to events within a predetermined
amount of time for the application to function properly. If a hard realtime
application fails to meet specified deadlines, the application fails. While
many hard realtime applications require high-speed responses, the
granularity of the timing is not the central issue in a hard realtime
application. An example of a hard realtime application is a missile guidance
control system, where a late response to a needed correction leads to disaster.

Soft realtime applications do not fail if a deadline is missed. Some soft
realtime applications can process large amounts of data or require a very fast
response time, but the key issue is whether or not meeting timing constraints
is a condition for success. An example of a soft realtime application is an
airline reservation system, where an occasional delay is tolerable.

Many realtime applications require high I/O throughput and fast response
time to asynchronous external events. The ability to process and store large
amounts of data is a key metric for data collection applications. Realtime
applications that require high I/O throughput rely on continuous processing
of large amounts of data. The primary requirement of such an application is
the acquisition of a number of data points equally spaced in time.

High data throughput requirements are typically found in signal-processing
applications, such as:

• Sonar and radar analysis

1–2 Introduction to Realtime Programming

• Telemetry

• Vibration analysis

• Speech analysis

• Music synthesis

Similarly, a continuous stream of data points must be acquired for many
of the qualitative and quantitative methods used in the following types of
applications:

• Gas and liquid chromatography

• Mass spectrometry

• Automatic titration

• Colorimetry

For some applications, the throughput requirements on any single channel
are modest. However, an application may need to handle multiple data
channels simultaneously, resulting in a high aggregate throughput.
Realtime applications, such as medical diagnosis systems, need a response
time of about 1 second while simultaneously handling data from, perhaps,
ten external sources.

High I/O throughput may be important for some realtime control systems,
but another key metric is the speed at which the application responds
to asynchronous external events and its ability to schedule and provide
communication among multiple tasks. Realtime applications must capture
input parameters, perform decision-making operations, and compute
updated output parameters within a given timeframe.

Some realtime applications, such as flight simulation programs, require a
response time of microseconds while simultaneously handling data from a
large number of external sources. The application might acquire several
hundred input parameters from the cockpit controls, compute updated
position, orientation, and speed parameters, and then send several hundred
output parameters to the cockpit console and a visual display subsystem.

Realtime applications are usually characterized by a blend of requirements.
Some portions of the application may consist of hard, critical tasks, all of
which must meet their deadlines. Other parts of the application may require
heavy data throughput. Many parts of a realtime application can easily run
at a lower priority and require no special realtime functionality. The key to a
successful realtime application is the developer’s ability to accurately define
application requirements at every point in the program. Resource allocation
and realtime priorities are used only when necessary so that the application
is not overdesigned.

Introduction to Realtime Programming 1–3

1.2 Tru64 UNIX Realtime System Capabilities

The Tru64 UNIX operating system supports facilities to enhance the
performance of realtime applications. These realtime facilities make it
possible for the operating system to guarantee that the realtime application
has access to resources whenever it needs them and for as long as it needs
them. That is, the realtime applications running on the operating system
can respond to external events regardless of the impact on other executing
tasks or processes.

Realtime applications written to run on the operating system make use of
and rely on the following system capabilities:

• A preemptive kernel

• Fixed-priority scheduling policies

• Realtime clocks and timers

• Memory locking

• Asynchronous I/O

• File synchronization

• Queued realtime signals

• Process communication facilities

All of these realtime facilities work together to provide the realtime
environment. In addition, realtime applications make full use of process
synchronization techniques and facilities, as summarized in Section 1.3.

1.2.1 The Value of a Preemptive Kernel

The responsiveness of the operating system to asynchronous events is a
critical element of realtime systems. Realtime systems must be capable of
meeting the demands of hard realtime tasks with tight deadlines. To do
this, the operating system’s reaction time must be short and the scheduling
algorithm must be simple and efficient.

The amount of time it takes for a higher-priority process to displace a
lower-priority process is referred to as process preemption latency. In
a realtime environment, the primary concern of application designers is
the maximum process preemption latency that can occur at run time, the
worst-case scenario.

Every application can interact with the operating system in two modes:
user mode and kernel mode. User-mode processes call utilities, library
functions, and other user applications. A process running in user mode can
be preempted by a higher-priority process. During execution, a user-mode
process often makes system calls, switching context from user to kernel

1–4 Introduction to Realtime Programming

mode, where the process interacts with the operating system. Under the
traditional timesharing scheduling algorithm, a process running in kernel
mode cannot be preempted.

A preemptive kernel guarantees that a higher-priority process can quickly
interrupt a lower-priority process, regardless of whether the low-priority
process is in user or kernel mode. Whenever a higher-priority process
becomes runnable, a preemption is requested, and the higher-priority
process displaces the running, lower-priority process.

1.2.1.1 Nonpreemptive Kernel

The standard UNIX kernel is a nonpreemptive kernel; it does not allow a
user process to preempt a process executing in kernel mode. When a running
process issues a system call and enters kernel mode, preemptive context
switches are disabled until the system call is completed. Although there are
context switches, a system call may take an arbitrarily long time to execute
without voluntarily giving up the processor. During that time, the process
that made the system call may delay the execution of a higher-priority,
runnable, realtime process.

The maximum process preemption latency for a nonpreemptive kernel is the
maximum amount of time it can take for the running, kernel-mode process
to switch out of kernel mode back into user mode and then be preempted
by a higher-priority process. Under these conditions, it is not unusual for
worst-case preemption to take seconds, which is clearly unacceptable for
many realtime applications.

1.2.1.2 Preemptive Kernel

A preemptive kernel, such as the Tru64 UNIX kernel with realtime
preemption enabled, allows the operating system to respond quickly to a
process preemption request. When a realtime user process engages one of
the fixed-priority scheduling policies, the Tru64 UNIX kernel can break out
of kernel mode to honor the preemption request.

A preemptive kernel supports the concept of process synchronization
with the ability to respond quickly to interrupts while maintaining data
integrity. The kernel employs mechanisms to protect the integrity of kernel
data structures, and defines restrictions on when the kernel can preempt
execution.

The maximum process preemption latency for a preemptive kernel is the
exact amount of time required to preserve system and data integrity and
preempt the running process. Under these conditions, it is not unusual for
worst-case preemption to take only milliseconds.

Introduction to Realtime Programming 1–5

1.2.1.3 Comparing Latency

Figure 1–1 and Figure 1–2 illustrate the process preemption latency that
can be expected from a nonpreemptive kernel and a preemptive kernel. In
both figures, a higher-priority realtime process makes a preemption request,
but the amount of elapsed time until the request is honored depends on the
kernel. Latency is represented as the shaded area.

Figure 1–1 shows the expected latency of a nonpreemptive kernel. In this
situation, the currently running process moves back and forth between
user and kernel mode as it executes. The higher-priority, realtime process
advances to the beginning of the priority process list, but cannot preempt
the running process while it runs in kernel mode. The realtime process
must wait until the running process either finishes executing or changes
back to user mode before the realtime process is allowed to preempt the
running process.

Figure 1–2 shows the expected latency of a preemptive kernel. In this
situation, the running process is quickly preempted and the higher-priority,
realtime process takes its place on the run queue.

Figure 1–1: Nonpreemptive Kernel

Latency

Kernel
Mode

User
Mode

User
Mode

Preemption
Request

Preemption
Honored

MLO-007312

Running Process

Higher-Priority
Process Runs

1–6 Introduction to Realtime Programming

Figure 1–2: Preemptive Kernel

Latency

Preemption
Request

Preemption
Honored

MLO-007313

Running Process

Higher-Priority
Process Runs

1.2.2 Fixed-Priority Scheduling Policies

The scheduler determines how CPU resources are allocated to executing
processes. Each process has a priority that associates the process with a
run queue. Each process begins execution with a base priority that can
change as the application executes, depending on the algorithm used by the
scheduler or application requirements.

The algorithm or set of rules that governs how the scheduler selects
runnable processes, how processes are queued, and how much time each
process is given to run is called a scheduling policy. Scheduling policies
work in conjunction with priority levels. Generally speaking, the higher a
process’s priority, the more frequently the process is allowed to execute. But
the scheduling policy may determine how long the process executes. The
realtime application designer balances the nature of the work performed by
the process with the process’s priority and scheduling policy to control use
of system resources.

If the realtime subset is installed on your system, the operating system
supports two distinctly different scheduling interfaces: the nice interface
and the realtime interface. The nice interface provides functions for
managing nonrealtime applications running at nonrealtime priority level.
The nice interface uses the timesharing scheduling policy, which allows
the scheduler to dynamically adjust priority levels of a process. You have
access to the realtime scheduling interface only if you have installed the
realtime subset.

The realtime interface supports a nonrealtime (timesharing) scheduling
policy and two fixed-priority, preemptive scheduling policies for realtime
applications. Under the timesharing scheduling policy, process priorities
are automatically adjusted by the scheduler. Under the fixed-priority
scheduling policies (round-robin and first-in/first-out), the scheduler never

Introduction to Realtime Programming 1–7

automatically changes the priority of a process. Instead, the application
designer determines when it is appropriate for a process to change priorities.

The realtime interface provides a number of functions to allow the realtime
application designer to control process execution. In addition, realtime
scheduling policies are attached to individual processes, giving the
application designer control over individual processes.

POSIX scheduling policies have overlapping priority ranges: The highest
priority range is reserved for realtime applications, the middle priority range
is used by the operating system, and the lowest priority range is used for
nonprivileged user processes. Realtime priority ranges loosely map to the
nice priority range, but provide a wider range of priorities for a realtime
process. Figure 2–4 illustrates the priority ranges for both the nice and
realtime scheduling interfaces.

Not all realtime processes need to run in the realtime priority range. When
using the realtime interface, each process begins execution under the
timesharing scheduling policy with an associated timesharing priority. The
application designer determines which processes are time-critical and under
what circumstances processes should run at an elevated priority level. The
application designer calls P1003.1b functions to set the appropriate priority
and scheduling policy.

Under the first-in/first-out (SCHED_FIFO) scheduling policy, a running
process continues to execute if there are no other higher-priority processes.
The user can raise the priority of a running process to avoid its being
preempted by another process. Therefore, a high-priority, realtime process
running under the first-in/first-out scheduling policy can use system
resources as long as necessary to finish realtime tasks.

Under the round-robin (SCHED_RR) scheduling policy, the highest-priority
process runs until either its allotted time (quantum) is complete or until the
process is preempted by another, higher-priority process. When a process
reaches the end of its quantum, it takes its place at the end of the run queue
for processes that have the same priority. Processes at that priority continue
to execute as long as the waiting processes have lower priorities. Therefore,
high-priority processes running under the round-robin scheduling policy can
share the processor with other time-critical processes.

When a process raises its priority and preempts a running process, the
scheduler saves the run-time context of the preempted process so that context
can be restored when the process is allowed to run again. The preempted
process remains in a runnable state even though it was preempted.

For information on using priority and scheduling policy functions, see
Chapter 2.

1–8 Introduction to Realtime Programming

1.2.3 Realtime Clocks and Timers

Realtime timers often schedule tasks and events in time increments
considerably smaller than the traditional 1-second timeframe. Because the
system clock and realtime timers use seconds and nanoseconds as the basis
for time intervals, the resolution for the system clock, realtime timers,
and the nanosleep function has a fine granularity. For example, in a
robotic data acquisition application, information retrieval and recalculation
operations may need to be completed within a 4-millisecond timeframe.
Timers are created to fire every 4 milliseconds to trigger the collection of
another round of data. On expiration, a timer sends a signal to the calling
process.

Realtime timers must be flexible enough to allow the application to set
timers based on either absolute or relative time. Furthermore, timers must
be able to fire as a one-shot or periodic timer. The application creates timers
in advance, but specifies timer characteristics when the timer is set.

Realtime applications use timers to coordinate and monitor the correctness of
a realtime application. Some applications may require only one per-process
timer; others may require multiple timers. Each timer is created and armed
independently, which means that the application designer controls the
action of each timer.

The system clock provides the timing base for realtime per-process timers,
and is the source for timer synchronization. This clock maintains user and
system time as well as the current time and date. An option is also available
for using a high-resolution clock (see Section 6.1.5).

Clock and timer functions allow you to retrieve and set the system clock,
suspend execution for a period of time, provide high-resolution timers, and
use asynchronous signal and realtime signal notification.

For information on using clock and timer functions, see Chapter 6.

1.2.4 Memory Locking

Memory locking is one of the primary tools available to the realtime
application designer for reducing latency. Without locking time-critical
processes into memory, the latency caused by paging would introduce
involuntary and unpredictable time delays at run time.

A realtime application needs a mechanism for guaranteeing that time-critical
processes are locked into memory and not subjected to memory management
appropriate only for timesharing applications. (In a virtual memory system,
a process may have part of its address space paged in and out of memory in
response to system demands for critical space.)

Introduction to Realtime Programming 1–9

The P1003.1b memory-locking functions allow the application designer to
lock process address space into memory. The application can lock in not only
the current address space, but also any future address space the process
may use during execution.

For information on using memory-locking functions, see Chapter 4.

1.2.5 Asynchronous I/O

Asynchronous I/O allows the calling process to resume execution immediately
after an I/O operation is queued, without awaiting completion. Asynchronous
I/O is desirable in many different applications, ranging from graphics and
file servers to dedicated realtime data acquisition and control systems. The
process immediately continues execution, thus overlapping operations.

Often, one process simultaneously performs multiple I/O functions while
other processes continue execution. For example, an application may need
to gather large quantities of data from multiple channels within a short,
bounded period of time. In such a situation, blocking I/O may work at cross
purposes with application timing constraints. Asynchronous I/O performs
nonblocking I/O, allowing simultaneous reads and writes, which frees
processes for additional processing.

Notification of asynchronous I/O completion is optional and can be done
without the overhead of calling signal functions by using the aiocb data
structure, providing faster interprocess communication.

For information on using asynchronous I/O functions, see Chapter 7.

1.2.6 Synchronized I/O

Synchronized I/O may be preferable to asynchronous I/O when the integrity
of data and files is critical to an application. Synchronized output assures
that data that is written to a device is actually stored there. Synchronized
input assures that data that is read from a device is a current image of data
on that device. For both synchronized input and output, the function does
not return until the operation is complete and verified.

Synchronized I/O offers two separate options:

• Ensure integrity of file data and file control information

• Ensure integrity of file data and only the file control information that is
needed to access the data

For information on using synchronized I/O features, see Chapter 8.

1–10 Introduction to Realtime Programming

1.2.7 Realtime Interprocess Communication

Interprocess communication (IPC) is the exchange of information between
two or more processes. In single-process programming, modules within a
single process communicate by using global variables and function calls,
with data passing between the functions and the callers. In multiprocess
programming with images running in separate address space, you need to
use additional communication mechanisms for passing data.

Tru64 UNIX interprocess communication facilities allow the realtime
application designer to synchronize independently executing processes by
passing data within an application. Processes can pursue their own tasks
until they must synchronize with other processes at some predetermined
point. When they reach that point, they wait for some form of communication
to occur. Interprocess communication can take any of the following forms:

• Shared memory (Chapter 3) is the fastest form of interprocess
communication. As soon as one process writes data to the shared memory
area, it is available to other processes using the same shared memory.
Tru64 UNIX supports P1003.1b shared memory.

• Signals (Chapter 5) provide a means to communicate to a large number of
processes. Signals for timer expiration and asynchronous I/O completion
use a data structure, making signal delivery asynchronous, fast, and
reliable. POSIX 1003.1b realtime signals include:

– A range of priority-ordered, application-specific signals from
SIGRTMIN to SIGRTMAX.

– A mechanism for queueing signals for delivery to a process.

– A mechanism for providing additional information about a signal to
the process to which it is delivered.

– Features that allow efficient signal delivery to a process when a
POSIX 1003.1b timer expires, when a message arrives on an empty
message queue, or when an asynchronous I/O operation completes.

– Functions that allow a process to respond more quickly to signal
delivery.

• Semaphores (Chapter 9) are most commonly used to control access to
system resources, such as shared-memory regions. Tru64 UNIX supports
P1003.1b semaphores.

• Messages (Chapter 10) can be used by cooperating processes that
communicate by accessing systemwide message queues. The message
queue interface is a set of structures and data that allows processes to
send and receive messages to a message queue.

Some forms of interprocess communication are traditionally supplied by
the operating system and some are specifically modified for use in realtime

Introduction to Realtime Programming 1–11

functions. All allow a user-level or kernel-level process to communicate with
a user-level process. Interprocess communication facilities are used to notify
processes that an event has occurred or to trigger the process to respond to an
application-defined occurrence. Such occurrences can be asynchronous I/O
completion, timer expiration, data arrival, or some other user-defined event.

To provide rapid signal communication on timer expiration and asynchronous
I/O completion, these functions send signals through a common data
structure. It is not necessary to call signal functions.

1.3 Process Synchronization

Use of synchronization techniques and restricting access to resources can
ensure that critical and noncritical tasks execute at appropriate times with
the necessary resources available. Concurrently executing processes require
special mechanisms to coordinate their interactions with other processes
and their access to shared resources. In addition, processes may need to
execute at specified intervals.

Realtime applications synchronize process execution through the following
techniques:

• Waiting for a specified period of time

• Waiting for semaphores

• Waiting for communication

• Waiting for other processes

The basic mechanism of process synchronization is waiting. A process must
synchronize its actions with the arrival of an absolute or relative time, or
until a set of conditions is satisfied. Waiting is necessary when one process
requires another process to complete a certain action, such as releasing a
shared system resource or allowing a specified amount of time to elapse,
before processing can continue.

The point at which the continued execution of a process depends on the state
of certain conditions is called a synchronization point. Synchronization
points represent intersections in the execution paths of otherwise
independent processes, in which the actions of one process depend on the
actions of another process.

The application designer identifies synchronization points between
processes and selects the functions best suited to implement the required
synchronization.

The application designer identifies resources, such as message queues and
shared memory, that the application will use. Failure to control access to
critical resources can result in performance bottlenecks or inconsistent

1–12 Introduction to Realtime Programming

data. For example, the transaction processing application of a national
ticket agency must be prepared to process purchases simultaneously
from sites around the country. Ticket sales are transactions recorded in a
central database. Each transaction must be completed as either rejected or
confirmed before the application performs further updates to the database.
The application performs the following synchronization operations:

• Restricts access to the database

• Provides a reasonable response time

• Ensures against overbookings

Processes compete for access to the database. In doing so, some processes
must wait for either confirmation or rejection of a transaction.

1.3.1 Waiting for a Specified Period of Time or an Absolute Time

A process can postpone execution for a specified period of time or until a
specified time and date. This synchronization technique allows processes
to work periodically and to carry out tasks on a regular basis. To postpone
execution for a specified period of time, use one of these methods:

• Sleep functions

• Per-process timers

The sleep function measures time by seconds, while the nanosleep
function uses nanoseconds. The granularity of the nanosleep function
may make it more suitable for realtime applications. For example, a vehicle
simulator application may rely on retrieval and recalculation operations that
are completed every 5 milliseconds. The application requires a number of
per-process timers armed with repetition intervals that allow the application
to retrieve and process information within the 5-millisecond deadline.

Realtime clocks and timers allow an application to synchronize and
coordinate activities according to a predefined schedule. Such a schedule
might require repeated execution of one or more processes at specific time
intervals or only once. A timer is set (armed) by specifying an initial start
time value and an interval time value. Realtime timing facilities provide
applications with the ability to use relative or absolute time and to schedule
events on a one-shot or periodic basis.

1.3.2 Waiting for Semaphores

The semaphore allows a process to synchronize its access to a resource
shared with other processes, most commonly, shared memory. A semaphore
is a kernel data structure shared by two or more processes that controls
metered access to the shared resource. Metered access means that up to

Introduction to Realtime Programming 1–13

a specified number of processes can access the resource simultaneously.
Metered access is achieved by using semaphores.

The semaphore takes its name from the signaling system railroads developed
to prevent more than one train from using the same length of track, a
technique that enforces exclusive access to the shared resource of the railroad
track. A train waiting to enter the protected section of track waits until the
semaphore shows that the track is clear, at which time the train enters the
track and sets the semaphore to show that the track is in use. Another train
approaching the protected track while the first train is using it waits for the
signal to show that the track is clear. When the first train leaves the shared
section of track, it resets the semaphore to show that the track is clear.

The semaphore protection scheme works only if all the trains using the
shared resource cooperate by waiting for the semaphore when the track is
busy and resetting the semaphore when they have finished using the track.
If a train enters a track marked busy without waiting for the signal that it is
clear, a collision can occur. Conversely, if a train exiting the track fails to
signal that the track is clear, other trains will think the track is in use and
refrain from using it.

The same is true for processes synchronizing their actions through the use of
semaphores and shared memory. To gain access to the resource protected by
the semaphore, cooperating processes must lock and unlock the semaphore.
A calling process must check the state of the semaphore before performing
a task. If the semaphore is locked, the process is blocked and waits for the
semaphore to become unlocked. Semaphores restrict access to a shared
resource by allowing access to only one process at a time.

An application can protect the following resources with semaphores:

• Global variables, such as file variables, pointers, counters, and data
structures. Synchronizing access to these variables means preventing
simultaneous access, which also prevents one process from reading
information while another process is writing it.

• Hardware resources, such as tape drives. Hardware resources require
controlled access for the same reasons as global variables; that is,
simultaneous access could result in corrupted data.

• The kernel. A semaphore can allow processes to alternate execution by
limiting access to the kernel on an alternating basis.

For information on using shared memory and semaphores, see Chapter 3
and Chapter 9.

1–14 Introduction to Realtime Programming

1.3.3 Waiting for Communication

Typically, communication between processes is used to trigger process
execution so the flow of execution follows the logical flow of the application
design. As the application designer maps out the program algorithm,
dependencies are identified for each step in the program. Information
concerning the status of each dependency is communicated to the relevant
processes so that appropriate action can be taken. Processes synchronize
their execution by waiting for something to happen; that is, by waiting
for communication that an event occurred or a task was completed.
The meaning and purpose of the communication are established by the
application designer.

Interprocess communication facilitates application control over the following:

• When and how a process executes

• The sequence of execution of processes

• How resources are allocated to service requests from the processes

Section 1.2.7 introduced the forms of interprocess communication available
to the realtime application designer. For further information on using
interprocess communication facilities, see Chapter 3, Chapter 5, Chapter 9,
and Chapter 10.

1.3.4 Waiting for Another Process

Waiting for another process means waiting until that process has
terminated. For example, a parent process can wait for a child process or
thread to terminate. The parent process creates a child process, which needs
to complete some task before the waiting parent process can continue. In
such a situation, the actions of the parent and child processes are sometimes
synchronized in the following way:

1. The parent process creates the child process.

2. The parent process synchronizes with the child process.

3. The child process executes until it terminates.

4. The termination of the child process signals the parent process.

5. The parent process resumes execution.

The parent process can continue execution in parallel with the child process.
However, if child processes are used as a form of process synchronization, the
parent process can use other synchronization mechanisms, such as signals
and semaphores, while the child process executes.

For information on using signals, see Chapter 5, and for information on
using semaphores, see Chapter 9.

Introduction to Realtime Programming 1–15

1.3.5 Realtime Needs and System Solutions

Table 1–1 summarizes the common realtime needs and the solutions
available through P1003.1b functions and the Tru64 UNIX operating system.
The realtime needs in the left column of the table are ordered according to
their requirement for fast system performance.

Table 1–1: Realtime Needs and System Solutions
Realtime Need Realtime System Solution

Change the availability of a process
for scheduling

Use scheduler functions to set
the scheduling policy and priority
of the process

Keep critical code or data highly
accessible

Use memory-locking functions to lock the
process address space into memory

Perform an operation while another
operation is in progress

Create a child process or separate thread,
or use asynchronous I/O

Perform higher throughput or
special-purpose I/O

Use asynchronous I/O

Ensure that data read from a device is
actually a current image of data on that
device, or that data written to a device
is actually stored on that device

Use synchronized I/O

Share data between processes Use shared memory, or use
memory-mapped files

Synchronize access to resources shared
between cooperating processes

Use semaphores

Communicate between processes Use messages, semaphores, shared
memory, signals, pipes, and named pipes

Synchronize a process with a
time schedule

Set and arm per-process timers

Synchronize a process with an external
event or program

Use signals, use semaphores, or
cause the process to sleep and to
awaken when needed

1.4 POSIX Standards

The purpose of standards is to enhance the portability of programs and
applications; that is, to support creation of code that is independent of the
hardware or even the operating system on which the application runs.
Standards allow users to move between systems without major retraining.
In addition, standards introduce internationalization concepts as part of
application portability.

1–16 Introduction to Realtime Programming

The POSIX standards and draft standards apply to the operating system.
For the most part, these standards apply to applications coded in the C
language. These standards are not mutually exclusive; the Tru64 UNIX
realtime environment uses a complement of these standards.

POSIX is a set of standards generated and maintained by standards
organizations — they are developed and approved by the Institute
of Electrical and Electronics Engineers, Inc. (IEEE) and adopted by
the International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC). The Tru64 UNIX POSIX
implementations follow the standards and drafts defined by the POSIX
standards.

Formal standards to date include POSIX 1003.1 for basic system interfaces,
and POSIX 1003.13 for assertions a vendor must test to claim conformance
to POSIX 1003.1. Draft standards are not formal standards. They are
working documents that will evolve over time into formal standards.

Tru64 UNIX supports POSIX standards for a programming interface,
threads, and realtime programming extensions, as follows:

• POSIX 1003.1 defines the standard for basic system services on an
operating system and describes how system services can be used by
POSIX applications. These services allow an application to perform such
operations as process creation and execution, file system access, and I/O
device management.

• POSIX 1003.1c defines a set of thread functions that can be used in the
design and creation of multithreaded realtime applications.

• POSIX 1003.1b provides support for functions that support the needs
of realtime applications, such as enhanced interprocess communication,
scheduling and memory management control, asynchronous I/O
operations, and file synchronization.

As support for evolving and final standards is incorporated into the operating
system, customers should modify their POSIX applications to conform to
the latest version of these standards. Because draft standards are working
documents and not formal standards, the level of backward compatibility
and formal support for older versions (drafts) will be less than that normally
expected from a stable product.

An application that strictly conforms to any combination of these standards
can be developed on one system and then ported to another system that
supports the same POSIX standards. (A strictly conforming application uses
only the facilities within the applicable standards.) Similarly, an application
developed for an operating system other than Tru64 UNIX, if it strictly
conforms to the POSIX standards and drafts supported by Tru64 UNIX, can
be ported and run on a Tru64 UNIX system.

Introduction to Realtime Programming 1–17

It is the source code of an application that is portable. Most applications
written for a POSIX environment use the C programming language. Each
system that supports a POSIX environment includes POSIX run-time
libraries and C run-time libraries. A portable application that requires an
executable image must be compiled and linked on a system after being
ported. It is important that you compile and link your POSIX applications
against the run-time libraries on the system where they will run.

The POSIX standards are based on the UNIX environment. However, POSIX
specifies an interface to an operating system, not the operating system
itself. Additional information on POSIX standards is contained in the IEEE
Standard Portable Operating System Interface for Computer Environments
manuals, published by the Institute of Electrical and Electronics Engineers,
Inc.

1.5 Enabling Tru64 UNIX Realtime Features

The files that make up the realtime facility are included with the base
system software, and are installed when you choose the realtime option
during installation. This provides extended features, such as realtime
preemption and symmetric multiprocessing.

______________________ Note _______________________

If you installed Tru64 UNIX with the default options, realtime
preemption is disabled. To enable realtime preemption, the
system configuration parameter rt_preempt_opt must be set to
1. See the Installation Guide for complete instructions.

1.6 Building Realtime Applications

To build a Tru64 UNIX realtime application, you must first define the
POSIX environment, then compile the application with the appropriate
compile command switches. These steps draw POSIX header information
and realtime libraries into your code.

1.6.1 Defining the POSIX Environment

Realtime applications should include the unistd.h header file before
they include any other header files. This header file defines the standard
macros, for example _POSIX_C_SOURCE, that are required to compile
programs containing POSIX 1003.1b functions. If you need to exclude any
of the standards definitions provided by the unistd.h header file, you
should explicitly define those standards macros in the source file or on the
compilation command line.

1–18 Introduction to Realtime Programming

As a general rule, use specific definitions in your application only if your
application must exclude certain definitions related to other unneeded
standards, such as XPG3. For example, if you defined _POSIX_C_SOURCE
(#define _POSIX_C_SOURCE 199506L) in your application, you would get
only the definitions for POSIX 1003.1b and other definitions pulled in by
that definition, such as POSIX 1003.1.

___________________ Restriction ____________________

Currently, one known anomaly is associated with explicitly
defining _POSIX_C_SOURCE in your application (or on
the compile line). The symbol SA_SIGINFO, defined in
sys/signal.h, is not visible under certain namespace conditions
when _POSIX_C_SOURCE is explicitly defined.

If you do not explicitly define _POSIX_C_SOURCE, and instead
allow it to be implicitly defined by unistd.h, the SA_SIGINFO
symbol is visible.

However, if you must explicitly define _POSIX_C_SOURCE, then
you can make SA_SIGINFO visible if you also explicitly define
_OSF_SOURCE.

The following example shows the code you would include as the first line of
code in either your local header file or your application code:

#include <unistd.h>

Because the unistd.h header file defines all the standards needed for
realtime applications, it is important that this #include is the first line
of code in your application.

1.6.2 Compiling and Linking Realtime Applications

When you compile realtime applications, you must explicitly load the
required realtime run-time library, librt, and, if asynchronous I/O is used,
the required asynchronous I/O run-time library, libaio.

1.6.2.1 Compiling Realtime Applications

Realtime applications require the realtime library, librt. The librt
library provides the following functions to support realtime programming:

• P1003.1b priority scheduling functions

• P1003.1b clock functions

• P1003.1b timer functions

• P1003.1b memory-locking functions

Introduction to Realtime Programming 1–19

• P1003.1b message functions

• P1003.1b shared-memory functions

• P1003.1b semaphore functions

• P1003.1b realtime signal functions

You can specify the realtime shareable library, librt.so, or the static
library, librt.a. (To use librt.a, your Tru64 UNIX system installation
must include Software Development Software Subset OSFLIBAnnn, Static
Libraries.)

The following example specifies that the realtime shareable library,
librt.so, is to be included from the /usr/shlib directory:

cc myprogram.c -L/usr/shlib -lrt

The -l switch specifies the name of a library (omitting its lib- prefix) to
include. The -L switch indicates the search path for the linker to use to
locate libraries.

To find the realtime library, the ld linker expands the command specification
by replacing the -l with lib and adding the specified library characters
and the appropriate suffix, .so or .a. Because the linker searches default
directories in an attempt to locate the realtime run-time library, you must
specify the pathname if you do not want to use the default.

The following example specifies that the realtime static library, librt.a, is
to be included from the /usr/ccs/lib directory:

cc -non_shared myprogram.c -L/usr/ccs/lib -lrt

The realtime library uses the libc library. When you compile an application,
the libc library is automatically pulled into the compilation.

For most compiler drivers, you can view the compilation phases of the driver
program and the libraries being searched by specifying the -v option on
the compile command.

1.6.2.2 Compiling Realtime Applications That Use Asynchronous I/O

Realtime applications that use asynchronous I/O require the asynchronous
I/O shareable run-time library, libaio. (If your application performs
asynchronous I/O to raw partitions rather than files, you require
libaio_raw; see Section 7.3.) The libaio library provides P1003.1b
asynchronous I/O functions.

When you compile an application that uses asynchronous I/O, you must also
specify -pthread on the compile command line. Doing so directs the linker
to use threadsafe libraries and to include the P1003.1c POSIX Threads
interfaces from libpthread.so.

1–20 Introduction to Realtime Programming

The following example specifies that the asynchronous I/O shareable
run-time library, libaio.so, is to be included from the /usr/shlib
directory:

cc myprogram.c -L/usr/shlib -laio -pthread

1.6.2.3 Linking a Previously Compiled Realtime Application

Should a situation require you to just link (not compile) your realtime
application, you must explicitly include the libc library. Because files are
processed in the order in which they appear on the link command line, libc
must appear after librt. For example, you would link an application with
the realtime shareable library, librt.so, as follows:

ld myprogram.o -L/usr/shlib -lrt -lc

Introduction to Realtime Programming 1–21

2
The Tru64 UNIX Scheduler

On a single-processor system, only one process’s code executes at a time. The
scheduler chooses which process has control of the CPU based on priority;
the highest-priority process executes first.

The scheduler has 64 priority levels; every process on the system is at one
of these priority levels. The priority level at which a process is allowed to
execute, its scheduling interactions with other processes at that level, and
if or how it moves between priority levels are determined by its scheduling
policy.

Tru64 UNIX provides two interfaces to the scheduler: the traditional UNIX
timesharing interface (nice) and the POSIX 1003.1b realtime execution
scheduling interface.

This chapter includes the following sections:

• Scheduler Fundamentals, Section 2.1

• Scheduling Policies, Section 2.2

• Process Priorities, Section 2.3

• Scheduling Functions, Section 2.4

• Priority and Policy Example, Section 2.5

2.1 Scheduler Fundamentals

This section explains the terms and concepts needed to understand the
Tru64 UNIX scheduler.

