Tru64 UNIX

Object File and Symbol Table Format Specification

Part Number: ObjSpec

September 2002

Product Version: Tru64 UNIX Version 5.1B

This book describes the organization and usage of object files and images that are built on
Tru64 UNIX systems.

Hewlett-Packard Company
Palo Alto, California

© 2002 Hewlett-Packard Company

Microsoft® and Windows NT® are trademarks of Microsoft Corporation in the U.S. and/or other countries. Intel®,
Pentium®, and Intel Inside® are trademarks of Intel Corporation in the U.S. and/or other countries. UNIX® and
The Open Group™ are trademarks of The Open Group in the U.S. and/or other countries. All other product names
mentioned herein may be the trademarks of their respective companies.

Confidential computer software. Valid license from Compaq Computer Corporation, a wholly owned subsidiary

of Hewlett-Packard Company, required for possession, use, or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items
are licensed to the U.S. Government under vendor’s standard commercial license.

None of Compaq, HP, or any of their subsidiaries shall be liable for technical or editorial errors or omissions
contained herein. The information is provided “as is” without warranty of any kind and is subject to change without
notice. The warranties for HP or Compaq products are set forth in the express limited warranty statements
accompanying such products. Nothing herein should be construed as constituting an additional warranty.

Contents

About this Manual

1 Introduction

11 Definitions ...o..uiiit i 1-2
1.2 History and Applicabilityccoooiiiiiiii 1-3
1.3 Producers and CoNSUMETrScoviuiieiiiiieiiiiee e eiiiieeeianns 1-4
1.3.1 COMPILETS .ottt e 1-4
1.3.2 ASSEMDIETS ..ot e 1-4
1.3.3 LnKerS .t 1-4
134 L0aderS et 1-5
1.35 DebUgZerS ..o e 1-5
1.3.6 Object Instrumentation Toolscccvviiiiiiiiiiiiiinnn... 1-5
1.36.1 Post-Link Optimizersccoveiiiiiiiiiiiiiiieeieeiiiiinnnnn. 1-5
1.3.6.2 Profiling Toolsccvvuiiiiiiiiiiiii e 1-5
1.3.7 ATChiIVErS ...oiiiiii e 1-5
1.3.8 Miscellaneous Object Tools ... 1-5
1.3.8.1 Object DUmMPETrsviviiiiie e 1-5
1.3.8.2 Object Manipulatorscoooiiiiiiiiiiiiiiiiiiiiiieennns 1-6
1.4 Object File OVerviewWciiiiiiiiiiii i eeeeaeannn, 1-6
14.1 Main Components of Object Filescccoiiiiiiiiiiinn 1-6
1411 Object File Headersccoovuuiiiiiiiiiiiiiiiiiiiiiiennns 1-6
1.4.1.2 Instructions and Datacccooiiiiiiiiiiiiiiii 1-6
1.4.1.3 Object File Relocation Informationoooooiia. 1-6
1.4.1.4 Symbol Tableuuuuiiiii e 1-7
1.4.15 Dynamic Loading Informationcoooiiiiit. 1-7
1.4.1.6 Comment Sectionoooviiiiiiiiiiiiiiiiii e 1-7
1.4.2 Kinds of Object Files ... e 1-7
1.4.3 Object File Compressioncoeevviieiieiieiieiieeiieineeneennenns. 1-8
1.4.4 ODbject ATChiveseiiie i e 1-9
1.45 Object File Versioningccooveiiiiieiiiiiiiiiiieeiieineinnennannn. 1-9
1.4.6 Object File Abstract Data Typescoovvveiiiiiiiiiiiiiinninnennn... 1-10
15 Source Language Supportcooeiiiiiiiiiiiiii e 1-11
1.6 System Dependenciesoooevveiiiiiiiiieiie i e 1-11
1.7 Architectural Dependenciesccvviiiiiiiiiiiiiiiiiiiiiieinns 1-12
1.8 Relevant Header Filesooiiiiiiiiiiiiiiiii i 1-12
2 Headers
2.1 New or Changed Header Featuresccooiiiiiiiiiiinn, 2-1
2.2 Structures, Fields, and Values for Headers 2-1
221 File Header (fil ehdr. h) ..o e 2-1
222 a. out Header (aouthdr.h) ..o 2-3
223 Section Headers (scnhdr. h) ..., 2-5
2.3 Header Usageccooiiiiiiiiiiiiiiii i et 2-9
231 Object Recognitioncciiiiiiiiiiiiiiie i eaaanans 2-9
2.3.2 Image Layoutccccoiiiiiiiiiiiiiiiiii e 2-10
2.3.2.1 OMAG C oottt e e e e e 2-10

Contents i

2.3.2.2
2.3.23
2.3.3
2331
2.3.3.2
23321
234
235
2.3.6
2.3.7
23.7.1

Address Spaceooiiiiiiiiiiiiiiiiia..
Address Selection
TASO Address Space

Runtime Identification of TASO programs

GP (Global Pointer) Ranges
Alignment ...
Section TyPes ...ocovvviiiiiiiiiiiiieeeeaaaanns
Special Symbolsccooiiiiiiiiiii,

ACCESSING ..ottt
24 Language-Specific Header Features

3 Instructions and Data

3.1 New or Changed Instructions and Data Features
3.2 Structures, Fields, and Values for Instructions and Data
3.21 Code Range Descriptor (pdsc.h)coooiiiiiiiiiii.
3.2.2 Run-time Procedure Descriptor (pdsc.h)ooviiiiiinianl.
3.3 Instructions and Data Usageccooiiiiiiiiiiiiiiiiiiieiiiiiinn...
3.3.1 Minimal ObJectS ..ouuuiiiitit i e
3.32 Position-Independent Code (PIC)ccccoiiiiiiiiiiiiiiiann..
3.3.3 Lazy-Text Stubsccooiiiiiiiii i
3.34 Constant Dataoooiiiiiiiiii
3.35 INIT/FINI Driver Routinesccovviiiiiiiiiiiiiiiiiiiinennnne.
3.351 LinKingooviii
3.35.2 Execution Orderccoviiiiiiiiiiiiiiiiiiiieieea
3.35.21 Dynamic Executablescooiiiiiiiiiiiiii
3.3.5.2.2 Static Executablesc.coooiiiiiiiiiiiiiii
3.3.5.2.3 Ordering Within Objectscccooiiiiiiiiiiiiiiinn....
3.35.24 Subsystem Control of INIT/FINI Order
3.3.6 Initialized Data and Zero-Initialized Data (bss)
3.3.7 Permissions/Protectionsccooiiiiiiiiiiiiiiiii i
3.3.8 Exception Handling Dataoooiiiiiiiiiiiiiiiiii i,
3.3.9 Thread Local Storage (TLS) Dataccccovviiiiiiiiiinnnnann..
3.3.10 User Text and User Data Sectionscccovviiiiiiiiiiiiiiin,
3.4 Language-Specific Instructions and Data Features

4 Object Relocation

4.1 New or Changed Object Relocation Features

4.2 Structures, Fields, and Values for Object Relocation
4.2.1 Relocation Entry (rel oc. h) ...
422 Section Headerooiiiiiiiiiiiiiiiiiiiii i
4.3 Object Relocations USAgeovvviuiiiiiiiiiiiiiiiiiii i e
4.3.1 Relocatable Objectsc.coiiiiiiiiiiiiii i
4.3.2 Relocation Processingcccoiiiiiiiiiiiiiiiiiiiiiiiiiiiii
43.21 Local and External Entriesccooiiiiiiiiiiiiiiiin.. ..
4322 Relocation Entry Orderingccoviiiiiiiiiiiiiiiiinnn...
4323 Shared Object Transformationccocvviiiiiinn....
4.3.3 Kinds of Relocationscoooiiiiiiiiiiiiiiiiii i eennns
43.3.1 Direct Relocationsc.ooviiiiiiiiiiiiiiiiiiiie i,
4.3.3.2 GP-Relative Relocationsccooviiiiiiiiiiiiiiiiieeenn.
4.3.3.3 Self-Relative (PC-Relative) Relocations

iv Contents

N

AN

|
NNNNRPRRRERRRE R
Wk OO~ U

NNONNNNRNNONNOMNONNDNN
S

[R R
A BADNNDNDDN

B

O~NOPPWPRFRPRPFPOOWOOOWO O Ul

P W wwwweww
PRERPRPRRRREE

4-3
4-3
4-6
4-6
4-6
4-7
4-8

4-10

4-11

4-11

4-11

4-12

4-12

4334 Literal Relocationscoooviiiiiiiiiiiiiiiiie i 4-12

4.3.35 Relocation Stack Expressionscccooviiiiiiiiiiiinnnn... 4-13
4.3.3.6 Immediate Relocationsccooiiiiiiiiiiiiiiiiiiinaann.. 4-13
4.3.3.7 TLS Relocationsoiiviiiiiiiiiieiiiiiiiiiie e eeaiiinannn, 4-14
4.3.4 Relocation Entry Typescoovviiiiiiiiiiiiiiiiii e eennns 4-14
434.1 R AB S Lt e 4-15
4.3.4.2 ROREFLONG ..ttt ittt ettt 4-16
4343 = 0 L 4-17
4.3.4.4 R GPRELB2 ittt e e 4-18
4.3.45 I I 4-19
4.3.4.6 RLITUSE: R LUBASE ...ttt 4-20
4.3.4.7 RLITUSE: R LU UJSR .ottt e e 4-21
4348 R UGPDE SP .ttt e e e 4-23
4.3.4.9 R BRADDR ...ttt ettt et e e 4-24
4.3.4.10 | 1 4-25
4.3.4.11 RUSRELLG .ot 4-26
4.3.4.12 R USREL S i e 4-27
4.3.4.13 R OSRELG ..ot e e 4-28
4.3.4.14 @ R = 4-28
4.3.4.15 @ S O 4-29
43.4.16 ROP_PSUB ...ttt 4-30
4.3.4.17 R.OP_PRSHI FT oot 4-31
4.3.4.18 R GPVALUE ... e et e e 4-32
4.3.4.19 R GPRELHI GH ..o et 4-32
4.3.4.20 R GPRELLOW ..o 4-33
4.3.4.21 R IMVED: GPL6 .ottt et cieie et e ee e 4-34
4.3.4.22 RIMED: GP_H 32 oot 4-35
4.3.4.23 RIMVED: SCN HI 32 oooneeee e 4-35
4.3.4.24 RIMVED: BR H 32 oireieeeee e 4-36
4.3.4.25 R IMVED: LOB2 ottt e eie e e iie e e eeaeans 4-37
4.3.4.26 ROTLS LI TERAL et 4-37
4.3.4.27 RUTLS HI GH oot 4-38
4.3.4.28 RUTLS LOW ettt 4-39
4.4 Language-Specific Relocations Featurescooiiit 4-40

5 Image Relocation

5.1 New or Changed Image Relocations Features 5-1
5.2 Structures, Fields, and Values for Image Relocation 5-1
5.2.1 Compact Relocation Recordscooiiiiiiiiiiiiiii i, 5-1
5.2.2 Linkerdef Relocation Records (scnconment . h) 5-1
5.2.2.1 Linkerdef Symbol Enumerationoooneee . 5-2
5.3 Image Relocation Usagecccoiiiiiiiiiiiiiiiiiiiiiie i, 5-3
5.3.1 Compact Relocationscccoiiiiiiiiiiiii e 5-3
5.3.1.1 L= s 1 5-3
5.3.1.2 File Formatcooiuiiiiiiiii e 5-3
5.3.1.2.1 Compact Relocation Versionoocevviiiiinnnn... 5-4
5.3.1.2.2 Compact Relocations File Header 5-5
5.3.1.2.3 Compact Relocations Section Header 5-5
5.3.1.2.4 Compact Relocations Tablecoooiiiiiiiiinn.... 5-6
5.3.1.2.5 Stack Relocation Tablecoooiiiiiiiiiiiiiiiiiiiin. 5-8
5.3.1.2.6 GP Value Tablesoooiiiiiiiiiiiiiiiiiiiiiiii i 5-8

Contents v

6

7

8

9

10

vi

5.3.1.3 Basic Algorithm for Compact Relocations Production 5-9

5.3.1.4 Basic Algorithm for Compact Relocations Consumption 5-10
5.3.2 Linkerdef Relocationsc.ooiiiiiiiiiiiiiiiiiiiiiiiiianans 5-11
5.4 Language-Specific Image Relocations Features 5-11

