
Inter-Client Communication Conventions Manual

Version 2.0

X Consortium Standard

X Version 11, Release 6

David Rosenthal

Sun Microsystems, Inc.

Version 2 edited by Stuart W. Marks

SunSoft, Inc.

X Window System is a trademark of X Consortium, Inc.

Copyright 1988, 1991, 1993, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright 1987, 1988, 1989, 1993, 1994 Sun Microsystems, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies. Sun Microsystems makes no
representations about the suitability for any purpose of the information in this document. This documentation is pro-
vided as is without express or implied warranty.

ii

Inter-Client Communication Conventions X11, Release 6

Table of Contents

Preface to Version 2.0 .. vii

Preface to Version 1.1 .. viii

1. Introduction .. 1

1.1. Evolution of the Conventions .. 1

1.2. Atoms .. 1

1.2.1. What Are Atoms? .. 1

1.2.2. Predefined Atoms ... 2

1.2.3. Naming Conventions .. 2

1.2.4. Semantics ... 2

1.2.5. Name Spaces .. 2

1.2.6. Discriminated Names ... 3

2. Peer-to-Peer Communication by Means of Selections ... 3

2.1. Acquiring Selection Ownership .. 4

2.2. Responsibilities of the Selection Owner .. 5

2.3. Giving Up Selection Ownership .. 7

2.3.1. Voluntarily Giving Up Selection Ownership ... 7

2.3.2. Forcibly Giving Up Selection Ownership .. 8

2.4. Requesting a Selection .. 8

2.5. Large Data Transfers ... 10

2.6. Use of Selection Atoms ... 10

2.6.1. Selection Atoms ... 10

2.6.1.1. The PRIMARY Selection .. 11

2.6.1.2. The SECONDARY Selection ... 11

2.6.1.3. The CLIPBOARD Selection ... 11

2.6.2. Target Atoms ... 12

2.6.3. Selection Targets with Side Effects .. 14

2.6.3.1. DELETE ... 14

2.6.3.2. INSERT_SELECTION ... 15

2.6.3.3. INSERT_PROPERTY .. 15

2.7. Use of Selection Properties ... 15

2.7.1. TEXT Properties .. 16

2.7.2. INCR Properties ... 16

2.7.3. DRAWABLE Properties .. 17

2.7.4. SPAN Properties .. 17

2.8. Manager Selections ... 17

3. Peer-to-Peer Communication by Means of Cut Buffers ... 19

iii

Inter-Client Communication Conventions X11, Release 6

4. Client to Window Manager Communication .. 19

4.1. Client’s Actions .. 20

4.1.1. Creating a Top-Level Window ... 20

4.1.2. Client Properties ... 20

4.1.2.1. WM_NAME Property ... 21

4.1.2.2. WM_ICON_NAME Property ... 21

4.1.2.3. WM_NORMAL_HINTS Property .. 22

4.1.2.4. WM_HINTS Property ... 23

4.1.2.5. WM_CLASS Property .. 25

4.1.2.6. WM_TRANSIENT_FOR Property ... 26

4.1.2.7. WM_PROTOCOLS Property .. 26

4.1.2.8. WM_COLORMAP_WINDOWS Property ... 27

4.1.2.9. WM_CLIENT_MACHINE Property .. 27

4.1.3. Window Manager Properties .. 27

4.1.3.1. WM_STATE Property .. 27

4.1.3.2. WM_ICON_SIZE Property ... 28

4.1.4. Changing Window State .. 28

4.1.5. Configuring the Window .. 30

4.1.6. Changing Window Attributes ... 32

4.1.7. Input Focus .. 33

4.1.8. Colormaps .. 35

4.1.9. Icons ... 37

4.1.10. Pop-up Windows .. 38

4.1.11. Window Groups ... 38

4.2. Client Responses to Window Manager Actions .. 39

4.2.1. Reparenting .. 39

4.2.2. Redirection of Operations .. 39

4.2.3. Window Move ... 41

4.2.4. Window Resize .. 41

4.2.5. Iconify and Deiconify ... 41

4.2.6. Colormap Change .. 41

4.2.7. Input Focus .. 41

4.2.8. ClientMessage Events .. 42

4.2.8.1. Window Deletion .. 42

4.2.9. Redirecting Requests .. 43

4.3. Communication with the Window Manager by Means of Selections 44

4.4. Summary of Window Manager Property Types .. 44

5. Session Management .. 44

5.1. Client Support for Session Management ... 44

5.2. Window Manager Support for Session Management .. 45

6. Manipulation of Shared Resources ... 45

6.1. The Input Focus .. 45

iv

Inter-Client Communication Conventions X11, Release 6

6.2. The Pointer .. 46

6.3. Grabs ... 46

6.4. Colormaps ... 47

6.5. The Keyboard Mapping .. 48

6.6. The Modifier Mapping .. 49

7. Device Color Characterization ... 50

7.1. XYZ ←→ RGB Conversion Matrices .. 51

7.2. Intensity ←→ RGB Value Conversion ... 51

8. Conclusion ... 53

8.1. The X Registry .. 53

A. Revision History ... 54

A.1. The X11R2 Draft .. 54

A.2. The July 27, 1988 Draft .. 54

A.3. The Public Review Drafts .. 54

A.4. Version 1.0, July 1989 ... 55

A.5. Version 1.1 ... 56

A.6. Public Review Draft, December 1993 .. 56

A.7. Version 2.0, April 1994 .. 57

B. Suggested Protocol Revisions ... 58

C. Obsolete Session Manager Conventions .. 59

C.1. Properties ... 59

C.1.1. WM_COMMAND Property .. 59

C.1.2. WM_CLIENT_MACHINE Property ... 59

C.2. Termination .. 59

C.3. Client Responses to Session Manager Actions ... 60

C.3.1. Saving Client State .. 60

C.3.2. Window Deletion .. 60

C.4. Summary of Session Manager Property Types ... 60

v

vi

Preface to Version 2.0

The goal of the ICCCM Version 2.0 effort was to add new facilities, to fix problems with earlier
drafts, and to improve readability and understandability, while maintaining compatibility with the
earlier versions. This document is the product of over two years of discussion among the
members of the X Consortium’s wmtalk working group. The following people deserve thanks
for their contributions:

Gabe Beged-Dov Bill Janssen
Chan Benson Vania Joloboff
Jordan Brown Phil Karlton
Larry Cable Kaleb Keithley
Ellis Cohen Mark Manasse
Donna Converse Ralph Mor
Brian Cripe Todd Newman
Susan Dahlberg Bob Scheifler
Peter Daifuku Keith Taylor
Andrew deBlois Jim VanGilder
Clive Feather Mike Wexler
Stephen Gildea Michael Yee
Christian Jacobi

It has been a privilege for me to work with this fine group of people.

Stuart W. Marks
December 1993

vii

Preface to Version 1.1

David Rosenthal had overall architectural responsibility for the conventions defined in this docu-
ment; he wrote most of the text and edited the document, but its the development has been a com-
munal effort. The details were thrashed out in meetings at the January 1988 MIT X Conference
and at the 1988 Summer Usenix conference, and through months (and megabytes) of argument on
the wmtalk mail alias. Thanks are due to everyone who contributed, and especially to the fol-
lowing people.

For the Selection section:

Jerry Farrell
Phil Karlton
Loretta Guarino Reid
Mark Manasse
Bob Scheifler

For the Cut-Buffer section:

Andrew Palay.

For the Window and Session Manager sections:

Todd Brunhoff Matt Landau
Ellis Cohen Mark Manasse
Jim Fulton Bob Scheifler
Hania Gajewska Ralph Swick
Jordan Hubbard Mike Wexler
Kerry Kimbrough Glenn Widener
Audrey Ishizaki

For the Device Color Characterization section:

Keith Packard.

In addition, thanks are due to those who contributed to the public review:

Gary Combs John Irwin
Errol Crary Vania Joloboff
Nancy Cyprych John Laporta
John Diamant Ken Lee
Clive Feather Stuart Marks
Burns Fisher Alan Mimms
Richard Greco Colas Nahaboo
Tim Greenwood Mark Patrick
Kee Hinckley Steve Pitschke
Brian Holt Brad Reed
John Interrante John Thomas

viii

1. Introduction
It was an explicit design goal of X Version 11 to specify mechanism, not policy. As a result, a
client that converses with the server using the protocol defined by the X Window System Protocol,
Version 11 may operate correctly in isolation but may not coexist properly with others sharing the
same server.

Being a good citizen in the X Version 11 world involves adhering to conventions that govern
inter-client communications in the following areas:

• Selection mechanism

• Cut buffers

• Window manager

• Session manager

• Manipulation of shared resources

• Device color characterization

This document proposes suitable conventions without attempting to enforce any particular user
interface. To permit clients written in different languages to communicate, these conventions are
expressed solely in terms of protocol operations, not in terms of their associated Xlib interfaces,
which are probably more familiar. The binding of these operations to the Xlib interface for C and
to the equivalent interfaces for other languages is the subject of other documents.

1.1. Evolution of the Conventions
In the interests of timely acceptance, the Inter-Client Communication Conventions Manual
(ICCCM) covers only a minimal set of required conventions. These conventions will be added to
and updated as appropriate, based on the experiences of the X Consortium.

As far as possible, these conventions are upwardly compatible with those in the February 25,
1988, draft that was distributed with the X Version 11, Release 2 of the software. In some areas,
semantic problems were discovered with those conventions, and, thus, complete upward compati-
bility could not be assured. These areas are noted in the text and are summarized in Appendix A.

In the course of developing these conventions, a number of minor changes to the protocol were
identified as desirable. They also are identified in the text, are summarized in Appendix B, and
are offered as input to a future protocol revision process. If and when a protocol revision incor-
porating these changes is undertaken, it is anticipated that the ICCCM will need to be revised.
Because it is difficult to ensure that clients and servers are upgraded simultaneously, clients using
the revised conventions should examine the minor protocol revision number and be prepared to
use the older conventions when communicating with an older server.

It is expected that these revisions will ensure that clients using the conventions appropriate to pro-
tocol minor revision n will interoperate correctly with those that use the conventions appropriate
to protocol minor revision n+1 if the server supports both.

1.2. Atoms
Many of the conventions use atoms. To assist the reader, the following sections attempt to
amplify the description of atoms that is provided in the protocol specification.

1.2.1. What Are Atoms?
At the conceptual level, atoms are unique names that clients can use to communicate information
to each other. They can be thought of as a bundle of octets, like a string but without an encoding
being specified. The elements are not necessarily ASCII characters, and no case folding hap-
pens.1

1 The comment in the protocol specification for InternAtom that ISO Latin-1 encoding should be used is in the nature of a convention;
the server treats the string as a byte sequence.

 1

Inter-Client Communication Conventions X11, Release 6

The protocol designers felt that passing these sequences of bytes back and forth across the wire
would be too costly. Further, they thought it important that events as they appear on the wire
have a fixed size (in fact, 32 bytes) and that because some events contain atoms, a fixed-size
representation for them was needed.

To allow a fixed-size representation, a protocol request (InternAtom) was provided to register a
byte sequence with the server, which returns a 32-bit value (with the top three bits zero) that maps
to the byte sequence. The inverse operator is also available (GetAtomName).

1.2.2. Predefined Atoms
The protocol specifies a number of atoms as being predefined:

Predefined atoms are not strictly necessary and may not be useful in all environments,
but they will eliminate many InternAtom requests in most applications. Note that
they are predefined only in the sense of having numeric values, not in the sense of
having required semantics.

Predefined atoms are an implementation trick to avoid the cost of interning many of the atoms
that are expected to be used during the startup phase of all applications. The results of the
InternAtom requests, which require a handshake, can be assumed a priori.

Language interfaces should probably cache the atom-name mappings and get them only when
required. The CLX interface, for instance, makes no distinction between predefined atoms and
other atoms; all atoms are viewed as symbols at the interface. However, a CLX implementation
will typically keep a symbol or atom cache and will typically initialize this cache with the
predefined atoms.

1.2.3. Naming Conventions
The built-in atoms are composed of uppercase ASCII characters with the logical words separated
by an underscore character (_), for example, WM_ICON_NAME. The protocol specification
recommends that atoms used for private vendor-specific reasons should begin with an underscore.
To prevent conflicts among organizations, additional prefixes should be chosen (for example,
_DEC_WM_DECORATION_GEOMETRY).

The names were chosen in this fashion to make it easy to use them in a natural way within LISP.
Keyword constructors allow the programmer to specify the atoms as LISP atoms. If the atoms
were not all uppercase, special quoting conventions would have to be used.

1.2.4. Semantics
The core protocol imposes no semantics on atoms except as they are used in FONTPROP struc-
tures. For further information on FONTPROP semantics, see the X Logical Font Description
Conventions.

1.2.5. Name Spaces
The protocol defines six distinct spaces in which atoms are interpreted. Any particular atom may
or may not have some valid interpretation with respect to each of these name spaces.__

Space Briefly Examples__

Property name Name WM_HINTS, WM_NAME, RGB_BEST_MAP, .. .
Property type Type WM_HINTS, CURSOR, RGB_COLOR_MAP, .. .
Selection name Selection PRIMARY, SECONDARY, CLIPBOARD
Selection target Target FILE_NAME, POSTSCRIPT, PIXMAP, .. .
Font property QUAD_WIDTH, POINT_SIZE, .. .
ClientMessage type WM_SAVE_YOURSELF, _DEC_SAVE_EDITS, .. .__

 2

Inter-Client Communication Conventions X11, Release 6

1.2.6. Discriminated Names
Sometimes a protocol requires there to be an arbitrary number of similar objects which need
unique names (usually because the objects are created dynamically, so that names cannot be
invented in advance). For example, a colormap-generating program might use the selection
mechanism to offer colormaps for each screen, and so needs a selection name for each screen.
Such names are called ‘‘discriminated names’’ and are discriminated by some entity. This entity
can be:

a screen
an X resource (a window, a colormap, a visual, etc.)
a client

If it is only necessary to generate a fixed set of names for each value of the discriminating entity,
then the discriminated names are formed by suffixing an ordinary name according to the value of
the entity.

If name is a descriptive portion for the name, d is a decimal number with no leading zeroes, and x
is a hexadecimal number with exactly 8 digits, and using uppercase letters, then such discrim-
inated names shall have the form:__

Name Discriminated By Form Example__

screen number name_Sd WM_COMMS_S2
X resource name_Rx GROUP_LEADER_R1234ABCD__

To discriminate a name by client, use an X resource ID created by that client. This resource can
be of any type.

Sometimes it is simply necessary to generate a unique set of names (for example, for the proper-
ties on a window used by a MULTIPLE selection). These names should have the form:

Ud (e.g. U0 U1 U2 U3 ...)

if the names stand totally alone, and the form:

name_Ud (e.g. FOO_U0 BAR_U0 FOO_U1 BAR_U1 ...)

if they come in sets (here there are two sets, named ‘‘FOO’’ and ‘‘BAR’’). The stand-alone Ud
form should only be used if it is clear that the module using it has complete control over the
relevant namespace, or has the active cooperation of all other entities which might also use these
names. (Naming properties on a window created specifically for a particular selection is such a
use; naming properties on the root window is almost certainly not.)

In a particularly difficult case, it might be necessary to combine both forms of discrimination. If
this happens, the U form should come after the other form, thus:

FOO_R12345678_U23

Rationale

Existing protocols will not be changed to use these naming conventions, because
doing so will cause too much disruption. However, it is expected that future proto-
cols — both standard and private — will use these conventions.

2. Peer-to-Peer Communication by Means of Selections
Selections are the primary mechanism that X Version 11 defines for the exchange of information
between clients, for example, by cutting and pasting between windows. Note that there can be an

 3

Inter-Client Communication Conventions X11, Release 6

arbitrary number of selections (each named by an atom) and that they are global to the server.
Section 2.6 discusses the choice of an atom. Each selection is owned by a client and is attached
to a window.

Selections communicate between an owner and a requestor. The owner has the data representing
the value of its selection, and the requestor receives it. A requestor wishing to obtain the value of
a selection provides the following:

• The name of the selection

• The name of a property

• A window

• The atom representing the data type required

• Optionally, some parameters for the request

If the selection is currently owned, the owner receives an event and is expected to do the follow-
ing:

• Convert the contents of the selection to the requested data type

• Place this data in the named property on the named window

• Send the requestor an event to let it know the property is available

Clients are strongly encouraged to use this mechanism. In particular, displaying text in a per-
manent window without providing the ability to select and convert it into a string is definitely
considered antisocial.

Note that all data transferred between an owner and a requestor must usually go by means of the
server in an X Version 11 environment. A client cannot assume that another client can open the
same files or even communicate directly. The other client may be talking to the server by means
of a completely different networking mechanism (for example, one client might be DECnet and
the other TCP/IP). Thus, passing indirect references to data (such as file names, host names and
port numbers, and so on) is permitted only if both clients specifically agree.

2.1. Acquiring Selection Ownership
A client wishing to acquire ownership of a particular selection should call SetSelectionOwner,
which is defined as follows:

LL

SetSelectionOwner
selection: ATOM
owner: WINDOW or None
time: TIMESTAMP or CurrentTimeLL___

The client should set the specified selection to the atom that represents the selection, set the
specified owner to some window that the client created, and set the specified time to some time
between the current last-change time of the selection concerned and the current server time. This
time value usually will be obtained from the timestamp of the event that triggers the acquisition
of the selection. Clients should not set the time value to CurrentTime, because if they do so,
they have no way of finding when they gained ownership of the selection. Clients must use a
window they created so that requestors can route events to the owner of the selection.2

2 At present, no part of the protocol requires requestors to send events to the owner of a selection. This restriction is imposed to prepare
for possible future extensions.

 4

Inter-Client Communication Conventions X11, Release 6

Convention

Clients attempting to acquire a selection must set the time value of the SetSelection-
Owner request to the timestamp of the event triggering the acquisition attempt, not
to CurrentTime. A zero-length append to a property is a way to obtain a timestamp
for this purpose; the timestamp is in the corresponding PropertyNotify event.

If the time in the SetSelectionOwner request is in the future relative to the server’s current time
or is in the past relative to the last time the specified selection changed hands, the SetSelec-
tionOwner request appears to the client to succeed, but ownership is not actually transferred.

Because clients cannot name other clients directly, the specified owner window is used to refer to
the owning client in the replies to GetSelectionOwner, in SelectionRequest and Selection-
Clear events, and possibly as a place to put properties describing the selection in question. To
discover the owner of a particular selection, a client should invoke GetSelectionOwner, which is
defined as follows:

LL

GetSelectionOwner
selection: ATOM

→
owner: WINDOW or NoneLL___

Convention

Clients are expected to provide some visible confirmation of selection ownership. To
make this feedback reliable, a client must perform a sequence like the following:

SetSelectionOwner(selection=PRIMARY, owner=Window, time=timestamp)
owner = GetSelectionOwner(selection=PRIMARY)
if (owner != Window) Failure

If the SetSelectionOwner request succeeds (not merely appears to succeed), the client that issues
it is recorded by the server as being the owner of the selection for the time period starting at the
specified time.