2.1.1 Schedulable Entities

The scheduler operates on threads. A thread is a single, sequential flow
of control within a process. Within a given thread is a single point of
execution. Most traditional processes consist of only one thread and one
point of execution.

Using POSIX Threads, the Tru64 UNIX multithreading run-time library, a
programmer can create several threads within a process. Threads execute
independently and, within a multithreaded process, each thread has its
own point of execution.

The Tru64 UNIX Scheduler 2–1

The scheduler considers all threads on the system and runs the one with
the highest priority.

2.1.2 Thread States

Every thread has a state. The thread currently executing in the CPU is in
the run state. Threads that are ready to run are in the runnable state.
Threads that are waiting for a condition to be satisfied are in the wait
state. Examples of conditions a thread may be waiting for are a signal from
another process, a timer expiration, or an I/O completion.

The scheduler selects the highest-priority thread in the running or runnable
state to execute on the CPU. Thus the running thread is always the one with
the highest priority.

2.1.3 Scheduler Database

All runnable threads have entries in the scheduler database. The scheduler
database is an array of 64 lists, one list for each priority level.

The scheduler orders the processes on each priority-level list by placing the
process that should run next at the beginning of the list, and the process that
should wait the longest to run at the end of the list.

2.1.4 Quantum

Each thread has a value associated with it, known as a quantum, that
defines the maximum amount of contiguous CPU time it may use before
being forced to yield the CPU to another thread of the same priority.

A thread’s quantum is set according to its scheduling policy. The goal of the
timesharing policy is to choose a short enough time so that multiple users
all think the system is responsive while allowing a long enough time to do
useful work. Some realtime policies have an infinite quantum, because the
work to be done is considered so important that it should not be interrupted
by a process of equal priority.

2.1.5 Scheduler Transitions

A new thread is selected to run when one of the following events occurs:

• The running process enters a wait state

• A higher-priority process becomes runnable

• A process changes scheduling policy

• The quantum of the running process expires

2–2 The Tru64 UNIX Scheduler

When an event occurs, the scheduler updates the scheduler database. If a
thread in the database now has priority higher than that of the currently
running thread, the current thread is preempted, placed into the scheduler
database, and the highest-priority thread is made the running thread. A
scheduler that works in this manner is known as a preemptive priority
scheduler.

When a thread is placed into a priority list in the scheduler database, it is
placed at the end of the list unless it has just been preempted. If it has just
been preempted, the threads scheduling policy determines whether it is
inserted at the beginning (realtime scheduling policy) or the end (timeshare
scheduling policy).

Figure 2–1 illustrates the general principles of process scheduling.

Figure 2–1: Order of Execution

30

29

15

14

13

Priority

A B C

D

G H I J

30

29

15

14

13

Priority

D

E

G H I J

Runnable Processes

Before Priority Change After Priority Change

MLO-007315

F

FA B C

E

Processes A, B, and C are in the process list for the highest priority used in
this illustration. Process A is at the beginning of the process list for priority
30. That means that process A executes first, then processes B and C,
respectively. When no more processes remain in the process list for priority
30, the scheduler looks to the next-lowest priority, finds process D at the
beginning of the process list, and executes process D.

When a process changes priority, it goes to the end of the process list for its
new priority. Figure 2–1 shows process F changing priority from 15 to 30.
At priority 15, process F is at the end of the process list. When process F
changes to priority 30, the process goes to the end of the process list for

The Tru64 UNIX Scheduler 2–3

priority 30. At priority 30, process F is queued to execute after process C,
but before process D.

Figure 2–2 illustrates how processes can change from the running state to
the runnable state within the queue for a single priority. In this illustration,
processes running under the SCHED_RR scheduling policy move in and out
of the running state.

Figure 2–2: Process Events

The Running
Process Is: The Runnable Processes Are:Event Reaction

G G moves to running

H I

reaches beginning of
the queue and starts
its quantum

A G preempted - goes tois a higher priority,
becomes runnable, and
preempts G

G H I

A G runs again to finishyields or enters
waiting state

H I

G G goes to the end of thefinishes its quantum

I G

A H preempted - goes tois a higher priority,
becomes runnable, and
preempts H

H I G

A Kraises priority of K

H I G K

G

A

G

H

A

A

the beginning of the

its quantum

queue

moves to running

the beginning of the

changes priority

goes to the end of the
queue

H

K

queue

queue

MLO-007316

As processes are selected to run or move from the end to the beginning of the
process list, the scheduler continually updates the kernel database and the
process list for each priority.

2–4 The Tru64 UNIX Scheduler

2.2 Scheduling Policies

Whether or not a timesharing process runs is often determined not by the
needs of the application, but by the scheduler’s algorithm. The scheduler
determines the order in which processes execute and sometimes forces
resource-intensive processes to yield to other processes.

Other users’ activities on the system at that time affect scheduling. Whether
or not a realtime process yields to another process can be based on a
quantum or the scheduling policy.

2.2.1 The Nature of the Work

Scheduling policies are designed to give you flexibility and control in
determining how work is performed so that you can balance the nature of
the work with the behavior of the process. Essentially, there are three broad
categories of work:

• Timesharing Processing

Used for interactive and noninteractive applications with no critical time
limits but with a need for reasonable response time and high throughput.

• System Processing

Used for work on behalf of the system, such as paging, networking, and
accessing files. The responsiveness of system processing impacts the
responsiveness of the whole system.

• Realtime Processing

Used for critical work that must be completed within a certain time
period, such as data collection or device control. The nature of realtime
processing often means that missing a deadline makes the data invalid
or causes damage.

To control scheduling policies, you must use P1003.1b realtime scheduling
functions and select an appropriate scheduling policy for your process.
Tru64 UNIX P1003.1b scheduling policies are set only through a call to
the sched_setscheduler function. The sched_setscheduler function
recognizes the scheduling policies by keywords beginning with SCHED_, as
follows:

Keyword Description

SCHED_OTHER Timesharing scheduling

SCHED_FIFO First-in/first-out scheduling

SCHED_RR Round-robin scheduling

The Tru64 UNIX Scheduler 2–5

All three scheduling policies have overlapping priority ranges to allow for
maximum flexibility in scheduling. When selecting a priority and scheduling
policy for a realtime process, consider the nature of the work performed by
the process. Regardless of the scheduling policy, the scheduler selects the
process at the beginning of the highest-priority, nonempty process list to
become a running process.

2.2.2 Timesharing Scheduling

The P1003.1b timesharing scheduling policy, SCHED_OTHER, allows
realtime applications to return to a nonrealtime scheduling policy. In
timesharing scheduling, a process starts with an initial priority that either
the user or the scheduler can change. Timesharing processes run until the
scheduler recalculates process priority, based on the system load, the length
of time the process has been running, or the value of nice. Section 2.3.1
describes timesharing priority changes in more detail.

Under the timesharing scheduling policy, the scheduler enforces a quantum.
Processes are allowed to run until they are preempted, yield to another
process, or finish their quantum. If no equal or higher-priority processes are
waiting to run, the executing process is allowed to continue. However, while
a process is running, the scheduler changes the process’s priority. Over time,
it is likely that a higher-priority process will exist because the scheduler
adjusts priority. If a process is preempted or yields to another process, it goes
to the end of the process list for the new priority.

2.2.3 Fixed-Priority Scheduling

With a fixed-priority scheduling policy, the scheduler does not adjust process
priorities. If the application designer sets a process at priority 30, it will
always be queued to the priority 30 process list, unless the application or the
user explicitly changes the priority.

As with all scheduling policies, fixed-priority scheduling is based on the
priorities of all runnable processes. If a process waiting on the process
list has a higher priority than the running process, the running process is
preempted for the higher-priority process. However, the two fixed-priority
scheduling policies (SCHED_FIFO and SCHED_RR) allow greater control
over the length of time a process waits to run.

Fixed-priority scheduling relies on the application designer or user to
manage the efficiency of process priorities relative to system workloads. For
example, you may have a process that must be allowed to finish executing,
regardless of other activities. In this case, you may elect to increase the
priority of your process and use the first-in/first-out scheduling policy, which
guarantees that a process will never be placed at the end of the process list
if it is preempted. In addition, the process’s priority will never be adjusted

2–6 The Tru64 UNIX Scheduler

and it will never be moved to another process list. With fixed-priority
scheduling policies, you must explicitly set priorities by calling either the
sched_setparam or sched_setscheduler function. Thus, realtime
processes using fixed-priority scheduling policies are free to yield execution
resources to each other in an application-dependent manner.

If you are using a fixed-priority scheduling policy and you call the nice or
renice function to adjust priorities, the function returns without changing
the priorities.

2.2.3.1 First-In/First-Out Scheduling

The first-in/first-out scheduling policy, SCHED_FIFO, gives maximum
control to the application. This scheduling policy does not enforce a
quantum. Rather, each process runs to completion or until it voluntarily
yields or is preempted by a higher-priority process.

Processes scheduled under the first-in/first-out scheduling policy are chosen
from a process priority list that is ordered according to the amount of time
its processes have been on the list without being executed. Under this
scheduling policy, the process at the beginning of the highest-priority,
nonempty process list is executed first. The next process moves to the
beginning of the list and is executed next. Execution continues until that
priority list is empty. Then the scheduler selects the process at the beginning
of the next highest-priority, nonempty process list and execution continues.
A process runs until execution finishes or the process is preempted by a
higher-priority process.

The process at the beginning of a process list has waited at that priority the
longest amount of time, while the process at the end of the list has waited
the shortest amount of time. Whenever a process becomes runnable, it is
placed on the end of a process list and waits until the processes in front of it
have executed. When a process is placed in an empty high-priority process
list, the process will preempt a lower-priority running process.

If an application changes the priority of a process, the process is removed
from its list and placed at the end of the new priority process list.

The following rules determine how runnable processes are queued for
execution using the first-in/first-out scheduling policy:

• When a process is preempted, it goes to the beginning of the process
list for its priority.

• When a blocked process becomes runnable, it goes to the end of the
process list for its priority.

The Tru64 UNIX Scheduler 2–7

• When a running process changes the priority or scheduling policy of
another process, the changed process goes to the end of the new priority
process list.

• When a process voluntarily yields to another process, it goes to the end
of the process list for its priority.

The first-in/first-out scheduling policy is well suited for the realtime
environment because it is deterministic. That is, processes with the highest
priority always run, and among processes with equal priorities, the process
that has been runnable for the longest period of time is executed first. You
can achieve complex scheduling by altering process priorities.

Also, under the first-in/first-out scheduling policy, the user can raise the
priority of a running process to avoid its being preempted by another
process. Therefore, a high-priority, realtime process running under the
first-in/first-out scheduling policy can use system resources as long as
necessary to finish realtime tasks.

2.2.3.2 Round-Robin Scheduling

The round-robin scheduling policy, SCHED_RR, is a logical extension of the
first-in/first-out scheduling policy. A process running under the round-robin
scheduling policy is subject to the same rules as a process running under the
fixed-priority scheduling policy, but a quantum is imposed on the running
process. When a process finishes its quantum, it goes to the end of the
process list for its priority.

Processes under the round-robin scheduling policy may be preempted by
a higher-priority process before the quantum has expired. A preempted
process goes to the beginning of its priority process list and completes the
previously unexpired portion of its quantum when the process resumes
execution. This ensures that a preempted process regains control as soon
as possible.

Figure 2–3 shows process scheduling using a quantum. One portion of the
figure shows the running process; the other portion of the figure shows what
happens to running processes over time. Process G is removed from the
beginning of the process list, placed in the run queue, and begins execution.
Process B, a higher-priority process, enters the runnable state while process
G is running. The scheduler preempts process G to execute process B.
Because process G had more time left in its quantum, the scheduler returns
process G to the beginning of the process list, keeps track of the amount of
time left in process G’s quantum, and executes process B. When process
B finishes, process G is again moved into the run queue and finishes its
quantum. Process H, next in the process list, executes last.

2–8 The Tru64 UNIX Scheduler

Figure 2–3: Preemption — Finishing a Quantum
Priority

Process G Process G

Process B

Process H

Process B
Executes

Process G
Preempted Process G Completes,

Process H Executes

Process G Resumes

1

2

3 4

G H

B

G H G H H

Time

Process List

MLO-007317

1 2 3 4

HighHigh

Low

Round-robin scheduling is designed to provide a facility for implementing
time-slice algorithms. You can use the concept of a quantum in combination
with process priorities to facilitate time-slicing. You can use the
sched_rr_get_interval function to retrieve the quantum used in
round-robin scheduling. If a process, running under the round-robin
scheduling policy, runs without blocking or yielding for more than this
amount of time, it may be preempted by another runnable process at the
same priority.

2.3 Process Priorities

All applications are given an initial priority, either implicitly by the
operating system or explicitly by the user. If you fail to specify a priority for
a process, the kernel assigns the process an initial priority.

You can specify and manage a process’s priority using either nice or
P1003.1b functions. The nice functions are useful for managing priorities
for nonrealtime, timesharing applications. However, realtime priorities are
higher than the nice priorities and make use of the P1003.1b scheduling

The Tru64 UNIX Scheduler 2–9

policies. You can manage realtime priorities only by using the associated
P1003.1b functions.

In general, process scheduling is based on the concept that tasks can be
prioritized, either by the user or by the scheduler. Each process table entry
contains a priority field used in process scheduling. Conceptually, each
priority level consists of a process list. The process list is ordered with the
process that should run first at the beginning of the list and the process that
should run last at the end of the list. Because a single processor can execute
only one process at a time, the scheduler selects the first process at the
beginning of the highest-priority, nonempty process list for execution.

Priority levels are organized in ranges. The nonprivileged user application
runs in the same range as most applications using the timesharing
scheduling policy. Most users need not concern themselves with priority
ranges above this range. Privileged applications (system or realtime) use
higher priorities than nonprivileged user applications. In some instances,
realtime and system processes can share priorities, but most realtime
applications will run in a priority range that is higher than the system range.

2.3.1 Priorities for the nice Interface

The nice interface priorities are divided into two ranges: the higher range
is reserved for the operating system, and the lower range for nonprivileged
user processes. With the nice interface, priorities range from 20 through
–20, where 20 is the lowest priority. Nonprivileged user processes typically
run in the 20 through 0 range. Many system processes run in the range 0
through –20. Table 2–1 shows the nice interface priority ranges.

Table 2–1: Priority Ranges for the nice Interface
Range Priority Level

Nonprivileged user 20 through 0

System 0 through –20

A numerically low value implies a high priority level. For example, a process
with a priority of 5 has a lower priority than a process with a priority of 0.
Similarly, a system process with a priority of –5 has a lower priority than a
process with a priority of –15. System processes can run at nonprivileged
user priorities, but a user process can only increase its priority into the
system range if the owner of the user process has superuser privileges.

Processes start at the default base priority for a nonprivileged user process
(0). Because the only scheduling policy supported by the nice interface is
timesharing, the priority of a process changes during execution. That is, the
nice parameter represents the highest priority possible for a process. As
the process runs, the scheduler adds offsets to the initial priority, adjusting

2–10 The Tru64 UNIX Scheduler

the process’s priority downward from or upward toward the initial priority.
However, the priority will not exceed (be numerically lower than) the nice
value.

The nice interface supports relative priority changes by the user through a
call to the nice, renice, or setpriority functions. Interactive users can
specify a base priority at the start of application execution using the nice
command. The renice command allows users to interactively change the
priority of a running process. An application can read a process’s priority
by calling the getpriority function. Then the application can change a
process’s priority by calling the setpriority function. These functions
are useful for nonrealtime applications but do not affect processes running
under one of the P1003.1b fixed-priority scheduling policies described in
Section 2.2.

See the reference pages for more information on the getpriority,
setpriority, nice, and renice functions.

2.3.2 Priorities for the Realtime Interface

Realtime interface priorities are divided into three ranges: the highest range
is reserved for realtime, the middle range is used by the operating system,
and the low range is used for nonprivileged user processes. Tru64 UNIX
realtime priorities loosely map to the nice priority range, but provide a
wider range of priorities. Processes using the P1003.1b scheduling policies
must also use the Tru64 UNIX realtime interface priority scheme. Table 2–2
shows the Tru64 UNIX realtime priority ranges.

Table 2–2: Priority Ranges for the Tru64 UNIX Realtime Interface
Range Priority Level

Nonprivileged user SCHED_PRIO_USER_MIN through
SCHED_PRIO_USER_MAX

System SCHED_PRIO_SYSTEM_MIN through
SCHED_PRIO_SYSTEM_MAX

Realtime SCHED_PRIO_RT_MIN through
SCHED_PRIO_RT_MAX

Realtime interface priority levels are the inverse of the nice priority
levels; a numerically high value implies a high priority level. A realtime
process with a priority of 32 has a higher priority than system processes,
but a lower priority than another realtime process with a priority of 45.
Realtime and system processes can run at nonprivileged user priorities, but
a nonprivileged user process cannot increase its priority into the system or
realtime range without superuser privileges.

The Tru64 UNIX Scheduler 2–11

The default initial priority for processes using realtime priorities is 19. The
default scheduling policy is timesharing.

Figure 2–4 illustrates the relationship between these two priority interfaces.

Figure 2–4: Priority Ranges for the nice and Realtime Interfaces

-20, -19

-1, 0, 1

63

29

32
31
30

26
25
24

20
19
18

9

0

-18

-3, -2

2, 3

19, 20

Realtime
Priorities

Realtime
Interface

System
Priorities

User
Priorities

nice
Interface

System Default

User Default

Privileged
User

Nonprivileged
User

Low
Priority

High
Priority

MLO-007318

Note that hardware interrupts are unaffected by process priorities, even
the highest realtime priority.

Tru64 UNIX does not support priority inheritance between processes. This
is important to remember in prioritizing processes in such a way to avoid
priority inversion. Priority inversion takes place when a higher-priority
process is blocked by the effects of a lower-priority process.

2–12 The Tru64 UNIX Scheduler

For example, a client program running at a priority of 60 (realtime priority)
blocks while waiting for the receipt of data. This allows a loop program
to run at the lower priority of 40 (also realtime priority), but the network
thread that dequeues the network packets is running at a system priority of
30. The loop program blocks the network thread, which in turn blocks the
higher-priority client process, which is still waiting for the receipt of data.

In this case, the inversion may be resolved by running the network thread at
a higher priority than the loop program. When running realtime processes
at the exclusive realtime priority level, it is important to ensure that the
processes give up the CPU in order for normal system processes to run.

2.3.3 Displaying Realtime Priorities

The ps command displays current process status and can be used to give
realtime users snapshots of process priorities. Realtime users can use
POSIX realtime functions to change process priority. Therefore, the ps
command is a useful tool for determining if realtime processes are running
at the expected priority.

The ps command captures the states of processes, but the time required to
capture and display the data from the ps command may result in some
minor discrepancies.

Priorities used in the realtime scheduling interface are displayed when you
use the specifier psxpri in conjunction with the -o or -O switch on the ps
command. Fields in the output format include the process ID (PID), POSIX
scheduling priority (PPR), the state of the process (S), control terminal of
the process (TTY), CPU time used by the process (TIME), and the process
command (COMM).

The following example shows information regarding processes, with or
without terminals, and displays timesharing and POSIX priorities. Note
that the display indicates that the ps command is also running.

% ps -aeO psxpri
PID PPR S TTY TIME COMMAND

0 31 R < ?? 16:52:49 kernel idle
1 19 I ?? 28:28.03 init
7 19 I ?? 0:02.72 kloadsrv
11 19 I ?? 0:00.94 dxterm

...
14737 60 S< p2 0:00.01 ./tests/work
13848 15 R ttyv3 0:01.12 ps

In the example above, two processes are using realtime priorities. The
first process (PID 0) is running at maximum system priority. The second
realtime process (PID 14737) has been sleeping for less than twenty seconds

The Tru64 UNIX Scheduler 2–13

at priority 60. The processes with PIDs 1, 7, and 11 are idle at the maximum
user priority.

For more information, see the reference page for the ps command.

2.3.4 Configuring Realtime Priorities

You should assign realtime priorities according to the critical nature of the
work the processes perform. Some applications may not need to have all
processes running in the realtime priority range. Applications that run in
a realtime range for long periods may prevent the system from performing
necessary services, which could cause network and device timeouts or
data overruns. Some processes perform adequately if they run under a
fixed-priority scheduling policy at priority 19. Only critical processes
running under a fixed-priority scheduling policy should run with priorities
in the realtime range, 32 through 63.

Although P1003.1b functions let you change the scheduling policy while
your application is running, it is better to select a scheduling policy during
application initialization than to change the scheduling policy while the
application executes. However, you may find it necessary to adjust priorities
within a scheduling policy as the application executes.

It is recommended that all realtime applications provide a way to configure
priorities at run time. You can configure priorities using the following
methods:

• Providing a default priority within the realtime priority range by calling
the sched_get_priority_max and sched_get_priority_min
functions

• Using a .rc initialization file, which overrides the default priority, or
using environment variables, which override the default priority

• Adjusting priority during initialization by calling the sched_setparam
function

Each process should have a default base priority appropriate for the kind
of work it performs, and each process should provide a configuration
mechanism for changing that base priority. To simplify system management,
make the hardcoded default equal to the highest priority used by the
application. At initialization, the application should set its process priorities
by subtracting from the base priority. Use the constants given in the
sched.h header file as a guide for establishing your default priorities.

The sched.h header file provides the following constants, which may be
useful in determining the optimum default priority:

SCHED_PRIO_USER_MIN
SCHED_PRIO_USER_MAX

2–14 The Tru64 UNIX Scheduler

SCHED_PRIO_SYSTEM_MIN
SCHED_PRIO_SYSTEM_MAX
SCHED_PRIO_RT_MIN
SCHED_PRIO_RT_MAX

These values are the current values for default priorities. When coding your
application, use the constants rather than numerical values. The resulting
application will be easier to maintain should default values change.

Debug your application in the nonprivileged user priority range before
running the application in the realtime range. If a realtime process is
running at a level higher than kernel processes and the realtime process goes
into an infinite loop, you must reboot the system to stop process execution.

Although you can adjust priority levels for Tru64 UNIX system priorities
using the nice or renice functions, these functions have a ceiling that is
below the realtime priority range. To adjust realtime priorities, use the
sched_getparam and sched_setparam P1003.1b functions, discussed
in Section 2.4.3. Adjust process priorities for your own application only.
Adjusting system process priorities could have unexpected consequences.

2.4 Scheduling Functions

Realtime processes must be able to select the most appropriate priority
level and scheduling policy dynamically. A realtime application often
modifies the scheduling policy and priority of a process, performs some
function, and returns the process to its previous priority. Realtime processes
must also be able to yield system resources to each other in response to
specified conditions. The following P1003.1b functions satisfy these realtime
requirements:

Function Description

sched_getscheduler Returns the scheduling policy of a
specified process

sched_getparam Returns the scheduling priority of a
specified process

sched_get_priority_max Returns the maximum priority allowed
for a scheduling policy

sched_get_priority_min Returns the minimum priority allowed
for a scheduling policy

sched_rr_get_interval Returns the current quantum for the
round-robin scheduling policy

sched_setscheduler Sets the scheduling policy and priority
of a specified process

The Tru64 UNIX Scheduler 2–15

Function Description

sched_setparam Sets the scheduling priority of a
specified process

sched_yield Yields execution to another process

See the reference pages for a complete description of these functions.

All the preceding functions, with the exception of the sched_yield
function, require a process ID parameter (pid). In all P1003.1b priority
and scheduling functions, a pid value of zero indicates that the function
call refers to the calling process. Use zero in these calls to eliminate using
the getpid or getppid functions.

The priority and scheduling policy of a process are inherited across a fork
or exec system call.

Changing the priority or scheduling policy of a process causes the process
to be queued to the end of the process list for its new priority. You must
have superuser privileges to change the realtime priorities or scheduling
policies of a process.

2.4.1 Determining Limits

Three functions allow you to determine scheduling policy parameter limits.
The sched_get_priority_max and sched_get_priority_min functions
return the appropriate maximum or minimum priority permitted by the
scheduling policy. You can use these functions with any of the P1003.1b
scheduling policies: first-in/first-out, round-robin, or timesharing. You must
specify one of the following keywords when using these functions:

• SCHED_FIFO

• SCHED_RR

• SCHED_OTHER

The sched_rr_get_interval function returns the current quantum for
process execution under the round-robin scheduling policy.

2.4.2 Retrieving the Priority and Scheduling Policy

Two functions return the priority and scheduling policy for realtime
processes, sched_getparam and sched_getscheduler, respectively.
You do not need special privileges to use these functions, but you need
superuser privileges to set priority or scheduling policy.

If the pid is zero for either function, the value returned is the priority or
scheduling policy for the calling process. The values returned by a call to the

2–16 The Tru64 UNIX Scheduler

sched_getscheduler function indicate whether the scheduling policy is
SCHED_FIFO, SCHED_RR, or SCHED_OTHER.

2.4.3 Setting the Priority and Scheduling Policy

Use the sched_getparam function to determine the initial priority of a
process; use the sched_setparam function to establish a new priority.
Adjusting priority levels in response to predicted system loads and other
external factors allows the system administrator or application user
greater control over system resources. When used in conjunction with the
first-in/first-out scheduling policy, the sched_setparam function allows a
critical process to run as soon as it is runnable, for as long as it needs to run.
This occurs because the process preempts other lower-priority processes.
This can be important in situations where scheduling a process must be
as precise as possible.

The sched_setparam function takes two parameters: pid and param.
The pid parameter specifies the process to change. If the pid parameter is
zero, priority is set for the calling process. The param parameter specifies
the new priority level. The specified priority level must be within the range
for the minimum and maximum values for the scheduling policy selected
for the process.

The sched_setscheduler function sets both the scheduling policy
and priority of a process. Three parameters are required for the
sched_setscheduler function: pid, policy, and param. If the pid
parameter is zero, the scheduling policy and priority will be set for the
calling process. The policy parameter identifies whether the scheduling
policy is to be set to SCHED_FIFO, SCHED_RR, or SCHED_OTHER. The
param parameter indicates the priority level to be set and must be within
the range for the indicated scheduling policy.

Notification of a completed priority change may be delayed if the calling
process has been preempted. The calling process is notified when it is again
scheduled to run.

If you are designing portable applications (strictly conforming POSIX
applications), be careful not to assume that the priority field is the only
field in the sched_param structure. All the fields in a sched_param
structure should be initialized before the structure is passed as the param
argument to the sched_setparam or sched_setscheduler. Example 2–1
shows how a process can initialize the fields using only constructs provided
by the P1003.1b standard.

The Tru64 UNIX Scheduler 2–17

Example 2–1: Initializing Priority and Scheduling Policy Fields

/* Change to the SCHED_FIFO policy and the highest priority, then */
/* lowest priority, then back to the original policy and priority. */

#include <unistd.h>
#include <sched.h>

#define CHECK(sts,msg) \
if (sts == -1) { \

perror(msg); \
exit(-1); \

}

main ()
{
struct sched_param param;
int my_pid = 0;
int old_policy, old_priority;
int sts;
int low_priority, high_priority;

/* Get parameters to use later. Do this now */
/* Avoid overhead during time-critical phases.*/

high_priority = sched_get_priority_max(SCHED_FIFO);
CHECK(high_priority,"sched_get_priority_max");
low_priority = sched_get_priority_min(SCHED_FIFO);
CHECK(low_priority,"sched_get_priority_min");

/* Save the old policy for when it is restored. */

old_policy = sched_getscheduler(my_pid);
CHECK(old_policy,"sched_getscheduler");

/* Get all fields of the param structure. This is where */
/* fields other than priority get filled in. */

sts = sched_getparam(my_pid, ¶m);
CHECK(sts,"sched_getparam");

/* Keep track of the old priority. */

old_priority = param.sched_priority;

/* Change to SCHED_FIFO, highest priority. The param */
/* fields other than priority get used here. */

param.sched_priority = high_priority;
sts = sched_setscheduler(my_pid, SCHED_FIFO, ¶m);
CHECK(sts,"sched_setscheduler");

/* Change to SCHED_FIFO, lowest priority. The param */
/* fields other than priority get used here, too. */

param.sched_priority = low_priority;
sts = sched_setparam(my_pid, ¶m);
CHECK(sts,"sched_setparam");

/* Restore original policy, parameters. Again, other */
/* param fields are used here. */

param.sched_priority = old_priority;
sts = sched_setscheduler(my_pid, old_policy, ¶m);

2–18 The Tru64 UNIX Scheduler

Example 2–1: Initializing Priority and Scheduling Policy Fields (cont.)

CHECK(sts,"sched_setscheduler 2");

exit(0);
}

A process is allowed to change the priority of another process only if the
target process runs on the same node as the calling process and at least one
of the following conditions is true:

• The calling process is a privileged process with a real or effective UID
of zero.

• The real user UID or the effective user UID of the calling process is equal
to the real user UID or the saved-set user UID of the target process.

• The real group GID or the effective group GID of the calling process is
equal to the real group GID or the saved-set group GID of the target
process, and the calling process has group privilege.

Before changing the priority of another process, determine which UID is
running the application. Use the getuid system call to determine the real
UID associated with a process.

2.4.4 Yielding to Another Process

Sometimes, in the interest of cooperation, it is important that a running
process give up the kernel to another process at the same priority level.
Using the sched_yield function causes the scheduler to look for another
process at the same priority level to run, and forces the caller to return to the
runnable state. The process that calls the sched_yield function resumes
execution after all runnable processes of equal priority have been scheduled
to run. If there are no other runnable processes at that priority, the caller
continues to run. The sched_yield function causes the process to yield for
one cycle through the process list. That is, after a call to sched_yield, the
target process goes to the end of its priority process list. If another process of
equal priority is created after the call to sched_yield, the new process is
queued up after the yielding process.

The sched_yield function is most useful with the first-in/first-out
scheduling policy. Because the round-robin scheduling policy imposes a
quantum on the amount of time a process runs, there is less need to use
sched_yield. The round-robin quantum regulates the use of system
resources through time-slicing. The sched_yield function is also useful
when a process does not have permission to set its priority but still needs to
yield execution.

The Tru64 UNIX Scheduler 2–19

2.5 Priority and Policy Example

Example 2–2 shows how the amount of time in a round-robin quantum can
be determined, the current scheduling parameters saved, and a realtime
priority set. Using the round-robin scheduling policy, the example loops
through a test until a call to the sched_yield function causes the process
to yield.

Example 2–2: Using Priority and Scheduling Functions

#include <unistd.h>
#include <time.h>
#include <sched.h>
#define LOOP_MAX 10000000
#define CHECK_STAT(stat, msg) \

if (stat == -1) \
{ perror(msg); \

exit(-1); \
}

main()
{

struct sched_param my_param;
int my_pid = 0;
int old_priority, old_policy;
int stat;

struct timespec rr_interval;
int try_cnt, loop_cnt;
volatile int tmp_nbr;

/* Determine the round-robin quantum */

stat = sched_rr_get_interval (my_pid, &rr_interval);
CHECK_STAT(stat, "sched_rr_get_interval");
printf("Round-robin quantum is %lu seconds, %ld nanoseconds\n",

rr_interval.tv_sec, rr_interval.tv_nsec);

/* Save the current scheduling parameters */

old_policy = sched_getscheduler(my_pid);
stat = sched_getparam(my_pid, &my_param);
CHECK_STAT(stat, "sched_getparam - save old priority");
old_priority = my_param.sched_priority;

/* Set a realtime priority and round-robin */
/* scheduling policy */

my_param.sched_priority = SCHED_PRIO_RT_MIN;
stat = sched_setscheduler(my_pid, SCHED_RR, &my_param);
CHECK_STAT(stat, "sched_setscheduler - set rr priority");

/* Try the test */

for (try_cnt = 0; try_cnt < 10; try_cnt++)

/* Perform some CPU-intensive operations */

{for(loop_cnt = 0; loop_cnt < LOOP_MAX; loop_cnt++)
{
tmp_nbr+=loop_cnt;

2–20 The Tru64 UNIX Scheduler

Example 2–2: Using Priority and Scheduling Functions (cont.)

tmp_nbr-=loop_cnt;
}

printf("Completed test %d\n",try_cnt);
sched_yield();
}

/* Lower priority and restore policy */

my_param.sched_priority = old_priority;
stat = sched_setscheduler(my_pid, old_policy, &my_param);
CHECK_STAT(stat, "sched_setscheduler - to old priority");
}

The Tru64 UNIX Scheduler 2–21

3
Shared Memory

Shared memory and memory-mapped files allow processes to communicate
by incorporating data directly into process address space. Processes
communicate by sharing portions of their address space. When one process
writes to a location in the shared area, the data is immediately available
to other processes sharing the area. Communication is fast because there
is none of the overhead associated with system calls. Data movement is
reduced because data is not copied into buffers.

A process manipulates its address space by mapping or removing portions
of memory objects into the process address space. When multiple processes
map the same memory object, they share access to the underlying data.
Shared-memory functions allow you to open and unlink the shared-memory
files.

This chapter includes the following sections:

• Memory Objects, Section 3.1

• Locking Shared Memory, Section 3.2

• Using Shared Memory with Semaphores, Section 3.3

3.1 Memory Objects

The memory-mapping and shared-memory functions allow you controlled
access to shared memory so that the application can coordinate the use of
shared address space.