Symbol Table

6.1 New or Changed Symbol Table Featurescooeiiiiian. .. 6-3
6.2 Structures, Fields and Values for Symbol Tables 6-3
6.2.1 Symbolic Header (HDRR)coiiiiiiiiiiiiiiiiiiii i 6-3
6.2.2 Relative File Descriptor Entry (RFDT)cccvviiiiiiiiiiinnnann.. 6-5
6.2.3 Optimization Symbol Entry (PPODHDR)ccccoiiiieiiinnnn, 6-5
6.3 Symbol Table USageoviuiiiiiiiiiii i e 6-8
6.3.1 Levels of Symbolic Informationcoooiiiiiiiiiii 6-8
6.3.1.1 Compilation Levelsooiiiiiiiiiiii i 6-8
6.3.1.2 Locally Stripped Imagescccvviiiiiiiiiiiiieiiiiinnn . 6-9
6.3.1.3 (Fully) Stripped Imagesccooviiiiiiiiiiiii e 6-10
6.3.2 Source File Mergingcccooviiiiiiiiiiiiiie it eaaaaas 6-10
6.3.3 Optimization Symbols ..ot 6-11
Line Number Information
7.1 New or Changed Line Number Featuresooooiii 7-1
7.2 Structures, Fields, and Values for Line Numbers 7-1
7.2.1 Line Number Entry (LI NER)cooiiiiiiiiiiiiiiiiiiiiiieeaans 7-1
7.3 Line Number USAgecoiiiiiiiiiiiitiiiiiiii i eaaenans 7-1
7.3.1 Line Number Informationcccoiiiiiiiiiiiiiiiiiiiii i, 7-1
7.31.1 The Line Number Tableccoooiiiiiiiiiiiiiiiiiiiin.. 7-2
7.3.1.2 Extended Source Location Information (ESLI) 7-6
Run-Time Information
8.1 New or Changed Run-Time Information Features 8-1
8.2 Structures, Fields, and Values for Run-Time Information 8-1
8.2.1 File Descriptor Entry (FDR)coiiiiiiiiii i 8-1
8.2.2 Procedure Descriptor Entry (PDR)ccooiiiiiiiiiiiiiiineenn. 8-5
8.3 Run-Time Information Usagecoooiiiiiiiiiiiiiiiiiiiiie i 8-8
8.3.1 Procedure Addressesc.ovviiiiiiiiie i 8-8
8.3.2 Stack Framesooviiiiiiiiiii 8-8
8.3.3 Local Symbol Addressesoovviiiiiieiiiiiiiiiii e aenans 8-10
8.3.4 Uplevel Linksoooiiii i e e e 8-10
8.3.5 Finding Thread Local Storage (TLS) Symbols 8-12
Profile Feedback Data
9.1 New or Changed Profile Feedback Data Features 9-1
9.2 Structures, Fields, and Values for Profile Feedback Data 9-1
9.3 Profile Feedback Data Usageccooiviiiiiiiiiiiiiiiiiieeeiiaanns 9-1
Object Annotation Data
10.1 New or Changed Object Annotation Data Features 10-1
10.2 Structures, Fields, and Values for Object Annotation Data 10-1
10.2.1 Annotation Summary Headercooiiiiiiiiiiiiinn.. .. 10-1
10.2.2 Annotation Restricted Offset Flagsccooeiiiiiiiiinn. .. 10-3

Contents

11

10.2.3 Annotation Restricted Instruction Flags 10-4
10.2.4 Annotation Restricted Sequence Flagsooooin.t. 10-4
10.2.5 Annotation Restricted Call Flagsc..coooiiiiiiiiiiiin.. .. 10-5
10.2.6 Annotation Restricted Entry Flags ..., 10-5
10.2.7 Annotation Restricted Return Flagsoiint. 10-5
10.2.8 Annotation Linkage Flagsooooiiiiiiiiiiiiiiiiiii, 10-5
10.3 Object Annotation Data Usageccoovvviiiiiiiiiiiiiiiiiinnninnn... 10-6
10.3.1 Representation of Object Annotation Data 10-6
10.3.1.1 Object Annotation Summarycccevviiiiiiiiinneinnn... 10-6
10.3.1.2 Restricted Offset Annotationc.cocevviiiiiiiiinnn... 10-7
10.3.1.3 Restricted Instruction Annotationoelll. 10-7
10.3.1.4 Restricted Instruction Sequence Annotation 10-8
10.3.15 Restricted Call Annotationccooeviviiiiiiiiiiininn... 10-8
10.3.1.6 Restricted Entry Annotation ..., 10-8
10.3.1.7 Restricted Return Annotationcoooiiiiviiinn... 10-9
10.3.1.8 Jump Table Annotationcooiiiiiiiiiiiiiiiiiiin... 10-9
10.3.1.9 Call Specified Linkage Annotationc..e. 10-9
10.3.1.10 Entry Specified Linkage Annotation 10-10
10.3.1.11 Entry Utilized Linkage Annotation 10-10
10.3.1.12 Entry Implemented Linkage Annotation 10-10
10.3.1.13 Return Specified Linkage Annotation 10-11
Symbol Information

11.1 New or Changed Symbol Information Features 11-1
11.2 Structures, Fields, and Values for Symbol Information 11-1
11.2.1 Local Symbol Entry (SYMR) ...ttt 11-1
11.2.2 Auxiliary Symbol Table Entry (AUXU)cooiiiiiiiiiiiiiiininn, 11-4
11.2.2.1 Type Information Record (TIR)ccooiiiiiiiiiiiiiii... 11-5
11.2.2.2 Relative Index Record (RNDXR)ccoviiviiiiiiiiiiiiiiinnn... 11-8
11.2.3 String Table ...ttt e 11-8
11.2.4 Symbol Type Combinationsccooiiiiiiiiiiiiiiiiieeeeenaannn 11-8
11.3 Symbol Information Usageccceiiiiiiiiiiiiiiiiiiiiiiiieeain.n. 11-21
11.3.1 1070} o 1Y 11-21
11.31.1 Local Symbols with External Linkage 11-22
11.3.1.2 Procedure Scope ...ttt 11-23
11.3.1.3 File Scope ..ovviiiii 11-24
11.3.1.4 BlocK SCOPE . ovviii 11-25
11.3.15 Namespaces (CH+) vvvvviiiiiiiie e eaeeaeaen 11-25
11.3.1.5.1 Namespace Componentscoeveeeiiiiiiiiieeeeeannnns 11-27
11.3.1.5.2 Namespace AlIasescoeiviiiiiiiiieeiiiiiiiieeeeaaaannns 11-27
11.3.1.5.3 Unnamed Namespacecooeviiiiiieiiiiiiiienneeeaaannns 11-27
11.3.1.54 Usage of Namespacescooviiiiiiieeiiiiiiiieneeeeaaannns 11-27
11.3.1.6 Fortran Modulesooviiiiiiiiiiiiiiiiiiiiiiieeee e 11-28
11.3.1.6.1 Modules with Use Statementscooeiiiinnn. .. 11-29
11.3.1.6.2 Fortran Generic Interfacescooooiiiiiiiii 11-31
11.3.1.7 Exception Handling Blocks (C++) ...covvviieiiiiiiiiniinn... 11-32
11.3.1.8 Fortran Common Blocksccooiiiiiiiiiiiiiiii.. 11-33
11.3.1.9 Alternate Entry Pointscoooiiiiiiiiii i 11-34
11.3.2 Data Types in the Symbol Tablecccooeiiiiiiiiiiii .. 11-35
11.3.21 Basic Ty PES e e 11-35
11.3.2.2 Type Qualifiersoooiiiiiiiiiiiiiiii e 11-36
11.3.2.3 Interpreting Type Descriptions in the Auxiliary Table 11-36
11.3.3 Individual Type Representationscccoiiiiiiiiiiiiiin., 11-43

Contents il

12

13

14

viii

11.3.3.1 Pointer TYPe ..ooovn

11.3.3.2 ArTay TYPe .ot
11.3.3.3 Structure, Union, and Enumerated Types
11.3.3.4 Typedef TYPeoviiiiii e
11.3.35 Function Pointer Typecooviiiiiiiiiiiiiiiiiii i
11.3.3.6 Class TYPe (CH4) cuveiniiinii i e
11.3.3.6.1 Empty Class or Structure (C++)ccooviiiiiiiinniiinnn...
11.3.3.6.2 Opaque Class or Structure (C++)ccovvviiiiiiiiiiinan.
11.3.3.6.3 Base and Derived Classes (C++) ...covvvviiiiiiiiiniinnnn...
11.3.3.7 Template Type (CH+) .oovriiiiiiiiieeee e
11.3.3.8 Interlude Type (C++) counrieeie i
11.3.3.9 Array Descriptor Type (Fortran90)cccvviiiin...
11.3.3.10 Conformant Array Type (Pascal)coooiiiiiiiinn.
11.3.3.11 Variant Record Type (Pascal and Ada)0.
11.3.3.12 Subrange Type (Pascal and Ada)cooevvviiiiinn.. ..
11.3.3.13 Set Type (Pascal)c.ooooiiiiiiiiiiiiiii e
11.3.4 Special Debug Symbolso
11.4 Language-Specific Symbol Information Features
1141 Fortran77 and Fortran90 ...,
11.4.2 G et
11.4.3 Pascal and Adaccoiiiiiiiiiiiii

Optimized Debugging

12.1 New or Changed Optimized Debugging Features
12.2 Structures, Fields, and Values for Optimized Debugging
12.21 OPTRNDX Lot e
12.3 Optimized Debugging Usagecc.ovviiiiiiiiiiiiiiiieiiiieeiinnn,
12.3.1 Semantic Eventsc.ocooiiiiiiiiiiiiii
12.3.2 Split Lifetime Variablesc.oooiiiiiiiiiiiiiiiiiiiiiiee
12.3.2.1 Target Variable Identifiercoooiiiiiiiiiiiiiiiin...
12.3.2.2 Child Description Schemeccooiiiiiiiiiiiiii ...
12.3.2.3 Child Descriptionsoeviuiieiiiieiiiie i eiannss
12.3.2.4 Split Lifetime Variable Exampleccoiiiin. ..
12.3.3 Discontiguous SCOPES ..ouuuiitiit it e

Symbol Resolution

13.1 New or Changed Symbol Resolution Features
13.2 Structures, Fields, and Values for Symbol Resolution
13.2.1 External Symbol Entry (EXTR)coooiiiiiiiiiiiiiiiiiiii i
13.3 Symbol Resolution UsSagec.ovviiiiiiiiiiiiiiiiiiiiiii e
13.3.1 Library Searchccooiiiiiiiiiiiii i
13.3.2 Resolution of Symbols with Common Storage Class
13.3.3 Mangling and Demanglingccooiiiiiiiiiiiiiiiiiiiiiianan,
13.34 Mixed Language Resolutionccooiiiiiiiiiiiiiiiiiiiiinn,
13.35 TLS Symbolsooiiniiiit i

Dynamic Loading Information

141 New or Changed Dynamic Loading Information Features
14.2 Structures, Fields, and Values for Dynamic Loading Information
14.2.1 Dynamic Header Entryocoooiiiiiiiiiiiiiiiiiiii s
14.2.2 Dynamic Symbol Entry ...
14.2.3 Dynamic Relocation Entry ...
Contents

11-43
11-44
11-46
11-49
11-49
11-51
11-52
11-52
11-53
11-54
11-54
11-55
11-57
11-57
11-59
11-60
11-61
11-62
11-62
11-62
11-63

12-1
12-1
12-1
12-1
12-1
12-3
12-3
12-4
12-5
12-6
12-6

13-1
13-1
13-1
13-3
13-3
13-3
13-4
13-4
13-5

14-2
14-2
14-2
14-6
14-7

15

16

14.2.4 Msym Table Entrycccooiiiiiiiiiii i

14.25 Library List Entrycoooiiiiiiiiii i
14.2.6 Conflict Entry ...oooeiiii
14.2.7 GOT Entry ..oooiiiiiii e
14.2.8 Hash Table Entrycoooiiiiiiiii e
14.2.9 Dynamic String Tableccooiiiiiiiiiiiiiiiiii i
14.3 Dynamic Loading Information Usagecccooviviiiiiiinn....
14.3.1 Shared Object Identificationcccoviiiiiiiiiiiiiiiin...
14.3.2 Shared Library Dependenciescoevvviiiiiiiiiinnnnnennnnn..
14.3.2.1 Identificationccocoiiiiiiiiiii i
14.3.2.2 SearChINGuuttii e
14.3.2.3 Validationccooiiiiiii
14.3.2.31 Backward Compatibilityccooiiiiiii
14.3.2.4 Loadingcooiiiiii
14.3.2.4.1 Dynamic Loading and Unloadingc.oooett
14.3.3 Dynamic Symbol Information ...
14.3.3.1 Finding Symbol Addressescccvvviiiiiiiiiiiiiiiiiiiia..
14.3.3.2 Scope and Binding ..o
14.3.3.3 Multiple GOT Representationcooooviiiiiiiiiiiiiiinn....
14.3.3.4 Msym Table ...oooinnn
14.3.35 Hash Tablecoiiiiiiiii e
14.3.4 Dynamic Symbol Resolution ...,
14.3.4.1 Symbol Preemption and Namespace Pollution
14.3.4.2 Weak Symbols ...
14.3.4.3 Search Ordercoooiiiiiii i
14.3.4.4 Precedencecooouuiiiiiiiiiii
14.3.45 Lazy Text Resolutionooooiiiiiiiiiiiiiiii i
14.3.4.6 Levels of Resolutioncoooiiiiiiiiiiiiiiiiiiiiiiiiieee
14.3.5 Dynamic Relocationoooiiiiiiiiiiiiiiii e
14.3.6 QUICKSTATE L\t e
14.3.6.1 Quickstart Levelsooiiiiiiiiiiiiiiii e
14.3.6.2 Conflict Tablecooiiiiii e
14.3.6.3 Repairing Quickstart ...