2.2. Responsibilities of the Selection Owner
When a requestor wants the value of a selection, the owner receives a SelectionRequest event,
which is defined as follows:

LL

SelectionRequest
owner: WINDOW
selection: ATOM
target : ATOM
property: ATOM or None
requestor: WINDOW
time: TIMESTAMP or CurrentTimeLL___

The specified owner and selection will be the values that were specified in the SetSelection-
Owner request. The owner should compare the timestamp with the period it has owned the
selection and, if the time is outside, refuse the SelectionRequest by sending the requestor win-
dow a SelectionNotify event with the property set to None (by means of a SendEvent request
with an empty event mask).

 5

Inter-Client Communication Conventions X11, Release 6

More advanced selection owners are free to maintain a history of the value of the selection and to
respond to requests for the value of the selection during periods they owned it even though they
do not own it now.

If the specified property is None , the requestor is an obsolete client. Owners are encouraged to
support these clients by using the specified target atom as the property name to be used for the
reply.

Otherwise, the owner should use the target to decide the form into which the selection should be
converted. Some targets may be defined such that requestors can pass parameters along with the
request. The owner will find these parameters in the property named in the selection request. The
type, format, and contents of this property are dependent upon the definition of the target. If the
target is not defined to have parameters, the owner should ignore the property if it is present. If
the selection cannot be converted into a form based on the target (and parameters, if any), the
owner should refuse the SelectionRequest as previously described.

If the specified property is not None , the owner should place the data resulting from converting
the selection into the specified property on the requestor window and should set the property’s
type to some appropriate value, which need not be the same as the specified target.

Convention

All properties used to reply to SelectionRequest events must be placed on the
requestor window.

In either case, if the data comprising the selection cannot be stored on the requestor window (for
example, because the server cannot provide sufficient memory), the owner must refuse the Selec-
tionRequest , as previously described. See also section 2.5.

If the property is successfully stored, the owner should acknowledge the successful conversion by
sending the requestor window a SelectionNotify event (by means of a SendEvent request with
an empty mask). SelectionNotify is defined as follows:

LL

SelectionNotify
requestor: WINDOW
selection, target : ATOM
property: ATOM or None
time: TIMESTAMP or CurrentTimeLL___

The owner should set the specified selection, target, time, and property arguments to the values
received in the SelectionRequest event. (Note that setting the property argument to None indi-
cates that the conversion requested could not be made.)

Convention

The selection, target, time, and property arguments in the SelectionNotify event
should be set to the values received in the SelectionRequest event.

If the owner receives more than one SelectionRequest event with the same requestor, selection,
target, and timestamp, it must respond to them in the same order in which they were received.

Rationale

It is possible for a requestor to have multiple outstanding requests that use the same
requestor window, selection, target, and timestamp, and that differ only in the pro-
perty. If this occurs, and one of the conversion requests fails, the resulting
SelectionNotify event will have its property argument set to None . This may make
it impossible for the requestor to determine which conversion request had failed,

 6

Inter-Client Communication Conventions X11, Release 6

unless the requests are responded to in order.

The data stored in the property must eventually be deleted. A convention is needed to assign the
responsibility for doing so.

Convention

Selection requestors are responsible for deleting properties whose names they receive
in SelectionNotify events (see section 2.4) or in properties with type MULTIPLE.

A selection owner will often need confirmation that the data comprising the selection has actually
been transferred. (For example, if the operation has side effects on the owner’s internal data
structures, these should not take place until the requestor has indicated that it has successfully
received the data.) Owners should express interest in PropertyNotify events for the specified
requestor window and wait until the property in the SelectionNotify event has been deleted
before assuming that the selection data has been transferred. For the MULTIPLE request, if the
different conversions require separate confirmation, the selection owner can also watch for the
deletion of the individual properties named in the property in the SelectionNotify event.

When some other client acquires a selection, the previous owner receives a SelectionClear event,
which is defined as follows:

LL

SelectionClear
owner: WINDOW
selection: ATOM
time: TIMESTAMPLL___

The timestamp argument is the time at which the ownership changed hands, and the owner argu-
ment is the window the previous owner specified in its SetSelectionOwner request.

If an owner loses ownership while it has a transfer in progress (that is, before it receives
notification that the requestor has received all the data), it must continue to service the ongoing
transfer until it is complete.

If the selection value completely changes, but the owner happens to be the same client (for exam-
ple, selecting a totally different piece of text in the same xterm as before), then the client should
reacquire the selection ownership as if it were not the owner, providing a new timestamp. If the
selection value is modified, but can still reasonably be viewed as the same selected object,3 the
owner should take no action.

2.3. Giving Up Selection Ownership
Clients may either give up selection ownership voluntarily or lose it forcibly as the result of some
other client’s actions.

2.3.1. Voluntarily Giving Up Selection Ownership
To relinquish ownership of a selection voluntarily, a client should execute a SetSelectionOwner
request for that selection atom, with owner specified as None and the time specified as the time-
stamp that was used to acquire the selection.

Alternatively, the client may destroy the window used as the owner value of the SetSelection-
Owner request, or the client may terminate. In both cases, the ownership of the selection
involved will revert to None .

3 The division between these two cases is a matter of judgement on the part of the software developer.

 7

Inter-Client Communication Conventions X11, Release 6

2.3.2. Forcibly Giving Up Selection Ownership
If a client gives up ownership of a selection or if some other client executes a SetSelection-
Owner for it and thus reassigns it forcibly, the previous owner will receive a SelectionClear
event. For the definition of a SelectionClear event, see section 2.2.

The timestamp is the time the selection changed hands. The specified owner is the window that
was specified by the current owner in its SetSelectionOwner request.

2.4. Requesting a Selection
A client that wishes to obtain the value of a selection in a particular form (the requestor) issues a
ConvertSelection request, which is defined as follows:

LL

ConvertSelection
selection, target : ATOM
property: ATOM or None
requestor: WINDOW
time: TIMESTAMP or CurrentTimeLL___

The selection argument specifies the particular selection involved, and the target argument
specifies the required form of the information. For information about the choice of suitable atoms
to use, see section 2.6. The requestor should set the requestor argument to a window that it
created; the owner will place the reply property there. The requestor should set the time argument
to the timestamp on the event that triggered the request for the selection value. Note that clients
should not specify CurrentTime.

Convention

Clients should not use CurrentTime for the time argument of a ConvertSelection
request. Instead, they should use the timestamp of the event that caused the request
to be made.

The requestor should set the property argument to the name of a property that the owner can use
to report the value of the selection. Requestors should ensure that the named property does not
exist on the window before issuing the ConvertSelection request.4 The exception to this rule is
when the requestor intends to pass parameters with the request; see below.

Rationale

It is necessary for requestors to delete the property before issuing the request so that
the target can later be extended to take parameters without introducing an incompati-
bility. Also note that the requestor of a selection need not know the client that owns
the selection nor the window on which the selection was acquired.

Some targets may be defined such that requestors can pass parameters along with the request. If
the requestor wishes to provide parameters to a request, they should be placed in the specified
property on the requestor window before the requestor issues the ConvertSelection request, and
this property should be named in the request.

Some targets may be defined so that parameters are optional. If no parameters are to be supplied
with the request of such a target, the requestor must ensure that the property does not exist before
issuing the ConvertSelection request.

4 This requirement is new in version 2.0, and in general, existing clients do not conform to this requirement. To prevent these clients
from breaking, no existing targets should be extended to take parameters until sufficient time has passed for clients to be updated. Note that
the MULTIPLE target was defined to take parameters in version 1.0 and its definition is not changing. There is thus no conformance prob-
lem with MULTIPLE.

 8

Inter-Client Communication Conventions X11, Release 6

The protocol allows the property field to be set to None , in which case the owner is supposed to
choose a property name. However, it is difficult for the owner to make this choice safely.

Conventions

1. Requestors should not use None for the property argument of a ConvertSelection
request.

2. Owners receiving ConvertSelection requests with a property argument of None are
talking to an obsolete client. They should choose the target atom as the property
name to be used for the reply.

The result of the ConvertSelection request is that a SelectionNotify event will be received. For
the definition of a SelectionNotify event, see section 2.2.

The requestor, selection, time, and target arguments will be the same as those on the Convert-
Selection request.

If the property argument is None , the conversion has been refused. This can mean either that
there is no owner for the selection, that the owner does not support the conversion implied by the
target, or that the server did not have sufficient space to accommodate the data.

If the property argument is not None , then that property will exist on the requestor window. The
value of the selection can be retrieved from this property by using the GetProperty request,
which is defined as follows:

LL

GetProperty
window : WINDOW
property: ATOM
type: ATOM or AnyPropertyType
long-offset, long-length: CARD32
delete: BOOL

→
type: ATOM or None
format: {0, 8, 16, 32}
bytes-after: CARD32
value: LISTofINT8 or LISTofINT16 or LISTofINT32LL___

When using GetProperty to retrieve the value of a selection, the property argument should be set
to the corresponding value in the SelectionNotify event. Because the requestor has no way of
knowing beforehand what type the selection owner will use, the type argument should be set to
AnyPropertyType. Several GetProperty requests may be needed to retrieve all the data in the
selection; each should set the long-offset argument to the amount of data received so far, and the
size argument to some reasonable buffer size (see section 2.5). If the returned value of bytes-after
is zero, the whole property has been transferred.

Once all the data in the selection has been retrieved (which may require getting the values of
several properties — see section 2.7), the requestor should delete the property in the Selection-
Notify request by using a GetProperty request with the delete argument set to True . As previ-
ously discussed, the owner has no way of knowing when the data has been transferred to the
requestor unless the property is removed.

 9

Inter-Client Communication Conventions X11, Release 6

Convention

The requestor must delete the property named in the SelectionNotify once all the
data has been retrieved. The requestor should invoke either DeleteProperty or
GetProperty(delete==True) after it has successfully retrieved all the data in the
selection. For further information, see section 2.5.

2.5. Large Data Transfers
Selections can get large, which poses two problems:

• Transferring large amounts of data to the server is expensive.

• All servers will have limits on the amount of data that can be stored in properties. Exceed-
ing this limit will result in an Alloc error on the ChangeProperty request that the selection
owner uses to store the data.

The problem of limited server resources is addressed by the following conventions:

Conventions

1. Selection owners should transfer the data describing a large selection (relative to the
maximum-request-size they received in the connection handshake) using the INCR
property mechanism (see section 2.7.2).

2. Any client using SetSelectionOwner to acquire selection ownership should arrange
to process Alloc errors in property change requests. For clients using Xlib, this
involves using the XSetErrorHandler function to override the default handler.

3. A selection owner must confirm that no Alloc error occurred while storing the pro-
perties for a selection before replying with a confirming SelectionNotify event.

4. When storing large amounts of data (relative to maximum-request-size), clients
should use a sequence of ChangeProperty(mode==Append) requests for reasonable
quantities of data. This avoids locking servers up and limits the waste of data an
Alloc error would cause.

5. If an Alloc error occurs during the storing of the selection data, all properties stored
for this selection should be deleted and the ConvertSelection request should be
refused (see section 2.2).

6. To avoid locking servers up for inordinate lengths of time, requestors retrieving large
quantities of data from a property should perform a series of GetProperty requests,
each asking for a reasonable amount of data.

Advice to Implementors

Single-threaded servers should take care to avoid locking up during large data
transfers.

2.6. Use of Selection Atoms
Defining a new atom consumes resources in the server that are not released until the server reini-
tializes. Thus, reducing the need for newly minted atoms is an important goal for the use of the
selection atoms.

2.6.1. Selection Atoms
There can be an arbitrary number of selections, each named by an atom. To conform with the
inter-client conventions, however, clients need deal with only these three selections:

 10

Inter-Client Communication Conventions X11, Release 6

• PRIMARY

• SECONDARY

• CLIPBOARD

Other selections may be used freely for private communication among related groups of clients.

2.6.1.1. The PRIMARY Selection
The selection named by the atom PRIMARY is used for all commands that take only a single
argument and is the principal means of communication between clients that use the selection
mechanism.

2.6.1.2. The SECONDARY Selection
The selection named by the atom SECONDARY is used:

• As the second argument to commands taking two arguments (for example, ‘‘exchange pri-
mary and secondary selections’’)

• As a means of obtaining data when there is a primary selection and the user does not want to
disturb it

2.6.1.3. The CLIPBOARD Selection
The selection named by the atom CLIPBOARD is used to hold data that is being transferred
between clients, that is, data that usually is being cut or copied, and then pasted. Whenever a
client wants to transfer data to the clipboard:

• It should assert ownership of the CLIPBOARD.

• If it succeeds in acquiring ownership, it should be prepared to respond to a request for the
contents of the CLIPBOARD in the usual way (retaining the data to be able to return it).
The request may be generated by the clipboard client described below.

• If it fails to acquire ownership, a cutting client should not actually perform the cut or provide
feedback that would suggest that it has actually transferred data to the clipboard.

The owner should repeat this process whenever the data to be transferred would change.

Clients wanting to paste data from the clipboard should request the contents of the CLIPBOARD
selection in the usual way.

Except while a client is actually deleting or copying data, the owner of the CLIPBOARD selec-
tion may be a single, special client implemented for the purpose. This client maintains the con-
tent of the clipboard up-to-date and responds to requests for data from the clipboard as follows:

• It should assert ownership of the CLIPBOARD selection and reassert it any time the clip-
board data changes.

• If it loses the selection (because another client has some new data for the clipboard), it
should:

– Obtain the contents of the selection from the new owner by using the timestamp in the
SelectionClear event.

– Attempt to reassert ownership of the CLIPBOARD selection by using the same time-
stamp.

– Restart the process using a newly acquired timestamp if this attempt fails. This time-
stamp should be obtained by asking the current owner of the CLIPBOARD selection
to convert it to a TIMESTAMP. If this conversion is refused or if the same timestamp
is received twice, the clipboard client should acquire a fresh timestamp in the usual
way (for example by a zero-length append to a property).

• It should respond to requests for the CLIPBOARD contents in the usual way.

 11

Inter-Client Communication Conventions X11, Release 6

A special CLIPBOARD client is not necessary. The protocol used by the cutting client and the
pasting client is the same whether the CLIPBOARD client is running or not. The reasons for run-
ning the special client include:

• Stability – If the cutting client were to crash or terminate, the clipboard value would still be
available.

• Feedback – The clipboard client can display the contents of the clipboard.

• Simplicity – A client deleting data does not have to retain it for so long, thus reducing the
chance of race conditions causing problems.

The reasons not to run the clipboard client include:

• Performance – Data is only transferred if it is actually required (that is, when some client
actually wants the data).

• Flexibility – The clipboard data may be available as more than one target.

2.6.2. Target Atoms
The atom that a requestor supplies as the target of a ConvertSelection request determines the
form of the data supplied. The set of such atoms is extensible, but a generally accepted base set
of target atoms is needed. As a starting point for this, the following table contains those that have
been suggested so far.___

Atom Type Data Received___

ADOBE_PORTABLE_DOCUMENT_FORMAT
STRING [1]

APPLE_PICT APPLE_PICT [2]
BACKGROUND PIXEL A list of pixel values
BITMAP BITMAP A list of bitmap IDs
CHARACTER_POSITION SPAN The start and end of the selection in bytes
CLASS TEXT (see section 4.1.2.5)
CLIENT_WINDOW WINDOW Any top-level window owned by the selection

owner
COLORMAP COLORMAP A list of colormap IDs
COLUMN_NUMBER SPAN The start and end column numbers
COMPOUND_TEXT COMPOUND_TEXT Compound Text
DELETE NULL (see section 2.6.3.1)
DRAWABLE DRAWABLE A list of drawable IDs

ENCAPSULATED_POSTSCRIPT
STRING [3], Appendix H 6

ENCAPSULATED_POSTSCRIPT_INTERCHANGE
STRING [3], Appendix H

FILE_NAME TEXT The full path name of a file
FOREGROUND PIXEL A list of pixel values
HOST_NAME TEXT (see section 4.1.2.9)
INSERT_PROPERTY NULL (see section 2.6.3.3)
INSERT_SELECTION NULL (see section 2.6.3.2)
LENGTH INTEGER The number of bytes in the selection 7

LINE_NUMBER SPAN The start and end line numbers
LIST_LENGTH INTEGER The number of disjoint parts of the selection
MODULE TEXT The name of the selected procedure
MULTIPLE ATOM_PAIR (see the discussion that follows)
NAME TEXT (see section 4.1.2.1)

 12

Inter-Client Communication Conventions X11, Release 6

Atom Type Data Received___

ODIF TEXT ISO Office Document Interchange Format
OWNER_OS TEXT The operating system of the owner client
PIXMAP PIXMAP 5 A list of pixmap IDs
POSTSCRIPT STRING [3]
PROCEDURE TEXT The name of the selected procedure
PROCESS INTEGER, TEXT The process ID of the owner
STRING STRING ISO Latin-1 (+TAB+NEWLINE) text
TARGETS ATOM A list of valid target atoms
TASK INTEGER, TEXT The task ID of the owner
TEXT TEXT The text in the owner’s choice of encoding
TIMESTAMP INTEGER The timestamp used to acquire the selection
USER TEXT The name of the user running the owner___

References:

[1] Adobe Systems, Incorporated. Portable Document Format Reference Manual. Addison-
Wesley, ISBN 0-201-62628-4.

[2] Apple Computer, Incorporated. Inside Macintosh, Volume V. Chapter 4, ‘‘Color Quick-
Draw,’’ Color Picture Format. ISBN 0-201-17719-6.

[3] Adobe Systems, Incorporated. PostScript Language Reference Manual. Addison-Wesley,
ISBN 0-201-18127-4.

It is expected that this table will grow over time.

Selection owners are required to support the following targets. All other targets are optional.

• TARGETS – The owner should return a list of atoms that represent the targets for which an
attempt to convert the current selection will succeed (barring unforseeable problems such as
Alloc errors). This list should include all the required atoms.

• MULTIPLE – The MULTIPLE target atom is valid only when a property is specified on the
ConvertSelection request. If the property argument in the SelectionRequest event is
None and the target is MULTIPLE, it should be refused.

When a selection owner receives a SelectionRequest(target==MULTIPLE) request, the
contents of the property named in the request will be a list of atom pairs: the first atom nam-
ing a target and the second naming a property (None is not valid here). The effect should be
as if the owner had received a sequence of SelectionRequest events (one for each atom pair)
except that:

– The owner should reply with a SelectionNotify only when all the requested conver-
sions have been performed.

– If the owner fails to convert the target named by an atom in the MULTIPLE property,
it should replace that atom in the property with None .

5 Earlier versions of this document erroneously specified that conversion of the PIXMAP target return a property of type DRAWABLE
instead of PIXMAP. Implementors should be aware of this and may want to support the DRAWABLE type as well to allow for compatibil-
ity with older clients.

6 The targets ENCAPSULATED_POSTSCRIPT and ENCAPSULATED_POSTSCRIPT_INTERCHANGE are equivalent to the targets
_ADOBE_EPS and _ADOBE_EPSI (respectively) that appear in the selection targets registry. The _ADOBE_ targets are deprecated, but
clients are encouraged to continue to support them for backward compatibility.

7 This definition is ambiguous, as the selection may be converted into any of several targets which may return differing amounts of data.
The requestor has no way of knowing which, if any, of these targets corresponds to the result of LENGTH. Clients are advised that no
guarantees can be made about the result of a conversion to LENGTH; its use is thus deprecated.

 13

Inter-Client Communication Conventions X11, Release 6

Convention

The entries in a MULTIPLE property must be processed in the order they
appear in the property. For further information, see section 2.6.3.