When you use a shared, mapped file, the changes initiated by a single
process or multiple processes are reflected back to the file. Other processes
using the same path and opening the connection to the memory object have a
shared mapping of the file. Use memory-mapping or file control functions to
control usage and access. If the mappings allow it, data written into the file
through the address space of one process appears in the address space of all
processes mapping the same portion of the file.

Memory-mapped objects are persistent; their names and contents remain
until all processes that have accessed the object unlink the file.

Shared Memory 3–1

Shared-memory regions and memory-mapped files follow the same general
usage, as follows:

1. Obtain a file descriptor with a call to the open or shm_open function.

2. Map the object using the file descriptor with a call to the mmap function.

3. Unmap the object with a call to the munmap function.

4. Close the object with a call to the close function.

5. Remove the shared-memory object with a call to the shm_unlink
function or, optionally, remove a memory-mapped file with a call to
the unlink function.

Often shared-memory objects are created and used only while an application
is executing. Files, however, may need to be saved and reused each time the
application is run. The unlink and shm_unlink functions remove (delete)
the file and its contents. Therefore, if you need to save a shared file, close
the file but do not unlink it.

You can use memory-mapped files without using shared memory, but this
chapter assumes that you will want to use them together. The following
functions are used to open and unlink shared memory:

Function Description

shm_open Opens a shared-memory object, returning a file descriptor

shm_unlink Removes the name of the shared-memory object

Table 3–1 lists the functions for creating and controlling memory-mapped
objects.

Table 3–1: Memory-Mapping Functions
Function Description

mmap Maps the memory object into memory

mprotect Modifies protections of memory objects

msync Synchronizes a memory-mapped object

munmap Unmaps a previously mapped region

A memory object can be created and opened by a call to the shm_open
function. Then the object can be mapped into process address space. File
control functions allow you to control access permissions, such as read and
write permission or the timing of a file update.

Data written to an object through the address space of one process is
available to all processes that map the same region. Child processes inherit
the address space and all mapped regions of the parent process. When the

3–2 Shared Memory

object is opened, the child process can map it with the mmap function to
establish a map reference. If the object is already mapped, the child process
also inherits the mapped region.

Unrelated processes can also use the object, but they must first call the open
or shm_open function (as appropriate) and then use the mmap function to
establish a connection to the shared memory.

3.1.1 Opening a Shared-Memory Object

A process can create and open shared-memory regions early in the life of
the application and then dynamically control access to the shared-memory
object. Use the shm_open function to open (establish a connection to) a
shared-memory object. After one process calls shm_open to create and name
a shared memory object, each subsequent process that needs to access the
shared memory object must call shm_open and specify the same name. The
shared-memory object name can be either a string or a pathname.

The shm_open function provides a set of flags that prescribe the action
of the function and define access modes to the shared-memory object.
Shared-memory access is determined by the OR of the file status flags and
access modes listed in Table 3–2.

Table 3–2: Status Flags and Access Modes for the shm_open Function
Flag Description

O_RDONLY Open for read access only

O_RDWR Open for read and write access

O_CREAT Create the shared-memory object, if it does not already exist

O_EXCL Create an exclusive connection to a shared-memory
object, when used with O_CREAT

O_TRUNC Truncate to zero length

The first process to call the shm_open function should use the O_CREAT
flag to create the shared-memory object, to set the object’s user ID to that of
the calling process, and to set the object’s group ID to the effective group ID
of the calling process. This establishes an environment whereby the calling
process, all cooperating processes, and all child processes share the same
effective group ID with the shared-memory object.

A process can create an exclusive connection to a shared-memory object
by using the O_CREAT and O_EXCL flags. In this case, other processes
attempting to create the shared-memory object at the same time will fail.

Shared Memory 3–3

The oflag argument of the shm_open function requests specific actions
from the shm_open code. For example, the following code creates an
exclusive shared-memory object and opens it for read and write access:

fd = shm_open("all_mine", (O_CREAT|O_EXCL|O_RDWR), 0);

When a shared-memory object is created, its state and name (including all
associated data) are persistent. Its state and name remain until the shared
memory is unlinked with a call to the shm_unlink function and until all
other references to the shared memory are gone.

Example 3–1 shows the code sequence to include shared-memory objects
in an application.

Example 3–1: Including a Shared-Memory Object

#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <fcntl.h>

main ()
{

int md;
int status;
long pg_size;
caddr_t virt_addr;

/* Create shared-memory object */

md = shm_open ("my_memory", O_CREAT|O_RDWR, 0);
pg_size = sysconf(_SC_PAGE_SIZE);

if((ftruncate(md, pg_size)) == -1){ /* Set the size */
perror("ftruncate failure");
exit();

}
/* Map one page */

virt_addr = mmap(0, pg_size, PROT_WRITE, MAP_SHARED, md, 0);
.
.
.

status = munmap(virt_addr, pg_size); /* Unmap the page */
status = close(md); /* Close file */
status = shm_unlink("my_memory"); /* Unlink shared-memory object */

}

3.1.2 Opening Memory-Mapped Files

The open function points to the data you intend to use; the mmap function
establishes how much of the data will be mapped and how it will be accessed.
Use the same access permissions that you would normally use on any call to
the open function. If you intend to read the file only, specify read permission
only on the open function. If you intend to read and write to the file, open

3–4 Shared Memory

the file with both read and write permission. After opening a file, call the
mmap function to map the file into application address space.

When you have finished using a memory-mapped file, unmap the object by
calling the munmap function, then close the object with the close function.
Any memory locks resulting from a call to the mlock function associated
with the address range are removed when the munmap function is called. The
application could then remove the data file by calling the unlink function.

3.1.3 Mapping Memory-Mapped Files

The mmap function maps data from a file into memory. The parameters to the
mmap function specify the starting address and length in bytes for the new
region, access permissions, attributes of the mapped region, file descriptor,
and an offset for the address. The MAP_SHARED flag indicates that the
object can be accessed by other processes. A call to the munmap function
unmaps the same region.

The address, length, and offset of the new mapped region should be a multiple
of the page size returned by a call to the sysconf(_SC_PAGE_SIZE)
function. If the length is not specified as a multiple of the page size returned
by sysconf, then any reference to an address between the end of the region
and the end of the page containing the end of the region is undefined.
Note, too, that the offset must be aligned and sized properly. Other size
parameters may also need to be aligned, depending on whether you specified
MAP_FIXED.

The prot argument determines the type of access permitted to the data
being mapped. As with other file permissions, the argument is constructed
from the bitwise inclusive-OR of one or more of the following flags:

Flag Description

PROT_READ Data can be read

PROT_WRITE Data can be written

PROT_EXEC Data can be executed

PROT_NONE Data cannot be accessed

Whatever protection options you specify as the prot argument, the file
descriptor must have been opened with at least read access. If you specify
PROT_WRITE, the file descriptor must have been opened with write
permission, unless MAP_PRIVATE is specified in the flags parameter.

Shared Memory 3–5

The flags parameter provides additional information about how to handle
mapped data. The flags parameter uses one of the following flags:

Flag Description

MAP_SHARED Share changes

MAP_PRIVATE Changes are private

MAP_FIXED Interpret the addr argument exactly

MAP_SHARED, MAP_PRIVATE, and MAP_FIXED are the only flags
specified by POSIX 1003.1b. The MAP_ANONYMOUS, MAP_FILE, and
MAP_VARIABLE flags are not part of the POSIX 1003.1b interface, but are
supported by Tru64 UNIX. For more information on these flags, see the
reference page for the mmap function.

The MAP_FIXED flag controls the location of the new region. No matter
what flag is specified, a mapped region is never placed at address zero or at
an address where it would overlap with an existing region. When multiple
processes use the mapped object, the call to the mmap function can specify
the address, and subsequent calls to the mmap function can use MAP_FIXED
to request the same address in other processes. Cooperating processes must
also use care to communicate this address among themselves. If you specify
MAP_FIXED and for some reason the system is unable to place the new
region at the specified address, the call fails.

The MAP_SHARED and MAP_PRIVATE flags control the visibility
of modifications to the mapped file or shared-memory region. The
MAP_SHARED flag specifies that modifications made to the mapped file
region are immediately visible to other processes that are mapped to the
same region and also use the MAP_SHARED flag. Changes to the region
are written to the file.

The MAP_PRIVATE flag specifies that modifications to the region are
not visible to other processes, whether or not the other process used
MAP_SHARED or MAP_PRIVATE. Modifications to the region are not
written to the file.

Access to the mapped region or shared-memory region is controlled by the
flags specified in the prot parameter. These flags function much the way
they do for any other file descriptor: access is specified as the OR of read,
write, and execute, with an additional flag to indicate that data cannot be
accessed. The mprotect function changes the protection on a specified
address range. That range should be within the range specified on the call to
the mmap function. Protection flags can interact with the MAP_SHARED,
MAP_PRIVATE, and MAP_FIXED flags. See the online reference pages for
mmap and mprotect for specifics.

3–6 Shared Memory

When you unmap a mapped region or shared memory, be sure to specify
an address and length in the range of the parameters used in the call to
the mmap function.

3.1.4 Using File Functions

Shared-memory objects and memory-mapped files use the file system name
space to map global names for memory objects. As such, POSIX.1 file control
functions can be used on shared-memory objects and memory-mapped files,
just as these functions are used for any other file control. Table 3–3 lists
some of the file functions available.

Table 3–3: File Functions Used with Memory-Mapped Files
Function Description

fchmod Changes permissions on files

fcntl Controls operations on files and memory objects

flock Locks a file as shared or exclusive

fstat Provides information about file status

ftruncate Sets the length of a memory object

You can use the fchmod function to change access permissions on a file. If
you are the owner of the file or have superuser privileges, you can use the
fchmod function to set the access mode and grant or deny permissions to
the group, user, or others. Use the fcntl function to retrieve and set the
value of the close-on-exec flag, status flags, and access modes, or to set and
clear locks. Using the fcntl function, you can override locks set with the
flock function. The fstat function returns information about the file,
such as access permissions, link references, and type and size of file. You
can use this function to obtain information for use in subsequent calls to
other file control functions.

You can apply a lock to a shared-memory object or mapped file by using a
variety of file control functions, including fcntl and flock. Both these
functions apply a lock on an open file, but they differ in how the lock is
performed and in the range of other tasks they can perform.

Note that the locks applied with these functions are for files, not file
descriptors. That means that under most circumstances, file locks are not
inherited across a fork. If a parent process holds a lock on a file and the
parent process forks, the child process will inherit the file descriptor but not
the lock on the file. A file descriptor that is duplicated with one of the dup
functions does not inherit the lock.

Shared Memory 3–7

The fcntl function is used for general file control. In addition to locking and
unlocking an open file, the fcntl function is used to return or set status,
return a new file descriptor, or return process IDs.

The flock function is limited to applying locks on a file and is not used
for general file control.

See the online reference pages for more information on using file control
functions.

3.1.5 Controlling Memory-Mapped Files

Several functions let you manipulate and control access to memory-mapped
files and shared memory. These functions include msync and mprotect.
Using these functions, you can modify access protections and synchronize
writing to a mapped file.

The msync function synchronizes the caching operations of a
memory-mapped file or shared-memory region. Using this function, you can
ensure that modified pages in the mapped region are transferred to the file’s
underlying storage device, or you can control the visibility of modifications
with respect to file system operations.

Flags used on the msync function specify whether the cache flush is to
be synchronous (MS_SYNC), asynchronous (MS_ASYNC), or invalidated
(MS_INVALIDATE). You can specify either the MS_SYNC or MS_ASYNC
flag, but not both.

When you use the MS_SYNC flag, the msync function does not return until
all write operations are complete and the integrity of the data is assured.
All previous modifications to the mapped region are visible to processes
using the read parameter.

When you use the MS_ASYNC flag, the msync function returns immediately
after all of the write operations are scheduled.

When you invalidate previously cached copies of the pages, other users are
required to get new copies of the pages from the file system the next time
they are referenced. In this way, previous modifications to the file made with
the write function are visible to the mapped region.

When using the msync function, you should use pages within the same
address and length specified in the call to the mmap function to ensure that
the entire mapped region is synchronized.

The mprotect function changes the access protection of a mapped file or
shared-memory region. When using the mprotect function, use pages
within the same address and length specified in the call to the mmap function.

3–8 Shared Memory

Protection flags used on the mprotect function are the same as those used
on the mmap function.

Note that use of the mprotect function modifies access only to the specified
region. If the access protection of some pages within the range were changed
by some other means, the call to the mprotect function may fail.

3.1.6 Removing Shared Memory

When a process has finished using a shared-memory segment, you can
remove the name from the file system namespace with a call to the
shm_unlink function, as shown in the following example:

status = shm_unlink("my_file");

The shm_unlink function unlinks the shared-memory object. Memory
objects are persistent, which means the contents remain until all references
have been unmapped and the shared-memory object has been unlinked with
a call to the shm_unlink function.

Every process using the shared memory should perform the cleanup tasks
of unmapping and closing.

3.2 Locking Shared Memory
You can lock and unlock a shared-memory segment into physical memory
to eliminate paging. The MCL_FUTURE argument to the mlockall
function causes new shared-memory regions to be locked automatically. See
Chapter 4 for more information on using the mlock and mlockall functions.

Example 3–2 shows how to map a file into the address space of the process
and lock it into memory. When the file is unmapped, the lock on the address
is removed.

Example 3–2: Locking a Memory Object

/* This program locks the virtual memory address that */
/* was returned from the mmap() function into memory. */

#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
#include <sys/file.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <errno.h>

main()
{
int fd;
caddr_t pg_addr;

int size = 5000;

Shared Memory 3–9

Example 3–2: Locking a Memory Object (cont.)

int mode = S_IRWXO|S_IRWXG|S_IRWXU;

/* Create a file */

fd = shm_open("example", O_RDWR|O_CREAT, mode);
if(fd < 0){

perror("open error ");
exit();

}

/* Set the size */

if((ftruncate(fd, size)) == -1){
perror("ftruncate failure");
exit();

}

/* Map the file into the address space of the process */
pg_addr = (caddr_t) mmap(0, size, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_SHARED,

fd, 0);

if(pg_addr == (caddr_t) -1){
perror("mmap failure");
exit();

}

/* Lock the mapped region into memory */

if(mlock(pg_addr,size) != 0){
perror("mlock failure");
exit();

}

/* Unmap of the address region removes the memory lock */
/* established on the address region by this process */

if(munmap(pg_addr, size) < 0)
perror("unmap error");

close(fd);
shm_unlink("example");
exit();
}

You can also lock the file so that other processes cannot use it, making it an
exclusive resource for a process and its descendants. See Section 3.1.4 for
more information on locking files.

3.3 Using Shared Memory with Semaphores

When using shared memory, processes map the same area of memory into
their address space. This allows for fast interprocess communication because
the data is immediately available to any other process using the same shared
memory. If your application has multiple processes contending for the same
shared-memory resource, you must coordinate access.

3–10 Shared Memory

Semaphores provide an easy means of regulating access to a memory
object and determining if the memory resource is available. Typically, an
application will begin execution at a nonrealtime priority level, then perform
the following tasks when using mapped or shared-memory objects and
semaphores:

1. Create the shared-memory object.

2. Determine the address and map the region into memory.

3. Create a semaphore.

4. Adjust the process priority and scheduling policy as needed.

5. Before a read or write operation, lock (reserve) the semaphore.

6. After a read or write operation, unlock (release) the semaphore.

A process can lock the semaphore associated with a mapped or
shared-memory object to indicate that the process requires exclusive access.
Cooperating processes normally wait until the semaphore is unlocked before
accessing a region.

See Chapter 9 for information on semaphores and for an example using
semaphores and shared memory.

Shared Memory 3–11

4
Memory Locking

Memory management facilities ensure that processes have effective and
equitable access to memory resources. The operating system maps and
controls the relationship between physical memory and the virtual address
space of a process. These activities are, for the most part, transparent to the
user and controlled by the operating system. However, for many realtime
applications you may need to make more efficient use of system resources by
explicitly controlling virtual memory usage.

Memory locking is one way to ensure that a process stays in main memory
and is exempt from paging. In a realtime environment, a system must be
able to guarantee that it will lock a process in memory to reduce latency for
data access, instruction fetches, buffer passing between processes, and so
forth. Locking a process’s address space in memory helps ensure that the
application’s response time satisfies realtime requirements. As a general
rule, time-critical processes should be locked into memory.

This chapter includes the following sections:

• Memory Management, Section 4.1

• Memory-Locking and Unlocking Functions, Section 4.2

4.1 Memory Management

In a multiprogramming environment, it is essential for the operating
system to share available memory effectively among processes. Memory
management policies are directly related to the amount of memory required
to execute those processes. Memory management algorithms are designed
to optimize the number of runnable processes in primary memory while
avoiding conflicts that adversely affect system performance. If a process is
to remain in memory, the kernel must allocate adequate units of memory.
If only part of a process needs to be in primary memory at any given time,
then memory management can work together with the scheduler to make
optimal use of resources.

Virtual address space is divided into fixed-sized units, called pages. Each
process usually occupies a number of pages, which are independently moved
in and out of primary memory as the process executes. Normally, a subset of
a process’s pages resides in primary memory when the process is executing.

Memory Locking 4–1

Because the amount of primary memory available is finite, paging is often
done at the expense of some pages; to move pages in, others must be moved
out. If the page that is going to be replaced is modified during execution, that
page is written to a file area. That page is brought back into primary memory
as needed and execution is delayed while the kernel retrieves the page.

Paging is generally transparent to the current process. The amount of
paging can be decreased by increasing the size of physical memory or by
locking the pages into memory. However, if the process is very large or if
pages are frequently being paged in and out, the system overhead required
for paging may decrease efficiency.

For realtime applications, having adequate memory is more important
than for nonrealtime applications. Realtime applications must ensure that
processes are locked into memory and that there is an adequate amount of
memory available for both realtime processes and the system. Latency due
to paging is often unacceptable for critical realtime tasks.

4.2 Memory-Locking and Unlocking Functions

Realtime application developers should consider memory locking as a
required part of program initialization. Many realtime applications remain
locked for the duration of execution, but some applications may need to lock
and unlock memory as the application runs. Tru64 UNIX memory-locking
functions let you lock the entire process at the time of the function call and
throughout the life of the application, or selectively lock and unlock memory
as needed.

Memory locking applies to a process’s address space. Only the pages mapped
into a process’s address space can be locked into memory. When the process
exits, pages are removed from the address space and the locks are removed.

Two functions, mlock and mlockall, are used to lock memory. The mlock
function allows the calling process to lock a selected region of address space.
The mlockall function causes all of a process’s address space to be locked
and the process to be made unswappable. Locked memory remains locked
until the process exits or until the application calls the corresponding
munlock or munlockall function.

Memory locks are not inherited across a fork, and all memory locks
associated with a process are unlocked on a call to the exec function or
when the process terminates.

For most realtime applications, the following control flow minimizes
program complexity and achieves greater determinism by locking the entire
address into memory:

1. Perform nonrealtime tasks, such as opening files or allocating memory.

4–2 Memory Locking

2. Lock the address space of the process using the mlockall function.

3. Perform realtime tasks.

4. Release resources and exit.

The memory-locking functions are as follows:

Function Description

mlock Locks a specified region of a process’s address space

mlockall Locks all of a process’s address space

munlock Unlocks a specified region of a process’s address space

munlockall Unlocks all of a process’s address space

You must have superuser privileges to call the memory-locking functions.

4.2.1 Locking and Unlocking a Specified Region

The mlock function locks a preallocated specified region. The address and
size arguments of the mlock function determine the boundaries of the
preallocated region. On a successful call to mlock, the specified region
becomes locked. Memory is locked by the system according to system-defined
pages. If the address and size arguments specify an area smaller than a
page, the kernel rounds up the amount of locked memory to the next page.
The mlock function locks all pages containing any part of the requested
range, which can result in locked addresses beyond the requested range.

Repeated calls to mlock could request more physical memory than is
available; in such cases, subsequent processes must wait for locked memory
to become available. Realtime applications often cannot tolerate the latency
introduced when a process must wait for lockable space to become available.
Preallocating and locking regions is recommended for realtime applications.

If the process requests more locked memory than will ever be available in
the system, an error is returned.

Figure 4–1 illustrates memory allocation before and after a call to the mlock
function. Prior to the call to the mlock function, buffer space in the data
area is not locked and is therefore subject to paging. After the call to the
mlock function, the buffer space cannot be paged out of memory.

Memory Locking 4–3

Figure 4–1: Memory Allocation with mlock

Stack

Before mlock
Call

Heap

Data

Stack

Heap

Data

After mlock (buffer, 1024);
Call

char buffer [1024]; char buffer [1024];

= Pageable

= Locked in physical memory (not pageable)

MLO-007319

Text
(Code)

Text
(Code)

The mlock function locks all pages defined by the range addr to addr+len–1
(inclusive). The area locked is the same as if the len argument were rounded
up to a multiple of the next page size before decrementing by 1. The address
must be on a page boundary, and all pages mapped by the specified range are
locked. Therefore, you must determine how far the return address is from a
page boundary and align it before making a call to the mlock function.

Use the sysconf(_SC_PAGE_SIZE) function to determine the page size.
The size of a page can vary from system to system. To ensure portability,
call the sysconf function as part of your application or profile when writing
applications that use the memory-locking functions. The sys/mman.h
header file defines the maximum amount of memory that can be locked. Use
the getrlimit function to determine the amount of total memory.

Exercise caution when you lock memory; if your processes require a large
amount of memory and your application locks memory as it executes, your
application may take resources away from other processes. In addition, you
could attempt to lock more virtual pages than can be contained in physical
memory.

Locked space is automatically unlocked when the process exits, but you can
also explicitly unlock space. The munlock function unlocks the specified

4–4 Memory Locking

address range regardless of the number of times the mlock function was
called. In other words, you can lock address ranges over multiple calls to the
mlock function, but can remove the locks with a single call to the munlock
function. Space locked with a call to the mlock function must be unlocked
with a corresponding call to the munlock function.

Example 4–1 shows how to lock and unlock memory segments. Each
user-written function determines page size, adjusts boundaries, and then
either locks or unlocks the segment.

Example 4–1: Aligning and Locking a Memory Segment

#include <unistd.h> /* Support all standards */
#include <sys/mman.h> /* Memory-locking functions */

#define DATA_SIZE 2048

lock_memory(char *addr,
size_t size)

{
unsigned long page_offset, page_size;

page_size = sysconf(_SC_PAGE_SIZE);
page_offset = (unsigned long) addr % page_size;

addr -= page_offset; /* Adjust addr to page boundary */
size += page_offset; /* Adjust size with page_offset */

return (mlock(addr, size)); /* Lock the memory */
}

unlock_memory(char *addr,
size_t size)

{
unsigned long page_offset, page_size;

page_size = sysconf(_SC_PAGE_SIZE);
page_offset = (unsigned long) addr % page_size;

addr -= page_offset; /* Adjust addr to page boundary */
size += page_offset; /* Adjust size with page_offset */

return (munlock(addr, size)); /* Unlock the memory */
}

main()
{
char data[DATA_SIZE];

if (lock_memory(data, DATA_SIZE) == -1)

Memory Locking 4–5

Example 4–1: Aligning and Locking a Memory Segment (cont.)

perror("lock_memory");

/* Do work here */

if (unlock_memory(data, DATA_SIZE) == -1)
perror("unlock_memory");

}

4.2.2 Locking and Unlocking an Entire Process Space

The mlockall function locks all of the pages mapped by a process’s address
space. On a successful call to mlockall, the specified process becomes
locked, memory-resident, and unswappable. The mlockall function takes
two flags, MCL_CURRENT and MCL_FUTURE, which determine whether
the pages to be locked are those currently mapped, or if pages mapped in the
future are to be locked. You must specify at least one flag for the mlockall
function to lock pages. If you specify both flags, the address space to be
locked is constructed from the logical OR of the two flags.

If you specify MCL_CURRENT only, all currently mapped pages of the
process’s address space are memory-resident and locked. Subsequent growth
in any area of the specified region is not locked into memory. If you specify
the MCL_FUTURE flag only, all future pages are locked in memory. If you
specify both MCL_CURRENT and MCL_FUTURE, then the current pages
are locked and subsequent growth is automatically locked into memory.

Figure 4–2 shows memory allocation before and after a call to the mlockall
function with both MCL_CURRENT and MCL_FUTURE flags. Prior to
the call to the mlockall function, space is not locked and is therefore
subject to paging. After a call to the mlockall function, which specifies
the MCL_CURRENT and MCL_FUTURE flags, all memory used by the
process, both currently and in the future, is locked into memory. The call to
the malloc function increases the amount of memory locked for the process.

4–6 Memory Locking

Figure 4–2: Memory Allocation with mlockall

Before mlockall
Call

After malloc
Call

After mlockall
Call

= Pageable

= Locked in physical memory (not pageable)

= Unmapped address space

Text
(Code)

Heap

Data

Stack

Heap

Data

Text
(Code)

Stack

MLO-010124

Stack

Data

Text
(Code)

Heap

The munlockall function unlocks all pages mapped by a call to the
mlockall function, even if the MCL_FUTURE flag was specified on the call,
and makes the specified process swappable. The call to the munlockall
function cancels the MCL_FUTURE flag. If you want additional locking
later, you must call the memory-locking functions again.

Example 4–2 illustrates how the mlockall function might be used to lock
current and future address space.

Example 4–2: Using the mlockall Function

#include <unistd.h> /* Support all standards */
#include <stdlib.h> /* malloc support */
#include <sys/mman.h> /* Memory-locking functions */

#define BUFFER 2048

main()
{
void *p[3]; /* Array of 3 pointers to void */

p[0] = malloc(BUFFER);

/* Currently no memory is locked */

Memory Locking 4–7

Example 4–2: Using the mlockall Function (cont.)

if (mlockall(MCL_CURRENT) == -1)
perror("mlockall:1");

/* All currently allocated memory is locked */

p[1] = malloc(BUFFER);

/* All memory but data pointed to by p[1] is locked */

if (munlockall() == -1)
perror("munlockall:1");

/* No memory is now locked */

if (mlockall(MCL_FUTURE) == -1)
perror("mlockall:2");

/* Only memory allocated in the future */
/* will be locked */

p[2] = malloc(BUFFER);

/* Only data pointed to by data[2] is locked */

if (mlockall(MCL_CURRENT|MCL_FUTURE) == -1)
perror("mlockall:3");

/* All memory currently allocated and all memory that */
/* gets allocated in the future will be locked */

}

4–8 Memory Locking

5
Signals

The UNIX operating system uses signals as a means of notifying a process
that some event, often unrelated to the process’s current activity, has
occurred that requires the process’s attention. Signals are delivered to a
process asynchronously; a process cannot predict when a signal might arrive.

This chapter includes the following sections:

• Overview of Signals, Section 5.1

• POSIX Signal Functions, Section 5.2

• Signal-Handling Basics, Section 5.3

• Realtime Signal Handling, Section 5.4

5.1 Overview of Signals

Signals originate from a number of sources:

• An exception, such as a divide-by-zero or segmentation violation, may
be detected by hardware, causing the UNIX kernel to generate an
appropriate signal (such as SIGFPE or SIGSEGV) and send it to the
current process.

• A user may press certain terminal keys, such as Ctrl/C, to control
the behavior of the currently running program. This causes the
terminal driver program to send a signal (such as SIGINT) to the
user-level process in which the program is running. (To see which
signals are mapped to keys on your keyboard, issue the command stty
everything. Signals sent from a keyboard are received by all processes
in the process group currently associated with the terminal.)

• One user-level process may send a signal to another process.
Traditionally, it does this using the kill function, although POSIX
1003.1b provides the sigqueue function for this purpose.

• A process may request a signal from the operating system when a timer
expires, an asynchronous I/O operation completes, or a message arrives
at an empty message queue.

The signal interface is also a traditional form of interprocess communication.
Multitasking applications in particular take advantage of signals as a means
of allowing components to coordinate activities across a number of processes.

Signals 5–1

Because of the asynchronous nature of signals, a process can perform useful
work while waiting for a significant event (for instance, it does not need to
wait on a semaphore) and, when the event occurs, the process is notified
immediately.

A process can specify what to do when it receives a signal. It can:

• Ignore the signal completely

• Handle the signal by establishing a function that is called whenever a
particular signal is delivered

• Block the signal until it is able to deal with it. Typically the blocked
signal has an established handler

An application can alternatively accept the default consequences of the
delivery of a specific signal. These consequences vary from signal to signal,
but can result in process termination, the process dumping core, the signal
being ignored, or the process being restarted or continued. The default action
of most signals is to terminate the process. If sudden process termination
for the wide variety of conditions that cause signals is not desirable, an
application should be prepared to deal with signals properly.

5.2 POSIX Signal Functions

POSIX 1003.1 standardized the reliable signal functions developed under
4.3BSD and SVR3. Table 5–1 lists the POSIX 1003.1 signal functions.

Table 5–1: POSIX 1003.1 Signal Functions
Function Description

kill Sends a signal to a process or a group of processes

sigaction Specifies the action a process takes when a par-
ticular signal is delivered

sigaddset Adds a signal to a signal set

sigdelset Removes a signal from a signal set

sigemptyset Initializes a signal set such that all signals are excluded

sigfillset Initializes a signal set such that all signals are included

sigismember Tests whether a signal is a member of a signal set

sigpending Returns a signal set that represents those signals that are
blocked from delivery to the process but are pending

sigprocmask Sets the process’s current blocked signal mask

sigsuspend Replaces the process’s current blocked signal mask, waits
for a signal, and, upon its delivery, calls the handler
established for the signal and returns

5–2 Signals

POSIX 1003.1b extended the POSIX 1003.1 definition to include better
support for signals in realtime environments. Table 5–2 lists the POSIX
1003.1b signal functions. A realtime application uses the sigqueue
function instead of the kill function. It may also use the sigwaitinfo or
sigtimedwait function instead of the sigsuspend function.

Table 5–2: POSIX 1003.1b Signal Functions
Function Description

sigqueue Sends a signal, plus identifying information, to a process

sigtimedwait Waits for a signal for the specified amount of time and, if the
signal is delivered within that time, returns the signal number
and any identifying information the signaling process provided

sigwaitinfo Waits for a signal and, upon its delivery, returns
the signal number and any identifying information
the signaling process provided

To better explain the use of the POSIX 1003.1b extensions by realtime
applications, this chapter first focuses on the basics of POSIX 1003.1 signal
handling.

5.3 Signal-Handling Basics
Example 5–1 shows the code for a process that creates a child that, in turn,
creates and registers a signal handler, catchit.

Example 5–1: Sending a Signal to Another Process

#include <unistd.h>
#include <signal.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>

#define SIG_STOP_CHILD SIGUSR1 1

main()
{
pid_t pid;
sigset_t newmask, oldmask;

if ((pid = fork()) == 0) { 2 /*Child*/
struct sigaction action; 3
void catchit();

sigemptyset(&newmask); 4
sigaddset(&newmask, SIG_STOP_CHILD); 5
sigprocmask(SIG_BLOCK, &newmask, &oldmask); 6

action.sa_flags = 0; 7
action.sa_handler = catchit;

if (sigaction(SIG_STOP_CHILD, &action, NULL) == -1) { 8
perror("sigusr: sigaction");

Signals 5–3

Example 5–1: Sending a Signal to Another Process (cont.)

_exit(1);
}
sigsuspend(&oldmask); 9

}
else { /* Parent */

int stat;
sleep(1); 10
kill(pid, SIG_STOP_CHILD); 11
pid = wait(&stat); 12
printf("Child exit status = %d\n", WEXITSTATUS(stat));

_exit(0);
}

}
void catchit(int signo) 13
{

printf("Signal %d received from parent\n", signo);
_exit(0);

}

In this example:

1 The program defines one of the two signals POSIX 1003.1 reserves for
application-specific purposes (SIGUSR1) to be a SIG_STOP_CHILD
signal.

2 The main program forks, creating a child process.

3 The child process declares a sigaction structure named action and a
signal handler named catchit.

4 The child process initializes the newmask sigset_t structure to zero.

5 The child process calls the sigaddset function to set the bit
corresponding to the SIG_STOP_CHILD signal in the newmask
sigset_t structure.

6 The child process specifies the newmask sigset_t structure to a
sigprocmask function call, thus blocking the SIG_STOP_CHILD
signal.

7 The child process fills in the sigaction structure: first by calling the
sigemptyset function to initialize the signal set to exclude all signals,
then clearing the sa_flags member and moving the address of the
catchit signal handler into the sa_handler member.

8 The child process calls the sigaction function to set up the catchit
signal handler so that it is called when the process receives the
SIG_STOP_CHILD signal.

9 The child process calls the sigsuspend function. As a result, the
SIG_STOP_CHILD signal is unblocked and the child process pauses

5–4 Signals

until the SIG_STOP_CHILD signal is delivered (and causes its catchit
signal handler to run.

10 The parent process sleeps for 1 second, allowing the child to run.

11 The parent process calls the kill function to send the
SIG_STOP_CHILD signal to the child process.

12 It waits for the child process to terminate, printing the child’s exit
status when it does. Before this can occur, however, the child’s catchit
signal handler must run.

13 The catchit signal handler prints a message that acknowledges that
the child received and handled the SIG_STOP_CHILD signal.