Comment Section

15.1 New and Changed Comment Section Features
15.2 Structures, Fields, and Values of the Comment Section
15.2.1 Subsection Headersoooiiiiiiiiiiiiiiiiiiiicee e
15.2.2 Tag Descriptor Entry ...
15.2.2.1 Comment Section Flags ..o,
15.3 Comment Section USageccuueeiiiiiiiiiiieeiiieeiiiiieeiiieeniananns
15.3.1 Comment Section Formatting Requirements
15.3.2 Comment Section Contentsccooeiiiiiiiiiiiiiiiiiiinn..
15.3.3 Comment Section Processingoooiiiiiiiiiiiiiiiieniiinnnn,
15.34 Special Comment Subsectionscccviiiiiiiiiiiiiiiiin...
15.3.4.1 Tag Descriptors (CM TAGDESC)coovviiiiiiiiiiiiie i,
15.3.4.2 Tool Version Information (CM TOOLVER)coecvvvennn...
Archives

16.1 New and Changed Archive Featuresccooeiiiiiiiiiinn....
16.2 Structures, Fields, and Values for Archives
16.2.1 Archive Magic Stringoooiiiiiiiiiiiiiiiii i

14-8

14-8

14-9

14-9
14-10
14-10
14-10
14-10
14-11
14-11
14-12
14-13
14-14
14-15
14-16
14-16
14-17
14-17
14-18
14-19
14-20
14-21
14-22
14-23
14-25
14-26
14-27
14-27
14-28
14-28
14-29
14-29
14-30

15-1
15-1
15-1
15-2
15-3
15-4
15-4
15-5
15-5
15-6
15-6
15-7

Contents ix

17

18

16.2.2
16.2.3
16.3

16.3.1
16.3.2
16.4

16.4.1
16.4.2

Archive Header ...ttt e
Hash Table (ranl i b) Structureccccovviiviiiiiiiii ..
Archive Implementationcooiiiiiiiiiiiiiii e
Archive File Format ...t
Symdef File Implementationcooiiiiiiiiiii i,
Archive USAge ...ooviiiiiiiiie i e e
Role As Librariesc..oviiiiiiiiii i
Portabilityoooiii e

Symbol Table Examples

171

1711
17.2

17.21
17.2.2
17.2.3
17.2.4
17.2.5
17.2.6
17.3

1731
17.3.2
17.3.3
17.3.4
17.3.5
17.3.6
17.3.7
17.4

1741
17.4.2
17.4.3

C

Namespace Definitions and Usescccoviiiiiiiiiinnnean..
Unnamed Namespacescovvviiiiiiiiiiiiiiiiiiieeeennnnns
Namespace ALASESooiiiiiiiiiie i eeaiiiee e e
Exception-Handling ... e
Fortran ...
Common Dataoooiiiiii
Alternate Entry Points ...
Array Descriptors ...oooiueiiiiie i e
Fortran Modulesccooiiiiiiiiiiiiii i
Contained Procedures in Fortran Modules
Interface Declarations in Fortran Modules
Generic Interfaces in Fortran Modules
Pascal ...
1] 7=
SUDTANGES ..ttt e
Variant Recordsooooiiiiiiiiiiiiii i

Programming Examples

18.1
18.2
18.3

Index

X

A WNPEFPOO

|
a1

Contents

Packed Line NUmberscooouiiiiiiiiiiiii i
Extended Source Location Informationccooiiiiiiiiiiia...
Mapping GOT Addresses to Dynamic Symbol Entries

Object File Producers and Consumersccoovvveeeeeeiinnnnnn..
Object File Contentsccoviiiiiiiiiiiiiiii i
Object File Compressionoeeeeiiiiiiiieeeeeeiiiiieeeeeaiiinanens,
LEB 128 Byte .ouvtiniiiiiieitt ettt et et e e e e
LEB 128 Multi-Byte Datacccooiiiiiiiiiiiii i
Little Endian Byte Orderingccoooiiiiiiiiiii i
(017 2(€ [63 FF- /0 11 | A
N € O P
ZMAG C Layout for Shared Objectcccevvviiiiiiiiiiiiiie ...
ZMAG C Layout for Static Executable Objectscccevinae...
Address Space Layoutcccoiiiiiiiiiii e

16-1
16-3
16-3
16-3
16-5
16-6
16-6
167

17-1
17-1
17-1
17-1
17-3
17-4
17-5
17-5
17-6
17-8
17-8
17-9
17-10
17-11
17-12
17-13
17-13
17-14
17-14
17-14
17-15

18-1
18-5
18-10

LT
WNFEPNPFPOWOWO A

a

NI NN N e ke
PR RRRPER R

()]

| |
WNPFPNO

|
A

oomoommmclummmwwl\)

Tt Tt TR |

(R |
W NP Ol

I—‘I—‘I—‘OOOOOO\I\II\I\I\IOCDCDCDJ}
A WNPRF

TASO Address Space Layoutccooviiiiiiiiiiiiiiiiiiiiiie i, 2-17
GP (Global Pointer) Rangescooiiiiiiiiiiiiiiiiiii i, 2-18
Raw Data Sections of an Object Fileccooiiiiiiiiiiiiiii 3-1
INIT/FINI Routines in Shared Objectscccoviiiiiiiiinnn.... 3-7
INIT/FINI Recognition in Archive Librariescccooviinn. 3-8
INIT/FINI Example (I) ...oooiiiiiiiiii e 3-9
INIT/FINI Example (I1)oooieiiiiiiii e e 3-9
INIT/FINI Example (ITI) ...ooeiiiiiiiii e 3-10
INIT/FINI Example (IV) ..ooiiiiiiiiiii e 3-10
Data and Bss Segment Layout (1)cooviiiiiiiiiiiiiiiin ... 3-12
Data and Bss Segment Layout (IT)ccooiiiiiiiiiiiii i, 3-13
Exception-Handling Data Structuresccooiiiiiiiiiiiiinin, 3-15
Thread Local Storage Data Structuresccoooiiiiiiiiiiiiin 3-17
Kinds of Relocationsc.oooiiiiiiiiiiiiiiiiiiii i 4-2
Section Relocation Information in an Object File 4-2
Relocation Entry ... e 4-7
External Relocation Entryooii i 4-8
Processing an External Relocation Entryoooil 4-9
Local Relocation Entry ... 4-9
Processing a Local Relocation Entry ... 4-10
Relocation Entry Ordering Requirementscoovvvinen. 4-10
Symbol Table Sectionsccovviiiiiiiiiiiiii e, 6-1
Symbol Table Hierarchyccooviiiiiiiiiiiiiiiiii e, 62
Relative File Descriptor Table Exampleccooiiiiiin.., 6-11
Optimization Symbols Sectioncoooiiii 6-12
Line Number Tablecooiiiiiiiiiiiiiiiiii i i 7-2
Line Number Byte Formatoiiiiiiiiii, 7-3
Line Number 3-Byte Extended Formato.0 7-4
ESLI Data Mode Bytescooiiiiiiiiii e 7-6
ESLI Command Byte ... e 77
Fixed-Size Stack Framecooiiiiiiiiiiiii 8-9
Variable-Size Stack Frameccccoiiiiiiiiiiiiiiiiiiiii . 8-9
Representation of Uplevel Referencecooiiiiiiinnns, 8-11
st/sc Combination Matrixcoooviiiiiiiiiiii i 11-9
Basic Scopes ..ooiiii e 11-21
Procedure Representationoooiiiiiiiiiiiiiii 11-23
Procedure with No Textcooiiiiiiiiiiiiiiii i 11-24
File Representation ... 11-24
Block Representation ... 11-25
C++ Namespace Representationcooi L 11-26
Fortran 90 Module Representationccoiiiiiiiiinnnn., 11-28
Fortran 90 Module with Interface Declaration 11-29
Fortran 90 Module USE (ALL) Representation 11-30
Fortran 90 Module USE with Renamingoooiiil 11-30
Fortran 90 Module USE (ONLY) Representation 11-31
Fortran 90 Generic Interface Representation 11-32
C++ Exception Handler Representation 11-33
Fortran Common Block Representationcooiiit 11-34
Alternate Entry Point Representationcccooiiiiiiinn., 11-35
Auxiliary Table Interpretationccooiiiiiiiiiiiiiiiiiiiiin, 11-39
Auxiliary Table "ti" Interpretationcccoiiiiiiiiiiiiiiiiinn.. 11-40
Auxiliary Table "arrays" Interpretationcccoeiiiiiiiinnnn.. 11-40
Auxiliary Table "bt vals" Interpretationcccooiiiiiiiinnn.. 11-41
Auxiliary Table Range Interpretationc.ccoviiiiiiiiinnn... 11-42

Contents xi

11-22 Auxiliary Table RNDXR Interpretationcoooviiiiiiiiinn.. .. 11-42

11-23 Pointer Representationccooiiiiiiiiiiiiiiiiiiiiiiii i 11-44
11-24 Array Representationcccooiiiiiiiiiiiiiiiiiiiiiii i, 11-45
11-25 64-Bit Array Representationccoooiiiiiiiiiiiiiiiiiiieiiinn. .. 1146
11-26 Structure Representationcooiiiiiiiiiiiiiiiiiiiii i, 11-47
11-27 Recursive Structure Representationcooooiiiiin.. .. 11-48
11-28 Nested Structure Representationciiiiiiiiiiiin.. .. 11-48
11-29 Typedef Representationccoooviiiiiiiiiiiiiiiiiiii e, 11-49
11-30 Function Pointer Representationcoooviiiiiiiiiiiiiiiiin. .. 11-50
11-31 Function Pointer Alternate Representation 11-50
11-32 Class Representationccoeiviiiiiiiieiiiie i eeinnns 11-51
11-33 Empty Class or Structure (C++)ooovviiiiieiiiiie i eeinnnns 11-52
11-34 Opaque Class or Structure (C++) ...ooviiiiiiiiiiie i 11-53
11-35 Base Class Representationc.oooiiiiiiiiiiiiiiiiiiiiiiniiiiin. .. 11-54
11-36 Interlude Representationc.oooiiiiiiiiiiiiiiiiiiiiiiiiiiin... 11-55
11-37 Array Descriptor Representationccooviiiiiiiiiiiiiiiiin. .. 11-56
11-38 Array Descriptor Representation (retired)ccoviiiiiin... 11-57
11-39 Variant Record Representationccooooiiiiiiiiiiiiiiiiiin. .. 11-58
11-40 Variant Record Representation (retired)ccoooiiiiiiiia... 11-59
11-41 Subrange Representationc.ooiiiiiiiiiiiiiiiiiiiiiiiie... 11-60
1142 64-bit Range Representationooooiiiiiiiiiiiiiiiiiiiiiin. .. 11-60
1143 Set Representationcceiiiiiiiiiiiiiiiiiiiii i 11-61
14-1 Dynamic Object File Sectionsoooiiiiiiiiiiiiiiiiiiiiiiii. .. 14-1
14-2 Shared Library Dependenciescccooveeiiiiiiieieeieeineeneennenn.. 14-11
14-3 Valid Shared Library with Multiple Versions 14-15
144 Invalid Shared Library with Multiple Versions 14-15
14-5 Dynamic Symbol Table and Multiple-GOTalt. 14-18
146 Msym Tableoooiiiiiiii i e 14-20
14—7 Hash Tableoooiniiii e 14-20
14-8 Hashing EXampleccooiiiiiiiiiiiiiiii it e e eaeann s 14-21
14-9 Namespace Pollution 14-23
14-10 Weak Symbol Resolution (I)ccooiiiiiiiiiiiiiiiiiiii i ieeeeaeenns 14-24
14-11 Weak Symbol Resolution (II)cooiiiiiiiiiiiiiiiii i 14-25
14-12 Symbol Resolution Search Orderccooviiiiiiiiiiiiiiiiiin. .. 14-26
14-13 Conflict Entry Example ... 14-30
15-1 Comment Section Data Organizationcoooviiiiiein.n... 15-4
16-1 Archive File Organizationccooiiiiiiiiiiiiiiiiiiiiiinnineenaann.. 16-4
16-2 Symdef File Hash Tablecoocoiiiiiiiiiiiiiiiiiiiiiii i, 16-6
Tables
1-1 COFF Basic Abstract Typesc.ccoooiiiiiiiiiiiiiiiiii., 1-10
2-1 File Header Magic Numbersc.oooiiiiiiiiiiii.. 2-2
2-2 FileHeader Flagsccooiiiiiiiiiiiiiii 2-2
2-3 _EXEC_FLAGSflagscccooviiiiiiiiiiiiiiiiii 2-3
2-4 Build Revision Constantsccovviiiiiiiiiiiiiiiiiiiiiiiieaa 2-4
2-5 a. out Header Magic Numberscccoiiiiiiiiiiiiiiiieeiiinnnnn... 2-5
2-6 Section Header Constants for Section Namescoooeeean 2-7
2-7 Section Flags (s_flags field)cooviiiiiiiiiiiii 2-8
2-8 Special Symbolsoiiiiiiii 2-21
3-1 Segment Access Permissionsccooiiiiiiiiiiiiiiiiiiiiiii i 3-13
4-1 Section Numbers for Local Relocation Entries 4-3
4-2 Relocation TYPes ..o...nuiiiiiiiiiiiiii e e et 4-4
4-3 Literal Usage TyPeS ...uvveiiitiiiiiiie et i et eeeeiiieee e eeeaaaas 4-5