The requestor should delete each individual property when it has copied the data from that
conversion, and the property specified in the MULTIPLE request when it has copied all the
data.

The requests are otherwise to be processed independently, and they should succeed or fail
independently. The MULTIPLE target is an optimization that reduces the amount of proto-
col traffic between the owner and the requestor; it is not a transaction mechanism. For exam-
ple, a client may issue a MULTIPLE request with two targets: a data target and the DELETE
target. The DELETE target will still be processed even if the conversion of the data target
fails.

• TIMESTAMP – To avoid some race conditions, it is important that requestors be able to dis-
cover the timestamp the owner used to acquire ownership. Until and unless the protocol is
changed so that a GetSelectionOwner request returns the timestamp used to acquire owner-
ship, selection owners must support conversion to TIMESTAMP, returning the timestamp
they used to obtain the selection.

2.6.3. Selection Targets with Side Effects
Some targets (for example, DELETE) have side effects. To render these targets unambiguous, the
entries in a MULTIPLE property must be processed in the order that they appear in the property.

In general, targets with side effects will return no information, that is, they will return a zero-
length property of type NULL. (Type NULL means the result of InternAtom on the string
‘‘NULL’’, not the value zero.) In all cases, the requested side effect must be performed before the
conversion is accepted. If the requested side effect cannot be performed, the corresponding
conversion request must be refused.

Conventions

1. Targets with side effects should return no information (that is, they should have a
zero-length property of type NULL).

2. The side effect of a target must be performed before the conversion is accepted.

3. If the side effect of a target cannot be performed, the corresponding conversion
request must be refused.

Problem

The need to delay responding to the ConvertSelection request until a further conver-
sion has succeeded poses problems for the Intrinsics interface that need to be
addressed.

These side effect targets are used to implement operations such as ‘‘exchange PRIMARY and
SECONDARY selections.’’

2.6.3.1. DELETE
When the owner of a selection receives a request to convert it to DELETE, it should delete the
corresponding selection (whatever doing so means for its internal data structures) and return a
zero-length property of type NULL if the deletion was successful.

 14

Inter-Client Communication Conventions X11, Release 6

2.6.3.2. INSERT_SELECTION
When the owner of a selection receives a request to convert it to INSERT_SELECTION, the pro-
perty named will be of type ATOM_PAIR. The first atom will name a selection, and the second
will name a target. The owner should use the selection mechanism to convert the named selection
into the named target and should insert it at the location of the selection for which it got the
INSERT_SELECTION request (whatever doing so means for its internal data structures).

2.6.3.3. INSERT_PROPERTY
When the owner of a selection receives a request to convert it to INSERT_PROPERTY, it should
insert the property named in the request at the location of the selection for which it got the
INSERT_SELECTION request (whatever doing so means for its internal data structures).

2.7. Use of Selection Properties
The names of the properties used in selection data transfer are chosen by the requestor. The use
of None property fields in ConvertSelection requests (which request the selection owner to
choose a name) is not permitted by these conventions.

The selection owner always chooses the type of the property in the selection data transfer. Some
types have special semantics assigned by convention, and these are reviewed in the following sec-
tions.

In all cases, a request for conversion to a target should return either a property of one of the types
listed in the previous table for that target or a property of type INCR and then a property of one of
the listed types.

Certain selection properties may contain resource IDs. The selection owner should ensure that
the resource is not destroyed and that its contents are not changed until after the selection transfer
is complete. Requestors that rely on the existence or on the proper contents of a resource must
operate on the resource (for example, by copying the contents of a pixmap) before deleting the
selection property.

The selection owner will return a list of zero or more items of the type indicated by the property
type. In general, the number of items in the list will correspond to the number of disjoint parts of
the selection. Some targets (for example, side-effect targets) will be of length zero irrespective of
the number of disjoint selection parts. In the case of fixed-size items, the requestor may deter-
mine the number of items by the property size. Selection property types are listed in the table
below. For variable-length items such as text, the separators are also listed.______________________________________

Type Atom Format Separator______________________________________

APPLE_PICT 8 Self-sizing
ATOM 32 Fixed-size
ATOM_PAIR 32 Fixed-size
BITMAP 32 Fixed-size
C_STRING 8 Zero
COLORMAP 32 Fixed-size
COMPOUND_TEXT 8 Zero
DRAWABLE 32 Fixed-size
INCR 32 Fixed-size
INTEGER 32 Fixed-size
PIXEL 32 Fixed-size
PIXMAP 32 Fixed-size
SPAN 32 Fixed-size
STRING 8 Zero
WINDOW 32 Fixed-size______________________________________

 15

Inter-Client Communication Conventions X11, Release 6

It is expected that this table will grow over time.

2.7.1. TEXT Properties
In general, the encoding for the characters in a text string property is specified by its type. It is
highly desirable for there to be a simple, invertible mapping between string property types and
any character set names embedded within font names in any font naming standard adopted by the
Consortium.

The atom TEXT is a polymorphic target. Requesting conversion into TEXT will convert into
whatever encoding is convenient for the owner. The encoding chosen will be indicated by the
type of the property returned. TEXT is not defined as a type; it will never be the returned type
from a selection conversion request.

If the requestor wants the owner to return the contents of the selection in a specific encoding, it
should request conversion into the name of that encoding.

In the table in section 2.6.2, the word TEXT (in the Type column) is used to indicate one of the
registered encoding names. The type would not actually be TEXT; it would be STRING or some
other ATOM naming the encoding chosen by the owner.

STRING as a type or a target specifies the ISO Latin-1 character set plus the control characters
TAB (octal 11) and NEWLINE (octal 12). The spacing interpretation of TAB is context depen-
dent. Other ASCII control characters are explicitly not included in STRING at the present time.

COMPOUND_TEXT as a type or a target specifies the Compound Text interchange format; see
the Compound Text Encoding.

There are some text objects where the source or intended user, as the case may be, does not have a
specific character set for the text, but instead merely requires a zero-terminated sequence of bytes
with no other restriction; no element of the selection mechanism may assume that any byte value
is forbidden or that any two differing sequences are equivalent.8 For these objects, the type
C_STRING should be used.

Rationale

An example of the need for C_STRING is to transmit the names of files; many
operating systems do not interpret filenames as having a character set. For example,
the same character string uses a different sequence of bytes in ASCII and EBCDIC,
and so most operating systems see these as different filenames, and offer no way to
treat them as the same. Thus no character-set based property type is suitable.

Type STRING, COMPOUND_TEXT, and C_STRING properties will consist of a list of ele-
ments separated by null characters; other encodings will need to specify an appropriate list for-
mat.

2.7.2. INCR Properties
Requestors may receive a property of type INCR9 in response to any target that results in selec-
tion data. This indicates that the owner will send the actual data incrementally. The contents of
the INCR property will be an integer, which represents a lower bound on the number of bytes of
data in the selection. The requestor and the selection owner transfer the data in the selection in
the following manner.

The selection requestor starts the transfer process by deleting the (type==INCR) property forming
the reply to the selection.

8 Note that this is different from STRING, where many byte values are forbidden, and from COMPOUND_TEXT, where, for example,
inserting the sequence 27, 40, 66 (designate ASCII into GL) at the start does not alter the meaning.

9 These properties were called INCREMENTAL in an earlier draft. The protocol for using them has changed, and so the name has
changed to avoid confusion.

 16

Inter-Client Communication Conventions X11, Release 6

The selection owner then:

• Appends the data in suitable-size chunks to the same property on the same window as the
selection reply with a type corresponding to the actual type of the converted selection. The
size should be less than the maximum-request-size in the connection handshake.

• Waits between each append for a PropertyNotify(state==Deleted) event that shows that the
requestor has read the data. The reason for doing this is to limit the consumption of space in
the server.

• Waits (after the entire data has been transferred to the server) until a
PropertyNotify(state==Deleted) event that shows that the data has been read by the reques-
tor and then writes zero-length data to the property.

The selection requestor:

• Waits for the SelectionNotify event.

• Loops:

– Retrieving data using GetProperty with the delete argument True .

– Waiting for a PropertyNotify with the state argument NewValue.

• Waits until the property named by the PropertyNotify event is zero-length.

• Deletes the zero-length property.

The type of the converted selection is the type of the first partial property. The remaining partial
properties must have the same type.

2.7.3. DRAWABLE Properties
Requestors may receive properties of type PIXMAP, BITMAP, DRAWABLE, or WINDOW,
which contain an appropriate ID. While information about these drawables is available from the
server by means of the GetGeometry request, the following items are not:

• Foreground pixel

• Background pixel

• Colormap ID

In general, requestors converting into targets whose returned type in the table in section 2.6.2 is
one of the DRAWABLE types should expect to convert also into the following targets (using the
MULTIPLE mechanism):

• FOREGROUND returns a PIXEL value.

• BACKGROUND returns a PIXEL value.

• COLORMAP returns a colormap ID.

2.7.4. SPAN Properties
Properties with type SPAN contain a list of cardinal-pairs with the length of the cardinals deter-
mined by the format. The first specifies the starting position, and the second specifies the ending
position plus one. The base is zero. If they are the same, the span is zero-length and is before the
specified position. The units are implied by the target atom, such as LINE_NUMBER or
CHARACTER_POSITION.

2.8. Manager Selections
Certain clients, often called managers, take on responsibility for managing shared resources. A
client that manages a shared resource should take ownership of an appropriate selection, named
using the conventions described in sections 1.2.3 and 1.2.6. A client that manages multiple
shared resources (or groups of resources) should take ownership of a selection for each one.

The manager may support conversion of various targets for that selection. Managers are
encouraged to use this technique as the primary means by which clients interact with the managed

 17

Inter-Client Communication Conventions X11, Release 6

resource. Note that the conventions for interacting with the window manager predate this section;
as a result many interactions with the window manager use other techniques.

Before a manager takes ownership of a manager selection, it should use the GetSelectionOwner
request to check whether the selection is already owned by another client, and where appropriate,
it should ask the user if the new manager should replace the old one. If so, it may then take own-
ership of the selection. Managers should acquire the selection using a window created expressly
for this purpose. Managers must conform to the rules for selection owners described in sections
2.1 and 2.2, and they must also support the required targets listed in section 2.6.2.

If a manager loses ownership of a manager selection, this means that a new manager is taking
over its responsibilities. The old manager must release all resources it has managed, and must
then destroy the window that owned the selection. For example, a window manager losing own-
ership of WM_S2 must deselect from SubstructureRedirect on the root window of screen 2
before destroying the window that owned WM_S2.

When the new manager notices that the window owning the selection has been destroyed, it
knows that it can successfully proceed to control the resource it is planning to manage. If the old
manager does not destroy the window within a reasonable time, the new manager should check
with the user before destroying the window itself or killing the old manager.

If a manager wants to give up, on its own, management of a shared resource controlled by a selec-
tion, it must do so by releasing the resources it is managing, and then by destroying the window
that owns the selection. It should not first disown the selection, since this introduces a race condi-
tion.

Clients who are interesting in knowing when the owner of a manager selection is no longer
managing the corresponding shared resource should select for StructureNotify on the window
owning the selection so they can be notified when the window is destroyed. Clients are warned
that after doing a GetSelectionOwner and selecting for StructureNotify, they should do a Get-
SelectionOwner again to ensure that the owner did not change after initially getting the selection
owner and before selecting for StructureNotify.

Immediately after a manager successfully acquires ownership of a manager selection, it should
announce its arrival by sending a ClientMessage event. This event should be sent using the Sen-
dEvent protocol request with the following arguments:___

Argument Value___

destination: the root window of screen 0, or the root window of the appropriate screen
if the manager is managing a screen-specific resource

propagate: False
event-mask: StructureNotify
event: ClientMessage

type: MANAGER
format: 32

timestampdata[0]: 10

data[1]: manager selection atom
data[2]: the window owning the selection
data[3]: manager-selection-specific data
data[4]: manager-selection-specific data___

Clients that wish to know when a specific manager has started should select for StructureNotify
on the appropriate root window, and should watch for the appropriate MANAGER Client-
Message.

10 We use the notation data[n] to indicate the nth element of the LISTofINT8, LISTofINT16, or LISTofINT32 in the data field of the
ClientMessage, according to the format field. The list is indexed from zero.

 18

Inter-Client Communication Conventions X11, Release 6

3. Peer-to-Peer Communication by Means of Cut Buffers
The cut buffer mechanism is much simpler but much less powerful than the selection mechanism.
The selection mechanism is active in that it provides a link between the owner and requestor
clients. The cut buffer mechanism is passive; an owner places data in a cut buffer from which a
requestor retrieves the data at some later time.

The cut buffers consist of eight properties on the root of screen zero, named by the predefined
atoms CUT_BUFFER0 to CUT_BUFFER7. These properties must, at present, have type
STRING and format 8. A client that uses the cut buffer mechanism must initially ensure that all
eight properties exist by using ChangeProperty requests to append zero-length data to each.

A client that stores data in the cut buffers (an owner) first must rotate the ring of buffers by plus 1
by using RotateProperties requests to rename each buffer; that is, CUT_BUFFER0 to
CUT_BUFFER1, CUT_BUFFER1 to CUT_BUFFER2, .. . , and CUT_BUFFER7 to
CUT_BUFFER0. It then must store the data into CUT_BUFFER0 by using a ChangeProperty
request in mode Replace.

A client that obtains data from the cut buffers should use a GetProperty request to retrieve the
contents of CUT_BUFFER0.

In response to a specific user request, a client may rotate the cut buffers by minus 1 by using
RotateProperties requests to rename each buffer; that is, CUT_BUFFER7 to CUT_BUFFER6,
CUT_BUFFER6 to CUT_BUFFER5, .. . , and CUT_BUFFER0 to CUT_BUFFER7.

Data should be stored to the cut buffers and the ring rotated only when requested by explicit user
action. Users depend on their mental model of cut buffer operation and need to be able to identify
operations that transfer data to and fro.

4. Client to Window Manager Communication
To permit window managers to perform their role of mediating the competing demands for
resources such as screen space, the clients being managed must adhere to certain conventions and
must expect the window managers to do likewise. These conventions are covered here from the
client’s point of view.

In general, these conventions are somewhat complex and will undoubtedly change as new win-
dow management paradigms are developed. Thus, there is a strong bias toward defining only
those conventions that are essential and that apply generally to all window management para-
digms. Clients designed to run with a particular window manager can easily define private proto-
cols to add to these conventions, but they must be aware that their users may decide to run some
other window manager no matter how much the designers of the private protocol are convinced
that they have seen the ‘‘one true light’’ of user interfaces.

It is a principle of these conventions that a general client should neither know nor care which win-
dow manager is running or, indeed, if one is running at all. The conventions do not support all
client functions without a window manager running; for example, the concept of Iconic is not
directly supported by clients. If no window manager is running, the concept of Iconic does not
apply. A goal of the conventions is to make it possible to kill and restart window managers
without loss of functionality.

Each window manager will implement a particular window management policy; the choice of an
appropriate window management policy for the user’s circumstances is not one for an individual
client to make but will be made by the user or the user’s system administrator. This does not
exclude the possibility of writing clients that use a private protocol to restrict themselves to
operating only under a specific window manager. Rather, it merely ensures that no claim of gen-
eral utility is made for such programs.

For example, the claim is often made: ‘‘The client I’m writing is important, and it needs to be on
top.’’ Perhaps it is important when it is being run in earnest, and it should then be run under the
control of a window manager that recognizes ‘‘important’’ windows through some private proto-
col and ensures that they are on top. However, imagine, for example, that the ‘‘important’’ client

 19

Inter-Client Communication Conventions X11, Release 6

is being debugged. Then, ensuring that it is always on top is no longer the appropriate window
management policy, and it should be run under a window manager that allows other windows (for
example, the debugger) to appear on top.

4.1. Client’s Actions
In general, the object of the X Version 11 design is that clients should, as far as possible, do
exactly what they would do in the absence of a window manager, except for the following:

• Hinting to the window manager about the resources they would like to obtain

• Cooperating with the window manager by accepting the resources they are allocated even if
they are not those requested

• Being prepared for resource allocations to change at any time

4.1.1. Creating a Top-Level Window
A client’s top-level window is a window whose override-redirect attribute is False . It must either
be a child of a root window, or it must have been a child of a root window immediately prior to
having been reparented by the window manager. If the client reparents the window away from
the root, the window is no longer a top-level window; but it can become a top-level window again
if the client reparents it back to the root.

A client usually would expect to create its top-level windows as children of one or more of the
root windows by using some boilerplate like the following:

win = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy), xsh.x, xsh.y,
xsh.width, xsh.height, bw, bd, bg);

If a particular one of the root windows was required, however, it could use something like the fol-
lowing:

win = XCreateSimpleWindow(dpy, RootWindow(dpy, screen), xsh.x, xsh.y,
xsh.width, xsh.height, bw, bd, bg);

Ideally, it should be possible to override the choice of a root window and allow clients (including
window managers) to treat a nonroot window as a pseudo-root. This would allow, for example,
the testing of window managers and the use of application-specific window managers to control
the subwindows owned by the members of a related suite of clients. Doing so properly requires
an extension, the design of which is under study.

From the client’s point of view, the window manager will regard its top-level window as being in
one of three states:

• Normal

• Iconic

• Withdrawn

Newly created windows start in the Withdrawn state. Transitions between states happen when the
top-level window is mapped and unmapped and when the window manager receives certain mes-
sages. For further details, see sections 4.1.2.4 and 4.1.4.

4.1.2. Client Properties
Once the client has one or more top-level windows, it should place properties on those windows
to inform the window manager of the behavior that the client desires. Window managers will
assume values they find convenient for any of these properties that are not supplied; clients that
depend on particular values must explicitly supply them. The window manager will not change
properties written by the client.

 20

Inter-Client Communication Conventions X11, Release 6

The window manager will examine the contents of these properties when the window makes the
transition from the Withdrawn state and will monitor some properties for changes while the win-
dow is in the Iconic or Normal state. When the client changes one of these properties, it must use
Replace mode to overwrite the entire property with new data; the window manager will retain no
memory of the old value of the property. All fields of the property must be set to suitable values
in a single Replace mode ChangeProperty request. This ensures that the full contents of the
property will be available to a new window manager if the existing one crashes, if it is shut down
and restarted, or if the session needs to be shut down and restarted by the session manager.

Convention

Clients writing or rewriting window manager properties must ensure that the entire
content of each property remains valid at all times.

Some of these properties may contain the IDs of resources, such as windows or pixmaps. Clients
should ensure that these resources exist for at least as long as the window on which the property
resides.

If these properties are longer than expected, clients should ignore the remainder of the property.
Extending these properties is reserved to the X Consortium; private extensions to them are forbid-
den. Private additional communication between clients and window managers should take place
using separate properties. The only exception to this rule is the WM_PROTOCOLS property,
which may be of arbitrary length and which may contain atoms representing private protocols; see
section 4.1.2.7.

The next sections describe each of the properties the clients need to set, in turn. They are sum-
marized in the table in section 4.4.

4.1.2.1. WM_NAME Property
The WM_NAME property is an uninterpreted string that the client wants the window manager to
display in association with the window (for example, in a window headline bar).

The encoding used for this string (and all other uninterpreted string properties) is implied by the
type of the property. The type atoms to be used for this purpose are described in section 2.7.1.