As in Example 5–1, under POSIX 1003.1, a process sends a signal to another
process using the kill function. The first argument to the kill function is
the process ID of the receiving process, or one of the following special values:

Value Description

0 Sends the signal to all processes with the same process
group ID as that of the sender

–1 Sends the signal to all processes with a process group ID
equal to the effective user ID of the sender

The second argument to the kill function is the name or number of the
signal to be sent.

The permissions checking allowed by the first argument helps ensure that
signals cannot be sent that arbitrarily or accidentally terminate any process
on the system. Inasmuch as a process must have the identical user ID or
effective user ID as the process it is signaling, it is often the case that it has
spawned these processes or explicitly called the setuid function to set their
effective user IDs. See the kill(2) reference page for additional discussion
of the kill function.

The full set of signals supported by the Tru64 UNIX operating system is
defined in signal.h and discussed in the signal(4) reference page. POSIX
1003.1 and POSIX 1003.1b require a subset of these signals; this subset
is listed in Table 5–3.

Table 5–3: POSIX Signals

Signal Description Default Action

SIGABRT Abort process (see abort(3)) Process termination and core dump

SIGALRM Alarm clock expiration Process termination

Signals 5–5

Table 5–3: POSIX Signals (cont.)

Signal Description Default Action

SIGFPE Arithmetic exception (such
as an integer divide-by-zero
operation or a floating-point
exception)

Process termination and core dump

SIGHUP Hangup Process termination

SIGILL Invalid instruction Process termination and core dump

SIGINT Interrupt Process termination

SIGKILL Kill (cannot be caught,
blocked, or ignored)

Process termination

SIGPIPE Write on a pipe that has
no reading process

Process termination

SIGQUIT Quit Process termination and core dump

SIGSEGV Segmentation (memory
access) violation

Process termination and core dump

SIGTERM Software termination Process termination

SIGUSR1 Application-defined Process termination

SIGUSR2 Application-defined Process termination

SIGCHLD Child termination (sent
to parent)

Ignored

SIGSTOP Stop (cannot be caught,
blocked, or ignored)

Process is stopped (suspended)

SIGTSTP Interactive stop Process is stopped (suspended)

SIGCONT Continue if stopped (cannot
be caught, blocked, or
ignored)

Process is restarted (resumed)

SIGTTOU Background write attempted
to controlling terminal

Process is stopped (suspended)

SIGTTIN Background read attempted
from controlling terminal

Process is stopped (suspended)

SIGRT-
MIN–SIGRT-
MAX

Additional application-
defined signals provided
by POSIX 1003.1b

Process termination

5.3.1 Specifying a Signal Action

The sigaction function allows a process to specify the action to be taken
for a given signal. When you set a signal-handling action with a call to the

5–6 Signals

sigaction function, the action remains set until you explicitly reset it with
another call to the sigaction function.

The first argument to the sigaction function specifies the signal for which
the action is to be defined. The second and third arguments, unless specified
as NULL, specify sigaction structures:

• The second argument is a sigaction structure that specifies the action
to be taken when the process receives the signal specified in the first
argument. If this argument is specified as NULL, signal handling is
unchanged by the call to the sigaction function, but the call can be
used to inquire about the current handling of a specified signal.

• The third argument is a sigaction structure that receives from the
sigaction function the action that was previously established for the
signal. An application typically specifies this argument so that it can
use it in a subsequent call to the sigaction function that restores the
previous signal state. This allows you to activate handlers only when
they are needed, and deactivate them when they may interfere with
other handlers set up elsewhere for the same signal.

The sigaction structure has two different formats, defined in signal.h,
distinguished by whether the sa_handler member specifies a traditional
POSIX 1003.1 signal handler or a POSIX 1003.1b realtime signal handler:

• For POSIX 1003.1 signal handling:

struct sigaction (
void (*sa_handler) (int);
sigset_t sa_mask;
int sa_flags;
};

• For POSIX 1003.1b signal handling:

struct sigaction (
void (*sa_sigaction) (int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
};

The remainder of this section focuses on the definition of a traditional signal
handler in the sa_handler member of the sigaction structure. Note that,
for realtime signals (those defined as SIGRTMIN through SIGRTMAX),
you define the sa_sigaction member, not the sa_handler member.
Section 5.4 describes the definition of a realtime signal handler in the
sa_sigaction member.

Signals 5–7

Use the sa_handler member of the sigaction structure to identify the
action associated with a specific signal, as follows:

• To ignore the signal, specify SIG_IGN. In this case, the signal is never
delivered to the process. Note that you cannot ignore the SIGKILL or
SIGSTOP signals.

• To accept the default action for a signal, specify SIG_DFL.

• To handle the signal, specify a pointer to a signal-handling function.
When the signal handler is called, it is passed a single integer argument,
the number of the signal. The handler is executed, passes control back to
the process at the point where the signal was received, and execution
continues. Handlers can also send error messages, save information
about the status of the process when the signal was received, or transfer
control to some other point in the application.

The sa_mask field identifies the additional set of signals to be added to the
process’s current signal mask before the signal handler is actually called.
This signal mask, plus the current signal, is active while the process’s signal
handler is running (unless modified by another call to the sigaction
function or a call to the sigprocmask or sigsuspend functions). If the
signal handler completes successfully, the original mask is restored.

The sa_flags member specifies various flags that direct the operating
system’s dispatching of a signal. For a complete listing of these flags and a
description of their meaning, see the sigaction(2) reference page.

5.3.2 Setting Signal Masks and Blocking Signals

A process blocks a signal to protect certain sections of code from receiving
signals when the code cannot be interrupted. Unlike ignoring a signal,
blocking a signal postpones the delivery of the signal until the process is
ready to handle it. A blocked signal is marked as pending when it arrives
and is handled as soon as the block is released. Under POSIX 1003.1,
multiple occurrences of the same signal are not saved; that is, if a signal is
generated again while the signal is already pending, only the one instance of
the signal is delivered. The signal queuing capabilities introduced in POSIX
1003.1b allow multiple occurrences of the same signal to be preserved and
distinguished (see Section 5.4).

Each process has an associated signal mask that determines which signals
are delivered to it and which signals are blocked from delivery. (A child
process inherits its parent’s signal mask when the parent forks.) Each bit
represents a signal, as defined in the signal.h header file. For instance, if
the nth bit in the mask is set, then signal n is blocked.

5–8 Signals

______________________ Note _______________________

As described in Chapter 2, the Tru64 UNIX operating system
actually schedules threads, not processes. For multithreaded
applications, a signal can be delivered to a thread using
the pthread_kill function, and a thread signal mask can
be created using the pthread_sigmask function. These
functions are provided in the POSIX Threads 1003.1c library
(libpthread.so). See the appropriate reference pages and the
Guide to the POSIX Threads Library for a discussion of using
signals with multithreaded applications.

Figure 5–1 represents a mask blocking two signals. In this illustration, two
signal bits are set, blocking signal delivery for the specified signals.

Figure 5–1: Signal Mask That Blocks Two Signals

Process

Mask

Unblocked Signal

Blocked Signal

Unblocked Signal

Blocked Signal

MLO-006770

The sigprocmask function lets you replace or alter the signal mask of the
calling process; the value of the first argument to this function determines
the action taken, as follows:

Value Description

SIG_BLOCK Adds the set of signals specified in the second argument
to the process’s signal mask

SIG_UNBLOCK Subtracts the set of signals specified in the second
argument from the process’s signal mask

SIG_SETMASK Replaces the process’s signal mask with the set of
signals specified in the third argument

The third argument to the sigprocmask function is a sigset_t structure
that receives the process’s previous signal mask.

Signals 5–9

Prior to calling the sigprocmask function, you use either the sigemptyset
or sigfillset function to create the signal set (a sigset_t structure) that
you provide as its second argument. The sigemptyset function creates a
signal set with no signals in it. The sigfillset function creates a signal
set containing all signals. You adjust the signal set you create with one of
these functions by calling the sigaddset and sigdelset functions. You
can determine whether a given signal is a member of a signal set by using
the sigismember function.

The sigprocmask function is also useful when you want to set a mask
but are uncertain as to which signals are still blocked. You can retrieve
the current signal mask by calling sigprocmask(SIG_BLOCK, NULL,
&oldmask).

When a signal is sent, it is delivered, unless delivery is blocked. When
blocked, the signal is marked pending. Pending signals are delivered
immediately after they are unblocked. To determine whether a blocked
signal is pending, use the sigpending function.

5.3.3 Suspending a Process and Waiting for a Signal

The sigsuspend function replaces a process’s signal mask with the mask
specified as its only argument and waits for the delivery of an unblocked
signal. If the signal delivery causes a signal handler to run, the sigsuspend
function returns after the signal handler completes, having restored the
process’s signal mask to its previous state. If the signal delivery causes
process termination, the sigsuspend function does not return.

Because sigsuspend sets the signal mask and waits for an unblocked signal
in one atomic operation, the calling process does not miss delivery of a signal
that may occur just before it is suspended.

A process typically uses the sigsuspend function to coordinate with the
asynchronous completion of some work by some other process. For instance,
it may block certain signals while executing a critical section and wait for
a signal when it completes:

...
sigset_t newmask, oldmask;

sigemptyset(&newmask);
sigemptyset(&oldmask);
sigaddset(&newset, SIGUSR1);
sigaddset(&newset, SIGUSR2);
sigprocmask(SIG_BLOCK, &newmask, &oldmask);

/* Code protected from SIGUSR1 and SIGUSR2 goes here */

5–10 Signals

/* Release blocked signals and restore old mask */

sigsuspend(&oldmask);
...

5.3.4 Setting Up an Alternate Signal Stack

The XPG4-UNIX specification defines the sigaltstack function to allow a
process to set up a discrete stack area on which signals can be processed. The
alternate signal stack is used if the sa_flags member of the sigaction
structure for the signal specifies the SA_ONSTACK flag.

The stack_t structure supplied to a call to the sigaltstack function
determines the configuration and use of the alternate signal stack by the
values of the following members:

• The ss_sp member contains a pointer to the location of the signal stack.

• If the ss_flags member is not NULL, it can specify the SS_DISABLE
flag, in which case the stack is disabled upon creation.

• The ss_size member specifies the size of the stack.

See the sigaltstack(2) reference page for additional information on the
sigaltstack(2) function.

5.4 Realtime Signal Handling

Traditional signals, as defined by POSIX 1003.1, have several limitations
that make them unsuitable for realtime applications:

• There are too few user-defined signals.

Only two signals are available for application use, SIGUSR1 and
SIGUSR2. For those applications that are constructed from various
general-purpose and special-purpose components, all executing
concurrently, the same signal could trigger different actions, depending
on the sender. To avoid the risk of calling the wrong signal handler,
code must become more complex and avoid asynchronous, unpredictable
signal delivery.

• There is no priority ordering to the delivery of signals.

When multiple signals are pending to a process, the order in which they
are delivered is undefined.

• Blocked signals are lost.

A signal can be lost if it is not delivered immediately. A single bit in a
signal set is set when a blocked signal arrives and is pending delivery
to a process. When the signal is unblocked and delivered, this bit is

Signals 5–11

cleared. While it is set, however, multiple instances of the same signal
can arrive and be discarded.

• The signal delivery carries no information that distinguishes the signal
from others of the same type.

From the perspective of the receiving process, there is no information
associated with signal delivery that explains where the signal came from
or how it is different from other such signals it may receive.

To overcome some of these limitations, POSIX 1003.1b extends the POSIX
1003.1 signal functionality to include the following facilitators for realtime
signals:

• A range of priority-ordered, application-specific signals from SIGRTMIN
to SIGRTMAX

• A mechanism for queuing signals for delivery to a process

• A mechanism for providing additional information about a signal to
the process to which it is delivered

• Features that allow efficient signal delivery to a process when a POSIX
1003.1b timer expires, when a message arrives on an empty message
queue, or when an asynchronous I/O operation completes

• Functions that allow a process to respond more quickly to signal delivery

Example 5–2 shows some modifications to Example 5–1 that allow it to
process realtime signals more efficiently.

Example 5–2: Sending a Realtime Signal to Another Process

#include <unistd.h>
#include <signal.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>

#define SIG_STOP_CHILD SIGRTMIN+1 1

main()
{
pid_t pid;
sigset_t newmask, oldmask;

if ((pid = fork()) == 0) { 2 /*Child*/
struct sigaction action;
void catchit();

sigemptyset(&newmask);
sigaddset(&newmask, SIG_STOP_CHILD);
sigprocmask(SIG_BLOCK, &newmask, &oldmask);

action.sa_flags = SA_SIGINFO; 3
action.sa_sigaction = catchit;

if (sigaction(SIG_STOP_CHILD, &action, NULL) == -1) { 4

5–12 Signals

Example 5–2: Sending a Realtime Signal to Another Process (cont.)

perror("sigusr: sigaction");
_exit(1);

}
sigsuspend(&oldmask);

}
else { /* Parent */

union sigval sval; 5
int stat;

sval.sival_int = 1;
sleep(1); 6
sigqueue(pid, SIG_STOP_CHILD, sval); 7
pid = wait(&stat); 8
printf("Child exit status = %d\n", WEXITSTATUS(stat));
_exit(0);

}
}
void catchit(int signo, siginfo_t *info, void *extra) 9
{

void *ptr_val = info->si_value.sival_ptr;
int int_val = info->si_value.sival_int;
printf("Signal %d, value %d received from parent\n", signo, int_val);
_exit(0);

}

In this example:

1 The program defines one of the realtime signals defined by POSIX
1003.1b (SIGRTMIN+1) to be a SIG_STOP_CHILD signal.

2 The main program forks, creating a child process. The child process’s
initialization of the signal sets and creation of the process signal mask
is the same as in the nonthreaded example in Example 5–1.

3 By specifying the SA_SIGINFO flag in the sa_flags member of the
sigaction structure, the child process indicates that the associated
signal will be using the realtime queued signaling behavior.

4 As in Example 5–1, the child process calls the sigaction function to
set up the catchit signal handler so that it is called when the process
receives the SIG_STOP_CHILD signal. It also calls the sigsuspend
function to wait for a signal.

5 The parent process declares a sigval union. The member of this union
can be either an integer or a pointer, depending on the value the parent
sends to its child’s signal handler. In this case, the value is an integer.

6 As in Example 5–1, the parent process sleeps for 1 second, allowing
the child to run.

7 The parent process calls the sigqueue function to send the
SIG_STOP_CHILD signal, plus a signal value, to the child process.

Signals 5–13

8 As in Example 5–1, the parent waits for the child process to terminate,
printing the child’s exit status when it does. Before this can occur,
however, the child’s catchit signal handler must run.

9 The catchit signal handler prints a message that acknowledges that
the child received the SIG_STOP_CHILD signal and the signal value.

The remainder of this section describes the POSIX 1003.1b extensions
illustrated in this example.

5.4.1 Additional Realtime Signals

POSIX 1003.1 specified only two signals for application-specific purposes,
SIGUSR1 and SIGUSR2. POSIX 1003.1b defines a range of realtime signals
from SIGRTMIN to SIGRTMAX, the number of which is determined by the
RTSIG_MAX constant in the rt_limits.h header file (which is included in
the limits.h header file).

You specify these signals (in sigaction and other functions) by referring to
them in terms of SIGRTMIN or SIGRTMAX: for instance, SIGRTMIN+1 or
SIGRTMAX-1. Be aware that SIGRTMIN and SIGRTMAX are not constants;
avoid using them in compiler declarations. You can determine the number of
realtime signals on the system by calling sysconf(_SC_RTSIG_MAX).

Although there is no defined delivery order for non-POSIX 1003.1b signals,
the POSIX 1003.1b realtime signals are ranked from SIGRTMIN to
SIGRTMAX (that is, the lowest-numbered realtime signal has the highest
priority). This means that, when these signals are blocked and pending,
SIGRTMIN signals will be delivered first, SIGRTMIN+1 signals will be
delivered next, and so on. Note that POSIX 1003.1b does not specify any
priority ordering for nonrealtime signals, nor does it indicate the ordering of
realtime signals relative to nonrealtime signals.

If you want a function to use only these new realtime signal numbers, you
can block the old POSIX 1003.1 signal numbers in process signal masks.

5.4.2 Queuing Signals to a Process

As shown in Section 5.3.1, the sigaction structure a realtime process
passes to the sigaction function has the following format:

struct sigaction {
void (*sa_sigaction) (int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;

};

A process specifies the POSIX 1003.1b realtime signaling behavior (including
signal queuing and the passing of additional information about the signal to

5–14 Signals

its handler) by setting the SA_SIGINFO flag in the sa_flags member of
this structure. Setting the SA_SIGINFO bit has the following effects:

• It causes the signal, if blocked, to be queued to the process, instead of
being marked as pending in the process’s pending signal set.

• It causes the signal handler defined in the sa_sigaction member of
the sigaction structure to be called.

• It causes the signal handler to be called with two arguments in addition
to the signal number.

5.4.2.1 The siginfo_t Structure

The second argument provided to the signal handler is a siginfo_t
structure that provides information that identifies the sender of the signal
and the reason why the signal was sent. The siginfo_t structure is
defined in the siginfo.h header file (included by the signal.h header
file), as follows:

typedef struct siginfo {
int si_signo;
int si_errno;
int si_code;
pid_t si_pid;
uid_t si_uid;
int si_status;
union sigval si_value;
void *si_addr;
long si_band;
int si_fd;

} siginfo_t;

The following list describes the members of the siginfo_t structure:

• The si_signo member contains the signal number. It is identical to the
value passed as the first argument passed to the signal handler.

• The si_errno member contains the errno value that is associated
with the signal.

• The si_code member provides information that identifies the source
of the signal. For POSIX.1b signals, it can contain one of the following
values:

Value Description

SI_ASYNCIO The signal was sent on completion of an asynchronous
I/O operation (see Section 5.4.3).

SI_MESGQ The signal was sent on arrival of a message to an
empty message queue (see Section 5.4.3).

Signals 5–15

Value Description

SI_QUEUE The signal was sent by the sigqueue function.

SI_TIMER The signal was sent because of a timer expira-
tion (see Section 5.4.3).

SI_USER The signal was sent by the kill function or a similar
function, such as abort or raise.

For XPG4-UNIX signals, this member can contain other values, as
described in the siginfo(5) reference page.

• The si_pid member contains the process identification (PID) of the
sending process.

• The si_uid member contains the user identification (UID) of the
sending process. It is valid only when the si_code member contains
the value SI_USER.

• The si_status member contains the exit value returned from the child
process when a SIGCHLD signal is generated.

• The si_value member contains an application-specific value that
has been passed to the signal handler in the last argument to the
sigqueue function that generated the signal. The si_value member
can contain either of the following members, depending upon whether
the application-specific value is an integer or a pointer:

typedef union sigval {
int sival_int;
void *sival_ptr;

} sigval_t;

• The si_addr member contains a pointer to the faulting instruction or
memory reference. It is valid only for the SIGILL, SIGFPE, SIGSEGV,
and SIGBUS signals.

• The si_band member contains the band event job-control character
(POLL_OUT, POLL_IN, or POLL_MSG) for the SIGPOLL signal. See
the poll(2) reference page for additional information on poll events.

• The si_fd member contains a pointer to the file descriptor of the poll
event associated with the SIGPOLL signal.

5.4.2.2 The ucontext_t and sigcontext Structures

The third argument passed to a signal handler when the SA_SIGINFO
flag is specified in the sa_flags member of the sigaction structure is
defined by POSIX.1b as an "extra" argument. The Tru64 UNIX operating
system uses this field to pass a ucontext_t structure to a signal handler
in an XPG4-UNIX environment, or a sigcontext structure in a BSD
environment.

5–16 Signals

Both structures contain the receiving process’s context at the time at which
it was interrupted by the signal. The sigcontext structure is defined in
the signal.h header file. The ucontext_t structure is defined in the
ucontext.h header file and is fully described in the ucontext(5) reference
page.

5.4.2.3 Sending a Realtime Signal with the sigqueue Function

Where a process uses the kill function to send a nonrealtime signal to
another process, it uses the sigqueue function to send a realtime signal.
The sigqueue function resembles the kill function, except that it provides
an additional argument, an application-defined signal value that is passed
to the signal handler in the si_value member of the siginfo_t structure
if the receiving process has enabled the SA_SIGINFO flag in the sa_flags
member of the signal’s sigaction structure.

The sigqueue function queues the specified signal to the receiving process.
The permissions checking for the sigqueue function are the same as those
applied to the kill function (see Section 5.3). Nonprivileged callers are
restricted in the number of signals they can have actively queued at any
time. This per-process quota value is defined in the rt_limits.h header
file (which is included in the limits.h header file) as SIGQUEUE_MAX
and is configurable by the system administrator. You can retrieve its value
by calling sysconf(_SC_SIGQUEUE_MAX).

5.4.3 Asynchronous Delivery of Other Realtime Signals

Besides providing the sigqueue function to send realtime signals to
processes, the POSIX 1003.1b standard defines additional features
that extend realtime signal generation and delivery to functions that
require asynchronous notification. Realtime functions are provided that
automatically generate realtime signals for the following events:

• Asynchronous I/O completion (as initiated by the aio_read, aio_write,
or lio_listio function)

• Timer expiration (for a timer established by the timer_create function)

• Arrival of a message to an empty message queue (for a message queue
created by the mq_notify function)

When using the functions that trigger these events, you do not need to call
a separate function to deliver signals. Realtime signal delivery for these
events employs a sigevent structure, which is supplied as an argument
(either directly or indirectly) to the appropriate function call. The sigevent

Signals 5–17

structure contains information that describes the signal (or, prospectively,
another mechanism of asynchronous notification to be used). It is defined in
the signal.h header file and contains the following members:

int sigev_notify;
union sigval sigev_value;
int sigev_signo;

The sigev_notify member specifies the notification mechanism to use
when an asynchronous event occurs. There are two values defined for
sigev_notify in POSIX 1003.1b:

Value Description

SIGEV_SIGNAL Indicates that a queued signal with an application-defined
value is delivered when an event occurs.

SIGEV_NONE Indicates that no asynchronous notification is
delivered when an event occurs.

If the sigev_notify member contains SIGEV_SIGNAL, the other two
members of the sigevent structure are meaningful.

The sigev_value member is an application-defined value to be passed
to the signal-catching function at the time of signal delivery. It can
contain either of the following members, depending upon whether the
application-specific value is an integer or a pointer:

typedef union sigval {
int sival_int;
void *sival_ptr;

} sigval_t;

The sigev_signo member specifies the signal number to be sent on
completion of the asynchronous I/O operation, timer expiration, or delivery
of a message to the message queue. For any of these events, you must use
the sigaction function to set up a signal handler to execute after the signal
is received. See Chapter 6 and Chapter 7 for examples of using signals with
these functions.

5.4.4 Responding to Realtime Signals Using the sigwaitinfo and
sigtimedwait Functions

The sigsuspend function, described in Section 5.3.3, allows a process
to block while waiting for signal delivery. When the signal arrives, the
process’s signal handler is called. When the handler completes, the process
is unblocked and continues execution.

The sigwaitinfo and sigtimedwait functions, defined in POSIX 1003.1b,
also allow a process to block waiting for signal delivery. However, unlike

5–18 Signals

sigsuspend, they do not call the process’s signal handler when a signal
arrives. Rather, they immediately unblock the process, returning the
number of the received signal as a status value.

The first argument to these functions is a signal mask that specifies the
signals for which the process is waiting. The process must have blocked the
signals specified in this mask; otherwise, they will be dispatched to any
established signal handler. The second argument is an optional pointer
to a location to which the function returns the siginfo_t structure that
describes the signal.

The sigtimedwait function further allows you to specify a timeout value,
allowing you to set a limit to the time the process waits for a signal.

Example 5–3 shows a version of Example 5–2 that eliminates the signal
handler that runs when the child process receives a SIG_STOP_CHILD
signal from its parent. Instead, the child process blocks the signal and calls
the sigwaitinfo function to wait for its delivery.

Example 5–3: Using the sigwaitinfo Function

#include <unistd.h>
#include <signal.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>

#define SIG_STOP_CHILD SIGRTMIN+1

main()
{
pid_t pid;
sigset_t newmask;
int rcvd_sig; 1
siginfo_t info; 2

if ((pid = fork()) == 0) { /*Child*/

sigemptyset(&newmask);
sigaddset(&newmask, SIG_STOP_CHILD);
sigprocmask(SIG_BLOCK, &newmask, NULL); 3

while (1) { 4
rcvd_sig = sigwaitinfo(&newmask, &info) 5
if (rcvd_sig == -1) {

perror("sigusr: sigwaitinfo");
_exit(1);

}
else { 6

printf("Signal %d, value %d received from parent\n",
rcvd_sig, info.si_value.sival_int);

_exit(0);
}

}
}
else { /* Parent */

union sigval sval;
sval.sigev_value.sival_int = 1;

Signals 5–19

Example 5–3: Using the sigwaitinfo Function (cont.)

int stat;
sleep(1);
sigqueue(pid, SIG_STOP_CHILD, sval);
pid = wait(&stat);
printf("Child exit status = %d\n", WEXITSTATUS(stat));
_exit(0);

}
}

In this example:

1 The program defines a variable to which the sigwaitinfo call returns
the value of the delivered signal (or returns –1, indicating an error).

2 The program defines a variable to which the sigwaitinfo call returns
the siginfo_t structure that describes the received signal.

3 The child process sets up a signal mask to blocks the SIG_STOP_CHILD
signal. Notice that it has not defined a signal handler to run when the
signal is delivered. The sigwaitinfo function does not call a signal
handler.

4 The child process loops waiting for signal delivery.

5 The child process calls sigwaitinfo function, specifying the newmask
signal mask to block the SIG_STOP_CHILD signal and wait for its
delivery.

6 When the signal is delivered, the child process prints a message
indicating that it has received the signal. It also prints the signal value
that may accompany the realtime signal.

An additional example using the sigwaitinfo function is shown in
Example 5–4. In this example, the child process sends to its parent the
maximum number of signals that the system allows to be queued. When a
SIG signal is delivered to it, the parent counts it and prints an informative
message. After it has received _SC_SIGQUEUE_MAX signals, the parent
prints a message that indicates the number of signals it has received.

Example 5–4: Using the sigwaitinfo Function

#include <unistd.h>
#include <stdio.h>
#include <sys/siginfo.h>
#include <sys/signal.h>

main()
{

sigset_t set, pend;
int i, sig, sigq_max, numsigs = 0;
siginfo_t info;

5–20 Signals

Example 5–4: Using the sigwaitinfo Function (cont.)

int SIG = SIGRTMIN;

sigq_max = sysconf(_SC_SIGQUEUE_MAX);
sigemptyset(&set);
sigaddset(&set, SIG);
sigprocmask(SIG_SETMASK, &set, NULL);
printf("\nNow create a child to send signals...\n");
if (fork() == 0) { /* child */

pid_t parent = getppid();
printf("Child will signal parent %d\n", parent);
for (i = 0; i < sigq_max; i++) {

if (sigqueue(parent, SIG, i) < 0)
perror("sigqueue");

}
exit(1);

}
printf("Parent sigwait for child to queue signal...\n");
sigpending(&pend);
printf("Is signal pending: %s\n",

sigismember(&pend, SIG) ? "yes" : "no");
for (i = 0; i < sigq_max; i++) {

sig = sigwaitinfo(&set, &info);
if (sig < 0) {

perror("sigwait");
exit(1);

}
printf("Main woke up after signal %d\n", sig);
printf("signo = %d, pid = %d, uid = %d, val = %d,\n",

info.si_signo, info.si_pid, info.si_uid, info.si_int);
numsigs++;

}
printf("Main: done after %d signals.\n", numsigs);

}

Signals 5–21

6
Clocks and Timers

Realtime applications must be able to operate on data within strict timing
constraints in order to schedule application or system events. Timing
requirements can be in response to the need for either high system
throughput or fast response time. Applications requiring high throughput
may process large amounts of data and use a continuous stream of data
points equally spaced in time. For example, electrocardiogram research uses
a continuous stream of data for qualitative and quantitative analysis.

Applications requiring a fast response to asynchronous external events must
capture data as it comes in and perform decision-making operations or
generate new output data within a given time frame. For example, flight
simulator applications may acquire several hundred input parameters from
the cockpit controls and visual display subsystem with calculations to be
completed within a 5 millisecond time frame.

Tru64 UNIX P1003.1b timing facilities allow applications to use relative
or absolute time and to schedule events on a one-shot or periodic basis.
Applications can create multiple timers for each process.

The correctness of realtime applications often depends on satisfying timing
constraints. A systemwide clock is the primary source for synchronization
and high-resolution timers to support realtime requirements for scheduling
events. The P1003.1b timing functions perform the following tasks:

• Set a systemwide clock and obtain the current value of the clock

• Set per-process timers to expire once or multiple times (arm the timers)

• Use asynchronous signals on timer expiration

• Retrieve the resolution of the systemwide clock

• Permit the calling thread or process to suspend execution for a period of
time or until a signal is delivered

Timing facilities are most useful when combined with other synchronization
techniques.

Although non-POSIX functions are available for creating timers, application
programmers striving for standards conformance, portability, and use
of multiple per-process timers should use the P1003.1b timing facilities
described in this chapter.

Clocks and Timers 6–1

This chapter includes the following sections:

• Clock Functions, Section 6.1

• Types of Timers, Section 6.2

• Timers and Signals, Section 6.3

• Data Structures Associated with Timing Facilities, Section 6.4

• Timer Functions, Section 6.5

• High-Resolution Sleep, Section 6.6

• Clocks and Timers Example, Section 6.7

6.1 Clock Functions

The supported time-of-day clock is the CLOCK_REALTIME clock, defined
in the time.h header file. The CLOCK_REALTIME clock is a systemwide
clock, visible to all processes running on the system. If all processes could
read the clock at the same time, each process would see the same value.

The CLOCK_REALTIME clock measures the amount of time that has
elapsed since 00:00:00 January 1, 1970 Greenwich Mean Time (GMT).1

The CLOCK_REALTIME clock measures time in nanoseconds; clock
resolution does not reflect fractions of nanoseconds. For example, when
the resolution for CLOCK_REALTIME is calculated at 1 sec / 1024 Hz,
the result is 976562.5 nanoseconds. The clock resolution returned by the
call to clock_getres for CLOCK_REALTIME is 976562. The fractional
nanoseconds are ignored. The system self-corrects at the end of every
second and adjusts time to correct for disparities. See Section 6.1.4 for more
information about system clock resolution.

The P1003.1b timing functions for a specified clock are as follows:

Function Description

clock_getres Returns the resolution of the specified clock

clock_gettime Returns the current value for the specified clock

clock_settime Sets the specified clock to the specified value

Use the name CLOCK_REALTIME as the clock_id argument in all
P1003.1b clock functions.

The clock_getres function returns the clock resolution. Note that you
cannot set the resolution of the specified clock, although you can specify a

1 Otherwise known as the "Epoch."

6–2 Clocks and Timers

high-resolution option that gives the appearance of higher resolution (see
Section 6.1.5).

You can use the values returned by the clock_gettime function to
determine values for the creation of realtime timers.

When the clock_settime function is called, the time argument is
truncated to a multiple of the clock resolution, if it is not already a multiple
of the clock resolution. Similarly, the clock resolution is used when setting
interval timers.

The following example calls the clock_getres function to determine clock
resolution:

#include <unistd.h>
#include <time.h>

main()
{
struct timespec clock_resolution;
int stat;

stat = clock_getres(CLOCK_REALTIME, &clock_resolution);

printf("Clock resolution is %d seconds, %ld nanoseconds\n",
clock_resolution.tv_sec, clock_resolution.tv_nsec);

}

6.1.1 Retrieving System Time

Both the time and clock_gettime functions return the value of the
systemwide clock as the number of elapsed seconds since the Epoch. The
timespec data structure (used for the clock_gettime function) also
contains a member to hold the value of the number of elapsed nanoseconds
not comprising a full second.

Example 6–1 shows the difference between the time as returned by the time
and clock_gettime functions.

Example 6–1: Returning Time

#include <unistd.h>
#include <time.h>

main()
{
struct timespec ts;

/* Call time */
printf("time returns %d seconds\n", time(NULL);)

/* Call clock_gettime */

clock_gettime(CLOCK_REALTIME, &ts);

Clocks and Timers 6–3

Example 6–1: Returning Time (cont.)

printf("clock_gettime returns:\n");
printf("%d seconds and %ld nanoseconds\n", ts.tv_sec, ts.tv_nsec);
}

In Example 6–1, 876,764,530 seconds is returned from the time function,
and 876,764,530 seconds and 000,0674,633 nanoseconds is returned from
the clock_gettime function.

The time function returns a long integer containing the number of seconds
that have elapsed since the Epoch. The clock_gettime function receives
a pointer to the timespec structure and returns the values in the tv_sec
and tv_nsec members.

If you plan to write the current time to a device or file, you may want to
convert the time format returned by the clock_gettime function.

6.1.2 Setting the Clock

The clock_settime function lets you set the time for the specified clock.
If you have an application that monitors time over the network, use the
clock_settime function to synchronize with other systems. However,
under normal circumstances you would not need to call the clock_settime
function.

If timers are pending execution, use the adjtime function to adjust the clock
slowly; armed timers are not affected by this function. See the reference
page for adjtime for complete information about this function.