xii Contents

PeTET
PWNRNR RS

PEBRNNNo @

Immediate Relocation Typesccooviiiiiiiiiiiiiiiiiiieeiiiinnnnnn.
R GPDISP FIAgS ..vvviiiitiiiiiii et et et
Compact Relocation Version Identifiersooiiiin. L.
Optimization Tag Valuesccooiiiiiiiiiii i
Symbol Table Sections Produced at Various Compilation Levels
Line Number Exampleccooiiiiiiiiiiiiiiii e
ESLI Commandsoevuiteiiieeiie et eie e eie e e
ESLIEXamplecoooiiiiiiiiiiiiiii e e e et
Source Language (I ang) Constantsccoiiiiiiiiiiiiinnnn. ..
Architecture and Tuning Valuesccooiiiiiiiiiiiiiiiie e,
Object Annotation OS ReviSionscccoviiiiiiiiiiiiiiieieeaiiininnn..
Symbol Type (st) Constantsccooiiiiiiiiiiiiiiii i,
Storage Class (sC) Constantscooiiiiiiiiiiiiiiiiiiieeiiiiinn...
Use Module Constantsoooiiiiiiiiiiiiiiiiiii i
Basic Type (bt) Constants ...t
Type Qualifier (t) Constants ...
Valid Placement for st /sc Combinationscoooiiiiiinan, 1
Symbols with Auxiliary Type Descriptions 1
Special Debug Symbolsccoiiiiiiiiii 1
Semantic Event Codescuuiiiiiiiiiiiiii i
Split Lifetime Target Type Codescovvvviiiiiiiiiiiniiniinninnn...
Split Lifetime Target Scheme Codesccoooviiiiiiiiniin....
Dynamic Array Tags (d_tag) ..c.oovverrieiiiiieiiiie i eiie e eiannns
DT _FLAGS Flags ..ottt ettt et ettt e ee e eaean s
Dynamic Symbol Type (st _i nf o) Constantscoviiiit
Dynamic Symbol Binding (st _i nf 0) Constants
Dynamic Section Index (st _shndx) Constants
Library List Flagscoooiiiiiiiiiii e
Dynamic Symbol Categoriesc.ooiiiiiiiiiiiiiiiiiiiiiiienenn, 1
Comment Section Tag Valuesccooviiiiiiiiiiiiii ...
Strip Flags ..o
Combine Flags ...
Modify Flagscooviiiiiii e
Default System Tag Flagscoooiiiiiiiiiiiiiiiiiiiiiiiiieeees
Archive Magic Stringscvvuiiiiiiiiiiiiiiiiii e eiieiieeaeens

Contents

xiii

About this Manual

This book describes the organization and usage of object files and images that
are built on HP Tru64 UNIX systems.

Audience

This manual is targeted for compiler and debugger writers and other developers
who must access or manipulate object files. A familiarity with basic program
development and symbol table concepts is assumed.

Necessity

This manual is designed to fill a need for technical information for back-end
developers working on the Tru64 UNIX operating system. It supplements or
replaces information that has previously been available in the Assembly Language
Programmer’s Guide.

Organization

This manual is organized as follows:

Chapter 1

Chapter 2
Chapter 3
Chapter 4

Chapter 5

Chapter 6
Chapter 7
Chapter 8
Chapter 9

Chapter 10

Chapter 11
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18

Provides background information on the development environment and
describes the high-level organization and usage of object files.

Describes the header sections of the object file.
Describes the contents of the “raw data” sections of the object file.

Describes the relocation process and related structures
stored in the object file.

Describes the compact relocations and linkerdef entries used
by post-link object modification tools.

Describes the symbol table structure and general contents.
Describes source file and line number information.
Describes run-time information used by debuggers.

Describes profile feedback data used for feedback-driven
code generation optimizations.

Describes object annotation data used for characterizing a
procedure’s text for post-link optimization.

Describes scope, symbol, and type information used by debuggers.
Describes information used for symbol resolution.

Describes the object file sections containing dynamic loading information.
Describes the format and usage of the object file comment section.
Describes the archive file format.

Provides examples that illustrate symbol table representations.

Provides programming examples to illustrate object file
and symbol table access.

About this Manual xv

Related Documents

This manual discusses the object file format from the perspective of tools

that produce or use object files. Understanding the purpose of these tools is

a prerequisite, but this information is touched upon briefly in this document.
The primary source for information on system programs in the development
environment is the Programmer’s Guide. The default debugger on Tru64 UNIX
is the ladebug debugger, which is treated separately in the Ladebug Debugger
Manual.

The contents of object files are also tied to the Alpha architectural implementation.
The Assembly Language Programmer’s Guide provides an architectural overview
that focuses on assembly level instructions and directives. Architectural
documentation is also available in the Alpha Architecture Reference Manual.

The Calling Standard for Alpha Systems also contains material related to this
manual. The calling standard defines the interface and other requirements for
procedure calls on Alpha platforms.

Icons on Tru64 UNIX Printed Manuals

The printed version of the Tru64 UNIX documentation uses letter icons on the
spines of the manuals to help specific audiences quickly find the manuals that meet
their needs. (You can order the printed documentation from HP.) The following
list describes this convention:

G Manuals for general users

S Manuals for system and network administrators
P Manuals for programmers

R Manuals for reference page users

Some manuals in the documentation help meet the needs of several audiences. For
example, the information in some system manuals is also used by programmers.
Keep this in mind when searching for information on specific topics.

The Documentation Overview provides information on all of the manuals in the
Tru64 UNIX documentation set.

Reader's Comments

XVi

HP welcomes any comments and suggestions you have on this and other Tru64
UNIX manuals.

You can send your comments in the following ways:
e Fax: 603-884-0120 Attn: UBPG Publications, ZK0O3-3/Y32
¢ Internet electronic mail: r eader s_comment @k3. dec. com
A Reader’s Comment form is located on your system in the following location:

/usr/doc/ readers_coment .t xt

Please include the following information along with your comments:

e The full title of the manual and the order number. (The order number appears
on the title page of printed and PDF versions of a manual.)

e The section numbers and page numbers of the information on which you are
commenting.

e The version of Tru64 UNIX that you are using.
e Ifknown, the type of processor that is running the Tru64 UNIX software.

About this Manual

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local system
vendor or to the appropriate HP technical support office. Information provided
with the software media explains how to send problem reports to HP.

Conventions

The following conventions are used in this manual:

%
$

% cat

file

cat (1)

Ctrl/x

Alt x

Colored ink

A percent sign represents the C shell system prompt. A
dollar sign represents the system prompt for the Bourne,
Korn, and POSIX shells.

A number sign represents the superuser prompt.

Boldface type in interactive examples indicates typed
user input.

Italic (slanted) type indicates variable values, placeholders,
and function argument names.

In syntax definitions, brackets indicate items that are
optional and braces indicate items that are required.
Vertical bars separating items inside brackets or braces
indicate that you choose one item from among those listed.

In syntax definitions, a horizontal ellipsis indicates that
the preceding item can be repeated one or more times.

A vertical ellipsis indicates that a portion of an example
that would normally be present is not shown.

A cross-reference to a reference page includes the
appropriate section number in parentheses. For example,
cat (1) indicates that you can find information on the cat
command in Section 1 of the reference pages.

In an example, a key name enclosed in a box indicates that
you press that key.

This symbol indicates that you hold down the first named
key while pressing the key or mouse button that follows
the slash. In examples, this key combination is enclosed in

a box (for example, |Ctrl/C|).

Multiple key or mouse button names separated by spaces
indicate that you press and release each in sequence. In
examples, each key in the sequence is enclosed in a box

(for example, [AI]Q]).

Colored ink indicates information that you enter from the
keyboard or a screen object that you must choose or click on.

About this Manual xvii

1

Introduction

This specification is the official definition of the object file and symbol table formats
used for HP Tru64 UNIX object files. It also describes the legal uses of the formats
and their interpretation.

New or retired features of the object file and symbol table formats are identified
throughout this document by Version Notes. Table entries and structure fields may
also be marked with a range of version stamps in parenthesis and bold type. This
indicates that the marked feature is valid for the indicated range of operating
system or format versions. The examples that follow illustrate the three kinds of
version stamps and the four types of ranges.

(V5.1-) Indicates that the marked feature is valid in Tru64 UNIX
for releases V5.1 and greater.

(-0V3.12) Indicates that the marked feature is valid for all object
format versions up to and including V3.12.

(SV3.10 - SV3.13) Indicates that the marked feature is valid for symbol table
format versions V3.10 through V3.13 inclusive.

(0OV3.13) Indicates that the marked feature is only valid for object
format version V3.13.

Operating system, object format, and symbol table format versions (see

Section 1.4.5) will be used to identify new or retired features. Compiler and

tool versions can also affect what features may be used or supported, but this
information will be provided in documentation accompanying the compiler or tool.

This document treats in detail the file formats for object files and archive files.
These files are described as follows:

Object File An object file is a binary file produced by a compiler,
assembler, and/or linker from high-level-language source
files or other object files. Object files can be executable
programs, shared libraries, or relocatable object files. One
or more relocatable object files can be linked together to
form executable programs or shared libraries.

Symbol Table A symbol table is contained within an object file. It is used
to convey linking and debugging information describing the
contents of the object file.

Archive File An archive file is a single file which contains many object
or text files that are managed as a group. Archive files
can serve as libraries that are searched by the linker. A
special symbol table is included in the archive file for this
purpose. The archiver (ar (1)) is the tool used to create
and update archive files.

Introduction 1-1

Tools that create, use, or otherwise interact with object or archive files should
conform to the formatting and usage conventions outlined in this specification.

1.1 Definitions

This section defines terms that are used throughout this document.

absolute file offset

address

alignment

API

application

base address

byte boundary

common storage
class symbol

constant
dynamic
executable

dynamic loader

entry point

executable

file offset

hash search

Introduction

See file offset.

If not otherwise specified, an address is a location in
virtual memory.

The positioning of data items or object file sections in
memory so that the starting address is evenly divisible by
a given factor.

Application Programming Interface.
A user-level program.

The lowest-numbered location of an object file mapped
in virtual memory.

The alignment factor.

A global symbol that can be legally multiply defined.
Storage space for common storage class symbols is typically
allocated when relocatable object files are linked.

A variable or value that cannot be overwritten.

A call-shared application or program. A dynamic
executable is linked with shared libraries and loaded by
the dynamic loader.

A system program that maps dynamic executables and
shared libraries into virtual memory so that they can be
executed.

The first instruction that is executed in a program or
procedure.

An object file that can be executed. Also referred to as a
program, image, or executable object. Executables can
be static or dynamic.

The distance in bytes from the beginning of an on-disk file
to an item within the file. Also referred to as an absolute
file offset.

A search technique typically used in performance-sensitive
programs.

image

linker

literal

locally stripped

namespace

PPOD

PPODE

relative file offset

relative index

relocatable object

section

segment

shared library

shared object

static executable

symbol preemption

A program mapped in memory for execution. A shared
process image includes mappings of shared libraries used
by the program.

The system utility | d. This utility is the primary producer
of executable object files and shared libraries.

A value represented directly.

Stripped of "local" symbol information used primarily for
debugging.

A scope within which symbol names should all be unique.

Per-Procedure Optimization Data. A PPOD contains all of
the PPODE’s for a given procedure.

Per-Procedure Optimization Data Entry. A PPODE is a
single entry in a given procedure’s PPOD. It is composed
of a fixed-length PPODHDR record and associated freeform
data.

The distance in bytes from a given position in an on-disk
file to another item within the file.

An index represented as an offset from a base index.

An object file that includes the information required to link
it with other object files.

The primary unit of an object file.

A portion of an object file that consists of one or more
sections and can be loaded into virtual memory.

An object file that provides routines and data used by one
or more dynamic executables.

A dynamic executable or shared library.

An object file that contains all of the executable code and
data required to create a runnable program image.

A mechanism by which all references to a multiply defined
symbol are resolved to the same instance of the symbol.

1.2 History and Applicability

The object file format described in this specification originated from the System
V COFF (Common Object File Format). Implementation-dependent varieties of
the COFF format are used on many UNIX systems. Tru64 UNIX has altered and
extended the object file format to serve as the basis for program development on
Alpha systems. This extended version of COFF is referred to in this document as

eCOFF.