Window managers are expected to make an effort to display this information. Simply ignoring
WM_NAME is not acceptable behavior. Clients can assume that at least the first part of this
string is visible to the user and that if the information is not visible to the user, it is because the
user has taken an explicit action to make it invisible.

On the other hand, there is no guarantee that the user can see the WM_NAME string even if the
window manager supports window headlines. The user may have placed the headline off-screen
or have covered it by other windows. WM_NAME should not be used for application-critical
information or to announce asynchronous changes of an application’s state that require timely
user response. The expected uses are to permit the user to identify one of a number of instances
of the same client and to provide the user with noncritical state information.

Even window managers that support headline bars will place some limit on the length of the
WM_NAME string that can be visible; brevity here will pay dividends.

4.1.2.2. WM_ICON_NAME Property
The WM_ICON_NAME property is an uninterpreted string that the client wants to be displayed
in association with the window when it is iconified (for example, in an icon label). In other
respects, including the type, it is similar to WM_NAME. For obvious geometric reasons, fewer
characters will normally be visible in WM_ICON_NAME than WM_NAME.

Clients should not attempt to display this string in their icon pixmaps or windows; rather, they
should rely on the window manager to do so.

 21

Inter-Client Communication Conventions X11, Release 6

4.1.2.3. WM_NORMAL_HINTS Property
The type of the WM_NORMAL_HINTS property is WM_SIZE_HINTS. Its contents are as fol-
lows:___

Field Type Comments___

flags CARD32 (see the next table)
pad 4*CARD32 For backwards compatibility
min_width INT32 If missing, assume base_width
min_height INT32 If missing, assume base_height
max_width INT32
max_height INT32
width_inc INT32
height_inc INT32
min_aspect (INT32,INT32)
max_aspect (INT32,INT32)
base_width INT32 If missing, assume min_width
base_height INT32 If missing, assume min_height
win_gravity INT32 If missing, assume NorthWest___

The WM_SIZE_HINTS.flags bit definitions are as follows:___

Name Value Field___

1 User-specified x, yUSPosition
2 User-specified width, heightUSSize
4 Program-specified positionPPosition
8 Program-specified sizePSize

16 Program-specified minimum sizePMinSize
32 Program-specified maximum sizePMaxSize
64 Program-specified resize incrementsPResizeInc

128 Program-specified min and max aspect ratiosPAspect
256 Program-specified base sizePBaseSize
512 Program-specified window gravityPWinGravity___

To indicate that the size and position of the window (when a transition from the Withdrawn state
occurs) was specified by the user, the client should set the USPosition and USSize flags, which
allow a window manager to know that the user specifically asked where the window should be
placed or how the window should be sized and that further interaction is superfluous. To indicate
that it was specified by the client without any user involvement, the client should set PPosition
and PSize .

The size specifiers refer to the width and height of the client’s window excluding borders.

The win_gravity may be any of the values specified for WINGRAVITY in the core protocol
except for Unmap : NorthWest (1), North (2), NorthEast (3), West (4), Center (5), East (6),
SouthWest (7), South (8), and SouthEast (9). It specifies how and whether the client window
wants to be shifted to make room for the window manager frame.

If the win_gravity is Static, the window manager frame is positioned so that the inside border of
the client window inside the frame is in the same position on the screen as it was when the client
requested the transition from Withdrawn state. Other values of win_gravity specify a window
reference point. For NorthWest, NorthEast, SouthWest , and SouthEast the reference point is
the specified outer corner of the window (on the outside border edge). For North, South , East ,
and West the reference point is the center of the specified outer edge of the window border. For

 22

Inter-Client Communication Conventions X11, Release 6

Center the reference point is the center of the window. The reference point of the window
manager frame is placed at the location on the screen where the reference point of the client win-
dow was when the client requested the transition from Withdrawn state.

The min_width and min_height elements specify the minimum size that the window can be for
the client to be useful. The max_width and max_height elements specify the maximum size. The
base_width and base_height elements in conjunction with width_inc and height_inc define an
arithmetic progression of preferred window widths and heights for nonnegative integers i and j:

width = base_width + (i × width_inc)

height = base_height + (j × height_inc)

Window managers are encouraged to use i and j instead of width and height in reporting window
sizes to users. If a base size is not provided, the minimum size is to be used in its place and vice
versa.

The min_aspect and max_aspect fields are fractions with the numerator first and the denominator
second, and they allow a client to specify the range of aspect ratios it prefers. Window managers
that honor aspect ratios should take into account the base size in determining the preferred win-
dow size. If a base size is provided along with the aspect ratio fields, the base size should be sub-
tracted from the window size prior to checking that the aspect ratio falls in range. If a base size is
not provided, nothing should be subtracted from the window size. (The minimum size is not to
be used in place of the base size for this purpose.)

4.1.2.4. WM_HINTS Property
The WM_HINTS property (whose type is WM_HINTS) is used to communicate to the window
manager. It conveys the information the window manager needs other than the window
geometry, which is available from the window itself; the constraints on that geometry, which is
available from the WM_NORMAL_HINTS structure; and various strings, which need separate
properties, such as WM_NAME. The contents of the properties are as follows:__

Field Type Comments__

flags CARD32 (see the next table)
input CARD32 The client’s input model
initial_state CARD32 The state when first mapped
icon_pixmap PIXMAP The pixmap for the icon image
icon_window WINDOW The window for the icon image
icon_x INT32 The icon location
icon_y INT32
icon_mask PIXMAP The mask for the icon shape
window_group WINDOW The ID of the group leader window__

The WM_HINTS.flags bit definitions are as follows:__

Name Value Field__

1 inputInputHint
2 initial_stateStateHint
4 icon_pixmapIconPixmapHint
8 icon_windowIconWindowHint

16 icon_x & icon_yIconPositionHint
32 icon_maskIconMaskHint

 23

Inter-Client Communication Conventions X11, Release 6

__

Name Value Field__

64 window_groupWindowGroupHint
128 (this bit is obsolete)MessageHint
256 urgencyUrgencyHint__

Window managers are free to assume convenient values for all fields of the WM_HINTS property
if a window is mapped without one.

The input field is used to communicate to the window manager the input focus model used by the
client (see section 4.1.7).

Clients with the Globally Active and No Input models should set the input flag to False . Clients
with the Passive and Locally Active models should set the input flag to True .

From the client’s point of view, the window manager will regard the client’s top-level window as
being in one of three states:

• Normal

• Iconic

• Withdrawn

The semantics of these states are described in section 4.1.4. Newly created windows start in the
Withdrawn state. Transitions between states happen when a top-level window is mapped and
unmapped and when the window manager receives certain messages.

The value of the initial_state field determines the state the client wishes to be in at the time the
top-level window is mapped from the Withdrawn state, as shown in the following table:__

State Value Comments__

1 The window is visibleNormalState
3 The icon is visibleIconicState__

The icon_pixmap field may specify a pixmap to be used as an icon. This pixmap should be:

• One of the sizes specified in the WM_ICON_SIZE property on the root if it exists (see sec-
tion 4.1.3.2).

• 1-bit deep. The window manager will select, through the defaults database, suitable back-
ground (for the 0 bits) and foreground (for the 1 bits) colors. These defaults can, of course,
specify different colors for the icons of different clients.

The icon_mask specifies which pixels of the icon_pixmap should be used as the icon, allowing
for icons to appear nonrectangular.

The icon_window field is the ID of a window the client wants used as its icon. Most, but not all,
window managers will support icon windows. Those that do not are likely to have a user inter-
face in which small windows that behave like icons are completely inappropriate. Clients should
not attempt to remedy the omission by working around it.

Clients that need more capabilities from the icons than a simple two-color bitmap should use icon
windows. Rules for clients that do are set out in section 4.1.9.

The (icon_x,icon_y) coordinate is a hint to the window manager as to where it should position the
icon. The policies of the window manager control the positioning of icons, so clients should not
depend on attention being paid to this hint.

The window_group field lets the client specify that this window belongs to a group of windows.
An example is a single client manipulating multiple children of the root window.

 24

Inter-Client Communication Conventions X11, Release 6

Conventions

1. The window_group field should be set to the ID of the group leader. The window
group leader may be a window that exists only for that purpose; a placeholder group
leader of this kind would never be mapped either by the client or by the window
manager.

2. The properties of the window group leader are those for the group as a whole (for
example, the icon to be shown when the entire group is iconified).

Window managers may provide facilities for manipulating the group as a whole. Clients, at
present, have no way to operate on the group as a whole.

The messages bit, if set in the flags field, indicates that the client is using an obsolete window
manager communication protocol,11 rather than the WM_PROTOCOLS mechanism of section
4.1.2.7.

The UrgencyHint flag, if set in the flags field, indicates that the client deems the window con-
tents to be urgent, requiring the timely response of the user. The window manager must make
some effort to draw the user’s attention to this window while this flag is set. The window
manager must also monitor the state of this flag for the entire time the window is in the Normal or
Iconic state and must take appropriate action when the state of the flag changes. The flag is other-
wise independent of the window’s state; in particular, the window manager is not required to
deiconify the window if the client sets the flag on an Iconic window. Clients must provide some
means by which the user can cause the UrgencyHint flag to be set to zero or the window to be
withdrawn. The user’s action can either mitigate the actual condition that made the window
urgent, or it can merely shut off the alarm.

Rationale

This mechanism is useful for alarm dialog boxes or reminder windows, in cases
where mapping the window is not enough (e.g. in the presence of multi-workspace or
virtual desktop window managers), and where using an override-redirect window is
too intrusive. For example, the window manager may attract attention to an urgent
window by adding an indicator to its title bar or its icon. Window managers may
also take additional action for a window that is newly urgent, such as by flashing its
icon (if the window is iconic) or by raising it to the top of the stack.

4.1.2.5. WM_CLASS Property
The WM_CLASS property (of type STRING without control characters) contains two consecu-
tive null-terminated strings. These specify the Instance and Class names to be used by both the
client and the window manager for looking up resources for the application or as identifying
information. This property must be present when the window leaves the Withdrawn state and
may be changed only while the window is in the Withdrawn state. Window managers may exam-
ine the property only when they start up and when the window leaves the Withdrawn state, but
there should be no need for a client to change its state dynamically.

The two strings, respectively, are:

• A string that names the particular instance of the application to which the client that owns
this window belongs. Resources that are specified by instance name override any resources
that are specified by class name. Instance names can be specified by the user in an
operating-system specific manner. On POSIX-conformant systems, the following conven-
tions are used:

11 This obsolete protocol was described in the July 27, 1988 draft of the ICCCM. Windows using it can also be detected because their
WM_HINTS properties are four bytes longer than expected. Window managers are free to support clients using the obsolete protocol in a
backwards compatibility mode.

 25

Inter-Client Communication Conventions X11, Release 6

– If ‘‘–name NAME’’ is given on the command line, NAME is used as the instance
name.

– Otherwise, if the environment variable RESOURCE_NAME is set, its value will be
used as the instance name.

– Otherwise, the trailing part of the name used to invoke the program (argv[0] stripped
of any directory names) is used as the instance name.

• A string that names the general class of applications to which the client that owns this win-
dow belongs. Resources that are specified by class apply to all applications that have the
same class name. Class names are specified by the application writer. Examples of com-
monly used class names include: ‘‘Emacs’’, ‘‘XTerm’’, ‘‘XClock’’, ‘‘XLoad’’, and so on.

Note that WM_CLASS strings are null-terminated and, thus, differ from the general conventions
that STRING properties are null-separated. This inconsistency is necessary for backwards com-
patibility.

4.1.2.6. WM_TRANSIENT_FOR Property
The WM_TRANSIENT_FOR property (of type WINDOW) contains the ID of another top-level
window. The implication is that this window is a pop-up on behalf of the named window, and
window managers may decide not to decorate transient windows or may treat them differently in
other ways. In particular, window managers should present newly mapped
WM_TRANSIENT_FOR windows without requiring any user interaction, even if mapping top-
level windows normally does require interaction. Dialogue boxes, for example, are an example of
windows that should have WM_TRANSIENT_FOR set.

It is important not to confuse WM_TRANSIENT_FOR with override-redirect.
WM_TRANSIENT_FOR should be used in those cases where the pointer is not grabbed while
the window is mapped (in other words, if other windows are allowed to be active while the tran-
sient is up). If other windows must be prevented from processing input (for example, when
implementing pop-up menus), use override-redirect and grab the pointer while the window is
mapped.

4.1.2.7. WM_PROTOCOLS Property
The WM_PROTOCOLS property (of type ATOM) is a list of atoms. Each atom identifies a com-
munication protocol between the client and the window manager in which the client is willing to
participate. Atoms can identify both standard protocols and private protocols specific to indivi-
dual window managers.

All the protocols in which a client can volunteer to take part involve the window manager sending
the client a ClientMessage event and the client taking appropriate action. For details of the con-
tents of the event, see section 4.2.8. In each case, the protocol transactions are initiated by the
window manager.

The WM_PROTOCOLS property is not required. If it is not present, the client does not want to
participate in any window manager protocols.

The X Consortium will maintain a registry of protocols to avoid collisions in the name space.
The following table lists the protocols that have been defined to date.__

Protocol Section Purpose__

WM_TAKE_FOCUS 4.1.7 Assignment of input focus
WM_SAVE_YOURSELF Appendix C Save client state request (deprecated)
WM_DELETE_WINDOW 4.2.8.1 Request to delete top-level window__

It is expected that this table will grow over time.

 26

Inter-Client Communication Conventions X11, Release 6

4.1.2.8. WM_COLORMAP_WINDOWS Property
The WM_COLORMAP_WINDOWS property (of type WINDOW) on a top-level window is a
list of the IDs of windows that may need colormaps installed that differ from the colormap of the
top-level window. The window manager will watch this list of windows for changes in their
colormap attributes. The top-level window is always (implicitly or explicitly) on the watch list.
For the details of this mechanism, see section 4.1.8.

4.1.2.9. WM_CLIENT_MACHINE Property
The client should set the WM_CLIENT_MACHINE property (of one of the TEXT types) to a
string that forms the name of the machine running the client as seen from the machine running the
server.

4.1.3. Window Manager Properties
The properties that were described in the previous section are those that the client is responsible
for maintaining on its top-level windows. This section describes the properties that the window
manager places on client’s top-level windows and on the root.

4.1.3.1. WM_STATE Property
The window manager will place a WM_STATE property (of type WM_STATE) on each top-
level client window that is not in the Withdrawn state. Top-level windows in the Withdrawn state
may or may not have the WM_STATE property. Once the top-level window has been with-
drawn, the client may re-use it for another purpose. Clients that do so should remove the
WM_STATE property if it is still present.

Some clients (such as xprop) will ask the user to click over a window on which the program is to
operate. Typically, the intent is for this to be a top-level window. To find a top-level window,
clients should search the window hierarchy beneath the selected location for a window with the
WM_STATE property. This search must be recursive in order to cover all window manager
reparenting possibilities. If no window with a WM_STATE property is found, it is recommended
that programs use a mapped child-of-root window if one is present beneath the selected location.

The contents of the WM_STATE property are defined as follows:__________________________________

Field Type Comments__________________________________

state CARD32 (see the next table)
icon WINDOW ID of icon window__________________________________

The following table lists the WM_STATE.state values:_______________________

State Value_______________________

0WithdrawnState
1NormalState
3IconicState_______________________

Adding other fields to this property is reserved to the X Consortium. Values for the state field
other than those defined in the above table are reserved for use by X Consortium.

The state field describes the window manager’s idea of the state the window is in, which may not
match the client’s idea as expressed in the initial_state field of the WM_HINTS property (for
example, if the user has asked the window manager to iconify the window). If it is NormalState,
the window manager believes the client should be animating its window. If it is IconicState, the
client should animate its icon window. In either state, clients should be prepared to handle

 27

Inter-Client Communication Conventions X11, Release 6

exposure events from either window.

When the window is withdrawn, the window manager will either change the state field’s value to
WithdrawnState or it will remove the WM_STATE property entirely.

The icon field should contain the window ID of the window that the window manager uses as the
icon for the window on which this property is set. If no such window exists, the icon field should
be None . Note that this window could be but is not necessarily the same window as the icon
window that the client may have specified in its WM_HINTS property. The WM_STATE icon
may be a window that the window manager has supplied and that contains the client’s icon pix-
map, or it may be an ancestor of the client’s icon window.

4.1.3.2. WM_ICON_SIZE Property
A window manager that wishes to place constraints on the sizes of icon pixmaps and/or windows
should place a property called WM_ICON_SIZE on the root. The contents of this property are
listed in the following table.___

Field Type Comments__

min_width CARD32 The data for the icon size series
min_height CARD32
max_width CARD32
max_height CARD32
width_inc CARD32
height_inc CARD32___

For more details see section 14.1.12 in Xlib – C Language X Interface.

4.1.4. Changing Window State
From the client’s point of view, the window manager will regard each of the client’s top-level
windows as being in one of three states, whose semantics are as follows:

• NormalState – The client’s top-level window is viewable.

• IconicState – The client’s top-level window is iconic (whatever that means for this window
manager). The client can assume that its top-level window is not viewable, its icon_window
(if any) will be viewable and, failing that, its icon_pixmap (if any) or its WM_ICON_NAME
will be displayed.

• WithdrawnState – Neither the client’s top-level window nor its icon is visible.

In fact, the window manager may implement states with semantics other than those described
above. For example, a window manager might implement a concept of an ‘‘inactive’’ state in
which an infrequently used client’s window would be represented as a string in a menu. But this
state is invisible to the client, which would see itself merely as being in the Iconic state.

Newly created top-level windows are in the Withdrawn state. Once the window has been pro-
vided with suitable properties, the client is free to change its state as follows:

• Withdrawn → Normal – The client should map the window with WM_HINTS.initial_state
being NormalState.

• Withdrawn → Iconic – The client should map the window with WM_HINTS.initial_state
being IconicState.

• Normal → Iconic – The client should send a ClientMessage event as described later in this
section.

• Normal → Withdrawn – The client should unmap the window and follow it with a synthetic
UnmapNotify event as described later in this section.

 28

Inter-Client Communication Conventions X11, Release 6

• Iconic → Normal – The client should map the window. The contents of
WM_HINTS.initial_state are irrelevant in this case.

• Iconic → Withdrawn – The client should unmap the window and follow it with a synthetic
UnmapNotify event as described later in this section.

Only the client can effect a transition into or out of the Withdrawn state. Once a client’s window
has left the Withdrawn state, the window will be mapped if it is in the Normal state and the win-
dow will be unmapped if it is in the Iconic state. Reparenting window managers must unmap the
client’s window when it is in the Iconic state, even if an ancestor window being unmapped
renders the client’s window unviewable. Conversely, if a reparenting window manager renders
the client’s window unviewable by unmapping an ancestor, the client’s window is by definition in
the Iconic state and must also be unmapped.

Advice to Implementors

Clients can select for StructureNotify on their top-level windows to track transitions
between Normal and Iconic states. Receipt of a MapNotify event will indicate a
transition to the Normal state, and receipt of an UnmapNotify event will indicate a
transition to the Iconic state.

When changing the state of the window to Withdrawn, the client must (in addition to unmapping
the window) send a synthetic UnmapNotify event by using a SendEvent request with the fol-
lowing arguments:__

Argument Value__

destination: The root
propagate: False
event-mask: (SubstructureRedirect|SubstructureNotify)
event: an UnmapNotify with:

event: The root
window: The window itself
from-configure: False__

Rationale

The reason for requiring the client to send a synthetic UnmapNotify event is to
ensure that the window manager gets some notification of the client’s desire to
change state, even though the window may already be unmapped when the desire is
expressed.