You must have superuser privileges to use the clock_settime and
adjtime functions.

6.1.3 Converting Time Values

Realtime clock and timer functions use the number of seconds and
nanoseconds since the Epoch. Although this method is precise and suitable
for the machine, it is not meaningful for application users. If your application
prints or receives time information from users, you will want to convert
time data to a more readable format.

If you use the time function to retrieve system time, the input and return
values are expressed in elapsed seconds since the Epoch. Your application
should define the format for both user input and output and then convert
these time values for use by the program. Applications can store the
converted time values for future use.

6–4 Clocks and Timers

The C language provides a number of functions to convert and store time
in both a tm structure and an ASCII format. Note that although these C
routines use seconds as the smallest unit of time, they provide users with a
readable format.

When you pass the time in seconds to these functions, some functions return
a pointer to a tm structure. This structure breaks down time into units, such
as hours, minutes, and seconds, and stores the data in the appropriate fields.

Tru64 UNIX provides date and time functions that deal with these time
units and calendar time, making conversions as necessary. The date and
time conversion functions are as follows:

Function Description

asctime Converts time units (hours, minutes, and seconds)
into a 26-character string

ctime Converts a time in seconds since the Epoch to an ASCII
string in the form generated by asctime

difftime Computes the difference between two calendar times
(time1–time0) and returns the difference expressed in seconds

gmtime Converts a calendar time into time units, expressed as GMT

localtime Converts a time in seconds since the Epoch into time units

mktime Converts the time units in the tm structure pointed to by
timeptr into a calendar time value with the same encoding
as that of the values returned by time

tzset Sets the external variable tzname, which contains
current time zone names

To select the most appropriate time conversion function for your application,
see the reference pages for each of these functions.

The converted time values for the date and time conversion functions are
placed in a time structure (tm) defined in the time.h header file, as follows:

struct tm {
int tm_sec, /* Time in seconds (0-59) */

tm_min, /* Time in minutes (0-59) */
tm_hour, /* Time in hours (0-23) */
tm_mday, /* Day of the month (1 to 31) */
tm_mon, /* Month (0 to 11) */
tm_year, /* Year (last 2 digits) */
tm_wday, /* Day of the week (Sunday=0) */
tm_yday, /* Day of the year (0 to 365) */
tm_isdst; /* Daylight savings time (always 0) */

long tm_gmtoff; /* Offset from GMT in seconds */
char *tm_zone /* Time zone */
};

Clocks and Timers 6–5

6.1.4 System Clock Resolution

System clock resolution on Alpha systems is 1/1024 second, or roughly 976
microseconds. The system maintains time by adding 976 microseconds at
every clock interrupt. The actual time period between clock ticks is exactly
1/1024 second = 976.5625 microseconds.

The missing 576 microseconds (1024 * .5625) are added at the end of the
1024th tick (that is, every second), to make sure that the system time
matches with the observed wall-clock time.

This implies that each clock tick increments the system time by 976
microseconds except the 1024th one, which advances the time by 1552
microseconds (976 + 576). Thus there is a spike in the time as maintained
by Tru64 UNIX.

The POSIX 1003.1a specification mandates that the system quantize all
timer values passed by a program to the next multiple of the clock tick. If an
application program requests a timer value that is not an exact multiple of
the system clock resolution (an exact multiple of 976.5625 microseconds),
the actual time period counted down by the system will be slightly larger
than the requested time period.

A program that asks for a periodic timer of 50 milliseconds will actually get
a time period of 50.78 milliseconds (.976562 * 52). Unless accounted for,
the additional .78 milliseconds every 50 milliseconds will result in a wrong
calculation of the elapsed time as calculated by the program.

Possible solutions to the above anomaly are either to always ask for time
periods that are integral multiples of the system clock resolution or to not
use the periodic timer for timekeeping.

6.1.5 High-Resolution Clock

Version 4.0 of the operating system added the capability of an optional
high-resolution clock. To enable the high-resolution clock, add the following
line to the kernel configuration file and rebuild the kernel:

options MICRO_TIME

The system clock (CLOCK_REALTIME) resolution as returned by
clock_getres(3) will not change; timer resolution remains the same.
However, time as returned by the clock_gettime(3) routine will now
be extrapolated between the clock ticks. The granularity of the time
returned will now be in microseconds. The time values returned are SMP
safe, monotonically increasing, and have 1 microsecond as the apparent
resolution.

6–6 Clocks and Timers

You can use the high-resolution clock for time-stamping and for measuring
events that are of the order of microseconds, such as time spent in some
critical code path.

6.2 Types of Timers

Two types of timers are provided to support realtime timing facilities:
one-shot timers and periodic timers. Timers can be set up to expire only once
(one-shot) or on a repetitive (periodic) schedule. A one-shot timer is armed
with an initial expiration time, expires only once, and then is disarmed.
A timer becomes a periodic timer with the addition of a repetition value.
The timer expires, then loads the repetition interval, rearming the timer to
expire after the repetition interval has elapsed.

The initial expiration value can be relative to the current time or an absolute
time value. A relative timer has an initial expiration time based on the
amount of time elapsed, such as 30 seconds from the start of the application
or 0.5 seconds from the last timer expiration. An absolute timer expires
at a calendar date and time.

Often, a timer uses both concepts of absolute and relative timers. You can
establish a timer to fire as an absolute timer when it first expires, and set
subsequent timer expirations relative to the first expiration. For example,
an application may need to collect data between midnight and 3:00 AM.
Data collection during this three-hour period may be staged in 12-minute
intervals. In this case, absolute times are used to start and stop the data
collection processes at midnight and 3:00 A.M. respectively. Relative time is
used to initiate data collection at 12-minute intervals.

The values specified in the arguments to the timer_settime function
determine whether the timer is a one-shot or periodic and absolute or
relative type. See Section 6.5.2 for more information on the timer_settime
function.

6.3 Timers and Signals

You create a timer with the timer_create function, which is associated
with a sigevent structure. When using timers, you specify an initial
expiration value and an interval value. When the timer expires, the system
sends the specified signal to the process that created the timer. Therefore,
you should set up a signal handler to catch the signal after it is sent to the
calling process.

To use signals with timers, include the following steps in your application:

1. Create and declare a signal handler.

Clocks and Timers 6–7

2. Set the sigevent structure to specify the signal you want sent on timer
expiration.

3. Establish a signal handler with the sigaction function.

4. Create the timer.

If you do not choose to use realtime signals, then identical signals delivered
from multiple timers are compressed into a single signal. In this case, you
may need to specify a different signal for each timer. If you use realtime
signals, identical signals are queued to the calling process. See Chapter 5 for
more information on signals and signal handling.

6.4 Data Structures Associated with Timing Facilities

The timespec and itimerspec data structures in the timers.h header
file are used in many of the P1003.1b realtime clock and timer functions. The
timespec data structure contains members for both second and nanosecond
values. This data structure sets up a single time value and is used by many
P1003.1b functions that accept or return time value specifications. The
itimerspec data structure contains two timespec data structures. This
data structure sets up an initial timer and repetition value used by P1003.1b
timer functions.

The signal.h header file contains a sigevent structure for specifying the
signal to be sent on timer expiration.

6.4.1 Using the timespec Data Structure

The timespec data structure consists of two members, tv_sec and
tv_nsec, and takes the following form:

typedef struct timespec {
time_t tv_sec; /* Seconds */
long tv_nsec; /* Nanoseconds */

} timespec_t;

The tv_nsec member is valid only if its value is greater than zero and less
than the number of nanoseconds in a second. The time interval described
by the timespec structure is (tv_sec * 109) + tv_nsec nanoseconds. (The
minimum possible time interval is limited by the resolution of the specified
clock.)

The timespec structure is used in P1003.1b functions to set and return
the specified clock, return the resolution of the clock, set and return timer
values, and specify nanosleep values.

6–8 Clocks and Timers

6.4.2 Using the itimerspec Data Structure

The itimerspec data structure consists of two timespec structures and
takes the following form:

struct itimerspec {
struct timespec it_interval; /* Timer interval */
struct timespec it_value; /* Initial expiration */

};

The two timespec structures specify an interval value and an initial
expiration value, both of which are used in all timer functions related to
setting up timers. The values specified for the member structures identify
the timer as one-shot or periodic. Table 6–1 summarizes the ways that values
for the two members of the itimerspec structure are used to specify timers.

Table 6–1: Values Used in Setting Timers
Member Zero Non-Zero

it_value No expiration value
Disarm the timer

Expiration value
Arm the timer

it_interval No reload value
Use as a one-shot timer

Interval reload value
Use as a periodic timer

The it_value specifies the initial amount of time before the timer expires.
A nonzero value for the it_value member indicates the amount of time
until the timer’s first expiration.

TIMER_ABSTIME is a flag that, when set, makes the timer an absolute
timer. The time until the next timer expiration is specified in seconds and
nanoseconds since the Epoch and is the difference between the absolute time
specified by the it_value member and the current clock value.

If the TIMER_ABSTIME flag is not set, the time until the next timer
expiration is set equal to the interval specified by the it_value member,
and the timer is a relative timer.

A zero value for the it_value member disarms the timer.

When the timer expires for the first time, the it_interval member
specifies the interval after which the timer will expire again. That is, the
value of the it_interval member is reloaded when the timer expires and
timing continues. A nonzero value for the it_interval member specifies a
periodic timer. A zero value for the it_interval member causes the timer
to expire only once; after the first expiration, the it_value member is set
to zero and the timer is disarmed.

Clocks and Timers 6–9

For example, to specify a timer that executes only once, 5.25 seconds from
now, specify the following values for the members of the itimerspec
structure:

mytimer.it_value.tv_sec = 5;
mytimer.it_value.tv_nsec = 250000000;
mytimer.it_interval.tv_sec = 0;
mytimer.it_interval.tv_nsec = 0;

To arm a timer to execute 15 seconds from now and then at 0.5 second
intervals, specify the following values:

mytimer.it_value.tv_sec = 15;
mytimer.it_value.tv_nsec = 0;
mytimer.it_interval.tv_sec = 0;
mytimer.it_interval.tv_nsec = 500000000;

In the preceding examples, the timer is armed relative to the current time.
To set up a timer with an absolute initial expiration time, such as 10:00 A.M.,
convert the absolute initial expiration value (in seconds and nanoseconds) to
the correct offset from the current time.

Because the value of the tv_nsec member is expressed in nanoseconds,
it may be somewhat cumbersome. To simplify specifying values for the
tv_nsec member as fractions of a second, you could define a symbolic
constant:

#define NSECS_PER_SEC 1000000000;

After defining this constant, you could specify 1/4 second as follows:

mytimer.it_value.tv_nsec = NSECS_PER_SEC/4;

See Section 6.5 for more information on relative and absolute timers.

6.4.3 Using the sigevent Data Structure

The sigevent structure delivers the signal on timer expiration. The evp
argument of the timer_create function points to a sigevent structure,
which contains the signal to be sent upon expiration of each timer.

The sigevent structure is defined in the signal.h header file and contains
the following members:

union sigval sigev_value; /* Application-defined value */
int sigev_signo; /* Signal to raise */
int sigev_notify; /* Notification type */

The sigval union contains at least the following members:

int sival_int; /* Used when sigev_value is of type int */
void *sival_ptr; /* Used when sigev_value is of type ptr */

6–10 Clocks and Timers

The sigev_value member is an application-defined value to be passed to
the signal-catching function at the time of signal delivery.

The sigev_signo member specifies the signal number to be sent on
completion of the asynchronous I/O operation or on timer expiration. In both
instances, you must set up a signal handler to execute when the signal is
received. You can use the sigaction function to specify the action required.
See Chapter 5 for more information about the sigaction function.

The sigev_notify member specifies the notification mechanism to use
when an asynchronous event occurs. P1003.1b defines two values for
sigev_notify: SIGEV_NONE and SIGEV_SIGNAL. SIGEV_NONE
indicates that no asynchronous notification is delivered when an
event occurs. SIGEV_SIGNAL indicates that a queued signal with an
application-defined value is delivered when an event occurs.

6.5 Timer Functions

Clocks and timers allow an application to synchronize and coordinate
activities according to a user-defined schedule. Tru64 UNIX P1003.1b timers
have the ability to issue periodic timer requests initiated by a single call
from the application.

The following P1003.1b timing functions are available for realtime
applications:

Function Description

timer_create Returns a unique timer ID used in subsequent calls to
identify a timer based on the systemwide clock

timer_delete Removes a previously allocated, specified timer

timer_getoverrun Returns the timer expiration overrun count
for the specified timer

timer_gettime Returns the amount of time before the specified timer
is due to expire and the repetition value

timer_settime Sets the value of the specified timer either to an offset
from the current clock setting or to an absolute value

Timers do not have global IDs, which means that they are not inherited by a
child process after a call to the fork or exec system calls. You cannot arm a
timer, call the exec system call, and have the new image receive the signal.
The newly created timer structures are inherited across a fork, but any
pending timer signals will be delivered only to the parent process.

Clocks and Timers 6–11

6.5.1 Creating Timers

The timer_create function allocates a timer and returns a timer ID that is
unique within the calling process and exists for the life of that timer. The
timer is not armed until you make a call to the timer_settime function,
which sets the values for the specified timer.

The timer functions perform a series of tasks necessary for setting up timers.
To create a timer, you must set up appropriate data structures, set up a
signal handler to catch the signal when the timer expires, and arm the timer.
To use timers in a realtime application, follow these steps:

1. Include time.h and signal.h in the application source file.

2. Declare the variable names for your itimerspec data structure to
specify interval and expiration values.

3. Establish a sigevent structure containing the signal to be passed to
the process on timer expiration.

4. Set up a signal handler in the calling process to catch the signal when
the timer expires.

5. Call the timer_create function to create a timer and associate it with
the specified clock. Specify a signal to be delivered when the timer
expires.

6. Initialize the itimerspec data structure with the required values.

7. Call the timer_settime function to initialize and activate the timer as
either an absolute or relative timer.

8. Call the timer_delete function when you want to remove the timer.

The number of per-process timers (TIMER_MAX) is defined in the limits.h
header file.

The timer_create function also takes an evp argument, which, if
non-NULL, is a pointer to a sigevent structure. This structure defines the
signal and value to be sent to the calling process when the timer expires.
If the sigev_notify member of evp is SIGEV_SIGNAL, the structure
must contain the signal number and data value to send to the process when
the timer expires. If the sigev_notify member is SIGEV_NONE, no
notification will be sent.

If the evp argument is NULL, the default signal SIGALRM is used.

6.5.2 Setting Timer Values

The timer_settime function determines whether the timer is an absolute
or relative timer. This function sets the initial expiration value for the timer
and sets the interval time used to reload the timer after it has reached the

6–12 Clocks and Timers

initial expiration value. The interval you specify is rounded up to the next
integral multiple of the system clock resolution. See Section 6.1.4 for more
information about system clock resolution.

The arguments for the timer_settime function perform the following
functions:

1. The timerid argument identifies the timer.

2. The flags argument determines whether the timer behaves as an
absolute or relative timer.

If the TIMER_ABSTIME flag is set, the timer is set with a specified
starting time (the timer is an absolute timer). If the TIMER_ABSTIME
flag is not set, the timer is set relative to the current time (the timer
is a relative timer).

3. The value argument points to an itimerspec structure, which
contains the initial expiration value and repetition value for the timer:

• The it_value member of the value argument establishes the
initial expiration time.

For absolute timers, the timer_settime function interprets the
next expiration value as equal to the difference between the absolute
time specified by the it_value member of the value argument and
the current value of the specified clock. The timer then expires
when the clock reaches the value specified by the it_value member
of the value argument.

For relative timers, the timer_settime function interprets the
next expiration value as equal to the interval specified by the
it_value member of the value argument. The timer will expire in
it_value seconds and nanoseconds from when the call was made.
After a timer is started as an absolute or relative timer, its behavior
is driven by whether it is a one-shot or periodic timer.

• The it_value member of the value argument can disable a timer.

To disable a periodic timer, call the timer and specify the value zero
for the it_value member.

• The it_interval member of the value argument establishes the
repetition value.

The timer interval is specified as the value of the it_interval
member of the itimerspec structure in the value argument.
This value determines whether the timer functions as a one-shot
or periodic timer.

After a one-shot timer expires, the expiration value (it_value
member) is set to zero. This indicates that no next expiration value
is specified, which disarms the timer.

Clocks and Timers 6–13

A periodic timer is armed with an initial expiration value and a
repetition interval. When the initial expiration time is reached, it
is reloaded with the repetition interval and the timer starts again.
This continues until the application exits. To arm a periodic timer,
set the it_value member of the value argument to the desired
expiration value and set the it_interval member of the value
argument to the desired repetition interval.

4. The ovalue argument points to an itimerspec structure that contains
the time remaining on an active timer. If the timer is not armed, the
ovalue is equal to zero. If you delete an active timer, the ovalue will
contain the amount of time remaining in the interval.

You can use the timer_settime function to reuse an existing timer ID. If a
timer is pending and you call the timer_settime function to pass in new
expiration times, a new expiration time is established.

6.5.3 Retrieving Timer Values

The timer_gettime function returns two values: the amount of time
before the timer expires and the repetition value set by the last call to the
timer_settime function. If the timer is disarmed, a call to the timer with
the timer_gettime function returns a zero for the value of the it_value
member. To arm the timer again, call the timer_settime function for that
timer ID and specify a new expiration value for the timer.

6.5.4 Getting the Overrun Count

Under POSIX.1b, timer expiration signals for a specific timer are not queued
to the process. If multiple timers are due to expire at the same time, or
a periodic timer generates an indeterminate number of signals with each
timer request, a number of signals will be sent at essentially the same time.
There may be instances where the requesting process can service the signals
as fast as they occur, and there may be other situations where there is an
overrun of the signals.

The timer_getoverrun function helps track whether or not a signal was
delivered to the calling process. Tru64 UNIX P1003.1b timing functions
keep a count of timer expiration signals for each timer created. The
timer_getoverrun function returns the counter value for the specified
timer ID. If a signal is sent, the overrun count is incremented, even if the
signal was not delivered or if it was compressed with another signal. If the
signal cannot be delivered to the calling process or if the signal is delayed
for some reason, the overrun count contains the number of extra timer
expirations that occurred during the delay. A signal may not be delivered if,
for instance, the signal is blocked or the process was not scheduled. Use the

6–14 Clocks and Timers

timer_getoverrun function to track timer expiration and signal delivery
as a means of determining the accuracy or reliability of your application.

If the signal is delivered, the overrun count is set to zero and remains at
zero until another overrun occurs.

6.5.5 Disabling Timers

When a one-shot timer expires, the timer is disarmed but the timer ID is
still valid. The timer ID is still current and can be rearmed with a call to the
timer_settime function. To remove the timer ID and disable the timer, use
the timer_delete function.

6.6 High-Resolution Sleep
To suspend process execution temporarily using the P1003.1b timer
interface, call the nanosleep function. The nanosleep function suspends
execution for a specified number of nanoseconds, providing a high-resolution
sleep. A call to the nanosleep function suspends execution until either the
specified time interval expires or a signal is delivered to the calling process.

Only the calling thread sleeps with a call to the nanosleep function. In a
threaded environment, other threads within the process continue to execute.

The nanosleep function has no effect on the delivery or blockage of signals.
The action of the signal must be to invoke a signal-catching function or to
terminate the process. When a process is awakened prematurely, the rmtp
argument contains the amount of time remaining in the interval.

6.7 Clocks and Timers Example
Example 6–2 demonstrates the use of P1003.1b realtime timers. The
program creates both absolute and relative timers. The example
demonstrates concepts using multiple signals to distinguish between
timer expirations. The program loops continuously until the program is
terminated by a Ctrl/C from the user.

Example 6–2: Using Timers

/*
* The following program demonstrates the use of various types of
* POSIX 1003.1b Realtime Timers in conjunction with 1003.1 Signals.
*
* The program creates a set of timers and then blocks waiting for
* either timer expiration or program termination via SIGINT.
* Pressing CTRL/C after a number of seconds terminates the program
* and prints out the kind and number of signals received.
*
* To build:
*
* cc -g3 -O -non_shared -o timer_example timer_example.c -L/usr/ccs/lib -lrt

Clocks and Timers 6–15

Example 6–2: Using Timers (cont.)

*/

#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
#include <sys/limits.h>
#include <time.h>
#include <sys/signal.h>
#include <sys/errno.h>

/*
* Constants and Macros
*/

#define FAILURE -1
#define ABS TIMER_ABSTIME
#define REL 0
#define TIMERS 3

#define MIN(x,y) (((x) < (y)) ? (x) : (y))

sig_handler();
void timeaddval();
struct sigaction sig_act;

/*
* Control Structure for Timer Examples
*/
struct timer_definitions {

int type; /* Absolute or Relative Timer */
struct sigevent evp; /* Event structure */
struct itimerspec timeout; /* Timer interval */

};

/*
* Initialize timer_definitions array for use in example as follows:
*
* type, { sigev_value, sigev_signo }, { it_iteration, it_value }
*/

struct timer_definitions timer_values[TIMERS] = {
{ ABS, {0,SIGALRM}, {0,0, 3,0} },
{ ABS, {0,SIGUSR1}, {0,500000000, 2,0} },
{ REL, {0,SIGUSR2}, {0,0, 5,0} }

};

timer_t timerid[TIMERS];
int timers_available; /* number of timers available */
volatile int alrm, usr1, usr2;
sigset_t mask;

main()
{

int status, i;
int clock_id = CLOCK_REALTIME;
struct timespec current_time;

/*
* Initialize the sigaction structure for the handler.
*/

6–16 Clocks and Timers

Example 6–2: Using Timers (cont.)

sigemptyset(&mask);
sig_act.sa_handler = (void *)sig_handler;
sig_act.sa_flags = 0;
sigemptyset(&sig_act.sa_mask);
alrm = usr1 = usr2 = 0;

/*
* Determine whether it’s possible to create TIMERS timers.
* If not, create TIMER_MAX timers.
*/

timers_available = MIN(sysconf(_SC_TIMER_MAX),TIMERS);

/*
* Create "timer_available" timers, using a unique signal
* type to denote the timer’s expiration. Then initialize
* a signal handler to handle timer expiration for the timer.
*/

for (i = 0; i < timers_available; i++) {
status = timer_create(clock_id, &timer_values[i].evp,

&timerid[i]);
if (status == FAILURE) {

perror("timer_create");
exit(FAILURE);

}
sigaction(timer_values[i].evp.sigev_signo, &sig_act, 0);

}

/*
* Establish a handler to catch CTRL-c and use it for exiting.
*/

sigaction(SIGINT, &sig_act, NULL); /* catch crtl-c */

/*
* Queue the following Timers: (see timer_values structure for details)
*
* 1. An absolute one-shot timer (Notification is via SIGALRM).
* 2. An absolute periodic timer. (Notification is via SIGUSR1).
* 3. A relative one-shot timer. (Notification is via SIGUSR2).
*
* (NOTE: The number of TIMERS queued actually depends on
* timers_available)

*/

for (i = 0; i < timers_available; i++) {
if (timer_values[i].type == ABS) {

status = clock_gettime(CLOCK_REALTIME, ¤t_time);
timeaddval(&timer_values[i].timeout.it_value,

¤t_time);
}
status = timer_settime(timerid[i], timer_values[i].type,

&timer_values[i].timeout, NULL);
if (status == FAILURE) {

perror("timer_settime failed: ");
exit(FAILURE);

}
}

/*

Clocks and Timers 6–17

Example 6–2: Using Timers (cont.)

* Loop forever. The application will exit in the signal handler
* when a SIGINT is issued (CRTL/C will do this).
*/

for(;;) pause();
}

/*
* Handle Timer expiration or Program Termination.
*/

sig_handler(signo)
int signo;
{

int i, status;

switch (signo) {
case SIGALRM:

alrm++;
break;

case SIGUSR1:
usr1++;
break;

case SIGUSR2:
usr2++;
break;

case SIGINT:
for (i = 0; i < timers_available; i++) /* delete timers */

status = timer_delete(timerid[i]);
printf("ALRM: %d, USR1: %d, USR2: %d\n", alrm, usr1, usr2);
exit(1); /* exit if CRTL/C is issued */

}
return;

}

/* Add two timevalues: t1 = t1 + t2 */

void timeaddval(t1, t2)
struct timespec *t1, *t2;
{

t1->tv_sec += t2->tv_sec;
t1->tv_nsec += t2->tv_nsec;
if (t1->tv_nsec < 0) {

t1->tv_sec--;
t1->tv_nsec += 1000000000;

}
if (t1->tv_nsec >= 1000000000) {

t1->tv_sec++;
t1->tv_nsec -= 1000000000;

}
}

6–18 Clocks and Timers

7
Asynchronous Input and Output

I/O operations on a file can be either synchronous or asynchronous. For
synchronous I/O operations, the process calling the I/O request is blocked
until the I/O operation is complete and regains control of execution only
when the request is completely satisfied or fails. For asynchronous I/O
operations, the process calling the I/O request regains control of execution
immediately after the I/O operation is queued to the device. Later, when the
requested I/O operation completes (either successfully or unsuccessfully), the
calling process can be notified of the completion by a signal passed through
the aiocb structure for the asynchronous I/O function. Alternatively, the
calling process can poll the aiocb structure for completion status.

Asynchronous I/O is most commonly used in realtime applications requiring
high-speed or high-volume data collection and/or low-priority journaling
functions. Compute-intensive processes can use asynchronous I/O instead of
blocking. For example, an application may collect intermittent data from
multiple channels. Because the data arrives asynchronously, that is, when it
is available rather than according to a set schedule, the receiving process
must queue up the request to read data from one channel and immediately
be free to receive the next data transmission from another channel.
Another application may require such a high volume of reads, writes, and
computations that it becomes practical to queue up a list of I/O operation
requests and continue processing while the I/O requests are being serviced.
Applications can perform multiple I/O operations to multiple devices while
making a minimum number of function calls. The P1003.1b asynchronous
I/O functions are designed to help meet these realtime needs.

You can perform asynchronous I/O operations using any open file descriptor.

This chapter includes the following sections:

• Data Structures Associated with Asynchronous I/O, Section 7.1

• Asynchronous I/O Functions, Section 7.2

• Asynchronous I/O to Raw Devices, Section 7.3

• Asynchronous I/O Examples, Section 7.4

Asynchronous Input and Output 7–1

7.1 Data Structures Associated with Asynchronous I/O

The P1003.1b asynchronous I/O functions use the asynchronous I/O
control block aiocb. This control block contains asynchronous operation
information, such as the initial point for the read operation, the number
of bytes to be read, and the file descriptor on which the asynchronous I/O
operation will be performed. The control block contains information similar
to that required for a read or write function, but additionally contains
members specific to asynchronous I/O operations. The aiocb structure
contains the following members:

int aio_fildes; /* File descriptor */
off_t aio_offset; /* File offset */
volatile void *aio_buf; /* Pointer to buffer */
size_t aio_nbytes; /* Number of bytes to transfer */
int aio_reqprio; /* Request priority offset */
struct sigevent aio_sigevent; /* Signal structure */
int aio_lio_opcode;/* Specifies type of I/O operation */

Note that you cannot reuse the aiocb structure while an asynchronous
I/O request is pending. To determine whether the aiocb is in use, use the
aio_error function.

7.1.1 Identifying the Location

When you call either the aio_read or aio_write function, you must specify
how to locate the data to be read or to position the data to be written.

The aio_offset and aio_nbytes members of the aiocb structure provide
information about the starting point and length of the data to be read or
written. The aio_buf member provides information about where the
information should be read or written in memory.

When you use the aio_write function to write to a new file, data is written
to the end of a zero-length file. On additional write operations, if the
O_APPEND flag is set, write operations are appended to the file in the same
order as the calls to the aio_write function were made. If the O_APPEND
flag is not set, write operations take place at the absolute position in the
file as given by the aio_offset, as if the lseek function were called
immediately prior to the operation with an offset equal to aio_offset
and a whence equal to SEEK_SET.

On a call to the aio_read function, the read operation takes place at
the absolute position in the file as given by aio_offset, as if the lseek
function were called immediately prior to the operation with an offset
equal to aio_offset and a whence equal to SEEK_SET.

After a successful call to queue an asynchronous write operation with
O_APPEND or to queue an asynchronous read, you must update the value
of the offset with the value returned from the read or write operation. The

7–2 Asynchronous Input and Output

file offset is not dynamically updated, and failure to update the value of the
offset can produce incorrect results.

To determine whether the read or write operation was successful, call the
aio_error function. If the operation was successful, call the aio_return
function to update the value of the aio_offset member after each
successful read or write operation. See Section 7.2.3 for an example of using
these functions to determine status.

7.1.2 Specifying a Signal

You can send a signal on completion of every read and write operation,
regardless of whether the operation is issued from a call to the aio_read,
aio_write, or lio_listio function. In addition, you can send a signal on
completion of the lio_listio function. See Chapter 5 for more information
on signals and signal handling.

The aio_sigevent member refers to a sigevent structure that
contains the signal number of the signal to be sent upon completion of
the asynchronous I/O request. The sigevent structure is defined in the
signal.h header file and contains the following members:

union sigval sigev_value; /* Application-defined value */
int sigev_signo; /* Signal to raise */
int sigev_notify /* Notification type */

The sigev_notify member specifies the notification mechanism to use
when an asynchronous event occurs. P1003.1b defines two values for
sigev_notify: SIGEV_NONE and SIGEV_SIGNAL. SIGEV_NONE
indicates that no asynchronous notification is delivered when an event
occurs. SIGEV_SIGNAL indicates that the signal number specified in
sigev_signo and the application-defined value specified in sigev_value
are queued when an event occurs. When the signal is queued to the
process, the value of aio_sigevent.sigev_value equals the si_value
component of the generated signal. See Chapter 5 for more information.

The sigev_signo member specifies the signal number to be sent on
completion of the asynchronous I/O operation. Setting the sigev_signo
member to a legal signal value causes that signal to be posted when the
operation is complete, if sigev_notify equals SIGEV_SIGNAL. Setting
the value to NULL means that no signal is sent, but the error status and
return value for the operation are set appropriately and can be retrieved
using the aio_error and aio_return functions.

Instead of specifying a signal, you can poll for I/O completion when you
expect the I/O operation to be complete.

Asynchronous Input and Output 7–3

7.2 Asynchronous I/O Functions

The asynchronous I/O functions combine a number of tasks normally
performed by the user during synchronous I/O operations. With synchronous
I/O, the application typically calls the lseek function, performs the I/O
operation, and then waits to receive the return status.

Asynchronous I/O functions provide the following capabilities:

• Both regular and special files can handle I/O requests.

• One file descriptor can handle multiple read and write operations.

• Multiple read and write operations can be issued to multiple open file
descriptors.

• Both sequential and random access devices can handle I/O requests.

• Outstanding I/O requests can be canceled.

• The process can be suspended to wait for I/O completion.

• I/O requests can be tracked when the request is queued, in progress,
and completed.

The functions for performing and managing asynchronous I/O operations
are as follows:

Function Description

aio_cancel Cancels one or more requests pending against a file descriptor

aio_error Returns the error status of a specified operation

aio_fsync Asynchronously writes system buffers containing a file’s
modified data to permanent storage

aio_read Initiates a read request on the specified file descriptor

aio_return Returns the status of a completed operation

aio_suspend Suspends the calling process until at least one of the
specified requests has completed

aio_write Initiates a write request to the specified file descriptor

lio_listio Initiates a list of requests

See the online reference pages for a complete description of these functions.

7.2.1 Reading and Writing

Asynchronous and synchronous I/O operations are logically parallel
operations. The asynchronous functions aio_read and aio_write perform
the same I/O operations as the read and write functions. However, the

7–4 Asynchronous Input and Output

aio_read and aio_write functions return control to the calling process
when the I/O is initiated, rather than after the I/O operation is complete.

When reading data from a file synchronously, the application regains control
only after all the data is read. Execution of the calling process is delayed
until the read operation is complete.

When reading data from a file asynchronously, the calling process regains
control immediately after the call is issued, before the read-and-return
cycle is complete. The aio_read function returns when the read request is
initiated or queued for delivery, even if delivery of the read request could
be delayed. The calling process can use the time it otherwise would have
spent waiting for request delivery, processing, and data transfer to execute
some other task.

A typical application using asynchronous I/O includes the following steps:

1. Create and fill the asynchronous I/O control block (aiocb).

2. Call the open function to open a specified file and get a file descriptor
for that file. After a call to the open function, the file pointer is set to
the beginning of the file. Select flags as appropriate.

____________________ Note _____________________

Do not use the select system call on a file descriptor
on which you are using asynchronous I/O; the results are
undefined.

3. If you use signals, establish a signal handler to catch the signal returned
on completion of the asynchronous I/O operation.

4. Call the aio_read, aio_write, or aio_fsync function to request
asynchronous I/O operations.

5. Call aio_suspend if your application needs to wait for the I/O
operations to complete; or continue execution and poll for completion
with aio_error; or continue execution until the signal arrives.

6. After completion, call the aio_return function to retrieve completion
value.

7. Call the close function to close the file. The close function waits for
all asynchronous I/O to complete before closing the file.

On a call to either the _exit or fork function, the status of outstanding
asynchronous I/O operations is undefined. If you plan to use asynchronous
I/O operations in a child process, call the exec function before you call the
I/O functions.