Introduction 1-3

All systems based on the Alpha architecture and running Tru64 UNIX employ
the eCOFF object file format.

1.3 Producers and Consumers

Many tools interact with objects and archives in the development environment.
Object file producers create object files, and object file consumers read object files.
A tool may be both a producer and a consumer. Figure 1-1 provides one view

of the program development process from source files through executable object
file production.

Figure 1-1: Object File Producers and Consumers

Solrce Compilers Assembler Archiver Instrumentation
Fileg Linker Tools

Cname.s
Cnatme.c—p Chame.o @—) libname.a
Fname.o f—/

Fhame £ \ Fnatme.s Snarne.o —’
Snatme.s libnameso 4out _‘__ff_—’

a.out,atom

A summary of the functions of relevant system utilities and their relationship to
objects and archives follows. Detailed information is available in reference pages.

1.3.1 Compilers

Compilers are programs that translate source code into either intermediate code
that can be processed by an assembler or an object file that can be processed by
the linker (or executed directly). Accordingly, compilers may be direct or indirect
producers of object files, depending on the compilation system. The compiler
creates the initial symbol table.

1.3.2 Assemblers

Assemblers also produce object files. An assembler converts a compiler’s output
from assembly language (the intermediate form) into binary machine language.
The result is traditionally a non-executable object file (. o file). The assembler
lays out the sections of the object file and assigns data elements and code to the
various sections. It also lays the groundwork for the relocation process performed
by linkers.

1.3.3 Linkers

1-4

A linker (or link-editor) accepts one or more object files as input and produces
another object file, which may be an executable program. The linker performs
relocation fixups and symbol resolution. It merges symbolic information and
searches for referenced symbols in shared libraries and archive libraries. Linkers
are producers and consumers of object files, and consumers of archive files.

The selection of command-line options determines what type of object the linker
produces. A final link produces an executable object file or shared library. A partial
link produces a relocatable object that can be included in a future link.

Introduction

1.3.4 Loaders

Loaders (sometimes referred to as dynamic linkers) load executable object files and
shared libraries into system memory for execution. A loader may perform dynamic
relocation and dynamic symbol resolution. It may also provide run-time support for
loading and unloading shared objects and on-the-fly symbol resolution. The loader

is a consumer of executable object files and shared libraries.

1.3.5 Debuggers

Debuggers are utilities designed to assist programmers in pinpointing errors in
their programs. Debuggers are object file consumers, and they rely heavily on the
debug symbol table information contained in object files.

1.3.6 Object Instrumentation Tools

Object instrumentation tools such as at omare both consumers and producers of
object files. Their input is an executable object and, possibly, the shared libraries
used by that executable object. Their output is the instrumented version of the
executable program. Instrumentation involves modifying the application by adding
calls to analysis procedures at basic block, procedure, or instruction boundaries.
Depending on the tool, the aim may be to optimize the program or gather data to
enable future optimizations.

1.3.6.1 Post-Link Optimizers

The omand spi ke object modification tools perform post-link optimizations such
as removal of unneeded instructions and data.

The cor d tool is a post-link tool that rearranges procedures in an executable file
to facilitate improved cache mapping.

These tools are object file consumers and producers.

1.3.6.2 Profiling Tools

UNIX profiling tools (such as pr of and hi pr of) are object file producers and
consumers. These tools examine an executable object and the shared libraries
it uses and report information such as basic block counts and procedure calling
hierarchies. They may also restructure the program to improve performance.
Output includes files that store profiling data generated during execution of the
instrumented application.

1.3.7 Archivers

An archiver is a tool that produces and maintains archive files. It is a producer and
a consumer of archive files and a consumer of object files.

1.3.8 Miscellaneous Object Tools

1.3.8.1 Object Dumpers

Tools are available that read object files and dump (print) their contents in
human-readable form. Examples are nm odunp, st dunp, and di s. These tools are
object file consumers.

Introduction 1-5

1.3.8.2 Object Manipulators

The tools ostri p and stri p reduce the size of an object file by removing certain
portions of the file. The nts tool modifies the comment section only. These tools are
both consumers and producers of object files.

1.4 Object File Overview

1.4.1 Main Components of Object Files

This document is organized to correspond to a conceptual breakdown of an object
file’s contents. The main components of an object file are described briefly in the
remainder of this section.

A high-level view of the eCOFF object file contents is depicted in Figure 1-2.

Figure 1-2: Object File Contents

File Header
a.out Header
Section Headers
Raw Data Sections
Relocations
Symbol Table
Comment Section

1.4.1.1 Object File Headers

1.4.1.2

Header structures serve as a roadmap for navigating portions of the object file.
They provide information about the size, location, and status of various sections
and about the object as a whole. See Chapter 2 for more information.

Instructions and Data

Instructions and data are located in loadable segments of the object file.
Instructions consist of all executable code. Data consists of uninitialized and
initialized data, constants, and literals. Instructions and data are laid out in
sections that are arranged into segments. The segments are then loaded to form
part of the program’s final image in memory. See Chapter 3 for more information.

1.4.1.3 Object File Relocation Information

1-6

The purpose of relocation is to defer writing the address-dependent contents of
an object file until link time. Relocation entries are created by the compiler and
assembler, and the necessary address adjustments are calculated by the linker.
Information relevant to relocation is stored in section relocation entries and in
the symbol table. In some instances, the loader subsequently performs dynamic
relocation. See Chapter 4 and Chapter 14 for more details.

Introduction

1.4.1.4 Symbol Table

The symbol table contains information that describes the contents of an object file.
Linkers rely on symbol table information to resolve references between object
files. Debuggers use symbol table information to provide users with a source
language view of a program’s execution and its execution image. See Chapter 6
for more details.

1.4.1.5 Dynamic Loading Information

Dynamic sections are utilized by the loader to create a process image for

an executable object. These sections are present in shared object files only.
Information is included to enable dynamic symbol resolution, dynamic relocation,
and quickstarting of programs. See Chapter 14 for more details.

1.4.1.6 Comment Section

The comment section is a non-loadable section of the object file that is divided
into subsections, each containing a different kind of information. This section is
designed to be a flexible and expandable repository for supplemental object file
data. See Chapter 15 for more information.

1.4.2 Kinds of Object Files

There are four principal types of object files:

Relocatable objects Relocatable objects are object files that contain full
relocation information. They are usually not executable.
Pre-link producers (generally compilers and assemblers)
always generate relocatable objects. The linker can also
generate relocatable objects, but does not do so by default.
See Chapter 4 for more details.

Static (non-shared) An object file is executable if it has no undefined symbol
executables references. Executable objects can be static or dynamic.

Static executables are object files that are linked
-non_shar ed. They use archive libraries only. They are
fully resolved at link time and are loaded by the kernel’s
program execution facility.

Dynamic Dynamic executables are object files that are linked
(call-shared) -cal | _shar ed. They may use shared libraries, archive
executables

libraries or both. A dynamic executable is the compilation
system’s default output. The system loader performs
dynamic linking, dynamic symbol resolution, and memory
mapping for dynamic executables and the shared libraries
they use.

Shared libraries Shared libraries are object files that provide collections
of routines that can be used by dynamic executables.
Although it contains executable code, a shared library
by itself is not usually executable. Advantages of shared
libraries include the ability to use updated libraries without
relinking and a reduction in disk requirements. The
reduction in disk requirements is achieved by providing a
single copy of routines and data that might otherwise be
duplicated in many executable object files.

Introduction 1-7

Object file types can often be differentiated by their file name extension. Typically,
relocatable objects have a . o file extension and shared libraries have a . so file
extension. The default name for an executable object file is a. out . User-named
executable files often do not have an extension.

It is important to be aware of which type of file is under discussion because the
usage, content, and format of each kind of object file can vary significantly.

1.4.3 Object File Compression

File compression is used widely on all kinds of files to save disk space. Similarly,
object files can be compressed to save space. However, not all objects are candidates
for compression and not all tools that handle objects also support compressed
object files.

Decompressed data can be, at most, eight times the size of the compressed data.
This rate of compression is the best case possible. At worst case, a compressed
object will actually be larger than the decompressed version. Typically, however, a
reduction of 50% to 75% in size is achieved.

When an object is compressed, the file header in uncompressed form precedes the
compressed object file. The uncompressed file header’s magic number indicates
whether the remainder of the file contains a compressed object.

Figure 1-3: Object File Compression

File Header File Header uncompressed
b objZ — Size
(rest of Fad
object N
file) (entire file) compressed
uncompressed compressed
object obiject
(ALFHAMAGIC) (ALPHAMAGICT)

The value of "size" is the size of the uncompressed object in bytes. The archiver
uses the "pad" value to indicate the bytes of padding it inserted. Both fields are
8-byte unsigned integers.

The most commonly compressed objects are archive members. Both the archiver
and the linker support compressed objects used as archive members.

Executable objects and shared libraries cannot be compressed because the dynamic
loader does not support compressed objects. To decompress an image, the loader
would need to allocate space where it could write the decompressed image.
Serious system penalties would be incurred because no part of the image would be
shareable. However, a compressed object file can subsequently be decompressed
and then loaded; this might be a way to temporarily save disk space in some
circumstances.

1-8 Introduction

The tool obj Z is a Tru64 UNIX compression utility designed for object files. See
obj Z(1) for details.

1.4.4 Object Archives

Archiving is a method used to enable manipulation of a large number of files as
a single group, which may ease the task of file management. Any file can be
archived. However, the archive files of primary interest in program development
are archived object files that are used as libraries for static executables.

Object archives provide a means of working with a collection of objects
simultaneously. System libraries such as | i bc. a and | i bm a are object archives.
Each library collects a set of related objects which provide a service in the form of
callable APIs. Benefits of using archives in this fashion include the grouping of
related functions and shorter build commands.

Another benefit of archive libraries is selective linking, whereby the linker extracts
only needed objects from a library, instead of mapping the entire library with the
image. For example, suppose the library | i bEx. a contained the objects x. o,

y. 0, and z. o. If the executable a. out depended on x. 0 to define a referenced
symbol, but not on the other objects in the archive, only x. 0 would become part

of the final executable object.

Another typical use for object archives is to subdivide large builds into subsystems,
each of which is implemented as an archive that is eventually included in the
final link.

Most tools that read objects will also read object archives. The linker applies
special semantics in its handling of object archives, while other utilities treat an
object archive as simply a list of object files.

Object archive members can also be compressed. In this case, each object that is
an archive member is compressed as shown in Section 1.4.3. The archive file’s
administrative information is not compressed. Also, an archive file may contain
both compressed and uncompressed file members.

More information on archives can be found in Chapter 16.

1.4.5 Object File Versioning

The object file and symbol table formats are versioned. This versioning scheme is
independent of the operating system or hardware versions. It is not designed to
be visible to end-users.

The object file and symbol table versions are each stored as a two-byte version
stamp, with major and minor components of one byte each. The object file version
is stored in the vst anp field of the a. out header, and the symbol table version is
stored in the symbolic header’s vst anp field. The minor version is incremented
when new features or compatible structure changes are introduced. The major
version is incremented when an incompatible or semantically very significant
change is made.

The object file version stamp covers the following structures:
e File header (fil ehdr. h)

e a.out header (aout hdr. h)

e Section header (scnhdr. h)

¢ Relocations (r el oc. h)

e _.comment data (scncomment . h)

¢ Dynamic loading information structures (cof f _dyn. h)

Introduction 1-9

The symbol table version covers all symbol table structures and values defined in
the header files sym h, syntonst . h, and | i nenum h.

The object file and symbol table versions can differ.
This document covers object file format V3.13 and symbol table format V3.13.

Tool-specific version information for object file consumers may also be stored in the
on-disk object file. If present, this information is stored in the comment section.
See Chapter 15 for details.

1.4.6 Object File Abstract Data Types

1-10

A consistent set of basic abstract data types are used to build object file, symbol
table, and dynamic loading structures. These names are defined in the header
file cof f _type. h.

The use of abstract types for all elements of these structures facilitates
cross-platform builds. To build a tool to run on another platform, redefine the
COFF basic abstract types for the new platform. This is done by inserting the new
definitions and "#def i ne ALTERNATE_COFF_BASI C_TYPES" prior to any object
file or symbol table header files.

Table 1-1: COFF Basic Abstract Types

Name Size Alignment Purpose

cof f _addr 8 8 Unsigned program address
cof f _of f 8 8 Unsigned file offset
cof f _ul ong 8 8 Unsigned long word
cof f _l ong 8 8 Signed long word
cof f _ui nt 4 4 Unsigned word

cof f _int 4 4 Signed word

cof f _ushort 2 2 Unsigned half word
cof f _short 2 2 Signed half word
cof f _ubyte 1 1 Unsigned byte

cof f _byte 1 1 Signed byte

Another data representation that is currently used exclusively in the optimization
symbol table is LEB (Little Endian Byte) 128 format. This is a variable-length
format for numeric data. The low-order seven bits of each LEB byte are interpreted
as an integer value. The high bit, if set, indicates a continuation to the next byte.
An LEB byte is illustrated in Figure 1-4. This format takes advantage of the
likelihood that most numbers will be small. To form a large number, concatenate
the 7-bit segments of the LEB128 bytes, as shown in Figure 1-5.