Advice to Implementors

For compatibility with obsolete clients, window managers should trigger the transi-
tion to the Withdrawn state on the real UnmapNotify rather than waiting for the syn-
thetic one. They should also trigger the transition if they receive a synthetic Unmap-
Notify on a window for which they have not yet received a real UnmapNotify .

When a client withdraws a window, the window manager will then update or remove the
WM_STATE property as described in section 4.1.3.1. Clients that want to re-use a client window
(e.g. by mapping it again or reparenting it elsewhere) after withdrawing it must wait for the with-
drawal to be complete before proceeding. The preferred method for doing this is for clients to
wait for the window manager to update or remove the WM_STATE property.12

12 Earlier versions of these conventions prohibited clients from reading the WM_STATE property. Clients operating under the earlier

 29

Inter-Client Communication Conventions X11, Release 6

If the transition is from the Normal to the Iconic state, the client should send a ClientMessage
event to the root with:

• Window == the window to be iconified

• Type13 == the atom WM_CHANGE_STATE

• Format == 32

• Data[0] == IconicState

Rationale

The format of this ClientMessage event does not match the format of
ClientMessages in section 4.2.8. This is because they are sent by the window
manager to clients, and this message is sent by clients to the window manager.

Other values of data[0] are reserved for future extensions to these conventions. The parameters of
the SendEvent request should be those described for the synthetic UnmapNotify event.

Advice to Implementors

Clients can also select for VisibilityChange events on their top-level or icon win-
dows. They will then receive a VisibilityNotify(state==FullyObscured) event when
the window concerned becomes completely obscured even though mapped (and thus,
perhaps a waste of time to update) and a VisibilityNotify(state!=FullyObscured)
event when it becomes even partly viewable.

Advice to Implementors

When a window makes a transition from the Normal state to either the Iconic or to
the Withdrawn state, clients should be aware that the window manager may make
transients for this window inaccessible. Clients should not rely on transient windows
being available to the user when the transient owner window is not in the Normal
state. When withdrawing a window, clients are advised to withdraw transients for
the window.

4.1.5. Configuring the Window
Clients can resize and reposition their top-level windows by using the ConfigureWindow
request. The attributes of the window that can be altered with this request are as follows:

• The [x,y] location of the window’s upper left-outer corner

• The [width,height] of the inner region of the window (excluding borders)

• The border width of the window

• The window’s position in the stack

The coordinate system in which the location is expressed is that of the root (irrespective of any
reparenting that may have occurred). The border width to be used and win_gravity position hint
to be used are those most recently requested by the client. Client configure requests are inter-
preted by the window manager in the same manner as the initial window geometry mapped from
the Withdrawn state, as described in section 4.1.2.3. Clients must be aware that there is no
guarantee that the window manager will allocate them the requested size or location and must be

conventions used the technique of tracking ReparentNotify events to wait for the top-level window to be reparented back to the root win-
dow. This is still a valid technique; however, it works only for reparenting window managers, and the WM_STATE technique is to be pre-
ferred.

13 The type field of the ClientMessage event (called the message_type field by Xlib) should not be confused with the code field of the
event itself, which will have the value 33 (ClientMessage).

 30

Inter-Client Communication Conventions X11, Release 6

prepared to deal with any size and location. If the window manager decides to respond to a
ConfigureRequest request by:

• Not changing the size, location, border width, or stacking order of the window at all

A client will receive a synthetic ConfigureNotify event that describes the (unchanged)
geometry of the window. The (x,y) coordinates will be in the root coordinate system,
adjusted for the border width the client requested, irrespective of any reparenting that has
taken place. The border_width will be the border width the client requested. The client will
not receive a real ConfigureNotify event because no change has actually taken place.

• Moving or restacking the window without resizing it or changing its border width

A client will receive a synthetic ConfigureNotify event following the change that describes
the new geometry of the window. The event’s (x,y) coordinates will be in the root coordi-
nate system adjusted for the border width the client requested. The border_width will be the
border width the client requested. The client may not receive a real ConfigureNotify event
that describes this change because the window manager may have reparented the top-level
window. If the client does receive a real event, the synthetic event will follow the real one.

• Resizing the window or changing its border width (regardless of whether the window was
also moved or restacked)

A client that has selected for StructureNotify events will receive a real ConfigureNotify
event. Note that the coordinates in this event are relative to the parent, which may not be the
root if the window has been reparented. The coordinates will reflect the actual border width
of the window (which the window manager may have changed). The Translate-
Coordinates request can be used to convert the coordinates if required.

The general rule is that coordinates in real ConfigureNotify events are in the parent’s space; in
synthetic events, they are in the root space.

Advice to Implementors

Clients cannot distinguish between the case where a top-level window is resized and
moved from the case where the window is resized but not moved, since a real
ConfigureNotify event will be received in both cases. Clients that are concerned
with keeping track of the absolute position of a top-level window should keep a piece
of state indicating whether they are certain of its position. Upon receipt of a real
ConfigureNotify event on the top-level window, the client should note that the posi-
tion is unknown. Upon receipt of a synthetic ConfigureNotify event, the client
should note the position as known, using the position in this event. If the client
receives a KeyPress, KeyRelease, ButtonPress , ButtonRelease, MotionNotify,
EnterNotify, or LeaveNotify event on the window (or on any descendant), the
client can deduce the top-level window’s position from the difference between the
(event-x, event-y) and (root-x, root-y) coordinates in these events. Only when the
position is unknown does the client need to use the TranslateCoordinates request
to find the position of a top-level window.

Clients should be aware that their borders may not be visible. Window managers are free to use
reparenting techniques to decorate client’s top-level windows with borders containing titles, con-
trols, and other details to maintain a consistent look-and-feel. If they do, they are likely to over-
ride the client’s attempts to set the border width and set it to zero. Clients, therefore, should not
depend on the top-level window’s border being visible or use it to display any critical informa-
tion. Other window managers will allow the top-level windows border to be visible.

 31

Inter-Client Communication Conventions X11, Release 6

Convention

Clients should set the desired value of the border-width attribute on all
ConfigureWindow requests to avoid a race condition.

Clients that change their position in the stack must be aware that they may have been reparented,
which means that windows that used to be siblings no longer are. Using a nonsibling as the
sibling parameter on a ConfigureWindow request will cause an error.

Convention

Clients that use a ConfigureWindow request to request a change in their position in
the stack should do so using None in the sibling field.

Clients that must position themselves in the stack relative to some window that was originally a
sibling must do the ConfigureWindow request (in case they are running under a nonreparenting
window manager), be prepared to deal with a resulting error, and then follow with a synthetic
ConfigureRequest event by invoking a SendEvent request with the following arguments:__

Argument Value__

destination: The root
propagate: False
event-mask: (SubstructureRedirect|SubstructureNotify)
event: a ConfigureRequest
with:

event: The root
window: The window itself
. . . Other parameters from the ConfigureWindow request__

Window managers are in any case free to position windows in the stack as they see fit, and so
clients should not rely on receiving the stacking order they have requested. Clients should ignore
the above-sibling field of both real and synthetic ConfigureNotify events received on their top-
level windows because this field may not contain useful information.

4.1.6. Changing Window Attributes
The attributes that may be supplied when a window is created may be changed by using the
ChangeWindowAttributes request. The window attributes are listed in the following table.____________________________________

Attribute Private to Client__

Background pixmap Yes
Background pixel Yes
Border pixmap Yes
Border pixel Yes
Bit gravity Yes
Window gravity No
Backing-store hint Yes
Save-under hint No
Event mask No
Do-not-propagate mask Yes
Override-redirect flag No
Colormap Yes
Cursor Yes

 32

Inter-Client Communication Conventions X11, Release 6

Attribute Private to Client__

Most attributes are private to the client and will never be interfered with by the window manager.
For the attributes that are not private to the client:

• The window manager is free to override the window gravity; a reparenting window manager
may want to set the top-level window’s window gravity for its own purposes.

• Clients are free to set the save-under hint on their top-level windows, but they must be aware
that the hint may be overridden by the window manager.

• Windows, in effect, have per-client event masks, and so, clients may select for whatever
events are convenient irrespective of any events the window manager is selecting for. There
are some events for which only one client at a time may select, but the window manager
should not select for them on any of the client’s windows.

• Clients can set override-redirect on top-level windows but are encouraged not to do so
except as described in sections 4.1.10 and 4.2.9.

4.1.7. Input Focus
There are four models of input handling:

• No Input – The client never expects keyboard input. An example would be xload or another
output-only client.

• Passive Input – The client expects keyboard input but never explicitly sets the input focus.
An example would be a simple client with no subwindows, which will accept input in Poin-
terRoot mode or when the window manager sets the input focus to its top-level window (in
click-to-type mode).

• Locally Active Input – The client expects keyboard input and explicitly sets the input focus,
but it only does so when one of its windows already has the focus. An example would be a
client with subwindows defining various data entry fields that uses Next and Prev keys to
move the input focus between the fields. It does so when its top-level window has acquired
the focus in PointerRoot mode or when the window manager sets the input focus to its top-
level window (in click-to-type mode).

• Globally Active Input – The client expects keyboard input and explicitly sets the input focus,
even when it is in windows the client does not own. An example would be a client with a
scroll bar that wants to allow users to scroll the window without disturbing the input focus
even if it is in some other window. It wants to acquire the input focus when the user clicks
in the scrolled region but not when the user clicks in the scroll bar itself. Thus, it wants to
prevent the window manager from setting the input focus to any of its windows.

The four input models and the corresponding values of the input field and the presence or absence
of the WM_TAKE_FOCUS atom in the WM_PROTOCOLS property are listed in the following
table:__

Input Model Input Field WM_TAKE_FOCUS__

No Input False Absent
Passive True Absent
Locally Active True Present
Globally Active False Present__

Passive and Locally Active clients set the input field of WM_HINTS to True , which indicates
that they require window manager assistance in acquiring the input focus. No Input and Globally
Active clients set the input field to False , which requests that the window manager not set the

 33

Inter-Client Communication Conventions X11, Release 6

input focus to their top-level window.

Clients that use a SetInputFocus request must set the time field to the timestamp of the event
that caused them to make the attempt. This cannot be a FocusIn event because they do not have
timestamps. Clients may also acquire the focus without a corresponding EnterNotify. Note that
clients must not use CurrentTime in the time field.

Clients using the Globally Active model can only use a SetInputFocus request to acquire the
input focus when they do not already have it on receipt of one of the following events:

• ButtonPress
• ButtonRelease
• Passive-grabbed KeyPress
• Passive-grabbed KeyRelease
In general, clients should avoid using passive-grabbed key events for this purpose, except when
they are unavoidable (as, for example, a selection tool that establishes a passive grab on the keys
that cut, copy, or paste).

The method by which the user commands the window manager to set the focus to a window is up
to the window manager. For example, clients cannot determine whether they will see the click
that transfers the focus.

Windows with the atom WM_TAKE_FOCUS in their WM_PROTOCOLS property may receive
a ClientMessage event from the window manager (as described in section 4.2.8) with
WM_TAKE_FOCUS in its data[0] field and a valid timestamp (i.e. not CurrentTime) in its
data[1] field. If they want the focus, they should respond with a SetInputFocus request with its
window field set to the window of theirs that last had the input focus or to their default input win-
dow, and the time field set to the timestamp in the message. For further information, see section
4.2.7.

A client could receive WM_TAKE_FOCUS when opening from an icon or when the user has
clicked outside the top-level window in an area that indicates to the window manager that it
should assign the focus (for example, clicking in the headline bar can be used to assign the focus).

The goal is to support window managers that want to assign the input focus to a top-level window
in such a way that the top-level window either can assign it to one of its subwindows or can
decline the offer of the focus. For example, a clock or a text editor with no currently open frames
might not want to take focus even though the window manager generally believes that clients
should take the input focus after being deiconified or raised.

Clients that set the input focus need to decide a value for the revert-to field of the SetInputFocus
request. This determines the behavior of the input focus if the window the focus has been set to
becomes not viewable. The value can be any of the following:

• Parent – In general, clients should use this value when assigning focus to one of their
subwindows. Unmapping the subwindow will cause focus to revert to the parent, which is
probably what you want.

• PointerRoot – Using this value with a click-to-type focus management policy leads to race
conditions because the window becoming unviewable may coincide with the window
manager deciding to move the focus elsewhere.

• None – Using this value causes problems if the window manager reparents the window, as
most window managers will, and then crashes. The input focus will be None , and there will
probably be no way to change it.

Note that neither PointerRoot nor None is really safe to use.

 34

Inter-Client Communication Conventions X11, Release 6

Convention

Clients that invoke a SetInputFocus request should set the revert-to argument to
Parent.

A convention is also required for clients that want to give up the input focus. There is no safe
value set for them to set the input focus to; therefore, they should ignore input material.

Convention

Clients should not give up the input focus of their own volition. They should ignore
input that they receive instead.

4.1.8. Colormaps
The window manager is responsible for installing and uninstalling colormaps on behalf of clients
with top-level windows that the window manager manages.

Clients provide the window manager with hints as to which colormaps to install and uninstall.
Clients must not install or uninstall colormaps themselves (except under the circumstances noted
below). When a client’s top-level window gets the colormap focus (as a result of whatever color-
map focus policy is implemented by the window manager), the window manager will ensure that
one or more of the client’s colormaps are installed.

Clients whose top-level windows and subwindows all use the same colormap should set its ID in
the colormap field of the top-level window’s attributes. They should not set a
WM_COLORMAP_WINDOWS property on the top-level window. If they want to change the
colormap, they should change the top-level window’s colormap attribute. The window manager
will track changes to the window’s colormap attribute and install colormaps as appropriate.

Clients that create windows can use the value CopyFromParent to inherit their parent’s color-
map. Window managers will ensure that the root window’s colormap field contains a colormap
that is suitable for clients to inherit. In particular, the colormap will provide distinguishable
colors for BlackPixel and WhitePixel .
Top-level windows that have subwindows or override-redirect pop-up windows whose colormap
requirements differ from the top-level window should have a WM_COLORMAP_WINDOWS
property. This property contains a list of IDs for windows whose colormaps the window manager
should attempt to have installed when, in the course of its individual colormap focus policy, it
assigns the colormap focus to the top-level window (see section 4.1.2.8). The list is ordered by
the importance to the client of having the colormaps installed. The window manager will track
changes to this property and will track changes to the colormap attribute of the windows in the
property.

If the relative importance of colormaps changes, the client should update the
WM_COLORMAP_WINDOWS property to reflect the new ordering. If the top-level window
does not appear in the list, the window manager will assume it to be of higher priority than any
window in the list.

WM_TRANSIENT_FOR windows either can have their own WM_COLORMAP_WINDOWS
property or can appear in the property of the window they are transient for, as appropriate.

Rationale

An alternative design was considered for how clients should hint to the window
manager about their colormap requirements. This alternative design specified a list
of colormaps instead of a list of windows. The current design, a list of windows, was
chosen for two reasons. First, it allows window managers to find the visuals of the
colormaps, thus permitting visual-dependent colormap installation policies. Second,
it allows window managers to select for VisibilityChange events on the windows
concerned and to ensure that colormaps are only installed if the windows that need

 35

Inter-Client Communication Conventions X11, Release 6

them are visible. The alternative design allows for neither of these policies.

Advice to Implementors

Clients should be aware of the min-installed-maps and max-installed-maps fields of
the connection setup information, and the effect that the minimum value has on the
‘‘required list’’ defined by the Protocol in the description of the InstallColormap
request. Briefly, the min-installed-maps most recently installed maps are guaranteed
to be installed. This value is often one; clients needing multiple colormaps should
beware.

Whenever possible, clients should use the mechanisms described above and let the window
manager handle colormap installation. However, clients are permitted to perform colormap ins-
tallation on their own while they have the pointer grabbed. A client performing colormap instal-
lation must notify the window manager prior to the first installation. When the client has finished
its colormap installation, it must also notify the window manager. The client notifies the window
manager by issuing a SendEvent request with the following arguments:

Argument Value___
destination: the root window of the screen on which the colormap is

being installed
propagate: False
event-mask: ColormapChange
event: a ClientMessage with:

window: the root window, as above
type: WM_COLORMAP_NOTIFY
format: 32
data[0]: the timestamp of the event that caused the client to start

or stop installing colormaps
data[1]: 1 if the client is starting colormap installation, 0 if the

client is finished with colormap installation
data[2]: reserved, must be zero
data[3]: reserved, must be zero
data[4]: reserved, must be zero___

This feature was introduced in version 2.0 of this document, and there will be a significant period
of time before all window managers can be expected to implement this feature. Before using this
feature, clients must check the compliance level of the window manager (using the mechanism
described in section 4.3) to verify that it supports this feature. This is necessary to prevent color-
map installation conflicts between clients and older window managers.

Window managers should refrain from installing colormaps while a client has requested control
of colormap installation. The window manager should continue to track the set of installed color-
maps so that it can reinstate its colormap focus policy when the client has finished colormap ins-
tallation.

This technique has race conditions that may result in the colormaps continuing to be installed
even after a client has issued its notification message. For example, the window manager may
have issued some InstallColormap requests that are not executed until after the client’s
SendEvent and InstallColormap requests, thus uninstalling the client’s colormaps. If this
occurs while the client still has the pointer grabbed and before the client has issued the ‘‘finished’’
message, the client may reinstall the desired colormaps.

 36

Inter-Client Communication Conventions X11, Release 6

Advice to Implementors

Clients are expected to use this mechanism for things such as popup windows and for
animations that use override-redirect windows.

If a client fails to issue the ‘‘finished’’ message, the window manager may be left in a
state where its colormap installation policy is suspended. Window manager imple-
mentors may want to implement a feature that resets colormap installation policy in
response to a command from the user.

4.1.9. Icons
A client can hint to the window manager about the desired appearance of its icon by setting:

• A string in WM_ICON_NAME

All clients should do this because it provides a fallback for window managers whose ideas
about icons differ widely from those of the client.

• A Pixmap into the icon_pixmap field of the WM_HINTS property and possibly another into
the icon_mask field

The window manager is expected to display the pixmap masked by the mask. The pixmap
should be one of the sizes found in the WM_ICON_SIZE property on the root. If this pro-
perty is not found, the window manager is unlikely to display icon pixmaps. Window
managers usually will clip or tile pixmaps that do not match WM_ICON_SIZE.

• A window into the icon_window field of the WM_HINTS property

The window manager is expected to map that window whenever the client is in the Iconic
state. In general, the size of the icon window should be one of those specified in
WM_ICON_SIZE on the root, if it exists. Window managers are free to resize icon win-
dows.

In the Iconic state, the window manager usually will ensure that:

• If the window’s WM_HINTS.icon_window is set, the window it names is visible.

• If the window’s WM_HINTS.icon_window is not set but the window’s
WM_HINTS.icon_pixmap is set, the pixmap it names is visible.

• Otherwise, the window’s WM_ICON_NAME string is visible.