Asynchronous Input and Output 7–5

7.2.2 Using List-Directed Input/Output

To submit list-directed asynchronous read or write operations, use the
lio_listio function. As with other asynchronous I/O functions, you must
first establish the control block structures for the individual read and write
operations. The information contained in this structure is used during the
operations. The lio_listio function takes as an argument an array of
pointers to I/O control block structures, which allows the calling process to
initiate a list of I/O requests. Therefore, you can submit multiple operations
as a single function call.

You can control whether the lio_listio function returns immediately
after the list of operations has been queued or waits until all the operations
have been completed. The mode argument controls when the lio_listio
function returns and can have one of the following values:

Value Description

LIO_NOWAIT Queues the operation, returns, and can signal when
the operation is complete

LIO_WAIT Queues the operation, suspends the calling process until
the operation is complete, and does not signal when
the lio_listio operation is complete

Completion means that all the individual operations in the list have
completed, either successfully or unsuccessfully. In either case, the return
value indicates only the success or failure of the lio_listio function call,
not the status of individual I/O requests. In some cases, one or more of the
I/O requests contained in the list may fail. Failure of an individual request
does not prevent completion of any other individual request. To determine
the outcome of each I/O request, examine the error status associated with
each lio_aiocb control block.

The list argument to the lio_listio function is a pointer to an array
of aiocb structures.

The aio_lio_opcode member of the aiocb structure defines the I/O
operation to be performed, and the aio_fildes member identifies the
file descriptor. The combination of these members makes it possible to
specify individual read and write operations as if they had been submitted
individually. Each read or write operation in list-directed asynchronous I/O
has its own status, return value, and sigevent structure for signal delivery.

To use list-directed asynchronous I/O in your application, use the following
steps:

1. Create and fill the aiocb control blocks.

7–6 Asynchronous Input and Output

2. Call the open function to open the specified files and get file descriptors
for the files. After a call to the open function, the file pointer is set to
the beginning of the file. Select flags as appropriate.

3. If you use signals, establish signal handlers to catch the signals
returned on completion of individual operations after the lio_listio
function completes or to catch a signal returned on completion of the
entire list of I/O operations in the lio_listio request.

4. Call the lio_listio function.

5. Call the close function to close the files. The close function waits for
all I/O to complete before closing the file.

As with other asynchronous I/O operations, any open function that returns a
file descriptor is appropriate. On a call to either the _exit or fork function,
the status of outstanding asynchronous I/O operations is undefined.

7.2.3 Determining Status

Asynchronous I/O functions provide status values when the operation is
successfully queued for servicing and provides both error and return values
when the operation is complete. The status requirements for asynchronous
I/O are more complex than the functionality provided by the errno function,
so status retrieval for asynchronous I/O is accomplished through using the
aio_error and aio_return functions together.

The aiocbp argument to the aio_error or aio_return function provides
the address of an aiocb structure, unique for each asynchronous I/O
operation. The aio_error function returns the error status associated with
the specified aiocbp. The error status is the errno value that is set by the
corresponding asynchronous I/O read or write operation.

The aio_error function returns EINPROGRESS if the operation is
ongoing. When the asynchronous I/O operation is complete, EINPROGRESS
is no longer returned. A subsequent call to the aio_return function will
show if the operation is successful.

When you call the aio_return function, the system resources associated
with the aiocb for the duration of the I/O operation are returned to the
system. If you call the aio_return function for an aiocb with incomplete
I/O, the result of the operation is undefined. To avoid losing data, use the
aio_error function to ensure completion before you call the aio_return
function. Then use the aio_return function to retrieve the number of bytes
read or written during the asynchronous I/O operation.

If you do not call the aio_return function, the number of asynchronous I/O
resources available for use in your application is reduced by one for every

Asynchronous Input and Output 7–7

completed asynchronous I/O operation that does not return data through
a call to the aio_return function.

The following example shows how to use the aio_error and aio_return
functions to track the progress of asynchronous write operations.

...
return_value = aio_error(aiocbp);
if (return_value != EINPROGRESS) {

total = aio_return(aiocbp);
if (total == -1) {

errno = return_value;
perror("aio_read");
}

}
...

In this example, the variable total receives the number of bytes read in
the operation. This variable is then used to update the offset for the next
read operation.

If you use list-directed asynchronous I/O, each asynchronous I/O operation
in the list has an aiocb structure and a unique aiocbp.

7.2.4 Canceling I/O

Sometimes there is a need to cancel an asynchronous I/O operation after it
has been issued. For example, there may be outstanding requests when
a process exits, particularly if the application uses slow devices, such as
terminals.

The aio_cancel function cancels one or more outstanding I/O requests
against a specified file descriptor. The aiocbp argument points to an aiocb
control block for a specified file descriptor. If the operation is successfully
canceled, the error status indicates success. If, for some reason, the
operation cannot be canceled, normal completion and notification take place.

The aio_cancel function can return one of the following values:

Value Description

AIO_ALLDONE Indicates that none of the requested operations could
be canceled because they had already completed when
the call to the aio_cancel function was made

7–8 Asynchronous Input and Output

Value Description

AIO_CANCELED Indicates that all requested operations were canceled

AIO_NOTCANCELED Indicates that some of the requested operations could
not be canceled because they were in progress when
the call to the aio_cancel function was made

If the value of AIO_NOTCANCELED is returned, call the aio_error
function and check the status of the individual operations to determine
which ones were canceled and which ones could not be canceled.

7.2.5 Blocking to Completion

The aio_suspend function lets you suspend the calling process until at least
one of the asynchronous I/O operations referenced by the aiocbp argument
has completed or until a signal interrupts the function. If the operation
had completed when the call to the aio_suspend function was made, the
function returns without suspending the calling process. Before using
the aio_suspend function, your application must already have initiated
an I/O request with a call to the aio_read, aio_write, aio_fsync, or
lio_listio function.

7.2.6 Asynchronous File Synchronization

The aio_fsync function is similar to the fsync function; however, it
executes in an asynchronous manner, in the same way that aio_read
performs an asynchronous read.

The aio_fsync function requests that all I/O operations queued to the
specified file descriptor at the time of the call to aio_fsync be forced to
the synchronized I/O completion state. Unlike fsync, aio_fsync returns
control to the calling process when the operation is initiated, rather than
after the operation is complete. I/O operations that are subsequently
initiated on the file descriptor are not guaranteed to be completed by any
previous calls to aio_fsync.

Like the aio_read and aio_write functions, aio_fsync takes an aiocbp
value as an argument, which can then be used in subsequent calls to
aio_error and aio_return in order to determine the error and return
status of the asynchronous operation. In addition, the aio_sigevent
member of aiocbp can be used to define the signal to be generated when the
operation is complete.

Note that the aio_fsync function will force to completion all I/O operations
on the specified file descriptor, whether initiated by synchronous or
asynchronous functions.

Asynchronous Input and Output 7–9

7.3 Asynchronous I/O to Raw Devices

You may have applications that, for enhanced performance, perform
asynchronous I/O operations by reading to and writing from raw partitions
instead of files. Tru64 UNIX provides the raw asynchronous I/O library,
libaio_raw, for those applications that perform asynchronous I/O
operations only to raw devices. When using this library, you are not required
to link with pthreads, libmach, or libc_r.

If you attempt to perform asynchronous I/O operations to a file when linked
with libaio_raw, the request fails with an ENOSYS error (displayed by
perror as "Function not implemented").

The general syntax for compiling and linking with libaio_raw is as follows:

% cc myprogram -laio_raw

7.4 Asynchronous I/O Examples
The examples in this section demonstrate the use of the asynchronous I/O
functions. Example 7–1 uses the aio functions; Example 7–2 uses the
lio_listio function.

7.4.1 Using the aio Functions

In Example 7–1, the input file (read synchronously) is copied to the output
file (asynchronously) using the specified transfer size. A signal handler
counts the number of completions, but is not required for the functioning of
the program. A call to the aio_suspend function is sufficient.

Example 7–1: Using Asynchronous I/O

/*
* Command line to build the program:
* cc -o aio_copy aio_copy.c -laio -pthread
*/

/* * * * aio_copy.c * * * */

#include <unistd.h>
#include <aio.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/file.h>
#include <signal.h>
#include <errno.h>
#include <malloc.h>

#define BUF_CNT 2 /* number of buffers */

/* To run completion code in the signal handler, define the following: */
#define COMPLETION_IN_HANDLER

struct sigaction sig_act;

7–10 Asynchronous Input and Output

Example 7–1: Using Asynchronous I/O (cont.)

volatile int sigcnt = 0;
volatile int total = 0;

/* * * * Signal handler * * * */

/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/
void sig_action(signo,info,context)
int signo;
siginfo_t *info;
void *context;
{

printf("Entered sig_action\n");
printf(" signo = %d \n",signo);
printf(" si_code = %d \n",info->si_code);

#ifndef COMPLETION_IN_HANDLER
printf(" si_value.sival_int = %d decimal\n",

info->si_value.sival_int);

#else
printf(" si_value.sival_ptr = %lx hex \n",info->si_value.sival_ptr);

/* Call aio_error and aio_return from the signal handler.
* Note that si_value is the address of the write aiocb.
*/

while (aio_error((struct aiocb *)info->si_value.sival_ptr) ==
EINPROGRESS);

/* * * * Update total bytes written to set new file offset * * * */
total += aio_return((struct aiocb *)info->si_value.sival_ptr);

#endif

/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/
sigcnt++;
return;

}

void sig_handler(signo)
int signo;
{
/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/

printf("Entered sig_handler, signo = %d \n",signo);
/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/

sigcnt++;
return;

}

/* * * * Main Routine * * * */

main(int argc, char **argv)
{

int in_file, out_file, rec_cnt = 0;
typedef char *buf_p;
buf_p buf[BUF_CNT];
aiocb_t a_write;
size_t xfer_size;
int buf_index, ret;

/* * * * Check number of input arguments * * * */

if (argc < 4) {

Asynchronous Input and Output 7–11

Example 7–1: Using Asynchronous I/O (cont.)

fprintf(stderr, "Usage: %s input-file output-file buf-size-in-Kb\n",
argv[0]);

exit(0);
}

/* * * * Open input file * * * */

if ((in_file = open(argv[1], O_RDONLY)) == -1) {
perror(argv[1]);
exit(errno);

}
printf("Opened Input File\n");

/* * * * Open output file * * * */

/* If O_APPEND is added to flags, all writes will appear at end */
if ((out_file = open(argv[2], O_WRONLY|O_CREAT, 0777)) == -1) {

perror(argv[2]);
exit(errno);

}
printf("Opened Output File \n");

/* * * * Calculate transfer size (# bufs * 1024) * * * */

xfer_size = atol(argv[3]) * 1024;

/* * * * Allocate buffers for file copy * * * */

for (buf_index = 0; buf_index < BUF_CNT; buf_index++)
buf[buf_index] = (buf_p) malloc(xfer_size);

buf_index = 0;

/* * * * Init. signal action structure for SIGUSR1 * * * */

/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/
sigemptyset(&sig_act.sa_mask); /* block only current signal */

/* If the SA_SIGINFO flag is set in the sa_flags field, then
* the sa_sigaction field of sig_act structure specifies the
* signal-catching function:
*/

sig_act.sa_flags = SA_SIGINFO;
sig_act.sa_sigaction = sig_action;

/* If the SA_SIGINFO flag is NOT set in the sa_flags field,
* then the the sa_handler field of sig_act structure specifies
* the signal-catching function, and the signal handler will be
* invoked with 3 arguments instead of 1:
* sig_act.sa_flags = 0;
* sig_act.sa_handler = sig_handler;
*/

/* * * * Estab. signal handler for SIGUSR1 signal * * * */

printf("Establish Signal Handler for SIGUSR1\n");
if (ret = sigaction (SIGUSR1, /* Set action for SIGUSR1 */

&sig_act, /* Action to take on signal */
0)) /* Don’t care about old actions */
perror("sigaction");

/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/

7–12 Asynchronous Input and Output

Example 7–1: Using Asynchronous I/O (cont.)

/* * * * Init. aio control block (aiocb) * * * */

a_write.aio_fildes = out_file;
a_write.aio_offset = 0; /* write from current */

/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/
a_write.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
a_write.aio_sigevent.sigev_signo = SIGUSR1; /* completion signal */

#ifdef COMPLETION_IN_HANDLER
/* Fill in a user-specified value that will be the si_value
* component of the generated signal. sigev_value is a union
* of either an int (sival_int) or a void * (sival_ptr).
* In this example, we use the sival_ptr field, and pass
* the address of the aiocbp into the signal handler, so that
* the signal handler can call aio_error and aio_return directly:
*/

a_write.aio_sigevent.sigev_value.sival_ptr = &a_write;
#else

/* Pass an integer value into the signal handler: */
a_write.aio_sigevent.sigev_value.sival_int = 1;

#endif
/*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*/

/* * * * Copy from in_file to out_file * * * */

while (in_file != -1) {
int buf_len;

/* * * * Read next buffer of information * * * */

buf_len = read(in_file, buf[buf_index], xfer_size);

#ifdef COMPLETION_IN_HANDLER
if (rec_cnt) { /* will be >1 on all but first write... */

aiocb_t *wait_list = &a_write;

/* Wait until previous write completes */
aio_suspend(&wait_list,1,NULL);

} /* if (rec_cnt) */

#else

if (rec_cnt) { /* will be >1 on all but first write... */

/* previous write completed? If not, wait */
while (aio_error(&a_write) == EINPROGRESS) {

aiocb_t *wait_list = &a_write;
/*^^^*/

/* No timeout specified */
aio_suspend(&wait_list,1,NULL);
/* aio_suspend(1, &wait_list); */

/*^^^*/
}

/* * * * Update total bytes written to set new file offset * * * */

total += aio_return(&a_write);
} /* if (rec_cnt) */

#endif

Asynchronous Input and Output 7–13

Example 7–1: Using Asynchronous I/O (cont.)

/* * * * Check for end-of-file (won’t have filled buffer) * * */

if (buf_len <= 0)
break;

/* * * * Set buffer up for next write * * * */

a_write.aio_nbytes = buf_len;
a_write.aio_buf = buf[buf_index];

/* if file is opened for append, can ignore offset field */

a_write.aio_offset = total;
ret = aio_write(&a_write);
if (ret) { perror ("aio_write"); exit(ret); }

/* * * Update record count, and position to next buffer * * */

rec_cnt++;
buf_index ^= 1;

}

printf("total number of bytes written to output file = %d\n",total);

/* * * * Close files * * * */

close(in_file);
printf("Closed Input File\n");
close(out_file);
printf("Closed Output File\n");
printf("Copied: %d records, %d signals taken\n", rec_cnt, sigcnt);

}

7.4.2 Using the lio_listio Function

In Example 7–2, the input file is read synchronously to a specified number
of output files (asynchronously) using the specified transfer size from the
lio_listio function. After the list-directed I/O completes, it checks the
return status and value for the write to each file and continues in a loop
until the copy is complete.

Example 7–2: Using lio_listio in Asynchronous I/O

/*
* Command line to build the program:
* cc -o lio_copy lio_copy.c -non_shared -O0 -L/usr/ccs/lib \
* -laio -pthread
*/

/* * * * lio_copy.c * * * */

#include <unistd.h>
#include <aio.h>
#include <stdio.h>

7–14 Asynchronous Input and Output

Example 7–2: Using lio_listio in Asynchronous I/O (cont.)

#include <sys/types.h>
#include <sys/file.h>
#include <signal.h>
#include <errno.h>
#include <malloc.h>

#define FOR_EACH_FILE for (i = 0; i < out_cnt; i++)

#define BUF_CNT 2 /* number of buffers */

/* * * * ------------------ Main Routine ------------------- * * * */

main(int argc, char **argv)
{

register int i, rec_cnt = 0, out_cnt = 0;
char outname[128], temp[8];
int in_file, out_file[AIO_LISTIO_MAX], len;
typedef char *buf_p;
buf_p buf[BUF_CNT];
aiocb_t a_write[AIO_LISTIO_MAX], *wait_list[AIO_LISTIO_MAX];
size_t xfer_size;
int buf_index, total[AIO_LISTIO_MAX], ret;
struct sigevent lio_sigevent = {0,0};

/* * * * Check the number of input arguments * * * */

if (argc < 5) {
fprintf(stderr, "Usage: %s in_file out_file buffsz-in-kb

#-out-files\n", argv[0]);
exit(0);

}

/* * * * Open the input file * * * */

if ((in_file = open(argv[1], O_RDONLY)) == -1) {
perror(argv[1]);
exit(errno);

}
printf("\tOpened Input File %s\n", argv[1]);

/* * * * Open the output files * * * */

out_cnt = atoi(argv[4]);
if ((out_cnt <= 0) || (out_cnt > AIO_LISTIO_MAX)) {

fprintf(stderr, "Number of output files must be 1-%d.\n",
AIO_LISTIO_MAX);

exit(EINVAL);
}

outname[0] = ’\0’;
len = strlen(argv[2]);
strcpy(outname, argv[2]);

FOR_EACH_FILE {
sprintf(&outname[len], "%d", i);
/*
* If O_APPEND is added to flags, all writes will appear at
* end
*/
if ((out_file[i] = open(outname, O_WRONLY|O_CREAT, 0777))

== -1) {

Asynchronous Input and Output 7–15

Example 7–2: Using lio_listio in Asynchronous I/O (cont.)

perror(outname);
exit(errno);

}
printf("\tOpened output file %s\n", outname);

}

/* * * * Calculate the transfer size (# bufs * 1024) * * * */

xfer_size = atol(argv[3]) * 1024;

/* * * * Allocate buffers for file copy * * * */

for (buf_index = 0; buf_index < BUF_CNT; buf_index++) {
buf[buf_index] = (buf_p) malloc(xfer_size);
if (buf[buf_index] == NULL) {

perror("malloc");
exit(1);

}
}

buf_index = 0;

/* * * * Init the aio control blocks and wait list * * * */

FOR_EACH_FILE {
a_write[i].aio_fildes = out_file[i];
a_write[i].aio_lio_opcode = LIO_WRITE;
a_write[i].aio_sigevent.sigev_signo = 0;
wait_list[i] = &a_write[i];
total[i] = 0;

}

/* * * * Copy from in_file to out_file * * * */

while (in_file != -1) {
int buf_len;

/* * * * Read the next buffer of information * * * */

buf_len = read(in_file, buf[buf_index], xfer_size);

if (rec_cnt) { /* will be >1 on all but the first write... */

/* * * * Update the bytes written to set new offset * * * */

FOR_EACH_FILE {
errno = aio_error(&a_write[i]);
ret = aio_return(&a_write[i]);
if (ret == -1) {

perror("Write error");
exit(1);

} else {
total[i] += ret;

}
}

}

/* * * * Check for end-of-file (won’t have filled buffer) * * */

if (buf_len <= 0)
break;

7–16 Asynchronous Input and Output

Example 7–2: Using lio_listio in Asynchronous I/O (cont.)

/* * * * Set the buffer up for the next write * * * */

FOR_EACH_FILE {
a_write[i].aio_nbytes = buf_len;
a_write[i].aio_buf = buf[buf_index];
/* if opened for append, ignore offset field */
a_write[i].aio_offset = total[i];

}

ret = lio_listio(LIO_WAIT, wait_list, out_cnt, &lio_sigevent);
if (ret) /* report failure status, but don’t exit yet */

perror("lio_listio");

/* * * Update record count, and position to next buffer * * */

buf_index ^= 1;
rec_cnt++;

}

/* * * * Close the files * * * */

close(in_file);
printf("\tClosed input file\n");
FOR_EACH_FILE {

close(out_file[i]);
}
printf("\tClosed output files\n");
printf("Copied %d records to %d files\n", rec_cnt * out_cnt, out_cnt);

}

______________________ Note _______________________

Use of the printf function in this example is for illustrative
purposes (and potentially, debugging) only. You should avoid
using printf and any similar functions in production signal
handlers, because they can affect scheduling characteristics.

Asynchronous Input and Output 7–17

8
File Synchronization

By default, UNIX systems read from and write to a buffer cache that is kept
in memory, and avoid actually transferring data to disk until the buffer is
full or until the application calls a synchronization function to flush the
buffer cache. For general-purpose applications, this practice increases
performance by avoiding the relatively slow mechanical process of writing
to disk more often then necessary.

However, realtime applications sometimes require input and output
operations created specifically to support realtime requirements for
timeliness and predictability:

• Asynchronous I/O, which frees the application to perform other tasks
while input is written or read (see Chapter 7)

• Synchronized I/O, which performs a write or read operation and verifies
its completion before returning

Synchronized I/O is useful when the integrity of data and files is critical to
an application. Synchronized output assures that data that is written to a
device is actually stored there. Synchronized input assures that data that is
read from a device is a current image of data on that device.

Two levels of file synchronization are available:

• Data integrity

– Write operations: Data in the buffer is transferred to disk, along with
file system information necessary to retrieve the data.

– Read operations: Any pending write operations relevant to the data
being read complete with data integrity before the read operation
is performed.

• File integrity

– Write operations: Data in the buffer and all file system information
related to the operation are transferred to disk.

– Read operations: Any pending write operations relevant to the data
being read complete with file integrity before the read operation
is performed.

File Synchronization 8–1

Tru64 UNIX supports POSIX 1003.1b file synchronization for the UFS and
AdvFS file systems, as described in this chapter. However, use of the UFS
file system is recommended for better realtime performance.

8.1 How to Ensure Data or File Integrity

You can ensure data integrity or file integrity at specific times by using
function calls, or you can set file descriptor flags to force automatic file
synchronization for each read or write call associated with that file.

Use of synchronized I/O may degrade system performance; see Chapter 11.

8.1.1 Using Function Calls

You can choose to write to buffer cache as usual, and call functions explicitly
when you want the program to flush the buffer to disk. For instance, you
may want to use the buffer cache when a lot of I/O is occurring, and call
these functions when activity slows down. Two functions are available:

Function Description

fdatasync Flushes modified data only from the buffer cache, providing
operation completion with data integrity

fsync Flushes modified data and file control information from the
buffer cache, providing operation completion with file integrity

See the online reference pages for a complete description of these functions.

8.1.2 Using File Descriptors

If you want to write data to disk in all cases automatically, you can set file
descriptor flags to force this behavior instead of making explicit calls to
fdatasync or fsync.

You can use the following file descriptor flags with the open or fcntl
function:

Flag Description

O_DSYNC Forces data synchronization for each write operation. Example:

fd = open("my_file", O_RDWR|O_CREAT|O_DSYNC, 0666);

8–2 File Synchronization

Flag Description

O_SYNC Forces file and data synchronization for each write operation.
Example:

fd = open("my_file", O_RDWR|O_CREAT|O_SYNC, 0666);

O_RSYNC When either of the other two flags is in effect, forces the same file
synchronization level for each read as is in effect for each write.
Use of O_RSYNC has no effect in the absence of O_DSYNC or
O_SYNC. Examples:

fd = open("my_file", O_RDWR|O_CREAT|O_SYNC|O_RSYNC, 0666);
fd = open("my_file", O_RDWR|O_CREAT|O_DSYNC|O_RSYNC, 0666);

If both the O_DSYNC and O_SYNC flags are set using the open or fcntl
function, O_SYNC takes precedence.

___________________ Restrictions ___________________

• The file descriptor method for POSIX 1003.1b file
synchronization currently does not work for file truncation.
If you set up I/O synchronization by specifying flags to open
or fcntl, no synchronization occurs for file truncation
operations.

You can use the fsync and fdatasync functions, described
in Section 8.1.1, to explicitly synchronize file truncation
operations.

• If the fcntl function is called with the F_GETFL operation
requested, and the target file has the O_DSYNC file descriptor
set, the return mask incorrectly indicates O_SYNC rather
than O_DSYNC.

File Synchronization 8–3

9
Semaphores

POSIX 1003.1b semaphores provide an efficient form of interprocess
communication. Cooperating processes can use semaphores to synchronize
access to resources, most commonly shared memory. Semaphores can
also protect the following resources available to multiple processes from
uncontrolled access:

• Global variables, such as file variables, pointers, counters, and data
structures. Protecting these variables prevents simultaneous access by
more than one process, such as reading information as it is being written
by another process.

• Hardware resources, such as disk and tape drives. Hardware resources
require controlled access because simultaneous access can result in
corrupted data.

This chapter includes the following sections:

• Overview of Semaphores, Section 9.1

• The Semaphore Interface, Section 9.2

• Semaphore Example, Section 9.3

9.1 Overview of Semaphores

Semaphores are used to control access to shared resources by processes.
Counting semaphores have a positive integral value representing the
number of processes that can concurrently lock the semaphore.

There are named and unnamed semaphores. Named semaphores provide
access to a resource between multiple processes. Unnamed semaphores
provide multiple accesses to a resource within a single process or between
related processes. Some semaphore functions are specifically designed to
perform operations on named or unnamed semaphores.

The semaphore lock operation checks to see if the resource is available or is
locked by another process. If the semaphore’s value is a positive number, the
lock is made, the semaphore value is decremented, and the process continues
execution. If the semaphore’s value is zero or a negative number, the process
requesting the lock waits (is blocked) until another process unlocks the
resource. Several processes may be blocked waiting for a resource to become
available.

Semaphores 9–1

The semaphore unlock operation increments the semaphore value to indicate
that the resource is not locked. If a process is waiting, it is unblocked and
it accesses the resource. Each semaphore keeps count of the number of
processes waiting for access to the resource.

Semaphores are global entities and are not associated with any particular
process. In this sense, semaphores have no owners, making it impossible to
track semaphore ownership for any purpose, such as error recovery.

Semaphore protection works only if all the processes using the shared
resource cooperate by waiting for the semaphore when it is unavailable and
by incrementing the semaphore value when relinquishing the resource.
Because semaphores lack owners, there is no way to determine whether one
of the cooperating processes has become uncooperative. Applications using
semaphores must carefully detail cooperative tasks. All of the processes that
share a resource must agree on which semaphore controls the resource.

POSIX 1003.1b semaphores are persistent. The value of the individual
semaphore is preserved after the semaphore is no longer open. For example,
a semaphore may have a value of 3 when the last process using the
semaphore closes it. The next time a process opens that semaphore, it will
find that the semaphore has a value of 3. For this reason, cleanup operations
are advised when using semaphores.

Note that because semaphores are persistent, you should call the
sem_unlink function after a system reboot. After calling sem_unlink, call
the sem_open function to establish new semaphores.

The semaphore descriptor is inherited across a fork. A parent process can
create a semaphore, open it, and fork. The child process does not need
to open the semaphore and can close the semaphore if the application is
finished with it.

9.2 The Semaphore Interface

The following functions allow you to create and control P1003.1b semaphores:

Function Description

sem_close Deallocates the specified named semaphore

sem_destroy Destroys an unnamed semaphore

sem_getvalue Gets the value of a specified semaphore

sem_init Initializes an unnamed semaphore

sem_open Opens/creates a named semaphore for use by a process

sem_post Unlocks a locked semaphore

9–2 Semaphores

Function Description

sem_trywait Performs a semaphore lock on a semaphore only if it can lock
the semaphore without waiting for another process to unlock it

sem_unlink Removes a specified named semaphore

sem_wait Performs a semaphore lock on a semaphore

You create an unnamed semaphore with a call to the sem_init function,
which initializes a counting semaphore with a specific value. To create a
named semaphore, call sem_open with the O_CREAT flag specified. The
sem_open function establishes a connection between the named semaphore
and a process.

You lock and unlock semaphores with calls to the sem_wait, sem_trywait,
and sem_post functions. You use these functions for named and unnamed
semaphores. To retrieve the value of a counting semaphore, use the
sem_getvalue function.

When the application is finished with an unnamed semaphore, the
semaphore name is destroyed with a call to sem_destroy. To deallocate a
named semaphore, call the sem_close function. The sem_unlink function
removes a named semaphore. The semaphore is removed only when all
processes using the semaphore have deallocated it using the sem_close
function.

9.2.1 Creating and Opening a Semaphore

A call to the sem_init function creates an unnamed counting semaphore
with a specific value. If you specify a nonzero value for the pshared
argument, the semaphore can be shared between processes. If you specify the
value zero, the semaphore can be shared among threads of the same process.

The sem_open function establishes a connection between a named
semaphore and the calling process. Two flags control whether the semaphore
is created or only accessed by the call. Set the O_CREAT flag to create
a semaphore if it does not already exist. Set the O_EXCL flag and the
O_CREAT flag to indicate that the call to sem_open should fail if the
semaphore already exists.

Subsequent to creating a semaphore with either sem_init or sem_open,
the calling process can reference the semaphore by using the semaphore
descriptor address returned from the call. The semaphore is available in
subsequent calls to the sem_wait, sem_trywait, and sem_post functions,
which control access to the shared resource. You can also retrieve the
semaphore value by calls to sem_getvalue.

Semaphores 9–3

If your application consists of multiple processes that will use a named
semaphore to synchronize access to a shared resource, each of these
processes must first open the semaphore with a call to the sem_open
function. After the initial call to the sem_open function that creates the
semaphore, each cooperating process must also call the sem_open function
and specify the same semaphore name. If all cooperating processes are in
the same working directory, specifying just a name may be sufficient. If the
processes are contained in different working directories, you must specify a
full pathname. It is strongly recommended that a full pathname be used,
such as /tmp/mysem1. The directory must exist for the call to succeed.

On the first call to the sem_init or sem_open function, the semaphore is
initialized to the value specified in the call.

The following example initializes an unnamed semaphore with a value of
5, which can be shared among related processes:

#include <sys/types.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <semaphore.h>
...

sem_t mysem;
int pshared = TRUE;
unsigned int value = 5;
int sts;
...

sts = sem_init(&mysem, pshared, value);
if (sts) {
perror("sem_init() failed");

}

The following example creates a semaphore named /tmp/mysem with a
value of 3:

#include <sys/types.h>
#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
#include <semaphore.h>
#include <sys/stat.h>
...

sem_t *mysemp;

9–4 Semaphores

int oflag = O_CREAT;
mode_t mode = 0644;
const char semname[] = "/tmp/mysem"
unsigned int value = 3;
int sts;
...

mysemp = sem_open(semname, oflag, mode, value);
if (mysemp == (void *)-1) {
perror(sem_open() failed ");

}

To access a previously created semaphore, a process must call the sem_open
function using the name of the semaphore.

To determine the value of a previously created semaphore, use the
sem_getvalue function. Pass the semaphore and the location for storing
the value to the function; it returns the value of the semaphore specified
when the sem_init or sem_open function was called.

The name of a named semaphore remains valid until you remove the
semaphore with a call to the sem_unlink function.

9.2.2 Locking and Unlocking Semaphores

After you create the semaphore with a call to the sem_init or sem_open
function, you can use the sem_wait, sem_trywait, and sem_post functions
to lock and unlock the semaphore.

Using semaphores to share resources among processes works only if
processes unlock a resource immediately after they finish using it. As you
code your application, do not attempt to unlock a semaphore you did not
previously lock.

To lock a semaphore, you can use either the sem_wait or sem_trywait
function. If the semaphore value is greater than zero, the sem_wait function
locks the specified semaphore. If the semaphore value is less than or equal
to zero, the process is blocked (sleeps) and must wait for another process to
release the semaphore and increment the semaphore value.

To be certain that the process is not blocked while waiting for a semaphore
to become available, use the sem_trywait function. The sem_trywait
function will lock the specified semaphore if, and only if, it can do so without
waiting. That is, the specified semaphore must be available at the time of
the call to the sem_trywait function. If not, the sem_trywait function
returns a –1 and errno is set to EAGAIN.

Example 9–1 locks a semaphore by using the sem_trywait function.

Semaphores 9–5

Example 9–1: Locking a Semaphore

...
int oflag = 0; /* Open an existing semaphore;

do not create a new one */
...

mysemp = sem_open(semname, oflag, mode, value);
if (mysemp == (void *)-1) {
perror(sem_open() failed ");

}

sts = sem_trywait(mysemp);

if (sts == 0)
printf("sem_trywait() succeeded!\n");

else if (errno == EAGAIN)
printf("semaphore is locked\n");

else
perror("sem_trywait() failure");

The sem_post function unlocks the specified semaphore. Any process
with access to the semaphore can call the sem_post function and unlock
a semaphore. If more than one process is waiting for the semaphore, the
highest-priority process is allowed access to the semaphore first.

9.2.3 Priority Inversion with Semaphores

Process priority inversion can occur when you use a semaphore to lock a
resource shared by processes of different priorities. For example, if a running
process of low priority locks a semaphore to control access to a resource and
then a higher-priority process runs and requests access to the same resource,
the higher-priority process blocks and waits for the semaphore to be
unlocked. If the low-priority process is then preempted by a medium-priority
process, it cannot unlock the semaphore. The higher-priority process could
remain blocked indefinitely while lower-priority processes run in its place.

Because semaphores are global in nature and lack owners, they offer no
mechanism for priority inheritance. Semaphore locks are taken and released
without regard for requestor process priorities. Be careful when designing
the use of semaphores in your application.

9.2.4 Closing a Semaphore

When an application is finished using an unnamed semaphore, it should
destroy the semaphore with a call to the sem_destroy function.