Figure 1-4: LEB 128 Byte

Bit:
7 0

. T
Continue Numeric Value
(may be signed or vnsigned)

Introduction

Figure 1-5: LEB 128 Multi-Byte Data

SLEB
Sign Bit
7 0 7 | 0
Ifojo|ofo]oll]1l Ol1]0|1f1]0|1]|0
| |
Continue Stop
10110100000011b
or
-4861

A value represented in LEB 128 format may be signed (SLEB) or unsigned (LEB).
The second-highest bit in the final byte of an SLEB value is the sign bit. This
means that the signed value has to be propagated only within one byte.

The program example in Section 18.2 includes subroutines that read LEB 128 data.

1.5 Source Language Support

Object files originate from source files that may be coded in any of several
high-level languages. The Tru64 UNIX eCOFF object file format supports the
programming languages C, C++, Fortran, Bliss, Fortran90, Pascal, Cobol, Ada,
PL1, and assembly. The choice of source language primarily impacts the symbol
table, which includes the type and scope information used by the debugger. See
Chapter 11 for more information.

The UNIX system is closely tied to the C programming language, and many tools
that work with objects do not fully support non-C languages. Reference the specific
tool’s documentation for details.

1.6 System Dependencies

Certain characteristics of the object file format are dependent on the Tru64 UNIX
operating system. This section highlights those features and provides references
to more detailed information.

The address space and image layout information covered in Chapter 2 are
dependent on the operating system’s virtual memory organization.

The kernel’s virtual memory manager ensures that multiple processes can share all
text and data pages. As soon as a process writes to one of those pages, it receives
its own copy of that page. Because text pages are always mapped read-only, they
are always shared for the lifetime of the process.

The virtual memory manager uses additional shareable pages, known as Page
Table pages, to record the memory layout of a process. The linker’s default address
selection and the system library addresses are designed to maximize sharing of
page table pages, which are implemented as "wired" memory, a limited system
resource.

As part of this implementation, the text and data segments of shared libraries
are usually separated in the address space. This separation allows many shared
library text segments to be mapped in one area of memory. The Page Table pages

Introduction 1-11

used to describe an area of memory containing only text segments are shared by all
processes that map one or more of those text segments into their address space.
This sharing can result in significant savings in wired memory used by the system.

The GP-relative addressing technique is unique to Tru64 UNIX. See Section 3.3.2.

The operation of the system dynamic loader as described in Chapter 14 is
system-dependent. Other loaders may behave differently.

The discussion of system shared library implementation using weak symbols is
unique to Tru64 UNIX. See Section 14.3.4.1.

1.7 Architectural Dependencies

The 64-bit Alpha architecture defaults to using the little-endian byte-ordering
scheme. In little-endian systems, the address of a multibyte data element is
the address of its least significant byte, and the sign bit is located in the most
significant bit. Bytes are numbered beginning at byte 0 for the lowest address
byte, as shown in Figure 1-6.

Figure 1-6: Little Endian Byte Ordering

Guadword
Byte:r 7 6 5 4 3 2 1 0

most bte address
significant bits of quadwiord

A big-endian byte order can be inferred by assuming all structure fields would
be byte-swapped in a big-endian object. For example, big-endian byte order can
be inferred from Figure 1-6 by reversing the byte numbering and moving the
"byte address of quadword" label to the new location of byte 0. In a big-endian
representation, bit numbering within a byte is also reversed. This document will
only identify differences in the big-endian representation that either do not follow
convention or are not obvious.

As discussed in Section 2.3.5, hardware constraints dictate text and data
alignment. Unaligned references can cause fatal errors or negatively impact
performance. For instance, on Alpha systems, dereferencing a pointer to a
longword- or quadword-aligned object is more efficient than dereferencing a pointer
to a byte- or word-aligned object. Special instructions exist for unaligned data
memory accesses. The default assumption is that data is aligned.

TASO, the Truncated Address Space Option, is a migration path for applications
with 32-bit assumptions onto 64-bit Alpha platforms. This topic is discussed
in Section 2.3.3.2.

Relocation entries are heavily dependent on the Alpha instruction format. See
Chapter 4 for details.

See the Assembly Language Programmer’s Guide and Alpha Architecture Reference
Manual for additional information about the Alpha Architecture.

1.8 Relevant Header Files

Object and archive file structure declarations and value definitions are contained
in the following header files in the / usr/i ncl ude directory:

aout hdr . h

1-12 Introduction

ar.h

cof f _type.h
cof f _dyn. h
cmplrs/cnrlc.h
cnpl rs/ st support.h
filehdr.h

[i nenum h
pdsc. h

reloc.h
scnhdr. h

sym h
synctonst. h
scncoment . h
stanp. h

To access object file structures, it is preferable to use defined APIs. APIs provide
a constant interface to an underlying structure which will evolve over time. See
[i bst _i ntro(3) for details.

Introduction 1-13

2

Headers

Headers serve as a cover page and table of contents for the object file. They contain
size descriptions, magic numbers, and pointers to other sections.

The object file components covered in this chapter are the file header, a. out
header, and section headers:

e The file header identifies the object file and indicates its type.

e The a. out header provides the size, location, and addresses of the object’s

segments.

e Section headers store the name, size, and mapped address of their sections and
contain the locations of the section’s raw data and relocation entries. Each
object file section that is not part of the symbol table has a section header.

An object file may contain other header sections that are used to navigate the
symbol table and dynamic loading information. The symbolic header and dynamic
header are discussed in Chapter 6 and Chapter 14 respectively.

2.1 New or Changed Header Features

Tru64 UNIX V5.1B includes the following new or modified features:

¢ A new linker-defined symbol _ EXEC_FLAGS has been added for runtime
access to identify TASO programs (see Section 2.3.3.2.1).

Tru64 UNIX V5.1 includes the following new or modified features:

¢ A new section header definition that uses reserved bits for specifying section
alignment (see Section 2.2.3).

2.2 Structures, Fields, and Values for Headers

2.2.1 File Header (fi |l ehdr. h)

struct filehdr {

cof f _ushort
cof f _ushort
cof f_int
cof f _of f
cof f _int
cof f _ushort
cof f _ushort

b

f _nmagic;
f _nscns;
f_tindat;
f_synptr;
f _nsyns;
f _opt hdr;
f_flags;

SIZE - 24 bytes, ALIGNMENT - 8 bytes

File Header Fields

f_magic
f _nscns

f_tindat

File magic number (see Table 2-1). Used for identification.
Number of section headers in the object file.

Time and date stamp. This field is implemented as a signed
32-bit quantity that acts as a forward or backward offset in

Headers 2-1

2-2

f_synptr

f_nsyns

f _opt hdr

f_flags

seconds from midnight on January 1, 1970. The resulting
date range is approximately 1902-2038.

File offset to symbolic header. This field is set to zero in a
stripped object.

Size of symbolic header (in bytes). This field is set to zero
in a stripped object.

Size of a. out header (in bytes).

Flags (see Table 2-2) that describe the object file. Note
that the file header flags cannot be treated as a bit vector
because some values are overloaded.

Table 2-1: File Header Magic Numbers

Symbol Value Description

ALPHAVAG C 0603 Object file.

ALPHAVAG CZ 0610 Compressed object file.
ALPHAUMAG C 0617 (- V4.0x) Ucode object file.

Table 2—-2: File Header Flags

Symbol Value Description

F RELFLG 0x0001 File does not contain relocation information.
This flag applies to actual relocations only,
not compact relocations.

F_EXEC 0x0002 File is executable (has no unresolved
external references).

F_LNNO 0x0004 Line numbers are stripped from file.

F_LSYMs 0x0008 Local symbols are stripped from file.

F_NO_SHARED 0x0010 Currently unused.

F NO CALL_SHARED 0x0020 Object file cannot be used to create a

F_LOVAP

F_SHARABLE
F_CALL_SHARED
F_NO_REORG
F_NO REMOVE

- cal | _shar ed (dynamic) executable file.

0x0040 Allows a static executable file to be loaded at an
address less than VM M N_ADDRESS (0x10000).
This flag cannot be used by dynamic executables.

0x2000 Shared library.

0x3000 Dynamic executable file.

0x4000 Tells object consumer not to reorder sections.

0x8000 Tells object consumer not to remove NOP
instructions.

The flags in Table 2—3 are defined for the linker-defined symbol __ EXEC FLAGS.
See Section 2.3.3.2.1 for an example of how these flags are used.

Headers

Table 2-3: = EXEC_FLAGS flags

Symbol

Value Description

__EXEC_FLAG_TASO

__EXEC_FLAG_UNKNOWN 0x8000000000000000

0ox1 (V5.1B -)Set for executables linked

with the -t aso option.

(V5.1B -)Not set by linker. This flag
can be used to identify a "dummy"
definition of the _ EXEC_FLAGS
symbol in a shared library.

2.2.2 a. out Header (aout hdr. h)

The a. out header is also referred to as the "optional header". Note that "optional"
is a misnomer because the header is actually mandatory.

typedef struct aouthdr {

cof f _ushort
cof f _ushort
cof f _ushort
cof f _ushort
cof f _l ong
cof f _l ong
cof f _l ong
cof f _addr
cof f _addr
cof f _addr
cof f _addr
cof f _uint
cof f _uint
cof f _l ong
} AQUTHDR;

magi c;

vst anp;

bl drev;
padcel | ;
tsize;

dsi ze;

bsi ze;
entry;
text_start;
data_start;
bss_start;
gpr mask;

f pr mask;
gp_val ue;

SIZE - 80 bytes, ALIGNMENT - 8 bytes

a. out Header Fields

magi ¢

vst anp

bl dr ev

Object file magic numbers (see Table 2-5).

Object file version stamp. This value consists of a major
version number and a minor version number, as defined in
the st anp. h header file:

Symbol Value Description

MAJ_OBJ_STAMP 3

Current major object
format version

M N_OBJ_STAWP 13 Current minor object

format version

This version stamp covers all parts of the object file
exclusive of the symbol table, which is covered by an
independent version stamp stored in the symbolic header

See Section 1.4.5 for a description of object file versioning.

Revision of system build tools. This value is defined in

st anp. h and is updated for each major release of the
operating system. The values for Tru64 UNIX releases to
date are shown below. This field is not meaningful to users.

Headers 2-3

tsize

dsi ze
bsi ze

entry

text_start,
data_start,
bss Start

gpr mask
f pr mask

gp_val ue

2-4 Headers

Table 2—4: Build Revision Constants

Release bldrev
V1.2 —
V1.3 2
V2.0 4
V3.0 6
V3.2 8
V4.0 10
V5.0 12
V5.1 14

Text segment size (in bytes) padded to 16-byte boundary;
set to zero if there is no text segment.

For ZMAG C object files, this value includes the size of the
header sections (file header, a. out header, and all section
headers). See Section 2.3.2 for more information.

Data segment size (in bytes) padded to 16-byte boundary;
set to zero if there is no data segment..

Bss segment size (in bytes) padded to 16-byte boundary;
set to zero if there is no bss segment.

Virtual address of program entry point. This field is
meaningful primarily for executable objects. For shared
libraries, it contains the starting address of the first
procedure. For pre-link objects, it is typically set to zero.

Base address of text, data, and bss segments, respectively,
for this file. Alignment requirements are discussed in
Section 2.3.2.

Unused.
Unused.

The initial GP (Global Pointer) value used for this object.
The kernel loads this value into the GP register ($gp)
when a program is executed. The program entry point
identified by the ent ry field will load its GP value into the
GP register, which may or may not be different than the
value in this field for objects with multiple GP ranges.

See Section 2.3.4. This value is also used by the linker

as a basis for relocation adjustments in objects. See
Section 4.3.3.2.

Table 2-5: a. out Header Magic Numbers

Symbol

Value

Description

OVAG C 0x107

NVAG C 0x108

ZMAG C 0x10b

Impure format. The text segment is not write-protected or shareable;

the data segment is contiguous with the text segment. An OVAG C
file can be a relocatable object or an executable.

Shared text format. NMAG C files are static executables. This layout
is rarely used but supported for historical reasons.

Demand-paged format. The text and data segments are separated
and the text segment is write-protected and shareable. The
object can be a dynamic or static executable, or a shared library.
All shared objects use a ZMAGQ C layout.