Clients should observe the following conventions about their icon windows:

Conventions

1. The icon window should be an InputOutput child of the root.

2. The icon window should be one of the sizes specified in the WM_ICON_SIZE pro-
perty on the root.

3. The icon window should use the root visual and default colormap for the screen in
question.

4. Clients should not map their icon windows.

5. Clients should not unmap their icon windows.

6. Clients should not configure their icon windows.

7. Clients should not set override-redirect on their icon windows or select for Resize-
Redirect events on them.

8. Clients must not depend on being able to receive input events by means of their icon
windows.

9. Clients must not manipulate the borders of their icon windows.

 37

Inter-Client Communication Conventions X11, Release 6

10. Clients must select for Exposure events on their icon window and repaint it when
requested.

Window managers will differ as to whether they support input events to client’s icon windows;
most will allow the client to receive some subset of the keys and buttons.

Window managers will ignore any WM_NAME, WM_ICON_NAME, WM_NORMAL_HINTS,
WM_HINTS, WM_CLASS, WM_TRANSIENT_FOR, WM_PROTOCOLS,
WM_COLORMAP_WINDOWS, WM_COMMAND, or WM_CLIENT_MACHINE properties
they find on icon windows.

4.1.10. Pop-up Windows
Clients that wish to pop up a window can do one of three things:

1. They can create and map another normal top-level window, which will get decorated and
managed as normal by the window manager. See the discussion of window groups that fol-
lows.

2. If the window will be visible for a relatively short time and deserves a somewhat lighter
treatment, they can set the WM_TRANSIENT_FOR property. They can expect less
decoration but can set all the normal window manager properties on the window. An
example would be a dialog box.

3. If the window will be visible for a very short time and should not be decorated at all, the
client can set override-redirect on the window. In general, this should be done only if the
pointer is grabbed while the window is mapped. The window manager will never interfere
with these windows, which should be used with caution. An example of an appropriate use
is a pop-up menu.

Advice to Implementors

The user will not be able to move, resize, restack, or transfer the input focus to
override-redirect windows, since the window manager is not managing them.
If it is necessary for a client to receive keystrokes on an override-redirect win-
dow, either the client must grab the keyboard, or the client must have another
top-level window that is not override-redirect and that has selected the Locally
Active or Globally Active focus model. The client may set the focus to the
override-redirect window when the other window receives a
WM_TAKE_FOCUS message or one of the events listed in section 4.1.7 in
the description of the Globally Active focus model.

Window managers are free to decide if WM_TRANSIENT_FOR windows should be iconified
when the window they are transient for is. Clients displaying WM_TRANSIENT_FOR windows
that have (or request to have) the window they are transient for iconified do not need to request
that the same operation be performed on the WM_TRANSIENT_FOR window; the window
manager will change its state if that is the policy it wishes to enforce.

4.1.11. Window Groups
A set of top-level windows that should be treated from the user’s point of view as related (even
though they may belong to a number of clients) should be linked together using the
window_group field of the WM_HINTS structure.

One of the windows (that is, the one the others point to) will be the group leader and will carry
the group as opposed to the individual properties. Window managers may treat the group leader
differently from other windows in the group. For example, group leaders may have the full set of
decorations, and other group members may have a restricted set.

 38

Inter-Client Communication Conventions X11, Release 6

It is not necessary that the client ever map the group leader; it may be a window that exists solely
as a placeholder.

It is up to the window manager to determine the policy for treating the windows in a group. At
present, there is no way for a client to request a group, as opposed to an individual, operation.

4.2. Client Responses to Window Manager Actions
The window manager performs a number of operations on client resources, primarily on their
top-level windows. Clients must not try to fight this but may elect to receive notification of the
window manager’s operations.

4.2.1. Reparenting
Clients must be aware that some window managers will reparent their top-level windows so that a
window that was created as a child of the root will be displayed as a child of some window
belonging to the window manager. The effects that this reparenting will have on the client are as
follows:

• The parent value returned by a QueryTree request will no longer be the value supplied to
the CreateWindow request that created the reparented window. There should be no need
for the client to be aware of the identity of the window to which the top-level window has
been reparented. In particular, a client that wishes to create further top-level windows
should continue to use the root as the parent for these new windows.

• The server will interpret the (x,y) coordinates in a ConfigureWindow request in the new
parent’s coordinate space. In fact, they usually will not be interpreted by the server because
a reparenting window manager usually will have intercepted these operations (see section
4.2.2). Clients should use the root coordinate space for these requests (see section 4.1.5).

• ConfigureWindow requests that name a specific sibling window may fail because the win-
dow named, which used to be a sibling, no longer is after the reparenting operation (see sec-
tion 4.1.5).

• The (x,y) coordinates returned by a GetGeometry request are in the parent’s coordinate
space and are thus not directly useful after a reparent operation.

• A background of ParentRelative will have unpredictable results.

• A cursor of None will have unpredictable results.

Clients that want to be notified when they are reparented can select for StructureNotify events
on their top-level window. They will receive a ReparentNotify event if and when reparenting
takes place. When a client withdraws a top-level window, the window manager will reparent it
back to the root window if the window had been reparented elsewhere.

If the window manager reparents a client’s window, the reparented window will be placed in the
save-set of the parent window. This means that the reparented window will not be destroyed if
the window manager terminates and will be remapped if it was unmapped. Note that this applies
to all client windows the window manager reparents, including transient windows and client icon
windows.

4.2.2. Redirection of Operations
Clients must be aware that some window managers will arrange for some client requests to be
intercepted and redirected. Redirected requests are not executed; they result instead in events
being sent to the window manager, which may decide to do nothing, to alter the arguments, or to
perform the request on behalf of the client.

The possibility that a request may be redirected means that a client cannot assume that any
redirectable request is actually performed when the request is issued or is actually performed at
all. The requests that may be redirected are MapWindow , ConfigureWindow , and Circulate-
Window .

 39

Inter-Client Communication Conventions X11, Release 6

Advice to Implementors

The following is incorrect because the MapWindow request may be intercepted and
the PolyLine output made to an unmapped window:

MapWindow A
PolyLine A GC <point> <point> .. .

The client must wait for an Expose event before drawing in the window.14

This next example incorrectly assumes that the ConfigureWindow request is actually exe-
cuted with the arguments supplied:

ConfigureWindow width=N height=M
<output assuming window is N by M>

The client should select for StructureNotify on its window and monitor the window’s size
by tracking ConfigureNotify events.

Clients must be especially careful when attempting to set the focus to a window that they
have just mapped. This sequence may result in an X protocol error:

MapWindow B
SetInputFocus B

If the MapWindow request has been intercepted, the window will still be unmapped, caus-
ing the SetInputFocus request to generate the error. The solution to this problem is for
clients to select for VisibilityChange on the window and to delay the issuance of the
SetInputFocus request until they have received a VisibilityNotify event indicating that
the window is visible.

This technique does not guarantee correct operation. The user may have iconified the win-
dow by the time the SetInputFocus request reaches the server, still causing an error. Or,
the window manager may decide to map the window into Iconic state, in which case the
window will not be visible. This will delay the generation of the VisibilityNotify event
indefinitely. Clients must be prepared to handle these cases.

A window with the override-redirect bit set is immune from redirection, but the bit should be set
on top-level windows only in cases where other windows should be prevented from processing
input while the override-redirect window is mapped (see section 4.1.10) and while responding to
ResizeRequest events (see section 4.2.9).

Clients that have no non-Withdrawn top-level windows and that map an override-redirect top-
level window are taking over total responsibility for the state of the system. It is their responsi-
bility to:

• Prevent any preexisting window manager from interfering with their activities

• Restore the status quo exactly after they unmap the window so that any preexisting window
manager does not get confused

In effect, clients of this kind are acting as temporary window managers. Doing so is strongly
discouraged because these clients will be unaware of the user interface policies the window
manager is trying to maintain and because their user interface behavior is likely to conflict with
that of less demanding clients.

14 This is true even if the client set the backing-store attribute to Always. The backing-store attribute is a only a hint, and the server
may stop maintaining backing store contents at any time.

 40

Inter-Client Communication Conventions X11, Release 6

4.2.3. Window Move
If the window manager moves a top-level window without changing its size, the client will
receive a synthetic ConfigureNotify event following the move that describes the new location in
terms of the root coordinate space. Clients must not respond to being moved by attempting to
move themselves to a better location.

Any real ConfigureNotify event on a top-level window implies that the window’s position on
the root may have changed, even though the event reports that the window’s position in its parent
is unchanged because the window may have been reparented. Note that the coordinates in the
event will not, in this case, be directly useful.

The window manager will send these events by using a SendEvent request with the following
arguments:______________________________

Argument Value__

destination: The client’s window
propagate: False
event-mask: StructureNotify______________________________

4.2.4. Window Resize
The client can elect to receive notification of being resized by selecting for StructureNotify
events on its top-level windows. It will receive a ConfigureNotify event. The size information
in the event will be correct, but the location will be in the parent window (which may not be the
root).

The response of the client to being resized should be to accept the size it has been given and to do
its best with it. Clients must not respond to being resized by attempting to resize themselves to a
better size. If the size is impossible to work with, clients are free to request to change to the
Iconic state.

4.2.5. Iconify and Deiconify
A top-level window that is not Withdrawn will be in the Normal state if it is mapped and in the
Iconic state if it is unmapped. This will be true even if the window has been reparented; the win-
dow manager will unmap the window as well as its parent when switching to the Iconic state.

The client can elect to be notified of these state changes by selecting for StructureNotify events
on the top-level window. It will receive a UnmapNotify event when it goes Iconic and a Map-
Notify event when it goes Normal.

4.2.6. Colormap Change
Clients that wish to be notified of their colormaps being installed or uninstalled should select for
ColormapNotify events on their top-level windows and on any windows they have named in
WM_COLORMAP_WINDOWS properties on their top-level windows. They will receive
ColormapNotify events with the new field FALSE when the colormap for that window is
installed or uninstalled.

4.2.7. Input Focus
Clients can request notification that they have the input focus by selecting for FocusChange
events on their top-level windows; they will receive FocusIn and FocusOut events. Clients that
need to set the input focus to one of their subwindows should not do so unless they have set
WM_TAKE_FOCUS in their WM_PROTOCOLS property and have done one of the following:

• Set the input field of WM_HINTS to True and actually have the input focus in one of their
top-level windows

 41

Inter-Client Communication Conventions X11, Release 6

• Set the input field of WM_HINTS to False and have received a suitable event as described
in section 4.1.7

• Have received a WM_TAKE_FOCUS message as described in section 4.1.7

Clients should not warp the pointer in an attempt to transfer the focus; they should set the focus
and leave the pointer alone. For further information, see section 6.2.

Once a client satisfies these conditions, it may transfer the focus to another of its windows by
using the SetInputFocus request, which is defined as follows:

LL

SetInputFocus
focus: WINDOW or PointerRoot or None
revert-to: {Parent, PointerRoot, None}
time: TIMESTAMP or CurrentTimeLL___

Conventions

1. Clients that use a SetInputFocus request must set the time argument to the time-
stamp of the event that caused them to make the attempt. This cannot be a FocusIn
event because they do not have timestamps. Clients may also acquire the focus
without a corresponding EnterNotify event. Clients must not use CurrentTime for
the time argument.

2. Clients that use a SetInputFocus request to set the focus to one of their windows
must set the revert-to field to Parent.

4.2.8. ClientMessage Events
There is no way for clients to prevent themselves being sent ClientMessage events.

Top-level windows with a WM_PROTOCOLS property may be sent ClientMessage events
specific to the protocols named by the atoms in the property (see section 4.1.2.7). For all proto-
cols, the ClientMessage events have the following:

• WM_PROTOCOLS as the type field

• Format 32

• The atom that names their protocol in the data[0] field

• A timestamp in their data[1] field

The remaining fields of the event, including the window field, are determined by the protocol.

These events will be sent by using a SendEvent request with the following arguments:____________________________________

Argument Value__

destination: The client’s window
propagate: False
event-mask: () empty
event: As specified by the protocol____________________________________

4.2.8.1. Window Deletion
Clients, usually those with multiple top-level windows, whose server connection must survive the
deletion of some of their top-level windows, should include the atom WM_DELETE_WINDOW
in the WM_PROTOCOLS property on each such window. They will receive a ClientMessage
event as described above whose data[0] field is WM_DELETE_WINDOW.

 42

Inter-Client Communication Conventions X11, Release 6

Clients receiving a WM_DELETE_WINDOW message should behave as if the user selected
‘‘delete window’’ from a hypothetical menu. They should perform any confirmation dialog with
the user and, if they decide to complete the deletion, should do the following:

• Either change the window’s state to Withdrawn (as described in section 4.1.4) or destroy the
window

• Destroy any internal state associated with the window

If the user aborts the deletion during the confirmation dialog, the client should ignore the mes-
sage.

Clients are permitted to interact with the user and ask, for example, whether a file associated with
the window to be deleted should be saved or the window deletion should be cancelled. Clients
are not required to destroy the window itself; the resource may be reused, but all associated state
(for example, backing store) should be released.

If the client aborts a destroy and the user then selects DELETE WINDOW again, the window
manager should start the WM_DELETE_WINDOW protocol again. Window managers should
not use DestroyWindow requests on a window that has WM_DELETE_WINDOW in its
WM_PROTOCOLS property.

Clients that choose not to include WM_DELETE_WINDOW in the WM_PROTOCOLS property
may be disconnected from the server if the user asks for one of the client’s top-level windows to
be deleted.

4.2.9. Redirecting Requests
Normal clients can use the redirection mechanism just as window managers do by selecting for
SubstructureRedirect events on a parent window or ResizeRedirect events on a window itself.
However, at most, one client per window can select for these events, and a convention is needed
to avoid clashes.

Convention

Clients (including window managers) should select for SubstructureRedirect and
ResizeRedirect events only on windows that they own.

In particular, clients that need to take some special action if they are resized can select for Resize-
Redirect events on their top-level windows. They will receive a ResizeRequest event if the
window manager resizes their window, and the resize will not actually take place. Clients are free
to make what use they like of the information that the window manager wants to change their
size, but they must configure the window to the width and height specified in the event in a timely
fashion. To ensure that the resize will actually happen at this stage instead of being intercepted
and executed by the window manager (and thus restarting the process), the client needs tem-
porarily to set override-redirect on the window.

Convention

Clients receiving ResizeRequest events must respond by doing the following:

• Setting override-redirect on the window specified in the event

• Configuring the window specified in the event to the width and height specified in the
event as soon as possible and before making any other geometry requests

• Clearing override-redirect on the window specified in the event

If a window manager detects that a client is not obeying this convention, it is free to take what-
ever measures it deems appropriate to deal with the client.

 43

Inter-Client Communication Conventions X11, Release 6

4.3. Communication with the Window Manager by Means of Selections
For each screen they manage, window managers will acquire ownership of a selection named
WM_Sn, where n is the screen number, as described in section 1.2.6. Window managers should
comply with the conventions for ‘‘Manager Selections’’ described in section 2.8. The intent is for
clients to be able to request a variety of information or services by issuing conversion requests on
this selection. Window managers should support conversion of the following target on their
manager selection:

Atom Type Data Received___

VERSION INTEGER Two integers, which are the major and minor release
numbers (respectively) of the ICCCM with which the
window manager complies. For this version of the
ICCCM, the numbers are 2 and 0.15

4.4. Summary of Window Manager Property Types
The window manager properties are summarized in the following table (see also section 14.1 of
Xlib – C Language X Interface).___

Name Type Format See Section__

WM_CLASS STRING 8 4.1.2.5
WM_CLIENT_MACHINE TEXT 4.1.2.9
WM_COLORMAP_WINDOWS WINDOW 32 4.1.2.8
WM_HINTS WM_HINTS 32 4.1.2.4
WM_ICON_NAME TEXT 4.1.2.2
WM_ICON_SIZE WM_ICON_SIZE 32 4.1.3.2
WM_NAME TEXT 4.1.2.1
WM_NORMAL_HINTS WM_SIZE_HINTS 32 4.1.2.3
WM_PROTOCOLS ATOM 32 4.1.2.7
WM_STATE WM_STATE 32 4.1.3.1
WM_TRANSIENT_FOR WINDOW 32 4.1.2.6___

5. Session Management
This section contains some conventions for clients that participate in session management. See X
Session Management Protocol for further details. Clients that do not support this protocol cannot
expect their window state (e.g. WM_STATE, position, size and stacking order) to be preserved
across sessions.

5.1. Client Support for Session Management
Each session participant will obtain a unique client identifier (client-ID) from the session
manager. The client must identify one top level window as the ‘‘client leader.’’ This window
must be created by the client. It may be in any state, including the Withdrawn state. The client
leader window must have a SM_CLIENT_ID property, which contains the client-ID obtained
from the session management protocol. That property must:

15 As a special case, clients not wishing to implement a selection request may simply issue a GetSelectionOwner request on the ap-
propriate WM_Sn selection. If this selection is owned, clients may assume that the window manager complies with ICCCM version 2.0 or
later.

 44

Inter-Client Communication Conventions X11, Release 6

• be of type STRING;

• be of format 8; and

• contain the client-ID as a string of XPCS characters encoded using ISO 8859-1.

All top-level, non-transient windows created by a client on the same display as the client leader
must have a WM_CLIENT_LEADER property. This property contains a window ID that
identifies the client leader window. The client leader window must have a
WM_CLIENT_LEADER property containing its own window ID (i.e. the client leader window is
pointing to itself). Transient windows need not have a WM_CLIENT_LEADER property if the
client leader can be determined using the information in the WM_TRANSIENT_FOR property.
The WM_CLIENT_LEADER property must:

• be of type WINDOW;

• be of format 32; and

• contain the window ID of the client leader window.

A client must withdraw all of its top level windows on the same display before modifiying either
the WM_CLIENT_LEADER or the SM_CLIENT_ID property of its client leader window.

It is necessary that other clients be able to uniquely identify a window (across sessions) among all
windows related to the same client-ID. For example, a window manager can require this unique
ID to restore geometry information from a previous session, or a workspace manager could use it
to restore information about which windows are in which workspace. A client may optionally
provide a WM_WINDOW_ROLE property to uniquely identify a window within the scope
specified above. The combination of SM_CLIENT_ID and WM_WINDOW_ROLE can be used
by other clients to uniquely identify a window across sessions.

If the WM_WINDOW_ROLE property is not specified on a top level window, a client that needs
to uniquely identify that window will try to use instead the values of WM_CLASS and
WM_NAME. If a client has multiple windows with identical WM_CLASS and WM_NAME
properties, then it should provide a WM_WINDOW_ROLE property.

The client must set the WM_WINDOW_ROLE property to a string that uniquely identifies that
window among all windows that have the same client leader window. The property must:

• be of type STRING;

• be of format 8; and

• contain a string restricted to the XPCS characters, encoded in ISO 8859-1.

5.2. Window Manager Support for Session Management
A window manager supporting session management must register with the session manager and
obtain its own client-ID. The window manager should save and restore information such as the
WM_STATE, the layout of windows on the screen, and their stacking order, for every client win-
dow that has a valid SM_CLIENT_ID property (on itself, or on the window named by
WM_CLIENT_LEADER) and that can be uniquely identified. Clients are allowed to change this
state during the first phase of the session checkpoint process. Therefore, window managers
should request a second checkpoint phase and save clients’ state only during that phase.

6. Manipulation of Shared Resources
X Version 11 permits clients to manipulate a number of shared resources, for example, the input
focus, the pointer, and colormaps. Conventions are required so that clients share resources in an
orderly fashion.