9–6 Semaphores

For named semaphores, the application should first deallocate the
semaphore by having each cooperating process call the sem_close function,
which disassociates the semaphore name from the calling process. The
application then removes the named semaphore using the sem_unlink
function, which takes effect when all processes using the semaphore have
deallocated the semaphore with calls to sem_close. Or, instead of removing
the named semaphore, you can reopen the semaphore for use through a call
to the sem_open function. Because semaphores are persistent, the state of
the semaphore is preserved, even though the semaphore is closed. When you
reopen the semaphore, it will be in the state it was in when it was closed,
unless altered by another process.

As with other interprocess communication methods, you can set up a signal
handler to remove the semaphore as one of the tasks performed by the last
process in your application.

When the controlling process is finished using an unnamed semaphore,
remove the semaphore from memory as follows:

/*
* Removing unnamed semaphore
*/
...

sts = sem_destroy(&mysem);

When the controlling process is finished using a named semaphore, close
and unlink the semaphore as follows:

/*
* Closing named semaphore and then unlinking it
*/
...

sts = sem_close(mysemp);
sts = sem_unlink(semname);

9.3 Semaphore Example

It is important that two processes not write to the same area of shared
memory at the same time. Semaphores protect access to resources, such as
shared memory. Before writing to a shared-memory region, a process can
lock the semaphore to prevent another process from accessing the region
until the write operation is completed. When the process is finished with
the shared-memory region, the process unlocks the semaphore and frees the
shared-memory region for use by another process.

Semaphores 9–7

Example 9–2 consists of two programs, both of which open the
shared-memory object. The two processes, writer and reader, use
semaphores to ensure that they have exclusive, alternating access to a
shared memory region.

The writer.c program creates the semaphore with a call to the sem_open
function. The reader.c program opens the semaphore previously created
by the writer.c program. Because the writer.c program creates the
semaphore, writer.c must be executed before reader.c.

Example 9–2: Using Semaphores and Shared Memory

/*
** These examples use semaphores to ensure that writer and reader
** processes have exclusive, alternating access to the shared-memory region.
*/

/********** writer.c ***********/

#include <unistd.h>
#include <semaphore.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/fcntl.h>

char shm_fn[] = "my_shm";
char sem_fn[] = "my_sem";

/**** WRITER ****/

main(){
caddr_t shmptr;
unsigned int mode;
int shmdes, index;
sem_t *semdes;
int SHM_SIZE;

mode = S_IRWXU|S_IRWXG;

/* Open the shared-memory object */

if ((shmdes = shm_open(shm_fn,O_CREAT|O_RDWR|O_TRUNC, mode)) == -1) {
perror("shm_open failure");
exit();

}

/* Preallocate a shared-memory area */

SHM_SIZE = sysconf(_SC_PAGE_SIZE);

if(ftruncate(shmdes, SHM_SIZE) == -1){
perror("ftruncate failure");
exit();

}

if((shmptr = mmap(0, SHM_SIZE, PROT_WRITE|PROT_READ, MAP_SHARED,
shmdes,0)) == (caddr_t) -1){

perror("mmap failure");
exit();

9–8 Semaphores

Example 9–2: Using Semaphores and Shared Memory (cont.)

}

/* Create a semaphore in locked state */

sem_des = sem_open(sem_fn, O_CREAT, 0644, 0);

if(sem_des == (void*)-1){
perror("sem_open failure");
exit();

}

/* Access to the shared-memory area */

for(index = 0; index < 100; index++){
printf("write %d into the shared memory shmptr[%d]\n", index*2, index);
shmptr[index]=index*2;
}

/* Release the semaphore lock */

sem_post(semdes);
munmap(shmptr, SHM_SIZE);

/* Close the shared-memory object */

close(shmdes);

/* Close the Semaphore */

sem_close(semdes);

/* Delete the shared-memory object */

shm_unlink(shm_fn);
}

/***
***/

/********** reader.c ***********/

#include <sys/types.h>
#include <sys/mman.h>
#include <semaphore.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/fcntl.h>

char shm_fn[] = "my_shm";
char sem_fn[] = "my_sem";

/**** READER ****/

main(){
caddr_t shmptr;
int shmdes, index;
sem_t *semdes;
int SHM_SIZE;

/* Open the shared-memory object */

Semaphores 9–9

Example 9–2: Using Semaphores and Shared Memory (cont.)

SHM_SIZE = sysconf(_SC_PAGE_SIZE);

if ((shmdes = shm_open(shm_fn, O_RDWR, 0)) == -1) {
perror("shm_open failure");
exit();

}

if((shmptr = mmap(0, SHM_SIZE, PROT_WRITE|PROT_READ, MAP_SHARED,
shmdes,0)) == (caddr_t) -1){

perror("mmap failure");
exit();

}

/* Open the Semaphore */

semdes = sem_open(sem_fn, 0, 0644, 0);

if(semdes == (void*) -1){
perror("sem_open failure");
exit();

}

/* Lock the semaphore */

if(!sem_wait(semdes)){

/* Access to the shared-memory area */

for(index = 0; index < 100; index++)
printf("The shared memory shmptr[%d] = %d\n", index,shmptr[index]);

/* Release the semaphore lock */

sem_post(semdes);
}

munmap(shmptr, SHM_SIZE);

/* Close the shared-memory object */

close(shmdes);

/* Close the Semaphore */

sem_close(semdes);
sem_unlink(sem_fn);

}

9–10 Semaphores

10
Messages

Message queues work by exchanging data in buffers. Any number of
processes can communicate through message queues, regardless of whether
they are related; if a process has adequate access permission, it can send
or receive messages through the queue. Message notification can be
synchronous or asynchronous. Message queues can store multiple messages,
be accessed by multiple processes, be read in any order, and be prioritized
according to application needs.

This chapter includes the following sections:

• Message Queues, Section 10.1

• The Message Interface, Section 10.2

• Message Queue Examples, Section 10.3

10.1 Message Queues
The POSIX 1003.1b message-passing facilities provide a deterministic,
efficient means for interprocess communication (IPC). Realtime message
passing is designed to work with shared memory in order to accommodate
the needs of realtime applications to pass arbitrary amounts of data between
cooperating processes. Predictability is the primary emphasis behind the
design for realtime message passing.

Cooperating processes can send and receive messages by accessing
systemwide message queues. These message queues are accessed through
names that may be pathnames.

The maximum size of each message is defined by the system to optimize the
message sending and receiving functions. Message buffers are preallocated,
ensuring the availability of resources when they are needed.

If your application involves heavy message traffic, you can prioritize the
order in which processes receive messages by assigning a priority to the
message or by controlling the priority of the receiving process.

Asynchronous notification of the availability of a message on a queue allows
a process to do useful work while waiting to receive a message.

Message-passing operations that contribute to kernel overhead have been
eliminated in the realtime message queue interface. If your application

Messages 10–1

requires the ability to wait on multiple message queues simultaneously or to
broadcast a single message to multiple queues, you may need to write this
functionality into your application.

10.2 The Message Interface

The message queue interface is a set of structures and data that allows you
to use a message queue for sending and receiving messages. The message
queue is a linked list that serves as a holding place for messages being sent
to and received by processes sharing access to the message queue.

The following POSIX 1003.1b message queue functions allow you controlled
access to messaging operations on a message queue:

Function Description

mq_close Closes a message queue

mq_getattr Retrieves the attributes of a message queue

mq_notify Requests that a process be notified when a message
is available on a queue

mq_open Opens a message queue

mq_receive Receives a message from a queue

mq_send Sends a message to a queue

mq_setattr Sets the attributes of a message queue

mq_unlink Removes a message queue

General usage for message queues is as follows:

1. Get a message queue descriptor with a call to the mq_open function.

2. Send and receive messages with calls to the mq_send and mq_receive
functions.

3. Close the message queue with a call to the mq_close function.

4. Remove the message queue with a call to the mq_unlink function.

Data written to a message queue created by one process is available to all
processes that open the same message queue. Message queues are persistent;
once unlinked, their names and contents remain until all processes that have
opened the queue call the mq_close function. Child processes inherit the
message queue descriptor created by the parent process. When the message
queue is opened, the child process can read or write to it according to access
permissions. Unrelated processes can also use the message queue, but must
first call the mq_open function to establish the connection.

10–2 Messages

You can identify message queue attributes with a call to the mq_getattr
function. You can specify whether the message operation is blocking or
nonblocking by calling the mq_setattr function.

A call to the mq_receive function receives the oldest, highest-priority
message on the queue. If two or more processes are waiting for an incoming
message on the same queue, the process with the highest priority that has
been waiting the longest receives the next message.

Often message queues are created and used only while an application is
executing. The mq_unlink function removes (deletes) the message queue
and its contents, unless processes still have the queue open. The message
queue is deleted only when all processes using it have closed the queue.

10.2.1 Opening a Message Queue

To set up a message queue, first create a new message queue or open an
existing queue using the mq_open function. If a message queue of the
specified name does not already exist, a new message queue is allocated and
initialized. If one already exists, the mq_open function checks permissions.

A process can create and open message queues early in the life of the
application. Use the mq_open function to open (establish a connection to)
a message queue. After a process opens the message queue, each process
that needs to use it must call the mq_open function specifying the same
pathname.

The mq_open function provides a set of flags that prescribe the
characteristics of the message queue for the process and define access modes
for the message queue. Message queue access is determined by the OR of the
file status flags and access modes listed in Table 10–1.

Table 10–1: Status Flags and Access Modes for the mq_open Function
Flag Description

O_RDONLY Open for read access only

O_WRONLY Open for write access only

O_RDWR Open for read and write access

O_CREAT Create the message queue, if it does not already exist

O_EXCL When used with O_CREAT, create the message queue, if
it does not already exist; however, if a message queue of
the same name already exists, do not open it

O_NONBLOCK Determine whether a send or receive operation is
blocking or nonblocking

Messages 10–3

The first process to call the mq_open function should use the O_CREAT flag
to create the message queue, to set the queue’s user ID to that of the calling
process, and to set the queue’s group ID to the effective group ID of the calling
process. This establishes an environment whereby the calling process, all
cooperating processes, and child processes share the same effective group ID
with the message queue. All processes that subsequently open the message
queue must have the same access permission as the creating process.

Each process that uses a message queue must begin by calling the mq_open
function. This call can accomplish several objectives:

• Create and open the message queue, if it does not yet exist (specify the
O_CREAT flag).

• Open an existing message queue.

• Attempt to create and open the queue but fail if the queue already exists
(specify both the O_CREAT and O_EXCL flags).

• Open access to the queue for the calling process and establish a
connection between the queue and a descriptor. All threads within the
same process using the queue use the same descriptor.

• Specify the access mode for the process:

– Read only

– Write only

– Read/write

• Specify whether the process will block or fail when unable to send a
message (the queue is full) or receive a message (the queue is empty)
with the oflags argument.

The mode bit is checked to determine if the caller has permission for the
requested operation. If the calling process is not the owner and is not in
the group, the mode bits must be set for world access before permission
is granted. In addition, the appropriate access bits must be set before an
operation is performed. That is, to perform a read operation, the read bit
must be set.

For example, the following code creates a message queue and, if it does not
already exist, opens it for read and write access:

fd = mq_open("new_queue", (O_CREAT|O_EXCL|O_RDWR);

When a message queue is created, its name and resources are persistent.
It exists until the message queue is unlinked with a call to the mq_unlink
function and all other references to the queue are gone.

The message flag parameter is either 0 or O_NONBLOCK. If you specify
0, then a sending process sleeps if the specified queue is full and the

10–4 Messages

message cannot be sent. The process will sleep until other messages have
been removed from the queue and space becomes available. If you specify
O_NONBLOCK, the mq_send function returns immediately with an error
status.

Example 10–1 shows the code sequence to establish a connection to a
message queue descriptor.

Example 10–1: Opening a Message Queue

#include <unistd.h>
#include <sys/types.h>
#include <mqueue.h>
#include <fcntl.h>

main ()
int md;
int status;

/* Create message queue */

md = mq_open ("my_queue", O_CREAT|O_RDWR);

/*
* Code to close and unlink the message queue goes here
*/

status = mq_close(md); /* Close message queue */
status = mq_unlink("my_queue"); /* Unlink message queue */

Use the same access permissions that you would normally use on a call to
the file open function. If you intend to only read the queue, specify read
permission only on the mq_open function. If you intend to read and write to
the queue, open the queue with both read and write permissions.

When finished using a message queue, close the queue with the mq_close
function, and remove the queue by calling the mq_unlink function.

10.2.2 Sending and Receiving Messages

For an application in which the intended recipients of messages might be
ambiguous because they all use a single message queue, you can establish
multiple queues. In some cases, you may need to provide a separate queue for
each process that receives a message. Two processes that carry on two-way
communication between them normally require two message queues:

• Process X sends messages to queue A; process Y receives from it

• Process Y sends messages to queue B; process X receives from it

Messages 10–5

Use of a single queue by multiple processes could be appropriate for an
application that collects and processes data. Consider an application that
consists of five processes that monitor data points and a sixth process that
accumulates and interprets the data. Each of the five monitoring processes
could send information to a single message queue. The sixth process could
receive the messages from the queue, with assurance that it is receiving
information according to the specified priorities of the incoming messages, in
first-in/first-out order within each priority.

When a process receives a message from a queue, it removes that message
from the queue. Therefore, an application that requires one process to
send the same message to several other processes should choose one of the
following communication methods:

• Set up a message queue for each receiving process, and send each
message to each queue

• Communicate by using signals and shared memory

After you open a message queue, you can send messages to another process
using the mq_send function. The mq_send function takes four parameters:
the message queue descriptor, a pointer to a message buffer, the size of the
buffer, and the message priority. The read/write permissions are checked
along with the length of the message, the status of the message queue, and
the message flag. If all checks are successful, the message is added to the
message queue. If the queue is already full, the sending process can block
until space in the queue becomes available, or it can return immediately,
according to whether it set the O_NONBLOCK flag when it called the
mq_open function.

When a message has been placed on a queue, you can retrieve the message
with a call to the mq_receive function. The mq_receive function includes
four parameters: the message queue descriptor, a pointer to a buffer to hold
the incoming message, the size of the buffer, and the priority of the message
received (the priority is returned by the function). The size of the buffer
must be at least the size of the message queue’s size attribute.

As with the mq_send function, the read/write operation permissions are
checked on a call to the mq_receive function. If more than one process is
waiting to receive a message when a message arrives at an empty queue,
then the process with the highest priority that has been waiting the longest
is selected to receive the message.

When a process uses the mq_receive function to read a message from a
queue, the queue may be empty. The receiving process can block until a
message arrives in the queue, or it can return immediately, according to
the state of the O_NONBLOCK flag established with a preceding call to
the mq_open function.

10–6 Messages

10.2.3 Asynchronous Notification of Messages

A process that wants to read a message from a message queue has three
options:

• Set the queue to blocking mode and wait for a message to be received by
calling mq_receive

• Set the queue to nonblocking mode and call mq_receive multiple times
until a message is received

• Set the queue to nonblocking mode and call mq_notify specifying a
signal to be sent when the queue goes from empty to nonempty

The last option is a good choice for a realtime application. Use the
mq_notify function to register a request for asynchronous notification by
a signal when a message becomes available on a previously empty queue.
The process can then do useful work until a message arrives, at which
time a signal is sent according to the signal information specified in the
notification argument of the mq_notify function. After notification, the
process can call mq_receive to receive the message.

Only one notification request at a time is allowed per message queue
descriptor. The previous notification request is canceled when another signal
is sent; thus, the request must be reregistered by calling mq_notify again.

10.2.4 Prioritizing Messages

A process can control the relative priority of messages it sends to a specified
queue by setting the msg_prio parameter in the mq_send function.

If msg_prio is specified on the mq_send function, the message is inserted
into the message queue according to its priority relative to other messages
on the queue. A message with a larger numeric value (higher priority) is
inserted into the queue before messages with a lower numeric value. The
mq_receive function always returns the first message on the queue, so
if you assign higher priorities to messages of higher importance, you can
receive the most important messages first. If you assign lower priorities to
less important messages, you can delay delivery of the messages as more
important messages are sent. Messages of equal priority are inserted in a
first-in/first-out manner. The ability to assign priorities to messages on the
queue reduces the possibility of priority inversion in the realtime messaging
interface.

Messages 10–7

10.2.5 Using Message Queue Attributes

Use the mq_getattr function to determine the message queue attributes of
an existing message queue. The attributes are as follows:

Attribute Description

mq_flags The message queue flags

mq_maxmsg The maximum number of messages allowed

mq_msgsize The maximum message size allowed for the queue

mq_curmsgs The number of messages on the queue

The mq_curmsgs attribute describes the current queue status. If necessary,
call the mq_setattr function to reset the flags. The mq_maxmsg and
mq_msgsize attributes cannot be modified after the initial queue creation.
The mqueue.h header file contains information concerning systemwide
maximums and other limits pertaining to message queues.

10.2.6 Closing and Removing a Message Queue

Each process that uses a message queue should close its access to the queue
by calling the mq_close function before exiting. When all processes using
the queue have called this function, the software removes the queue.

A process can remove a message queue by calling the mq_unlink function.
However, if other processes still have the message queue open, the
mq_unlink function returns immediately and destruction of the queue is
postponed until all references to the queue have been closed.

10.3 Message Queue Examples
Example 10–2 creates a message queue and sends a loop of messages. The
message queue is created using O_CREAT.

Example 10–2: Using Message Queues to Send Data

/*
* test_send.c
*
* This test goes with test_receive.c.
* test_send.c does a loop of mq_sends,
* and test_receive.c does a loop of mq_receives.
*/
#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <time.h>
#include <sched.h>
#include <sys/mman.h>

10–8 Messages

Example 10–2: Using Message Queues to Send Data (cont.)

#include <sys/fcntl.h>
#include <signal.h>
#include <sys/rt_syscall.h>
#include <mqueue.h>
#include <errno.h>

#define PMODE 0666
extern int errno;

int main()
{
int i;
int status = 0;
mqd_t mqfd;
char msg_buffer[P4IPC_MSGSIZE];
struct mq_attr attr;
int open_flags = 0;
int num_bytes_to_send;
int priority_of_msg;

printf("START OF TEST_SEND \n");

/* Fill in attributes for message queue */
attr.mq_maxmsg = 20;
attr.mq_msgsize = P4IPC_MSGSIZE;
attr.mq_flags = 0;

/* Set the flags for the open of the queue.
* Make it a blocking open on the queue, meaning it will block if
* this process tries to send to the queue and the queue is full.
* (Absence of O_NONBLOCK flag implies that the open is blocking)
*
* Specify O_CREAT so that the file will get created if it does not
* already exist.
*
* Specify O_WRONLY since we are only planning to write to the queue,
* although we could specify O_RDWR also.
*/
open_flags = O_WRONLY|O_CREAT;

/* Open the queue, and create it if the receiving process hasn’t
* already created it.
*/
mqfd = mq_open("myipc",open_flags,PMODE,&attr);
if (mqfd == -1)

{
perror("mq_open failure from main");
exit(0);
};

/* Fill in a test message buffer to send */
msg_buffer[0] = ’P’;
msg_buffer[1] = ’R’;
msg_buffer[2] = ’I’;
msg_buffer[3] = ’O’;
msg_buffer[4] = ’R’;
msg_buffer[5] = ’I’;
msg_buffer[6] = ’T’;
msg_buffer[7] = ’Y’;
msg_buffer[8] = ’1’;
msg_buffer[9] = ’a’;

Messages 10–9

Example 10–2: Using Message Queues to Send Data (cont.)

num_bytes_to_send = 10;
priority_of_msg = 1;

/* Perform the send 10 times */
for (i=0; i<10; i++)

{
status = mq_send(mqfd,msg_buffer,num_bytes_to_send,priority_of_msg);
if (status == -1)

perror("mq_send failure on mqfd");
else

printf("successful call to mq_send, i = %d\n",i);
}

/* Done with queue, so close it */
if (mq_close(mqfd) == -1)

perror("mq_close failure on mqfd");

printf("About to exit the sending process after closing the queue \n");
}

Example 10–3 creates a message queue and receives a loop of messages. The
message queue is created using O_CREAT.

Example 10–3: Using Message Queues to Receive Data

/*
* test_receive.c
*
* This test goes with test_send.c.
* test_send.c does a loop of mq_sends,
* and test_receive.c does a loop of mq_receives.
*/
#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <time.h>
#include <sched.h>
#include <sys/mman.h>
#include <sys/fcntl.h>
#include <signal.h>
#include <sys/rt_syscall.h>
#include <mqueue.h>
#include <errno.h>

#define PMODE 0666
extern int errno;

int main()
{
int i;
mqd_t mqfd;
/* Buffer to receive msg into */
char msg_buffer[P4IPC_MSGSIZE];
struct mq_attr attr;
int open_flags = 0;

10–10 Messages

Example 10–3: Using Message Queues to Receive Data (cont.)

ssize_t num_bytes_received = 0;
msg_buffer[10] = 0; /* For printing a null terminated string for testing */

printf("START OF TEST_RECEIVE \n");

/* Fill in attributes for message queue */
attr.mq_maxmsg = 20;
attr.mq_msgsize = P4IPC_MSGSIZE;
attr.mq_flags = 0;

/* Set the flags for the open of the queue.
* Make it a blocking open on the queue,
* meaning it will block if this process tries to
* send to the queue and the queue is full.
* (Absence of O_NONBLOCK flag implies that
* the open is blocking)
*
* Specify O_CREAT so that the file will get
* created if it does not already exist.
*
* Specify O_RDONLY since we are only
* planning to write to the queue,
* although we could specify O_RDWR also.
*/
open_flags = O_RDONLY|O_CREAT;

/* Open the queue, and create it if the sending process hasn’t
* already created it.
*/
mqfd = mq_open("myipc",open_flags,PMODE,&attr);
if (mqfd == -1)

{
perror("mq_open failure from main");
exit(0);
};

/* Perform the receive 10 times */
for (i=0;i<10;i++)

{
num_bytes_received = mq_receive(mqfd,msg_buffer,P4IPC_MSGSIZE,0);
if (num_bytes_received == -1)

{
perror("mq_receive failure on mqfd");
}

else
printf("data read for iteration %d = %s \n",i,msg_buffer);

}

/* Done with queue, so close it */
if (mq_close(mqfd) == -1)

perror("mq_close failure on mqfd");

/* Done with test, so unlink the queue,
* which destroys it.
* You only need one call to unlink.
*/
if (mq_unlink("myipc") == -1)

perror("mq_unlink failure in test_ipc");

Messages 10–11

Example 10–3: Using Message Queues to Receive Data (cont.)

printf("Exiting receiving process after closing and unlinking queue \n");
}

10–12 Messages

11
Realtime Performance and System

Tuning

Chapter 1 describes the basic issues that concern a realtime application,
and what services a realtime operating system can provide to users to help
meet their realtime needs. It mainly describes issues within the scope of the
user’s application code itself, such as how to set priority and scheduling
priorities, how to lock down process memory, and how to use asynchronous
I/O. Chapter 1 also discusses the value of a preemptive kernel in reducing
the process preemption latency of a realtime application.

This chapter explores more deeply the latency issues of a system and
how they affect the realtime performance of an application. This involves
a greater understanding of the interaction of the application with the
underlying UNIX system, and with devices involved directly or indirectly
with the application. Section 11.2 outlines some ways that a user can
improve application performance.

11.1 Realtime Responsiveness

Realtime applications require a predictable response time to external events,
such as device interrupts. A typical realtime application involves:

• An interrupt-generating device

• An interrupt service routine that collects data from the device

• User-level code that processes the collected data

Realtime responsiveness is a characterization of how quickly an operating
system and an application, working together, can respond to external events.
One way of measuring responsiveness is through a system’s latency.
Latency is the time it takes for hardware and the operating system to
respond to external events, expressed as a delay time. Understanding the
causes of high latency and minimizing their effects is a key to successful
realtime program design, and is the focus of this chapter.

Two types of latency are described in the following sections:

• Interrupt service routine (ISR) latency

• Process dispatch latency (PDL)

Realtime Performance and System Tuning 11–1

11.1.1 Interrupt Service Routine Latency

A system’s interrupt service routine (ISR) latency is the elapsed time from
when an interrupt occurs until execution of the first instruction in the
interrupt service routine. The system must first recognize that an interrupt
has occurred, and then dispatch to the ISR code. If critical postprocessing is
done in the ISR, then the user must be concerned with completion time of the
ISR code, not just the time it takes to begin execution of its first instruction.
Thus there are two concerns: ISR latency and ISR execution. There are
factors that cause ISR latency and ISR execution to vary in duration, and
these factors make it more difficult to assign latency a deterministic value.

The most important factor is the relative interrupt priority level (IPL) at
which the ISR executes. When other ISRs of equal or greater interrupt
priority level are running at the time that the realtime device interrupts, the
realtime device ISR is blocked from running until the current ISR is finished.

Potentially, multiple ISRs could be waiting to execute that have an equal
or higher IPL at the time of the realtime interrupt, and all will hold off the
realtime ISR until they complete. In addition, after the realtime ISR begins
running, it can be preempted or held off by one or more devices of higher
IPL, and the realtime ISR will be delayed by the collective duration of these
ISRs. Thus, it is important to know the relative IPLs of all the devices that
could potentially interrupt during critical realtime processing, including
system-provided devices, such as a network driver or disk driver.

11.1.2 Process Dispatch Latency

Process Dispatch Latency (PDL) is the time it takes from when an interrupt
occurs until a process that was blocked waiting on the interrupt executes.
Process dispatch latency includes:

• ISR latency

• ISR execution time

• Time required to return from the ISR

• Time required for the context switch back to the process-level code that
is waiting on the interrupt

Many other factors can potentially increase the process dispatch latency of
a realtime application. Any process that is currently executing code that
holds a simple lock, that is funneled to the master process, or that has its
IPL raised, will not be preemptable by the realtime process and thus will
hold off the realtime process from running. (Note that a user process cannot
hold a simple lock, be funneled to the master process, or have its IPL raised,
except through a system call.) When the process is able to run, it must

11–2 Realtime Performance and System Tuning

compete against other processes in order to actually run, and the process
with the highest priority will run.

Note that process priority can affect PDL but cannot affect ISR latency. In
other words, no matter how high the priority of an application process, even
if it is in the realtime priority range, all ISRs that need servicing at the
time that the realtime device’s ISR needs servicing will be serviced before
process code can execute, no matter in what order or at what interrupt
priority level the ISRs run.

11.2 Improving Realtime Responsiveness

This section contains guidelines for improving realtime responsiveness.

Minimize Paging by Locking Down Memory

Be sure that your system has sufficient memory, and always lock down
memory in the user process to reduce paging. Paging will occur when
there are many threads and processes running on the system that do
not collectively fit into system memory, and must be paged in and out as
necessary. Application code and data that are locked in memory will not be
paged. Paging affects process dispatch latency because it executes code in
the kernel that is protected by simple locks, and thus cannot be preempted.
Note that certain system daemons are not locked in memory, so a secondary
effect is paging from those systems.

Turn On Kernel Preemption

Turn on kernel preemption and set your application code scheduling priority
to SCHED_FIFO. This is described in Chapter 2.

Manage Priorities

Always consider the process priority level of your application in terms of
relative importance in the overall system. You may need to use priorities
in the realtime range. This affects process dispatch latency when there are
other processes ready to run at the same time that the realtime application
is ready to run. The process with the highest priority that has been waiting
the longest among the waiting processes of that priority will run first.

Note, however, that always running in the realtime priority range is not
necessarily what you should do. If you need to interact with system services
that have threads or processes associated with them, such as the network,
you need to run at a priority at or below the priority of those threads or
processes, as well as at or below the priority of anything on which those
threads or processes depend.

Realtime Performance and System Tuning 11–3

The kernel contains multiple threads. The purpose of these threads is to
perform activities that have the potential of blocking, and thus serve as the
delivery mechanism of information between ISRs and user processes. These
kernel threads do not have much of the state information that processes
have.

Kernel threads use the first-in/first-out scheduling policy, and are scheduled
along with POSIX processes. The kernel sets priorities as Mach priorities,
which are the inverse of POSIX priorities: 0 is the highest-priority Mach
thread and 63 is the lowest. Under POSIX, 64 is the highest priority and
0 is the lowest.

You can use the ps command to display thread priorities. Because the
ps program predates the use of threads, its ability to display information
clearly about threads is limited. The following example shows an example of
using the command ps axm -o L5FMT,psxpri to display L5FMT format
and append the POSIX priority field:

% ps axm -o L5FMT,psxpri
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD PPR
3 R < 0 0 0 0.0 32 -12 0 3.4M * ?? 05:02:40 kernel idle 31

R N 0.0 63 19 - 0:00.00 0
U < 0.0 38 -6 malloc_ 0:00.51 25
U < 0.0 32 -12 402cb0 0:49.47 31
U < 0.0 32 -12 402eac 0:00.00 31
S < 0.0 33 -11 netisr 05:01:23 30
U < 0.0 32 -12 3e3f18 0:00.00 31
U < 0.0 38 -6 4c3b80 0:00.00 25
U 0.0 42 0 ubc_dir 0:00.52 21
U < 0.0 37 -7 4c2678 0:00.01 26
U < 0.0 37 -7 4c2680 0:03.77 26
U < 0.0 38 -6 4c33b0 0:12.69 25
U < 0.0 32 -12 4e36d8 0:00.01 31
U < 0.0 37 -7 4e36d8 0:00.12 26
U < 0.0 37 -7 4ba2d8 0:00.00 26
U < 0.0 38 -6 4e3078 0:00.00 25
U < 0.0 42 -2 24ce30 0:00.03 21
I 0.0 42 0 nfsiod_ 0:01.49 21
I 0.0 42 0 nfsiod_ 0:01.65 21
I 0.0 42 0 nfsiod_ 0:01.82 21
I 0.0 42 0 nfsiod_ 0:00.61 21
I 0.0 42 0 nfsiod_ 0:01.71 21
I 0.0 44 0 nfsiod_ 0:01.26 19
I 0.0 42 0 nfsiod_ 0:01.78 21

80048001 I 0 1 0 0.0 44 0 0 40K pause ?? 0:03.12 init 19
8001 IW 0 3 1 0.0 44 0 0 0K sv_msg_ ?? 0:00.12 kloadsrv 19
8001 S 0 17 1 0.0 44 0 0 48K pause ?? 03:58:06 update 19
8001 I 0 81 1 0.0 44 0 0 120K event ?? 0:02.64 syslogd 19
8001 IW 0 83 1 0.0 42 0 0 0K event ?? 0:00.03 binlogd 21
8001 S 0 135 1 0.0 44 0 0 80K event ?? 8:13.21 routed 19
8001 S 0 226 1 0.0 44 0 0 104K event ?? 8:25.31 portmap 19
8001 IW 0 234 1 0.0 44 0 0 0K event ?? 0:00.21 ypbind 19
.
.
.

You can use the dbx command from a root account to display more
information about kernel threads, as follows:

dbx -k /vmunix
(dbx) set $pid=0
(dbx) tlist [shows kernel threads]
(dbx) tset thread-name;t [shows which routine a thread is running]
(dbx) p thread->sched_pri [shows Mach priority for the current thread]

11–4 Realtime Performance and System Tuning

The following example shows use of the dbx command:
dbx -k /vmunix
dbx version 3.11.8
Type ’help’ for help.

stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available

warning: Files compiled -g3: parameter values probably wrong
(dbx) set $pid=0
(dbx) tlist
thread 0xfffffc0003fd1be8 stopped at [thread_run:2388 ,0xfffffc00002a2560] Source not available
thread 0xfffffc0003fd6000 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd62c0 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd6580 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd6dc0 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd7080 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd7340 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd7600 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd78c0 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd7b80 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6a000 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6a2c0 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6a580 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6a840 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6ab00 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6adc0 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003fd1950 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6b080 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6b340 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6b600 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6b8c0 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0003f6bb80 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
thread 0xfffffc0000926000 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
(dbx) tset 0xfffffc0003f6bb80;t
thread 0xfffffc0003f6bb80 stopped at [thread_block:2020 ,0xfffffc00002a1da0] Source not available
> 0 thread_block() ["/usr/sde/osf1/build/ptos.bl8/src/kernel/kern/sched_prim.c":2017,

0xfffffc00002a1d9c]
1 async_io_thread(0x0, 0x0, 0x0, 0x0, 0x0) ["../../../../src/kernel/nfs/nfs_vnodeops.c":2828,

0xfffffc00002f4898]
(dbx) p thread->sched_pri
44

Manage Physical Memory

By default, the parameter ubc_maxpercent in the file /sys/conf/param.c
is set to 100. That means that up to 100 percent of physical memory can be
consumed by the Unified Buffer Cache (UBC) for buffering file data. Some
systems perform better when not all physical memory is allowed to be taken
by the UBC.

For improved realtime responsiveness, change this the value of
/sys/conf/param.c to between 50 and 80, depending on the amount of
file system activity done on the system. This can improve system realtime
latency, because when the UBC has consumed its maximum allocation of
memory for buffering file data, the least-recently used buffers must be
flushed to disk if they are modified. Flushing these buffers is done with a
simple lock held, and therefore can affect process dispatch latency. The more
memory that the UBC is allowed to use before flushing, the longer it will
take to perform the flushing. Lowering the value of the ubc_maxpercent
parameter will cause the flushing to occur more frequently but take less time.