2.2.3 Section Headers (scnhdr. h)

Version Note

The following structure definition is for Tru64 UNIX V5.1 and greater.
It is compatible with object format V3.13 and greater. New fields are
identified in the field descriptions following the structure.

struct scnhdr {

I

#defi ne
#defi ne
#defi ne
#defi ne

char
cof f _addr
cof f _addr
cof f _l ong
cof f _of f
cof f _of f
cof f _ul ong
uni on {
struct

s_nane[8] ;
s_paddr;
s_vaddr;
s_si ze;
s_scnptr;
s_relptr;
s_l nnoptr;

{

cof f _ushort _s_nrel oc;
cof f _ushort _s_nl nno;

} _s;
struct {
cof f _uint _s_nrel oc: 16;
cof f _uint _s_alignnent: 4;
cof f _uint _s_reserved: 12;
} b
S_u;
cof f _uint s_flags
s_nrel oc S_u._s._s_nreloc
s_nl nno S_u._s._s_nlnno
s_alignment s_u._b._s_alignnent
s_reserved S_u._b._s_reserved

SIZE - 64 bytes, ALIGNMENT - 8 bytes

Section Header Fields

S_nane

s_paddr

s_vaddr

Section name (see Table 2—6); null-terminated unless
exactly 8 bytes. Long section names are truncated to 8
bytes and are not null-terminated. Unused bytes are
zero filled.

Base virtual address of section in the image. Although
this field contains the same value as s_vaddr , normally
s_vaddr is used and s_paddr is ignored.

Base virtual address of a loadable section in the image.

This field is set to zero for nonloadable sections such as
.conment .

Headers 2-5

s_size

s_scnptr

s_relptr

s_l nnoptr

s _nrel oc

s_nlnno

s_al i gnment

2-6 Headers

For the sections . t| sdat a and . t | sbss, this field
contains an offset from the beginning of the object’s
dynamically allocated TLS region.

Section size rounded to 16-byte multiple.

File offset to beginning of raw data for the section. The
raw data pointed to by this field, and described by the
s_si ze field, is mapped at s_vaddr (if non-zero) in the
process image.

For sections with no raw data, such as . bss, this field
is set to zero.

File offset to relocations for the section; set to zero if the
section has no relocations.

In .| ita section header, indicates number of GP ranges
used for the object:

Value Meaning

0 Object has one GP range.

1 Invalid value.

2 or higher Object has this number of GP ranges.

For sections with GP relative relocations, this field
contains the number of R_GPVALUE relocation entries for
that section. In . pdat a this field contains the number
of code range descriptors.

For other sections, the field is reserved and must be zero.

Version Note

For object formats less than V3.13 the value of
this field may not be zero and should be ignored.

Number of relocation entries; Oxf f f f if number of entries
overflows size of this field (see Table 2-7).

Not used. This field overlays the s_al i gnment and
s_reserved fields.

(V5.1 -) Contains a power-of-two biased alignment factor.
The alignment is calculated by adding 3 to this value

and interpreting the sum as a power of two. The value 0

is interpreted as 16 byte alignment because this is the
minimum section rounding allowed. The maximum value
that can be represented is 15 which is 256k byte alignment.

Version Note

For object formats less than V3.13 the value of
this field may not be zero and should be ignored.

s_reserved

s_flags

(V5.1 -) Reserved. Must be zero.

Version Note

For object formats less than V3.13 the value of
this field may not be zero and should be ignored.

Flags identifying the section (see Table 2-7). Not all of

these flag values are single bit masks. See Section 2.3.6 for
information on testing section flags.

Table 2—6: Section Header Constants for Section Names

Symbol Field Contents Description

_TEXT .text Text section

INT .init Initialization text section

_FI'NI Lfini Termination (clean-up) text section

_RCONST . rconst Read-only constant section

_RDATA .rdata Read-only data section

_DATA .data Large data section

_LITA lita Literal address pool section

_LiT8 .lit8 8-byte literal pool section

_LIT4 lit4 4-byte literal pool section

_SDATA .sdata Small data section

_BSS . bss Large bss section

_SBSS . sbss Small bss section

__UCCDE . ucode (obsolete) Ucode section

_cor! - got Global offset table

_DyYNAM C! .dynam c Dynamic linking information

_DYNSYM . dynsym Dynamic linking symbol table

_REL_DYN! .rel.dyn Relocation information

_DYNSTR! .dynstr Dynamic linking strings

_HAsHL . hash Dynamic symbol hash table

_MBYM - mBym Additional dynamic linking symbol table

_LIBLIST? .liblist Shared library dependency list

_CONFLI CcT? .conflict Additional dynamic linking information. (This
name is truncated to . conf | i ¢ when stored in
the s_nane field of the section header.)

_XDATA? . Xxdat a Run-time procedure descriptors and GP
range information

_PDATA2 . pdat a Code range descriptors

_TLS DATA .tlsdata Initialized TLS data

_TLS BSS .tlsbss Uninitialized TLS data

Headers

Table 2—6: Section Header Constants for Section Names (cont.)

Symbol Field Contents Description

_TLSINT .tlsinit Initialization for TLS data
_ COMVENT . conmment Comment section

Table Notes:

1. These sections exist only in dynamic executables and shared libraries and are
used during dynamic linking. See Chapter 14 for details.

2. The . xdat a and . pdat a sections contain exception-handling data. See the
Calling Standard for Alpha Systems for details. Other sections are described

in Chapter 3.

Table 2—7: Section Flags (s_f 1 ags field)

Symbol Value Description

STYP_REG 0x00000000 Regular section: allocated, relocated, loaded.
User section flags have this setting.

STYP_TEXT 0x00000020 Text only

STYP_DATA 0x00000040 Data only

STYP_BSS 0x00000080 Bss only

STYP_RDATA 0x00000100 Read-only data only

STYP_SDATA 0x00000200 Small data only

STYP_SBSS 0x00000400 Small bss only

STYP_UCODE 0x00000800 (obsolete) Ucode

STYP_cor! 0x00001000 Global offset table

STYP_DYNAM C! 0x00002000 Dynamic linking information

STYP_DYNSYM 0x00004000 Dynamic linking symbol table

STYP_REL_DYN! 0x00008000 Dynamic relocation information

STYP_DYNSTR! 0x00010000 Dynamic linking symbol table

STYP_HASH! 0x00020000 Dynamic symbol hash table

STYP_DSOLI ST! 0x00040000 Shared library dependency list

STYP_MSYM 0x00080000 Additional dynamic linking symbol table

STYP_CONFLI CT1 0x00100000 Additional dynamic linking information

STYP_FI NI 0x01000000 Termination text only

STYP_COMVENT 0x02000000 Comment section

STYP_RCONST 0x02200000 Read-only constants

STYP_XDATA 0x02400000 Run-time procedure descriptors and GP
range information

STYP_TLSDATA 0x02500000 Initialized TLS data

STYP_TLSBSS 0x02600000 Uninitialized TLS data

STYP_TLSINIT 0x02700000 Initialization for TLS data

STYP_PDATA 0x02800000 Code range descriptors

STYP_LITA 0x04000000 Address literals only

2-8 Headers

Table 2—7: Section Flags (s_f | ags field) (cont.)

Symbol Value Description

STYP_LI T8 0x08000000 8-byte literals only

STYP_EXTMASK 0xO0f f 00000 Identifies bits used for multiple bit flag values.
STYP_LI T4 0x10000000 4-byte literals only

S _NRELOC OVFL2 0x20000000 Indicates that section header field s_nr e-
| oc overflowed

STYP_INT 0x80000000 Initialization text only

Table Notes:

1. These sections exist only in dynamic executables and shared libraries and are
used during dynamic linking. See Chapter 14 for details.

2. The S_NRELOC OVFL flag is used when the number of relocation entries
in a section overflows the s_nr el oc field in the section header. In this
case, s_nr el oc contains the value Oxf f ff and the s_f | ags field has the
S _NRELCC OVFL flag set. The actual relocation count is in the first relocation
entry for the section.

General Notes:

The system linker uses the s_f | ags field instead of s_nan®e to determine the
section type. User-defined sections (see Section 3.3.10) constitute an exception;
they are identified exclusively by section name.

Each section header must be unique within the object file. For system-defined
sections, both the section name and flags must be unique. For user-defined
sections, the name must be unique.

2.3 Header Usage

2.3.1 Object Recognition

Object file consumers use the file header to recognize an input file as an object file.
Other tools that do not support objects may use the file header to determine that
they cannot process the file. The fi | € command can also identify an object by
means of the file and a. out headers.

A file is identified as an object in its first 16 bits. These bits correspond to the
magic number field in the file header. Objects built for the Alpha architecture
are identified by the magic number ALPHAMAG C; equivalent compressed objects
are identified by ALPHAMAGQ CZ. Foreign objects, which are objects built for other
architectures, may also be positively identified. However, once a foreign object is
recognized, it is not considered to be a linkable or executable object file on the
Alpha system.

In addition to providing basic identification, the file header also provides a
high-level description of the object file through its f | ags field. File header flags
store the following information: whether the object is executable, whether symbol
table sections have been stripped, whether the file is suitable for creation of a
shared library, and more. See Table 2-2 for a list of all flags.

The a. out header magic numbers also contribute important information about the
file format. The magic numbers signify different organizations of object file sections
and indicate where the image will be mapped into memory (see Section 2.3.2).

Headers 2-9

2.3.2 Image Layout

The a. out header stores run-time information about the object. Its magic number
field indicates how the file is to be organized in virtual memory. Note that the
contents and ordering of the sections of the image can be affected by compilation
options and program contents in addition to the MAGIC classification.

The possible image formats are:

Impure Format OVAQ Cfiles are typically relocatable object files. They
(OVAG O) are referred to as "impure" because the text segment
is writable.

?l\llll\%&"&dél)‘ext Format NMAGQ Cfiles are static executables that use a different
organization from the default ZMAG Clayout. The NVAG C
format is historical and offers no special advantages. This
format can be selected by using the linker option - n or - nN
in conjunction with - non_shar ed. In an NVAG C file,
the text segment is shared.

Demand Paged ZMAGQ Cfiles are executable files or shared libraries.

Format (ZMAG C) This format is referred to as demand-paged because its
segments are blocked on page boundaries, allowing the
operating system to page in text and data as needed by the
running process. By default, the linker aligns ZMAQ C
segments on 64K boundaries, the maximum possible page
size on Alpha systems.

The ordering of sections within segments is flexible. Diagrams in this section
depict the default ordering as laid out by the linker.

The default segment ordering, which places the text segment before the data
segment, is flexible. However, the bss segment is required to contiguously follow
the data segment, wherever the data segment is located.

All three formats are constrained by the following restrictions:
e Segments must not overlap.
e The bss segment must follow the data segment.

e All text addresses in the object file must be within two gigabytes (0x7f f f 8000)
of all data addresses in the file.

23.21 OVWAG C

The OMAG C format typically has the following layout and characteristics:

2-10 Headers

Figure 2-1: OMAQ C Layout

pdata]
Jext
JAnit
fini
TCOTEt
Tdata
.tllgmlt raxt
: lig segment
Jitd
user text |
daf
could be several / A data
- xdata segment
user sections
\ sdata
uzer data]
.5bss] bss
b | segment
tlsdata tlsdata tlsdata TL3
tlshss tlshss tlsbss segment
thread 1 thread 2 thread 17

e Segments must not overlap.
¢ The bss segment must follow the data segment.

e All text addresses in the object file must be within two gigabytes (Ox7f f f 8000)
of all data addresses in the file.

e Starting section addresses are aligned on a 16-byte boundary.

e Pre-link OVAG C objects are zero-based, with the data segment contiguous to
the text segment. The default text segment address for partially linked objects
is 0x10000000, and the data segment follows the text segment.

e Usually contain relocation information.

e Cannot be a shared object.

Starting addresses can be specified for the text and data segments using - T and
- D options. These addresses can be anywhere in the virtual address space but
must be aligned on a 16-byte boundary.

OMAG C layout is most commonly used for pre-link object files produced by
compilers. Post-link OMAG C files tend to be used for special purposes such as
loadable device drivers and ominput objects.

Loadable device drivers must be built as OVAGQ C files because the kernel loader
kl oadsr v relies upon relocation information in order to link objects into the
kernel image.

OVAQ C files can also be executable. An important example of an OVAG C
executable file is the kernel, / vimuni x. A programmer might also choose to use an
OMAG C format for self-modifying programs or for any other application that has
a reason to write to the text segment.

Headers 2-11

2.3.2.2 NVAG C
The NMAGQ C file format is of historical interest only.
The NMAG C format typically has the following layout and characteristics:

Figure 2—-2: NMAQ C Layout

reongt O
Tdata
Jdita
Jditg
Jditd
tlsimt text
pdata segment
Jext
Jnit
fini
user text |

could be several / data

user sections xdata data

\ sdata segment
user data]
.5bas 1 bes
s _| segmert
tlsdata tlsdata tlsdata TLE
tlsbss tlsbss tlshss segment
thread 1 thread 2 thread 1T

e Segments must not overlap.
¢ The bss segment must follow the data segment.

e All text addresses in the object file must be within two gigabytes (0x7f f f 8000)
of all data addresses in the file.

e Text and data segment addresses fall on page-size boundaries. The bss segment
is aligned on a 16-byte boundary.

e By default, the starting address of the text segment is 0x20000000 and the
starting address of the data segment is 0x40000000.

e Cannot be a relocatable object, partially linked object, or a shared object.