6.1. The Input Focus
Clients that explicitly set the input focus must observe one of two modes:

 45

Inter-Client Communication Conventions X11, Release 6

• Locally active mode

• Globally active mode

Conventions

1. Locally active clients should set the input focus to one of their windows only when it
is already in one of their windows or when they receive a WM_TAKE_FOCUS mes-
sage. They should set the input field of the WM_HINTS structure to True .

2. Globally active clients should set the input focus to one of their windows only when
they receive a button event and a passive-grabbed key event, or when they receive a
WM_TAKE_FOCUS message. They should set the input field of the WM_HINTS
structure to False .

3. In addition, clients should use the timestamp of the event that caused them to attempt
to set the input focus as the time field on the SetInputFocus request, not Current-
Time .

6.2. The Pointer
In general, clients should not warp the pointer. Window managers, however, may do so (for
example, to maintain the invariant that the pointer is always in the window with the input focus).
Other window managers may want to preserve the illusion that the user is in sole control of the
pointer.

Conventions

1. Clients should not warp the pointer.

2. Clients that insist on warping the pointer should do so only with the src-window
argument of the WarpPointer request set to one of their windows.

6.3. Grabs
A client’s attempt to establish a button or a key grab on a window will fail if some other client
has already established a conflicting grab on the same window. The grabs, therefore, are shared
resources, and their use requires conventions.

In conformance with the principle that clients should behave, as far as possible, when a window
manager is running as they would when it is not, a client that has the input focus may assume that
it can receive all the available keys and buttons.

Convention

Window managers should ensure that they provide some mechanism for their clients
to receive events from all keys and all buttons, except for events involving keys
whose KeySyms are registered as being for window management functions (for
example, a hypothetical WINDOW KeySym).

In other words, window managers must provide some mechanism by which a client can receive
events from every key and button (regardless of modifiers) unless and until the X Consortium
registers some KeySyms as being reserved for window management functions. Currently, no
KeySyms are registered for window management functions.

Even so, clients are advised to allow the key and button combinations used to elicit program
actions to be modified, because some window managers may choose not to observe this conven-
tion or may not provide a convenient method for the user to transmit events from some keys.

 46

Inter-Client Communication Conventions X11, Release 6

Convention

Clients should establish button and key grabs only on windows that they own.

In particular, this convention means that a window manager that wishes to establish a grab over
the client’s top-level window should either establish the grab on the root, or reparent the window
and establish the grab on a proper ancestor. In some cases, a window manager may want to con-
sume the event received, placing the window in a state where a subsequent such event will go to
the client. Examples are:

• Clicking in a window to set focus with the click not being offered to the client

• Clicking in a buried window to raise it, again, with the click not offered to the client

More typically, a window manager should add to rather than replace the client’s semantics for
key+button combinations by allowing the event to be used by the client after the window
manager is done with it. To ensure this, the window manager should establish the grab on the
parent by using the following:

pointer/keyboard-mode == Synchronous

Then, the window manager should release the grab by using an AllowEvents request with the
following specified:

mode == ReplayPointer/Keyboard

In this way, the client will receive the events as if they had not been intercepted.

Obviously, these conventions place some constraints on possible user interface policies. There is
a trade-off here between freedom for window managers to implement their user interface policies
and freedom for clients to implement theirs. The dilemma is resolved by:

• Allowing window managers to decide if and when a client will receive an event from any
given key or button

• Placing a requirement on the window manager to provide some mechanism, perhaps a
‘‘Quote’’ key, by which the user can send an event from any key or button to the client

6.4. Colormaps
Section 4.1.8 prescribes conventions for clients to communicate with the window manager about
their colormap needs. If your clients are DirectColor type applications, you should consult sec-
tion 14.3 of Xlib – C Language X Interface for conventions connected with sharing standard
colormaps. They should look for and create the properties described there on the root window of
the appropriate screen.

The contents of the RGB_COLOR_MAP type property are as follows:__

Field Type Comments__

colormap COLORMAP ID of the colormap described
red_max CARD32 Values for pixel calculations
red_mult CARD32
green_max CARD32
green_mult CARD32
blue_max CARD32
blue_mult CARD32
base_pixel CARD32
visual_id VISUALID Visual to which colormap belongs
kill_id CARD32 ID for destroying the resources__

 47

Inter-Client Communication Conventions X11, Release 6

When deleting or replacing an RGB_COLOR_MAP, it is not sufficient to delete the property; it is
important to free the associated colormap resources as well. If kill_id is greater than one, the
resources should be freed by issuing a KillClient request with kill_id as the argument. If kill_id
is one, the resources should be freed by issuing a FreeColormap request with colormap as the
colormap argument. If kill_id is zero, no attempt should be made to free the resources. A client
that creates an RGB_COLOR_MAP for which the colormap resource is created specifically for
this purpose should set kill_id to one (and can create more than one such standard colormap using
a single connection). A client that creates an RGB_COLOR_MAP for which the colormap
resource is shared in some way (for example, is the default colormap for the root window) should
create an arbitrary resource and use its resource ID for kill_id (and should create no other standard
colormaps on the connection).

Convention

If an RGB_COLOR_MAP property is too short to contain the visual_id field, it can
be assumed that the visual_id is the root visual of the appropriate screen. If an
RGB_COLOR_MAP property is too short to contain the kill_id field, a value of zero
can be assumed.

During the connection handshake, the server informs the client of the default colormap for each
screen. This is a colormap for the root visual, and clients can use it to improve the extent of
colormap sharing if they use the root visual.

6.5. The Keyboard Mapping
The X server contains a table (which is read by GetKeyboardMapping requests) that describes
the set of symbols appearing on the corresponding key for each keycode generated by the server.
This table does not affect the server’s operations in any way; it is simply a database used by
clients that attempt to understand the keycodes they receive. Nevertheless, it is a shared resource
and requires conventions.

It is possible for clients to modify this table by using a ChangeKeyboardMapping request. In
general, clients should not do this. In particular, this is not the way in which clients should
implement key bindings or key remapping. The conversion between a sequence of keycodes
received from the server and a string in a particular encoding is a private matter for each client (as
it must be in a world where applications may be using different encodings to support different
languages and fonts). See the Xlib reference manual for converting keyboard events to text.

The only valid reason for using a ChangeKeyboardMapping request is when the symbols writ-
ten on the keys have changed as, for example, when a Dvorak key conversion kit or a set of APL
keycaps has been installed. Of course, a client may have to take the change to the keycap on
trust.

The following illustrates a permissible interaction between a client and a user:

Client: ‘‘You just started me on a server without a Pause key. Please choose a key to be the
Pause key and press it now.’’

User: Presses the Scroll Lock key

Client: ‘‘Adding Pause to the symbols on the Scroll Lock key: Confirm or Abort.’’

User: Confirms

Client: Uses a ChangeKeyboardMapping request to add Pause to the keycode that already
contains Scroll Lock and issues this request, ‘‘Please paint Pause on the Scroll Lock
key.’’

 48

Inter-Client Communication Conventions X11, Release 6

Convention

Clients should not use ChangeKeyboardMapping requests.

If a client succeeds in changing the keyboard mapping table, all clients will receive
MappingNotify(request==Keyboard) events. There is no mechanism to avoid receiving these
events.

Convention

Clients receiving MappingNotify(request==Keyboard) events should update any
internal keycode translation tables they are using.

6.6. The Modifier Mapping
X Version 11 supports eight modifier bits of which three are preassigned to Shift, Lock, and Con-
trol. Each modifier bit is controlled by the state of a set of keys, and these sets are specified in a
table accessed by GetModifierMapping and SetModifierMapping requests. This table is a
shared resource and requires conventions.

A client that needs to use one of the preassigned modifiers should assume that the modifier table
has been set up correctly to control these modifiers. The Lock modifier should be interpreted as
Caps Lock or Shift Lock according as the keycodes in its controlling set include XK_Caps_Lock
or XK_Shift_Lock.

Convention

Clients should determine the meaning of a modifier bit from the KeySyms being used
to control it.

A client that needs to use an extra modifier (for example, META) should do the following:

• Scan the existing modifier mappings. If it finds a modifier that contains a keycode whose set
of KeySyms includes XK_Meta_L or XK_Meta_R, it should use that modifier bit.

• If there is no existing modifier controlled by XK_Meta_L or XK_Meta_R, it should select
an unused modifier bit (one with an empty controlling set) and do the following:

– If there is a keycode with XL_Meta_L in its set of KeySyms, add that keycode to the
set for the chosen modifier.

– If there is a keycode with XL_Meta_R in its set of KeySyms, add that keycode to the
set for the chosen modifier.

– If the controlling set is still empty, interact with the user to select one or more keys to
be META.

• If there are no unused modifier bits, ask the user to take corrective action.

Conventions

1. Clients needing a modifier not currently in use should assign keycodes carrying suit-
able KeySyms to an unused modifier bit.

2. Clients assigning their own modifier bits should ask the user politely to remove his
or her hands from the key in question if their SetModifierMapping request returns a
Busy status.

There is no good solution to the problem of reclaiming assignments to the five nonpreassigned
modifiers when they are no longer being used.

 49

Inter-Client Communication Conventions X11, Release 6

Convention

The user must use xmodmap or some other utility to deassign obsolete modifier
mappings by hand.

When a client succeeds in performing a SetModifierMapping request, all clients will receive
MappingNotify(request==Modifier) events. There is no mechanism for preventing these events
from being received. A client that uses one of the nonpreassigned modifiers that receives one of
these events should do a GetModifierMapping request to discover the new mapping, and if the
modifier it is using has been cleared, it should reinstall the modifier.

Note that a GrabServer request must be used to make the GetModifierMapping and
SetModifierMapping pair in these transactions atomic.

7. Device Color Characterization
The X protocol provides explicit RGB values, which are used to directly drive a monitor, and
color names. RGB values provide a mechanism for accessing the full capabilities of the display
device, but at the expense of having the color perceived by the user remain unknowable through
the protocol. Color names were originally designed to provide access to a device-independent
color database by having the server vendor tune the definitions of the colors in that textual data-
base. Unfortunately, this still does not provide the client any way of using an existing device-
independent color, nor for the client to get device-independent color information back about
colors that it has selected.

Furthermore, the client must be able to discover which set of colors are displayable by the device
(the device gamut), both to allow colors to be intelligently modified to fit within the device capa-
bilities (gamut compression) and to enable the user interface to display a representation of the
reachable color space to the user (gamut display).

Therefore, a system is needed that will provide full access to device-independent color spaces for
X clients. This system should use a standard mechanism for naming the colors, be able to pro-
vide names for existing colors, and provide means by which unreachable colors can be modified
to fall within the device gamut.

We are fortunate in this area to have a seminal work, the 1931 CIE color standard, which is nearly
universally agreed upon as adequate for describing colors on CRT devices. This standard uses a
tri-stimulus model called CIE XYZ in which each perceivable color is specified as a triplet of
numbers. Other appropriate device-independent color models do exist, but most of them are
directly traceable back to this original work.

X device color characterization provides device-independent color spaces to X clients. It does
this by providing the barest possible amount of information to the client that allows the client to
construct a mapping between CIE XYZ and the regular X RGB color descriptions.

Device color characterization is defined by the name and contents of two window properties that,
together, permit converting between CIE XYZ space and linear RGB device space (such as stan-
dard CRTs). Linear RGB devices require just two pieces of information to completely character-
ize them:

• A 3×3 matrix M and its inverse M −1, which convert between XYZ and RGB intensity
(RGBintensity):

RGBintensity = M × XYZ

XYZ = M −1 × RGBintensity

• A way of mapping between RGB intensity and RGB protocol value. XDCCC supports
three mechanisms which will be outlined below.

If other device types are eventually necessary, additional properties will be required to describe
them.

 50

Inter-Client Communication Conventions X11, Release 6

7.1. XYZ ←←→→ RGB Conversion Matrices
Because of the limited dynamic range of both XYZ and RGB intensity, these matrices will be
encoded using a fixed-point representation of a 32-bit two’s complement number scaled by 227,
giving a range of −16 to 16−ε, where ε = 2−27.

These matrices will be packed into an 18-element list of 32-bit values, XYZ → RGB matrix first,
in row major order and stored in the XDCCC_LINEAR_RGB_MATRICES properties (format =
32) on the root window of each screen, using values appropriate for that screen.

This will be encoded as shown in the following table:

XDCCC_LINEAR_RGB_MATRICES property contents___

Field Type Comments___

M 0,0 INT32 Interpreted as a fixed-point number −16 ≤ x < 16
M 0,1 INT32
.. .
M 3,3 INT32
M −10,0 INT32
M −10,1 INT32
.. .
M −13,3 INT32___

7.2. Intensity ←←→→ RGB Value Conversion
XDCCC provides two representations for describing the conversion between RGB intensity and
the actual X protocol RGB values:

0 RGB value/RGB intensity level pairs
1 RGB intensity ramp

In both cases, the relevant data will be stored in the XDCCC_LINEAR_RGB_CORRECTION
properties on the root window of each screen, using values appropriate for that screen, in what-
ever format provides adequate resolution. Each property can consist of multiple entries con-
catenated together, if different visuals for the screen require different conversion data. An entry
with a VisualID of 0 specifies data for all visuals of the screen that are not otherwise explicitly
listed.

The first representation is an array of RGB value/intensity level pairs, with the RGB values in
strictly increasing order. When converting, the client must linearly interpolate between adjacent
entries in the table to compute the desired value. This allows the server to perform gamma
correction itself and encode that fact in a short two-element correction table. The intensity will be
encoded as an unsigned number to be interpreted as a value between 0 and 1 (inclusive). The pre-
cision of this value will depend on the format of the property in which it is stored (8, 16 or 32
bits). For 16-bit and 32-bit formats, the RGB value will simply be the value stored in the pro-
perty. When stored in 8-bit format, the RGB value can be computed from the value in the pro-
perty by:

RGBvalue = 255
Property Value × 65535_____________________

Because the three electron guns in the device may not be exactly alike in response characteristics,
it is necessary to allow for three separate tables, one each for red, green, and blue. Therefore,
each table will be preceded by the number of entries in that table, and the set of tables will be pre-
ceded by the number of tables. When three tables are provided, they will be in red, green, blue
order.

 51

Inter-Client Communication Conventions X11, Release 6

This will be encoded as shown in the following table:

XDCCC_LINEAR_RGB_CORRECTION Property Contents for Type 0 Correction__

Field Type Comments__

VisualID0 CARD Most-significant portion of VisualID
VisualID1 CARD Exists if and only if the property format is 8
VisualID2 CARD Exists if and only if the property format is 8
VisualID3 CARD Least-significant portion, exists if and only if the

property format is 8 or 16
type CARD 0 for this type of correction
count CARD Number of tables following (either 1 or 3)
length CARD Number of pairs – 1 following in this table
value CARD X Protocol RGB value
intensity CARD Interpret as a number 0 ≤ intensity ≤ 1
.. Total of length+1 pairs of value/intensity values
lengthg CARD Number of pairs – 1 following in this table (if

and only if count is 3)
value CARD X Protocol RGB value
intensity CARD Interpret as a number 0 ≤ intensity ≤ 1
.. Total of lengthg+1 pairs of value/intensity values
lengthb CARD Number of pairs – 1 following in this table (if

and only if count is 3)
value CARD X Protocol RGB value
intensity CARD Interpret as a number 0 ≤ intensity ≤ 1
.. Total of lengthb+1 pairs of value/intensity values__

The VisualID is stored in 4, 2, or 1 pieces, depending on whether the property format is 8, 16, or
32, respectively. The VisualID is always stored most-significant piece first. Note that the length
fields are stored as one less than the actual length, so 256 entries can be stored in format 8.

The second representation is a simple array of intensities for a linear subset of RGB values. The
expected size of this table is the bits-per-rgb-value of the screen, but it can be any length. This is
similar to the first mechanism, except that the RGB value numbers are implicitly defined by the
index in the array (indices start at 0):

RGBvalue = Array Size − 1
Array Index × 65535__________________

When converting, the client may linearly interpolate between entries in this table. The intensity
values will be encoded just as in the first representation.

This will be encoded as shown in the following table:

XDCCC_LINEAR_RGB_CORRECTION Property Contents for Type 1 Correction__

Field Type Comments__

VisualID0 CARD Most-significant portion of VisualID
VisualID1 CARD Exists if and only if the property format is 8
VisualID2 CARD Exists if and only if the property format is 8
VisualID3 CARD Least-significant portion, exists if and only if

the property format is 8 or 16
type CARD 1 for this type of correction
count CARD Number of tables following (either 1 or 3)
length CARD Number of elements – 1 following in this table
intensity CARD Interpret as a number 0 ≤ intensity ≤ 1

 52

Inter-Client Communication Conventions X11, Release 6

. Total of length+1 intensity elements
lengthg CARD Number of elements – 1 following in this table

(if and only if count is 3)
intensity CARD Interpret as a number 0 ≤ intensity ≤ 1
.. Total of lengthg+1 intensity elements
lengthb CARD Number of elements – 1 following in this table

(if and only if count is 3)
intensity CARD Interpret as a number 0 ≤ intensity ≤ 1
.. Total of lengthb+1 intensity elements__

8. Conclusion
This document provides the protocol-level specification of the minimal conventions needed to
ensure that X Version 11 clients can interoperate properly. This document specifies interoperabil-
ity conventions only for the X Version 11 protocol. Clients should be aware of other protocols
that should be used for better interoperation in the X environment. The reader is referred to X
Session Management Protocol for information on session management, and to Inter-Client
Exchange Protocol for information on general-purpose communication among clients.

8.1. The X Registry
The X Consortium maintains a registry of certain X-related items, to aid in avoiding conflicts and
to aid in sharing of such items. Readers are encouraged to use the registry. The classes of items
kept in the registry that are relevant to the ICCCM include property names, property types, selec-
tion names, selection targets, WM_PROTOCOLS protocols, ClientMessage types, and applica-
tion classes. Requests to register items, or questions about registration, should be addressed to

xregistry@x.org

or to

Registry
X Consortium
1 Memorial Dr
Cambridge MA 02142-1301
USA

Electronic mail will be acknowledged upon receipt. Please allow up to four weeks for a formal
response to registration and inquiries.

The registry is published as part of the X software distribution from the X Consortium. All
registered items must have the postal address of someone responsible for the item, or a reference
to a document describing the item and the postal address of where to write to obtain the docu-
ment.

 53

Inter-Client Communication Conventions X11, Release 6

Appendix A

A. Revision History
This appendix describes the revision history of this document and summarizes the incompatibili-
ties between this and earlier versions.

A.1. The X11R2 Draft
The February 25, 1988 draft that was distributed as part of X Version 11, Release 2 was clearly
labeled as such, and many areas were explicitly labeled as liable to change. Nevertheless, in the
revision work since then, we have been very careful not to introduce gratuitous incompatibility.
As far as possible, we have tried to ensure that clients obeying the conventions in the X11R2 draft
would still work.

A.2. The July 27, 1988 Draft
The Consortium review was based on a draft dated July 27, 1988. This draft included several
areas in which incompatibilities with the X11R2 draft were necessary:

• The use of property None in ConvertSelection requests is no longer allowed. Owners that
receive them are free to use the target atom as the property to respond with, which will work
in most cases.