Realtime Performance and System Tuning 11–5

Write Effective Device Drivers

When writing device drivers, follow these guidelines:

• Avoid holding locks for long periods

Holding a lock prevents context switches from occurring.

• Avoid funneling

Funneled device drivers take a lock upon entry.

• Keep interrupt service routines brief

Consider use of a kernel thread to do ISR postprocessing. While an ISR
is executing, other interrupts of equal or lower IPL are delayed, and no
process can run until all ISR activity is completed. Consider use of the
rt_post_callout function for ISR postprocessing that needs to execute
before any process code, but after any ISRs. See System Configuration
Supplement: OEM Platforms or the Tru64 UNIX Device Driver Kit
documentation (available separately from the base operating system) for
more information about the rt_post_callout function.

Avoid Configuring Peripheral Devices in the System

Use devices with care that could interfere with realtime responsiveness,
such as:

• The network driver

Do not configure the network driver into your system if it is not a
necessary part of your realtime application. If it is necessary, then be
sure that it is used only in postprocessing and not during critical phases
of your application, when you are attempting to minimize latency.

• The disk driver

Be sure that postprocessing data is written to permanent storage during
noncritical sections of your application and that all data is properly
flushed and synchronized to disk at appropriate times. See Chapter 8
for more information about synchronized I/O.

In general, keep all peripheral devices that can cause spurious interrupts out
of the configuration of the most critical systems. Other devices can possibly
cause interrupt latency as well as bus contention with the critical devices. If
other devices are a necessary part of the system, analyze the interrupt rate
and attempt to avoid interrupt overload on the system.

Consider Use of Symmetrical Multiprocessing

Consider a symmetrical multiprocessing (SMP) system as a possible means
of improving realtime responsiveness. You can divide the application across
multiple processors using the runon command.

11–6 Realtime Performance and System Tuning

A
Tru64 UNIX Realtime Functional Summary

This appendix summarizes the functions that are of particular interest to
realtime application developers. The source of these functions ranges from
System V to POSIX 1003.1 and POSIX 1003.1b. The tables given in this
appendix serve as a guide in application development, but you may need to
consult the online reference pages for additional information or pointers to
additional functions and commands.

The function tables are arranged according to the following categories:

• Process Control Functions, Table A–1

• P1003.1b Priority Scheduling Functions, Table A–2

• P1003.1b Clock Functions, Table A–3

• Date and Time Conversion Functions, Table A–4

• P1003.1b Timer Functions, Table A–5

• BSD Clock and Timer Functions, Table A–6

• P1003.1b Memory-Locking Functions, Table A–7

• System V Memory-Locking Function, Table A–8

• P1003.1b Asynchronous I/O Functions, Table A–9

• POSIX Synchronized I/O Functions, Table A–10

• BSD Synchronized I/O Function, Table A–11

• P1003.1b Message Functions, Table A–12

• P1003.1b Shared-Memory Functions, Table A–13

• P1003.1b Semaphore Functions, Table A–14

• P1003.1b Realtime Signal Functions, Table A–15

• Signal Control and Other Signal Functions, Table A–16

• sigsetops Primitives, Table A–17

• Process Ownership Functions, Table A–18

• Input and Output Functions, Table A–19

• Device Control Functions, Table A–20

• System Database Functions, Table A–21

Tru64 UNIX Realtime Functional Summary A–1

Table A–1: Process Control Functions
Function Purpose

alarm Sends the calling process a SIGALRM signal after
a specified number of seconds

_exit Terminates the calling process

exec Runs a new image, replacing the current running image

fork Creates a new process

getenv Reads an environment list

isatty Verifies whether a file descriptor is associated with a terminal

kill Sends a signal to a process or a group of processes

malloc Allocates memory

pause Suspends the calling process until a signal of a
certain type is delivered

sleep Suspends the current process either for a specified period
or until a signal of a certain class is delivered

sysconf Gets the current value of a configurable system limit or option

uname Returns information about the current state of
the operating system

wait Lets a parent process get status information for
a child that has stopped, and delays the parent
process until a signal arrives

waitpid Lets a parent process get status information for a specific
child that has stopped and delays the parent process until a
signal arrives from that child or that child terminates

Table A–2: P1003.1b Priority Scheduling Functions
Function Purpose

sched_getscheduler Returns the scheduling policy of a
specified process

sched_getparam Returns the scheduling priority of a
specified process

sched_get_priority_max Returns the maximum priority allowed
for a scheduling policy

sched_get_priority_min Returns the minimum priority allowed
for a scheduling policy

sched_rr_get_interval Returns the current quantum for the
round-robin scheduling policy

A–2 Tru64 UNIX Realtime Functional Summary

Table A–2: P1003.1b Priority Scheduling Functions (cont.)

Function Purpose

sched_setscheduler Sets the scheduling policy and priority
of a specified process

sched_setparam Sets the scheduling priority of a
specified process

sched_yield Yields execution to another process (P1003.1c)

Table A–3: P1003.1b Clock Functions
Function Purpose

clock_getres Returns the resolution of the specified clock

clock_gettime Returns the current value for the specified clock

clock_settime Sets the specified clock to the specified value

Table A–4: Date and Time Conversion Functions
Function Purpose

asctime Converts time units (hours, minutes, and seconds)
into a 26-character string

ctime Converts a time in seconds since the Epoch to an ASCII
string in the form generated by asctime

difftime Computes the difference between two calendar times
(time1–time0) and returns the difference expressed in seconds

gmtime Converts a calendar time into time units, expressed as GMT

localtime Converts a time in seconds since the Epoch into time units

mktime Converts the time units in the tm structure pointed to
by timeptr into a calendar time value with the same
encoding as that of the values returned by time

tzset Sets the external variable tzname, which contains
current time zone names

Table A–5: P1003.1b Timer Functions
Function Purpose

nanosleep Causes the calling process to suspend execution
for a specified period of time

timer_create Returns a unique timer ID used in subsequent calls to
identify a timer based on the systemwide clock

timer_delete Removes a previously allocated, specified timer

Tru64 UNIX Realtime Functional Summary A–3

Table A–5: P1003.1b Timer Functions (cont.)

Function Purpose

timer_getoverrun Returns the timer expiration overrun count for
the specified timer

timer_gettime Returns the amount of time before the specified timer
is due to expire and the repetition value

timer_settime Sets the value of the specified timer to either an offset from
the current clock setting or an absolute value

Table A–6: BSD Clock and Timer Functions
Function Purpose

getitimer Returns the amount of time before the timer expires
and the repetition value

gettimeofday Gets the time of day

setitimer Sets the value of the specified timer

settimeofday Sets the time of day

Table A–7: P1003.1b Memory-Locking Functions
Function Purpose

mlock Locks a specified region of a process’s address space

mlockall Locks all of a process’s address space

munlock Unlocks a specified region of a process’s address space

munlockall Unlocks all of a process’s address space

Table A–8: System V Memory-Locking Function
Function Purpose

plock Locks and unlocks a process, text, or data in memory

Table A–9: P1003.1b Asynchronous I/O Functions
Function Purpose

aio_cancel Cancels one or more requests pending against
the file descriptor

aio_error Returns the error status of a specified operation

aio_fsync Asynchronously writes system buffers containing a file’s
modified data to permanent storage

aio_read Initiates a read request on the specified file descriptor

A–4 Tru64 UNIX Realtime Functional Summary

Table A–9: P1003.1b Asynchronous I/O Functions (cont.)

Function Purpose

aio_return Returns the status of a completed operation

aio_suspend Suspends the calling process until at least one of the
specified requests has completed

aio_write Initiates a write request to the specified file descriptor

lio_listio Initiates a list of requests

Table A–10: POSIX Synchronized I/O Functions
Function Purpose

fcntl Controls operations on files and memory objects

fdatasync Flushes modified data only from the buffer cache, providing
operation completion with data integrity

fsync Flushes modified data and file control information from the
buffer cache, providing operation completion with file integrity

Table A–11: BSD Synchronized I/O Function
Function Purpose

sync Updates all file systems — all information in memory
that should be on disk is written out

Table A–12: P1003.1b Message Functions
Function Purpose

mq_close Closes a message queue

mq_getattr Retrieves the attributes of a message queue

mq_notify Requests that a process be notified when a message
is available on a queue

mq_open Opens a message queue

mq_receive Receives a message from the queue

mq_send Sends a message to a queue

mq_setattr Sets the attributes of a message queue

mq_unlink Removes a message queue

Tru64 UNIX Realtime Functional Summary A–5

Table A–13: P1003.1b Shared-Memory Functions
Function Purpose

shm_open Opens a shared-memory object, returning a file descriptor

shm_unlink Removes the name of the shared-memory object

Table A–14: P1003.1b Semaphore Functions
Function Purpose

sem_close Deallocates the specified named semaphore

sem_destroy Destroys an unnamed semaphore

sem_getvalue Gets the value of a specified semaphore

sem_init Initializes an unnamed semaphore

sem_open Opens/creates a named semaphore for use by a process

sem_post Unlocks a locked semaphore

sem_trywait Performs a semaphore lock on a semaphore only if it can lock
the semaphore without waiting for another process to unlock it

sem_unlink Removes a specified named semaphore

sem_wait Performs a semaphore lock on a semaphore

Table A–15: POSIX 1003.1b Realtime Signal Functions
Function Purpose

sigaction Specifies the action a process takes when a par-
ticular signal is delivered

sigqueue Sends a signal, plus identifying information, to a process

sigtimedwait Waits for a signal for the specified amount of time
and, if the signal is delivered within that time, returns
the signal number and any identifying information
the signaling process provided

sigwaitinfo Waits for a signal and, upon its delivery, returns
the signal number and any identifying information
the signaling process provided

Table A–16: Signal Control and Other Signal Functions
Function Purpose

signal Changes the action of a signal

sigpending Returns a signal set that represents those signals that are
blocked from delivery to the process but are pending

sigprocmask Sets the process’s current blocked signal mask

A–6 Tru64 UNIX Realtime Functional Summary

Table A–16: Signal Control and Other Signal Functions (cont.)

Function Purpose

sigsetops Manipulates signal sets

sigsuspend Replaces the process’s current blocked signal mask, waits
for a signal, and, upon its delivery, calls the handler
established for the signal and returns

sigwait Suspends a calling thread until a signal arrives

Table A–17: sigsetops Primitives
Function Purpose

sigaddset Adds a signal to the signal set

sigdelset Removes a signal from the signal set

sigemptyset Initializes a signal set such that all signals are excluded

sigfillset Initializes a signal set such that all signals are included

sigismember Tests whether a signal is a member of the signal set

Table A–18: Process Ownership Functions
Function Purpose

geteuid Returns the effective user ID of the calling process

getegid Returns the effective group ID of the calling process

getgid Returns the real group ID of the calling process

getpgrp Returns the process group ID of the calling process

getpid Returns the process ID of the calling process

getppid Returns the process ID of the parent of the calling process

getuid Returns the real user ID of the calling process

setgid Sets the group ID of the calling process

setsid Creates a new session, for which the calling process
is the session leader

setuid Sets the user ID of the calling process

Table A–19: Input and Output Functions
Function Purpose

close Closes a file

dup Duplicates a file descriptor

dup2 Duplicates a file descriptor

Tru64 UNIX Realtime Functional Summary A–7

Table A–19: Input and Output Functions (cont.)

Function Purpose

fileno Retrieves a file descriptor

lseek Moves a pointer to a record within a file

mkfifo Creates fifo special files

open Opens a file

pipe Creates an interprocess channel

read Reads the specified number of bytes from a file

write Writes the specified number of bytes to a file

Table A–20: Device Control Functions
Function Purpose

cfgetispeed Retrieves the input baud rate for a terminal

cfgetospeed Retrieves the output baud rate for a terminal

cfsetispeed Sets the input baud rate for a terminal

cfsetospeed Sets the output baud rate for a terminal

isatty Verifies whether a file descriptor is associated with a terminal

tcdrain Causes a process to wait until all output has been transmitted

tcflow Suspends or restarts the transmission or reception of data

tcflush Discards data that is waiting to be transmitted

tcgetattr Retrieves information on the state of a terminal

tcsendbreak Sends a break character for a specified amount of time

tcsetattr Applies a set of attributes to a terminal

Table A–21: System Database Functions
Function Purpose

getgrgid Returns group information when passed a group ID

getgrnam Returns group information when passed a group name

getpwnam Returns user information when passed a user name

getpwuid Returns user information when passed a user ID

A–8 Tru64 UNIX Realtime Functional Summary

Index

A
access permission

memory objects, 3–4
message queues, 10–5

aio_cancel function, 7–4, 7–8, A–4
AIO_CANCELED status, 7–8
aio_error function, 7–3, 7–4, 7–5,

7–7, 7–9, A–4
aio_fsync function, 7–9, A–4
AIO_NOTCANCELED status, 7–8
aio_read function, 5–17, 7–3, 7–4,

7–5, 7–9, A–4
aio_return function, 7–3, 7–5, 7–7,

7–9, A–4
aio_sigevent member, 7–9
aio_suspend function, 7–4, 7–5,

7–8, 7–9, A–4
aio_sync function, 7–5
aio_write function, 5–17, 7–3, 7–4,

7–5, 7–9, A–4
aiocb structure, 7–2, 7–5, 7–6, 7–8
alarm function, 6–7, A–1
ALL_DONE status, 7–8
asctime function, 6–5, A–3
asynchronous I/O, 1–4, 1–10, 7–1

blocking, 7–9
canceling, 7–8
data structures, 7–2
example, 7–10
example using lio_listio, 7–14
functions, 7–4
identifying the location, 7–2
list-directed, 7–6
raw devices, 7–10
return values, 7–7

signals, 1–10, 7–3
specifying a signal, 7–3
status, 7–7
summary, 7–4
using signals, 5–17

asynchronous I/O libraries
compiling with, 1–21, 7–10
linking, 1–21, 7–10

C
cfgetispeed function, A–8
cfgetospeed function, A–8
cfsetispeed function, A–8
cfsetospeed function, A–8
clock_getres function, 6–2, A–3
clock_gettime function, 6–2, 6–3,

6–4, A–3
CLOCK_REALTIME

granularity, 6–2
resolution, 6–2

CLOCK_REALTIME clock, 6–2
clock_setdrift function,

non-POSIX, 6–4
clock_settime function, 6–2, 6–3,

6–4, A–3
clocks, 1–9, 6–1

resolution, 6–8
returning, 6–8
setting, 6–4, 6–8
systemwide, 6–2
using with timers, 6–15

close function, 7–5, 7–7, A–7
compiling

in a POSIX environment, 1–18

Index–1

with asynchronous I/O libraries,
1–21, 7–10

with the realtime library, 1–19
ctime function, 6–5, 6–8, A–3

D
data integrity, 8–1
data structures

for asynchronous I/O, 7–2
for system clock, 6–8
for timers, 6–8
itimerspec, 6–8, 6–9
timers, 6–8
timespec, 6–8, 6–9

difftime function, 6–5, A–3
drift rate

and timers, 6–4
driver programs

viewing passes, 1–20
dup function, 3–7, A–7
dup2 function, A–7

E
Epoch, 6–2
errno function, 7–7
exec function, 2–16, 4–2, 4–4, 6–7,

6–11, A–1
_exit function, 7–5, 7–7, A–1

F
fchmod function, 3–7, 3–8
fcntl function, 3–7, 3–8, A–5
fdatasync function, A–5
file integrity, 8–1
fileno function, A–7
first-in/first-out scheduling, 2–5,

2–6, 2–7
fixed-priority scheduling, 1–7,

2–5, 2–6
flock function, 3–7

fork function, 4–2, 6–11, 7–5, 7–7,
A–1
with priorities, 2–16

fstat function, 3–7, 3–8
fsync function, A–5
ftruncate function, 3–7

G
getegid function, A–7
getenv function, A–1
geteuid function, A–7
getgid function, A–7
getgrgid function, A–8
getgrnam function, A–8
getitimer function, A–4
getpgrp function, A–7
getpid function, 2–16, A–7
getppid function, 2–16, A–7
getpriority function, 2–11
getpwnam function, A–8
getpwuid function, A–8
getrlimit function, 4–4
gettimeofday function, A–4
getuid function, 2–19, A–7
GID, changing priority, 2–19
GMT, 6–2
gmtime function, 6–5, A–3
granularity

CLOCK_REALTIME, 6–2
Greenwich Mean Time (GMT), 6–2

H
.h files

(See header files)
hardware exception, 5–1
hardware interrupts, 2–12

and priorities, 2–14
header files

conforming POSIX applications,
1–19

limits.h, 6–12

Index–2

mqueue.h, 10–8
sched.h, 2–9, 2–14
signal.h, 5–7, 5–8, 5–17, 6–12,

7–3
sys/mman.h, 4–4
time.h, 6–2, 6–5, 6–8, 6–12
unistd.h, 1–19

I
I/O

(See asynchronous I/O,
synchronized I/O)

integrity
of data and files, 8–2

interprocess communication,
1–11

interrupt service routine (ISR)
latency, 11–2

IPC
(See memory-mapped files,

messages, semaphores,
shared memory, signals)

isatty function, A–1, A–8
ISR latency, 11–2
it_interval member, itimerspec,

6–9, 6–13
it_value member, itimerspec, 6–9,

6–13
itimerspec structure, 6–8, 6–9,

6–12, 6–13

J
job control, 5–1

K
kernel

accessing, 1–18
installing, 1–18

nonpreemptive, 1–4, 1–5
preemptive, 1–4, 1–5

kernel-mode preemption, 1–4
kill function, 5–2, 5–5, A–1

L
latency

comparing, 1–6
interrupt service routine (ISR),

11–2
ISR, 11–2
memory locking, 1–9, 4–1
nonpreemptive kernel, 1–5
PDL, 11–2
preemption, 1–5
preemptive kernel, 1–5
process dispatch latency (PDL),

11–2
reducing, 1–9

libaio library, 1–20
libaio_raw library, 7–10
librt library, 1–19, 1–21
limits.h header file, 6–12
linking

asynchronous I/O libraries, 1–21,
7–10

realtime libraries, 1–19, 1–20,
1–21

specifying a search path, 1–20
lio_listio function, 5–17, 7–3, 7–4,

7–6, 7–7, 7–8, 7–9, A–4
and signals, 7–6
example, 7–14

LIO_NOWAIT mode, 7–6
LIO_WAIT mode, 7–6
list-directed I/O, 7–6
localtime function, 6–4, 6–5, A–3
locking memory, 4–2

entire process, 4–6
region, 4–3

Index–3

shared, 3–9
lseek function, 7–4, A–7

M
malloc function, 4–5, 4–6, A–1
MCL_CURRENT flags, 4–6
MCL_FUTURE flags, 4–6
memory alignment, example, 4–5
memory locking, 1–4, 1–9, 4–1

across a fork, 4–2
across an exec, 4–2
and paging, 4–1
example, 4–7
realtime requirements, 4–1
removing locks, 4–4
specifying a range, 4–3
specifying all, 4–3

memory object
locking example, 3–9

memory unlocking
example, 4–7

memory-mapped files, 3–1
controlling, 3–8
locking, 3–7
mapping, 3–4
overview, 3–1
unmapping, 3–4

message queue, 10–1, 10–2
(See also messages)
access permission, 10–5
closing, 10–8
creating, 10–3
opening, 10–3
opening example, 10–5
removing, 10–8
setting attributes, 10–8

messages, 1–11, 10–1
creating, 10–2
functions, 10–2
overview, 10–1
prioritizing, 10–2, 10–7
receiving, 10–5, 10–6

sending, 10–4, 10–5, 10–6
using queues to receive data, 10–10
using queues to send data, 10–8
using queues, examples, 10–8,

10–10
using shared memory, 10–6
using signals, 10–6
using the interface, 10–2, 10–3

mkfifo function, A–7
mktime function, 6–5, A–3
mlock function, 3–9, 4–2, 4–3,

4–5, A–4
example, 4–7

mlockall function, 3–9, 4–2, 4–3,
4–6, A–4
example, 4–7
MCL_CURRENT flag, 4–6
MCL_FUTURE flag, 4–6

mmap function, 3–2, 3–4, 3–5
mprotect function, 3–2, 3–8
mq_close function, 10–2, 10–8,

A–5
mq_getattr function, 10–2, 10–8,

A–5
mq_notify function, 5–17, 10–2,

A–5
mq_open function, 10–2, 10–3,

10–4, 10–6, A–5
mq_receive function, 10–2, 10–3,

10–6, A–5
mq_send function, 10–2, 10–4,

10–6, A–5
mq_setattr function, 10–2, A–5
mq_unlink function, 10–2, 10–8,

A–5
mqueue.h header file, 10–8
msync function, 3–2, 3–8
munlock function, 4–2, 4–3, 4–4,

4–5, A–4
example, 4–7

munlockall function, 4–2, 4–3,
4–4, A–4
example, 4–7

Index–4

munmap function, 3–2, 3–4

N
nanosleep function, 1–9, 1–13,

6–8, 6–15, A–3
effect on signals, 6–15

nice function, 2–6, 2–11, 2–15
and realtime, 2–7

nice interface, 1–7, 2–10, 2–11
default priority, 2–10
priorities, 2–10

nonblocking I/O
(See asynchronous I/O)

nonpreemptive kernel
latency, 1–5

O
O_CREAT flag

with messages, 10–8, 10–10
O_NONBLOCK flag

with messages, 10–4
open function, 7–1, 7–5, 7–6, A–7

P
page size

determining, 4–4
paging, 4–1
pause function, A–1
PDL latency, 11–2
per-process timers

(See timers)
performance and system tuning,

11–1
PID in process scheduling, 2–16
pipe function, A–7
plock function, A–4
policy, setting scheduling, 2–20
portability of timers, 6–1
POSIX

run-time libraries, 1–17
Tru64 UNIX, 1–18

POSIX environment, 1–16
compiling, 1–18

POSIX portability, 2–17, 6–1
_POSIX_C_SOURCE symbol, 1–18
preemption latency, 1–5
preemptive kernel, 1–4, 1–5

enabling, 1–18
latency, 1–5

preemptive priority scheduling,
2–6, 2–7

priorities
and hardware interrupts, 2–14
and scheduling policies, 2–10,

2–11, 2–14
configuring, 2–14
determining limits, 2–16
displaying, 2–13
nonprivileged user, 2–10
realtime, 2–11
relationships, 2–12
using the ps command, 2–13

priority, 2–1
and preemption, 1–5
and shared memory, 3–11
base level, 2–10
change notification, 2–17
changing, 2–8, 2–17
determining, 2–16
inheritance not supported, 2–12
initial, 2–9, 2–17
initializing, 2–17
inversion, 2–12
of messages, 10–7
ranges, 1–8, 2–10, 2–11
setting, 2–17, 2–19, 2–20
using to improve realtime

responsiveness, 11–3
priority inversion

with semaphores, 9–6

Index–5

priority ranges, 2–5, 2–10
privileges

superuser, 6–4
process

priority, 1–7
process dispatch latency (PDL),

11–2
process list, 2–7, 2–10
process preemption latency, 1–4
process scheduling, 2–1

setting policy, 2–20
yielding, 2–19

ps command, 2–13
pthread_kill function, 5–8
pthread_sigmask function, 5–8

Q
quantum, 1–8

in process scheduling, 2–6
round-robin scheduling, 2–8, 2–19

R
read function, 7–1, 7–2, 7–4, A–7
realtime

building applications, 1–18
capabilities of the operating system,

1–4, A–1
definition of, 1–1
environment, 1–4
features, 1–16
function summary, A–1
hard, 1–2
interface, 1–7, 1–8, 2–11
libaio library, 1–20
libaio_raw library, 7–10
librt library, 1–19, 1–21
linking libraries, 1–19, 1–20
POSIX standards, 1–17
preemption, enabling, 1–18
priorities, 2–11, 2–15

adjusting, 2–15

default, 2–11
using nice, 2–15
using renice, 2–15

process synchronization, 1–12
processing, 2–5
signals, 6–10
soft, 1–2

realtime clocks
(See clocks)

realtime IPC
(See messages)

realtime scheduling policies
(See scheduling policies)

realtime timers
(See timers)

renice function, 2–11, 2–15
and realtime, 2–7

resolution
CLOCK_REALTIME, 6–2
clocks, 6–8

responsiveness, improving
realtime, 11–3
avoiding configuring peripheral

devices, 11–6
considering use of symmetrical

multiprocessing, 11–6
device drivers, writing, 11–6
locking memory, 11–3
managing physical memory, 11–5
managing priorities, 11–3
turning on preemption, 11–3

round-robin scheduling, 2–5, 2–6,
2–8

rt_preempt_opt configuration
parameter, 1–18

S
SCHED_FIFO keyword, 2–5
SCHED_FIFO policy, 2–7, 2–16,

2–17
sched_get_priority_max function,

2–15, 2–16, A–2

Index–6

sched_get_priority_min function,
2–15, 2–16, A–2

sched_getparam function, 2–15,
2–16, 2–17, A–2

sched_getscheduler function,
2–15, 2–16, A–2

sched.h header file, 2–9, 2–14
SCHED_OTHER keyword, 2–5
SCHED_OTHER policy, 2–16
sched_param structure, 2–17
SCHED_PRIO_RT_MAX constant,

2–15
SCHED_PRIO_RT_MIN constant,

2–15
SCHED_PRIO_SYSTEM_MAX

constant, 2–15
SCHED_PRIO_SYSTEM_MIN

constant, 2–15
SCHED_PRIO_USER_MAX

constant, 2–15
SCHED_PRIO_USER_MIN

constant, 2–15
SCHED_RR keyword, 2–5
SCHED_RR policy, 2–8, 2–16
sched_rr_get_interval function,

2–15, 2–16, A–2
sched_setparam function, 2–6,

2–15, 2–17, A–2
sched_setscheduler function, 2–6,

2–15, 2–16, 2–17, A–2
sched_yield function, 2–15, 2–19,

A–2
and the process list, 2–19
with SCHED_FIFO, 2–19
with SCHED_RR, 2–19

scheduler, 1–7
scheduling, 2–1

fixed-priority, 1–7
functions, 2–15
interfaces, 1–7
policies, 1–7

priority-based, 1–7
quantum, 1–8

scheduling policies, 1–4, 2–5
and shared memory, 3–11
changing, 2–17
determining limits, 2–16
determining type, 2–16
first-in/first-out, 2–5, 2–7
fixed-priority, 2–5
priority ranges, 2–5
round-robin, 2–5, 2–8
SCHED_FIFO, 2–5
SCHED_OTHER, 2–5
SCHED_RR, 2–5
setting, 2–5, 2–15, 2–17
timesharing, 2–5, 2–6

search path linking, 1–20
select function, with

asynchronous I/O, 7–5
sem_close function, 9–2, 9–6, A–6
sem_destroy function, 9–2, 9–6,

A–6
sem_getvalue function, 9–2, 9–5,

A–6
sem_init function, 9–2, 9–3, A–6
sem_open function, 9–2, 9–3, 9–6,

A–6
sem_post function, 9–2, 9–5, A–6
sem_trywait function, 9–2, 9–5,

A–6
sem_unlink function, 9–2, 9–6,

A–6
sem_wait function, 9–2, 9–5, A–6
semaphores, 1–11, 9–1

and shared memory, 3–10
blocking, 9–1
closing, 9–6
controlling access, 9–1
counting, 9–1
creating named, 9–3, 9–4
creating unnamed, 9–3, 9–4

Index–7

example, 9–7
functions, 9–2
locking, 9–1, 9–2, 9–5
named, 9–1
opening, 9–3
persistence, 9–2
priority inversion, 9–6
releasing shared memory, 3–11
removing named, 9–7
removing unnamed, 9–7
reserving, 9–5
reserving shared memory, 3–11
unlocking, 9–1, 9–2, 9–5, 9–6
unnamed, 9–1
using the interface, 9–2, 9–3

setgid function, A–7
setitimer function, A–4
setpriority function, 2–11
setsid function, A–7
settimeofday function, A–4
setuid function, A–7
shared memory, 1–11, 3–1

and semaphores, 3–10
creating, 3–3
example with semaphores, 9–7
locking, 3–9
opening, 3–2
opening an object, 3–3
opening example, 3–4
overview, 3–1
releasing with a semaphore, 3–11
reserving with a semaphore, 3–11
unlinking, 3–2, 3–9
unlocking, 3–10

shm_open function, 3–2, 3–3, A–6
shm_unlink function, 3–2, 3–9,

A–6
sigaction function, 5–2, 5–6, 6–11,

A–6
sigaction structure, 5–7
sigaddset function, 5–2, A–7
SIGALRM signal, 6–7
sigaltstack function, 5–11

sigcontext structure, 5–16
sigdelset function, 5–2, A–7
sigemptyset function, 5–2, 5–9,

A–7
sigevent structure, 5–17, 6–10,

6–12, 7–3
sigfillset function, 5–2, 5–9, A–7
siginfo_t structure, 5–15
sigismember function, 5–2, 5–10,

A–7
signal function, 6–7, 6–11, 7–4,

A–6
signal.h header file, 5–17, 6–12,

7–3
signals, 1–11, 5–1

accepting default action for, 5–8
and timers, 6–7, 6–10
blocking, 5–8
ignoring, 5–8
limitations, 5–11
list of, 5–5
nonrealtime, 5–3
POSIX-defined functions, 5–2
realtime, 5–11
receiving, 5–3
responding to, 5–2
sending, 5–3
sending to another process, 5–3
specifying a handler for, 5–8
specifying action, 5–6
unblocking, 5–10
using sigaction, 5–6
using the interface, 5–3
using with asynchronous I/O, 5–17,

7–3
using with timers, 5–17

sigpending function, 5–2, 5–10,
A–6

sigprocmask function, 5–2, 5–9,
5–10, A–6

sigqueue function, 5–3, 5–14, A–6
sigsetops function, A–6, A–7

Index–8

sigsuspend function, 5–2, 5–10,
A–6

sigtimedwait function, 5–3, 5–18,
A–6

sigwait function, A–6
sigwaitinfo function, 5–3, 5–18,

A–6
sleep function, 6–15, A–1
sleep, high-resolution, 6–15
software interrupt

(See signals)
standards, 1–16

ISO, 1–16
POSIX, 1–16

status, asynchronous I/O, 7–7
superuser privileges, 2–11, 2–16,

6–4
sync function, A–5
synchronization, 1–12

by communication, 1–15
by other processes, 1–15
by semaphores, 1–13
by time, 1–13
timing facilities, 6–1

synchronization point, 1–12
synchronized I/O, 1–10, 8–2

using file descriptors, 8–2
using function calls, 8–2

sys/mman.h header file, 4–4
sysconf function, 4–4, 4–5, A–1
system clock

high-resolution option, 6–6
resolution, 6–6
time spike, 6–6

system processing, 2–5
system tuning, 11–1

T
tcdrain function, A–8
tcflow function, A–8

tcflush function, A–8
tcgetattr function, A–8
tcsendbreak function, A–8
tcsetattr function, A–8
threads

displaying priority using ps
command, 11–4

kernel, using dbx command to
display information, 11–4

time
getting local, 6–4
retrieving, 6–3
returning, 6–3

time function, 6–3, 6–4
time.h header file, 6–2, 6–5, 6–12
TIME-OF-DAY clock, 6–2
timer functions, 6–11, A–3
timer_create function, 5–17, 6–7,

6–11, 6–12, A–3
timer_delete function, 6–11, 6–12,

6–15, A–3
timer_getoverrun function, 6–11,

6–14, A–3
timer_gettime function, 6–11,

6–13, 6–14, A–3
TIMER_MAX constant, 6–12
timer_settime function, 6–7, 6–11,

6–12, 6–14, 6–15, A–3
timers, 1–9, 6–1, 6–11

absolute, 1–9, 6–7, 6–12
and signals, 1–9
arming, 6–9
compressed signals, 6–14
creating, 6–12, 6–13
disabling, 6–13, 6–15
disarming, 6–9, 6–13, 6–15
expiration value, 6–13
getting the overrun count, 6–14
interval time, 6–13
one-shot, 1–9, 6–7, 6–13
periodic, 1–9, 6–7, 6–13

Index–9

relative, 1–9, 6–7, 6–12
repetition value, 6–13
resetting, 6–14, 6–15
returning values, 6–14
setting, 6–9
sleep, 6–15
types, 6–7
using signals, 5–17, 6–7, 6–10
using the sigevent structure, 6–10
using with clocks, 6–15

timers.h header file, 6–8
timesharing processing, 2–5
timesharing scheduling, 1–7, 2–5,

2–6
using nice, 2–6

timespec structure, 6–3, 6–4, 6–8,
6–9

tm structure, 6–4, 6–5
Tru64 UNIX

kernel
accessing, 1–18
installing, 1–18

POSIX, 1–18
realtime facilities, 1–4, A–1

tv_nsec member, timespec, 6–8
tv_sec member, timespec, 6–8
tzset function, 6–5, A–3

U
ucontext_t structure, 5–16
UID, changing priority, 2–19
uname function, A–1
unistd.h header file, 1–19
unlocking memory, 3–10, 4–2, 4–4
user mode and preemption, 1–4

W
wait function, A–1
waitpid function, A–1
write function, 7–1, 7–2, 7–4, A–7

Y
yielding, to another process, 2–19

Index–10