• The protocol for INCREMENTAL type properties as selection replies has changed, and the
name has been changed to INCR. Selection requestors are free to implement the earlier pro-
tocol if they receive properties of type INCREMENTAL.

• The protocol for INDIRECT type properties as selection replies has changed, and the name
has been changed to MULTIPLE. Selection requestors are free to implement the earlier pro-
tocol if they receive properties of type INDIRECT.

• The protocol for the special CLIPBOARD client has changed. The earlier protocol is subject
to race conditions and should not be used.

• The set of state values in WM_HINTS.initial_state has been reduced, but the values that are
still valid are unchanged. Window managers should treat the other values sensibly.

• The methods an application uses to change the state of its top-level window have changed
but in such a way that cases that used to work will still work.

• The x, y, width, and height fields have been removed from the WM_NORMAL_HINTS pro-
perty and replaced by pad fields. Values set into these fields will be ignored. The position
and size of the window should be set by setting the appropriate window attributes.

• A pair of base fields and a win_gravity field have been added to the
WM_NORMAL_HINTS property. Window managers will assume values for these fields if
the client sets a short property.

A.3. The Public Review Drafts
The Consortium review resulted in several incompatible changes. These changes were included
in drafts that were distributed for public review during the first half of 1989.

• The messages field of the WM_HINTS property was found to be unwieldy and difficult to
evolve. It has been replaced by the WM_PROTOCOLS property, but clients that use the
earlier mechanism can be detected because they set the messages bit in the flags field of the
WM_HINTS property, and window managers can provide a backwards-compatibility mode.

• The mechanism described in the earlier draft by which clients installed their own subwindow
colormaps could not be made to work reliably and mandated some features of the look and

 54

Inter-Client Communication Conventions X11, Release 6

feel. It has been replaced by the WM_COLORMAP_WINDOWS property. Clients that use
the earlier mechanism can be detected by the WM_COLORMAPS property they set on their
top-level window, but providing a reliable backwards compatibility mode is not possible.

• The recommendations for window manager treatment of top-level window borders have
been changed as those in the earlier draft produced problems with Visibility events. For
nonwindow manager clients, there is no incompatibility.

• The pseudoroot facility in the earlier draft has been removed. Although it has been success-
fully implemented, it turns out to be inadequate to support the uses envisaged. An extension
will be required to support these uses fully, and it was felt that the maximum freedom should
be left to the designers of the extension. In general, the previous mechanism was invisible to
clients and no incompatibility should result.

• The addition of the WM_DELETE_WINDOW protocol (which prevents the danger that
multi-window clients may be terminated unexpectedly) has meant some changes in the
WM_SAVE_YOURSELF protocol, to ensure that the two protocols are orthogonal. Clients
using the earlier protocol can be detected (see WM_PROTOCOLS above) and supported in a
backwards-compatibility mode.

• The conventions in Section 14.3.1. of Xlib – C Language X Interface regarding properties of
type RGB_COLOR_MAP have been changed, but clients that use the earlier conventions
can be detected because their properties are four bytes shorter. These clients will work
correctly if the server supports only a single Visual or if they use only the Visual of the root.
These are the only cases in which they would have worked, anyway.

A.4. Version 1.0, July 1989
The public review resulted in a set of mostly editorial changes. The changes in version 1.0 that
introduced some degree of incompatibility with the earlier drafts are:

• A new section (6.3) was added covering the window manager’s use of Grabs. The restric-
tions it imposes should affect only window managers.

• The TARGETS selection target has been clarified, and it may be necessary for clients to add
some entries to their replies.

• A selection owner using INCR transfer should no longer replace targets in a MULTIPLE
property with the atom INCR.

• The contents of the ClientMessage event sent by a client to iconify itself has been clarified,
but there should be no incompatibility because the earlier contents would not in fact have
worked.

• The border-width in synthetic ConfigureNotify events is now specified, but this should not
cause any incompatibility.

• Clients are now asked to set a border-width on all ConfigureWindow requests.

• Window manager properties on icon windows now will be ignored, but there should be no
incompatibility because there was no specification that they be obeyed previously.

• The ordering of real and synthetic ConfigureNotify events is now specified, but any incom-
patibility should affect only window managers.

• The semantics of WM_SAVE_YOURSELF have been clarified and restricted to be a check-
point operation only. Clients that were using it as part of a shutdown sequence may need to
be modified, especially if they were interacting with the user during the shutdown.

• A kill_id field has been added to RGB_COLOR_MAP properties. Clients using earlier con-
ventions can be detected by the size of their RGB_COLOR_MAP properties, and the cases
that would have worked will still work.

 55

Inter-Client Communication Conventions X11, Release 6

A.5. Version 1.1
Version 1.1 was released with X11R5 in September, 1991. In addition to some minor editorial
changes, there were a few semantic changes since Version 1.0:

• The section on Device Color Characterization was added.

• The meaning of the NULL property type was clarified.

• Appropriate references to Compound Text were added.

A.6. Public Review Draft, December 1993
The following changes have been made in preparing the public review draft for Version 2.0.

• [P01] Addition of advice to clients on how to keep track of a top-level window’s absolute
position on the screen.

• [P03] A technique for clients to detect when it is safe to re-use a top-level window has been
added.

• [P06] Section 4.1.8, on colormaps, has been rewritten. A new feature that allows clients to
install their own colormaps has also been added.

• [P08] The LENGTH target has been deprecated.

• [P11] The manager selections facility was added.

• [P17] The definition of the aspect ratio fields of the WM_NORMAL_HINTS property has
been changed to include the base size.

• [P19] StaticGravity has been added to the list of values allowed for the win_gravity field of
the WM_HINTS property. The meaning of the CenterGravity value has been clarified.

• [P20] A means for clients to query the ICCCM compliance level of the window manager has
been added.

• [P22] The definition of the MULTIPLE selection target has been clarified.

• [P25] A definition of ‘‘top-level window’’ has been added. The WM_STATE property has
been defined and exposed to clients.

• [P26] The definition of window states has been clarified and the wording regarding window
state changes has been made more consistent.

• [P27] Clarified the rules governing when window managers are required to send synthetic -
ConfigureNotify events.

• [P28] Added a recommended technique for setting the input focus to a window as soon as it
is mapped.

• [P29] The required lifetime of resource IDs named in window manager properties has been
specified.

• [P30] Advice for dealing with keystrokes and override-redirect windows has been added.

• [P31] A statement on the ownership of resources transferred through the selection mechan-
ism has been added.

• [P32] The definition of the CLIENT_WINDOW target has been clarified.

• [P33] A rule about requiring the selection owner to re-acquire the selection under certain cir-
cumstances has been added.

• [P42] Added several new selection targets.

• [P44] Ambiguous wording regarding the withdrawal of top-level windows has been
removed.

• [P45] A facility for requestors to pass parameters during a selection request has been added.

• [P49] A convention on discrimated names has been added.

 56

Inter-Client Communication Conventions X11, Release 6

• [P57] The C_STRING property type was added.

• [P62] An ordering requirement on processing selection requests was added.

• [P63] The VisibleHint flag was added.

• [P64] The session management section has been updated to align with the new session
management protocol. The old session management conventions have been moved to
Appendix C.

• References to the never-forthcoming Window and Session Manager Conventions Manual
have been removed.

• Information on the X Registry and references to the session management and ICE documents
have been added.

• Numerous editorial and typographical improvements have been made.

A.7. Version 2.0, April 1994
The following changes have been made in preparation for releasing the final edition of Version
2.0 with X11R6.

• The PIXMAP selection target has been revised to return a property of type PIXMAP instead
of type DRAWABLE.

• The session management section has been revised slightly to correspond with the changes to
the X Session Management Protocol.

• Window managers are now prohibited from placing CurrentTime in the timestamp field of
WM_TAKE_FOCUS messages.

• In the WM_HINTS property, the VisibleHint flag has been renamed to UrgencyHint. Its
semantics have also been defined more thoroughly.

• Additional editorial and typographical changes have been made.

 57

Inter-Client Communication Conventions X11, Release 6

Appendix B

B. Suggested Protocol Revisions
During the development of these conventions, a number of inadequacies have been discovered in
the core X11 protocol. They are summarized here as input to an eventual protocol revision design
process.

• There is no way for anyone to find out the last-change time of a selection. The Get-
SelectionOwner request should be changed to return the last-change time as well as the
owner.

• There is no way for a client to find out which selection atoms are valid.

• There would be no need for WM_TAKE_FOCUS if the FocusIn event contained a time-
stamp and a previous-focus field. This could avoid the potential race condition. There is
space in the event for this information; it should be added at the next protocol revision.

• There is a race condition in the InstallColormap request. It does not take a timestamp and
may be executed after the top-level colormap has been uninstalled. The next protocol revi-
sion should provide the timestamp in the InstallColormap , UninstallColormap , List-
InstalledColormaps requests and in the ColormapNotify event. The timestamp should be
used in a similar way to the last-focus-change time for the input focus. The lack of time-
stamps in these packets is the reason for restricting colormap installation to the window
manager.

• The protocol needs to be changed to provide some way of identifying the Visual and the
Screen of a colormap.

• There should be some way to reclaim assignments to the five non-preassigned modifiers
when they are no longer needed. The manual method is unpleasantly low-tech.

 58

Inter-Client Communication Conventions X11, Release 6

Appendix C

C. Obsolete Session Manager Conventions
This appendix contains obsolete conventions for session management using X properties and
messages. The conventions described here are deprecated, and are described only for historical
interest. For further information on session management, see X Session Management Protocol.

C.1. Properties
The client communicates with the session manager by placing two properties (WM_COMMAND
and WM_CLIENT_MACHINE) on its top-level window. If the client has a group of top-level
windows, these properties should be placed on the group leader window.

The window manager is responsible for placing a WM_STATE property on each top-level client
window for use by session managers and other clients that need to be able to identify top-level
client windows and their state.

C.1.1. WM_COMMAND Property
The WM_COMMAND property represents the command used to start or restart the client. By
updating this property, clients should ensure that it always reflects a command that will restart
them in their current state. The content and type of the property depends on the operating system
of the machine running the client. On POSIX-conformant systems using ISO Latin-1 characters
for their command lines, the property should:

• Be of type STRING

• Contain a list of null-terminated strings

• Be initialized from argv

Other systems will need to set appropriate conventions for the type and contents of
WM_COMMAND properties. Window and session managers should not assume that
STRING is the type of WM_COMMAND or that they will be able to understand or display
its contents.

Note that WM_COMMAND strings are null-terminated and differ from the general conventions
that STRING properties are null-separated. This inconsistency is necessary for backwards com-
patibility.

A client with multiple top-level windows should ensure that exactly one of them has a
WM_COMMAND with nonzero length. Zero-length WM_COMMAND properties can be used
to reply to WM_SAVE_YOURSELF messages on other top-level windows but will otherwise be
ignored.

C.1.2. WM_CLIENT_MACHINE Property
This property is described in section 4.1.2.9.

C.2. Termination
Because they communicate by means of unreliable network connections, clients must be prepared
for their connection to the server to be terminated at any time without warning. They cannot
depend on getting notification that termination is imminent or on being able to use the server to
negotiate with the user about their fate. For example, clients cannot depend on being able to put
up a dialog box.

Similarly, clients may terminate at any time without notice to the session manager. When a client
terminates itself rather than being terminated by the session manager, it is viewed as having
resigned from the session in question, and it will not be revived if the session is revived.

 59

Inter-Client Communication Conventions X11, Release 6

C.3. Client Responses to Session Manager Actions
Clients may need to respond to session manager actions in two ways:

• Saving their internal state

• Deleting a window

C.3.1. Saving Client State
Clients that want to be warned when the session manager feels that they should save their internal
state (for example, when termination impends) should include the atom
WM_SAVE_YOURSELF in the WM_PROTOCOLS property on their top-level windows to par-
ticipate in the WM_SAVE_YOURSELF protocol. They will receive a ClientMessage event as
described in section 4.2.8 with the atom WM_SAVE_YOURSELF in its data[0] field.

Clients that receive WM_SAVE_YOURSELF should place themselves in a state from which they
can be restarted and should update WM_COMMAND to be a command that will restart them in
this state. The session manager will be waiting for a PropertyNotify event on
WM_COMMAND as a confirmation that the client has saved its state. Therefore,
WM_COMMAND should be updated (perhaps with a zero-length append) even if its contents are
correct. No interactions with the user are permitted during this process.

Once it has received this confirmation, the session manager will feel free to terminate the client if
that is what the user asked for. Otherwise, if the user asked for the session to be put to sleep, the
session manager will ensure that the client does not receive any mouse or keyboard events.

After receiving a WM_SAVE_YOURSELF, saving its state, and updating WM_COMMAND,
the client should not change its state (in the sense of doing anything that would require a change
to WM_COMMAND) until it receives a mouse or keyboard event. Once it does so, it can assume
that the danger is over. The session manager will ensure that these events do not reach clients
until the danger is over or until the clients have been killed.

Irrespective of how they are arranged in window groups, clients with multiple top-level windows
should ensure the following:

• Only one of their top-level windows has a nonzero-length WM_COMMAND property.

• They respond to a WM_SAVE_YOURSELF message by:

– First, updating the nonzero-length WM_COMMAND property, if necessary

– Second, updating the WM_COMMAND property on the window for which they
received the WM_SAVE_YOURSELF message if it was not updated in the first step

Receiving WM_SAVE_YOURSELF on a window is, conceptually, a command to save the entire
client state.16

C.3.2. Window Deletion
Windows are deleted using the WM_DELETE_WINDOW protocol, which is described in section
4.2.8.1.

C.4. Summary of Session Manager Property Types
The session manager properties are listed in the following table:

16 This convention has changed since earlier drafts because of the introduction of the protocol in the next section. In the public review
draft, there was ambiguity as to whether WM_SAVE_YOURSELF was a checkpoint or a shutdown facility. It is now unambiguously a
checkpoint facility; if a shutdown facility is judged to be necessary, a separate WM_PROTOCOLS protocol will be developed and re-
gistered with the X Consortium.

 60

Inter-Client Communication Conventions X11, Release 6

__

Name Type Format See Section__

WM_CLIENT_MACHINE TEXT 4.1.2.9
WM_COMMAND TEXT C.1.1
WM_STATE WM_STATE 32 4.1.3.1__

 61

Inter-Client Communication Conventions X11, Release 6

 62

Inter-Client Communication Conventions X11, Release 6

Index

ConfigureNotify, 56
MapWindow, 39

A

Alloc, 10, 13
AllowEvents, 47
Always, 40
AnyPropertyType, 9

B

BlackPixel, 35
Busy, 49
ButtonPress, 31, 34
ButtonRelease, 31, 34

C

Center, 22
CenterGravity, 56
ChangeProperty, 19
ChangeKeyboardMapping, 48, 49
ChangeProperty, 10, 19, 21
ChangeWindowAttributes, 32
CirculateWindow, 39
ClientMessage, 18, 53
ClientMessage, 2, 18, 26, 28, 30, 34, 36, 42, 55, 60
ClientMessages, 30
ColormapNotify, 58
ColormapChange, 36
ColormapNotify, 41
ConfigureNotify, 40
ConfigureWindow, 39
ConfigureNotify, 31, 32, 41, 55
ConfigureRequest, 31, 32
ConfigureWindow, 30, 32, 39, 40, 55
ConvertSelection, 8
ConvertSelection, 8, 9, 10, 12, 13, 14, 15, 54
CopyFromParent, 35
CreateWindow, 39
CurrentTime, 4, 5, 6, 8, 34, 42, 46, 57

D

DeleteProperty, 10
DestroyWindow, 43

DirectColor, 47

E

East, 22
EnterNotify, 31, 34, 42
Expose, 40
Exposure, 38

F

False, 20, 24, 29, 32, 33, 36, 41, 42, 46
FocusChange, 41
FocusIn, 34, 41, 42, 58
FocusOut, 41
FreeColormap, 48

G

GetSelectionOwner, 58
GetAtomName, 2
GetGeometry, 17, 39
GetKeyboardMapping, 48
GetModifierMapping, 49, 50
GetProperty, 9, 10, 17, 19
GetSelectionOwner, 18
GetSelectionOwner, 5, 14, 18, 44
GrabServer, 50

I

IconicState, 24, 27, 28
IconMaskHint, 23
IconPixmapHint, 23
IconPositionHint, 23
IconWindowHint, 23
InputHint, 23
InputOutput, 37
InstallColormap, 36, 58
InternAtom, 2
InternAtom, 1, 2, 14

K

KeyPress, 31, 34
KeyRelease, 31, 34

 63

Inter-Client Communication Conventions X11, Release 6

KillClient, 48

L

LeaveNotify, 31
ListInstalledColormaps, 58

M

MapWindow, 40
MapNotify, 29, 41
MappingNotify, 49, 50
MapWindow, 40
MessageHint, 23
MotionNotify, 31

N

NewValue, 17
None, 4, 5, 6, 7, 8, 9, 13, 15, 28, 32, 34, 39, 42, 54
NormalState, 27
NormalState, 24, 27, 28
North, 22
NorthEast, 22
NorthWest, 22

P

Parent, 34, 35, 42
ParentRelative, 39
PAspect, 22
PBaseSize, 22
Pixmap, 37
PMaxSize, 22
PMinSize, 22
PointerRoot, 33, 34, 42
PolyLine, 40
PPosition, 22
PResizeInc, 22
PropertyNotify, 5
PropertyNotify, 7, 17, 60
PSize, 22
PWinGravity, 22

Q

QueryTree, 39

R

Registry, 53
ReparentNotify, 29, 39
Replace, 19, 21

ResizeRedirect, 37, 43
ResizeRedirect, 43
ResizeRequest, 40, 43
RotateProperties, 19

S

SelectionClear, 8
SelectionNotify, 6, 7
SelectionRequest, 6
SelectionClear, 5, 7, 11
SelectionNotify, 5, 6, 7, 9, 10, 13, 17
SelectionRequest, 5, 6, 13
SendEvent, 36
SendEvent, 5, 6, 18, 29, 30, 32, 36, 41, 42
SetSelectionOwner, 5
SetInputFocus, 40
SetInputFocus, 34, 35, 42, 46
SetModifierMapping, 49, 50
SetSelectionOwner, 5, 7, 8
SetSelectionOwner,, 4
SetSelectionOwner, 4, 5, 7, 8, 10
South, 22
SouthEast, 22
SouthWest, 22
StateHint, 23
Static, 22
StaticGravity, 56
StructureNotify, 18, 40
StructureNotify, 18, 29, 31, 39, 41
SubstructureRedirect, 18, 43
SubstructureRedirect|SubstructureNotify, 29, 32

T

TranslateCoordinates, 31
True, 9, 17, 24, 33, 41, 46

U

UninstallColormap, 58
Unmap, 22
UnmapNotify, 28, 29, 30, 41
UrgencyHint, 23, 25, 57
USPosition, 22
USSize, 22

V

VisibilityChange, 35, 40
VisibilityNotify, 40
VisibilityChange, 30
VisibilityNotify, 30

 64

Inter-Client Communication Conventions X11, Release 6

VisibleHint, 57

W

WarpPointer, 46
West, 22
WhitePixel, 35
WindowGroupHint, 23
WithdrawnState, 28
WithdrawnState, 27, 28
wmtalk, 8

X

X Registry, 53
xload, 33
xmodmap, 50
XSetErrorHandler, 10

 65