Addresses can be specified for the start of the text and data segments using - T
and - Doptions. These addresses may be anywhere in the virtual address space

but must be a multiple of the page size.

2.3.23 ZNAG C
The ZMAG C format typically has the following layout and characteristics:

2-12 Headers

Figure 2-3: ZMAQ C Layout for Shared Object

Dynamic Layout

headers
dynamic
Jdiblist
reldyn
Jconflict

ST
dynstr
dynsym
hash

Treonst
couldbem | rdata
data segment 1ite

_ Jditd
could be in et
data segment QLR
pdata
Jext
Jnit
.fini placement of
could be several Py uds:j:ratext = rdata and
user sections \ ' st ifin
data data segment
segment

text
segment

user data
Hdata
sdata
got

shes — o
o 55 segtnent

tlzdata tlsdata tlsdata TLE
tlshas tlshzs tlshzs segment

thread 1 thread 2 thread M

Headers 2-13

Figure 2—4: ZMAG C Layout for Static Executable Objects

Static Layout

headers
Toonst
rdata
Jlita
Jditg

Jditd
tlsiit text
.pdata segment
text
JAnit
fini

user text _
could be several / data
xdata data

uzer sections
\ Sdata segment
user data

.shss —
ez

bss segment

tlsdata tlzdata tlsdata TLE
tlshss tlshes tlshas segment

thread 1 thread 2 thread N

The . rdata and . t| si nit sections are shown as part of the text segment.
However, it is possible that one or both of those sections might be in the data
segment. They are placed in the data segment only if they contain dynamic
relocations.

e Segments must not overlap.
¢ The bss segment must follow the data segment.

e All text addresses in the object file must be within two gigabytes (0x7f f f 8000)
of all data addresses in the file.

e Text and data segments are blocked; the blocking factor is the page size.

¢ By default the starting address of the text segment is 0x120000000 and the
starting address of the data segment is 0x140000000. The bss segment follows
the data segment.

¢ Can be either a shared or static object, but not a relocatable object.

Addresses can be specified for the start of the text and data segments using - T
and - D options. Those addresses can be anywhere in the virtual address space
but must be a multiple of the page size.

2.3.3 Address Space

At load time, an executable object is mapped into the system’s virtual memory using
one of the formats detailed in Section 2.3.2. The user can choose where the object,
transformed into the program image, will be loaded, but system-specific constraints
exist. This section discusses the general layout of the address space and the various
considerations involved in choosing memory locations for object file segments.

2-14 Headers

Figure 2-5 shows the default memory scheme for a dynamic image.

Figure 2-5: Address Space Layout

Ox1.20000000 ‘ Stack |

Program text

0x1.40000000 ProgramData & Bss

Program Heap

Ox3ff. 80000000

Isbinfloader Text
(he31f_ 80080000

Shared Library Text

Ox3ff.c0000000 [4t der Data & Bss

Isbinfloader Heap

(c3Ml.c0080000

The stack is used for storing local variables. It grows toward zero. The stack
pointer (stored in register $sp) points to the top of the stack at all times. In
generated code, items on the stack are often referenced relative to the stack pointer.

The program heap is reserved for system memory-allocation calls (br k() and
sbrk()). TLS sections are allocated from the heap. The heap begins where the bss
segment of the program ends, and the special symbol _end indicates the start of
the heap. The heap’s placement can also be calculated using the starting addresses
and sizes of segments in the a. out header. The mapping of shared libraries may
impose an upper bound on the heap’s size. Some programs do not have a heap.

The dynamic loader and shared libraries reside in memory during program
execution. See Section 14.3.2 for details.

User programs can request additional memory space that is dynamically allocated.
One way to request space is through an anonymous nmap() call. This system call
creates a new memory region belonging to the process. The user can attempt to
specify the address where the region will be placed. However, if it is not possible
to accommodate that placement, the system will rely on environment variables to
dictate placement. See nmap(2) for details.

The usable address range for user mode addresses is 0xO - 0x40000000000.
Attempts to map object file segments outside this range will fail, and the defaults
will be invoked or execution aborted.

2.3.3.1 Address Selection

Several mechanisms permit the user to select addresses for loadable objects or
assist the user in choosing viable addresses. Unless there is a good reason to

Headers 2-15

do otherwise, it is preferable to rely on system defaults, which are designed to
enhance performance and reduce conflicts.

The linker’s - T and - D options may be used to specify the starting addresses for
the text and data segments of an executable, respectively. Use of these options may
be appropriate for large applications with dependencies on many shared libraries
that need to explicitly manage their address space. Programs relying in any way
on fixed addresses may also need to control the segment placement.

Another use of the address selection options is to place an application in the lowest
31 bits of the address space. To restrict an application to this part of the address
space, the - T and - D switches may be used in conjunction with the -t aso option
(see Section 2.3.3.2) or separately.

The default placement of the text and data segments at 0x120000000 and
0x140000000 for executables means the default maximum size of the text segment
is 0x20000000 bytes, or approximately 500MB. If this space is insufficient, the

- D option can be used to enlarge it by specifying a higher starting address for

the data segment.

The - T and - D options can also be used to change the segment ordering. Some
applications, such as those ported from other platforms onto the Alpha platform,
may rely upon the data segment being mapped in lower addresses than the text
segment.

If only - T or only - Dis specified on the link line, system defaults are used for the
nonspecified address. If a given address is not properly aligned, the linker rounds
the value to the applicable boundary. If inappropriate addresses are chosen, such
as addresses for the text and data segments that are too far apart, linking may
fail. Alternatively, linking may succeed, but execution can abnormally terminate if
addresses are incompatible with the system memory configuration.

The linker option - B, which specifies a placement for the bss segment, is available
for partial links only. For executable objects, the bss segment should be contiguous
with the data segment, which is the system default. As a general rule, the - B
option should not be used.

Another mechanism permits address selection for shared libraries. A registry file,
by default named so_| ocat i ons, stores shared library segment addresses and
sizes. The so_| ocat i ons directives, described in the Programmer’s Guide, can be
used to control the linker’s address selection for shared libraries.

2.3.3.2 TASO Address Space

The TASO (Truncated Address Space Option) address space is a 32-bit
address-space emulation that is useful for porting 32-bit applications to 64-bit
Alpha systems. Selection of the - t aso linker option causes object file segments to
be loaded into the lower 31 bits of the memory space. This can also be accomplished,
in part, by using - T and - D. If the - t aso option is used in conjunction with the - T
or - Doptions, the addresses specified with - T and - D take precedence.

Use of the -t aso option also causes shared libraries linked outside the 31-bit
address space to be appropriately relocated by the loader. All executable objects
and shared libraries will be mapped to the address range Ox0 - Ox7fffffff.

The default segment addresses for a TASO executable are 0x12000000 for the text
segment and 0x14000000 for the data segment, with the bss segment directly
following the data segment. The - T and - Doptions can be used to alter the segment
placement if necessary.

Figure 2-6 is a diagram of the TASO address space layout.

2-16 Headers

Figure 2—6: TASO Address Space Layout

Stack
Program text

0x 1200 0000

0x 1400 0000

ProgramData & Bss
Program Heap

0x 7000 0000 Shared Library Text
0x 8000 0000 Shared Library Data & Bss

A TASO shared object is marked as such with the RHF_USE_31Bl T_ADDRESSES
flag in the DT_FLAGS entry in the dynamic header. The loader recognizes dynamic
executable objects marked with the TASO flag and maps their shared library
dependencies to the TASO address space. A TASO static executable is not explicitly
identified in object file structures.

2.3.3.2.1 Runtime Identification of TASO programs

Version Note

Identification of TASO programs at runtime is only supported in Tru64
UNIX V5.1B and greater.

For runtime identification of programs running in the TASO address space the
__EXEC_FLAG TASOflag is set in the linker-defined __ EXEC_FLAGS symbol. This
symbol is only defined for executables. Shared library code that attempts to access
this symbol should define a preemptable local definition of _ EXEC FLAGS that
will be used when the shared library is used with executables built prior to Tru64
UNIX V5.1B. The sample code below illustrates how to define this "dummy" symbol
in assembly and how to test for TASO programs in C code.

Assembly code:

#i ncl ude <fil ehdr.h>

.set noat

.set noreorder

.globl _ EXEC FLAGS
__EXEC FLAGS=__EXEC _FLAG UNKNOWN

C code:

#i ncl ude <fil ehdr.h>
extern unsigned |l ong _ EXEC FLAGS;

istaso(){
if (((unsigned long)& EXEC FLAGS) & _ EXEC FLAG UNKNOWN)
printf("Od executable. Taso attribute is unknown\n");
else if (((unsigned long)& EXEC FLAGS) & _ EXEC FLAG TASO
printf("Programruns in TASO address space.\n");
el se
printf("Program does not run in TASO address space.\n");

Headers 2-17

2.3.4 GP (Global Pointer) Ranges

Programs running on Tru64 UNIX obtain the addresses of procedures and global
data by means of a GP (Global Pointer) and an address table. Address ranges and
address-table sections (. | i t a and . got) are described further in Section 3.3.2
and Section 14.3.3. However, several important pieces of information concerning
GP-relative addressing are contained in the headers.

During program execution, the global pointer register ($gp) contains the active
GP value. This value is used to access run-time addresses stored in the image’s
address-table section. Addresses are specified in generated code as an offset to
the GP.

There are several reasons for using this GP-relative addressing technique:

¢ Alpha instructions support only 16-bit relative addressing, but the generated
code must be able to quickly and efficiently access arbitrary 64-bit addresses.

e The generated code must be position independent.
¢ The addressing method must support symbol preemption (see Section 14.3.4).

A GP range is the set of addresses reachable from a given GP. The size of this range
is approximately 64KB, or 8K 64-bit addresses.

Although only one GP value is active at any time, a program can use several GP
values. A program’s text can be divided into ranges of addresses with a different
GP value for each range. The linker will start a new GP range at a boundary
between two input object file’s section contributions. As a result, a GP range will
rarely be filled before a new GP range is started. Regardless of how much of a GP
range is actually used, the linker always sets the GP value associated with that
range as follows:

GP value = GP range start address + 32752

Figure 2-7 is a depiction of the use of GP values and ranges.

Figure 2—7: GP (Global Pointer) Ranges

Text GOT {or lita)
objl = GP Range 0
= (GOTIO])
obi2
, O GP Range 1
obj3 val 1 (GQT[])
objd
. P Range 2
obf (GOT[2)

Objects can share a GP range, as shown in Figure 2-7, or use more than one GP
range, depending on the amount of program data. However, the Calling Standard
for Alpha Systems specifies that a single procedure can use only one GP value. The
a. out header’s gp_val ue field contains either the GP value of the object (if there is
only one) or the first one the program should use (if there are multiple GP ranges).

How the number of GP ranges is represented in an object depends on the object’s
type:

2-18 Headers

e For objects with a. | i t a section, the section header field s_nl nnopt r indicates
the number of GP ranges, as explained in Section 2.2.3.

e In a relocatable object (OMAG C file), a new GP range is signaled by a
R_GPVALUE relocation entry. See Section 4.3.4.18 for details.

¢ In shared objects, multiple GP ranges are indicated by entries in the dynamic
header section (. dynami c¢), which are described in Section 14.2.1.

2.3.5 Alignment

Alignment is an architectural issue that must be dealt with in the object file at
several levels: object file segments, object file sections, and program variables all
have alignment requirements.

Data alignment refers to the rounding that must be applied to a data item’s
address. For natural alignment, a data item’s address must be a multiple of its
size. For example, the natural alignment of a character variable is one byte, and
the natural alignment of a double-precision floating-point variable is 8 bytes.

On Alpha systems, all data should be aligned on proper boundaries. Unaligned
references can result in substantially slower access times or cause fatal errors. The
compiler and the user have some control over the alignments through the use

of assembler directives and compilation flags (see the Programmer’s Guide and
Assembly Language Programmer’s Guide). When designing alignment attributes,
however, the architectural cost of loading unaligned values should be considered.

Object file segments are, by default, aligned as indicated in Section 2.3.2. Segment
alignment can be impacted by section alignment. The segment alignment must

be evenly divisible by the highest alignment factor for sections contained in that
segment.

For shared libraries that are not mapped at their quickstart addresses the loader
will map segments with a minimum alignment of 8K bytes. If any section in the
shared library requires an alignment greater than 8K bytes, the loader will map
the text segment with 64K byte alignment. The linker is responsible for assigning
segment addresses with a distance that is a 64K byte multiple. This will allow the
loader to align the data segment address which is mapped at a fixed distance
from the text segment.

Object file sections may have a power-of-two alignment factor specified in their
section headers (see Section 2.2.3). The default section alignment is 16 bytes.

Version Note

Power-of-two section alignment is supported in object format V3.13 and
greater for Tru64 UNIX V5.1 and greater.

The default alignment boundary for raw data is 16 bytes. Smaller alignments can
be applied to individual data items allocated in raw section data. If a data item
must be aligned with greater than 16 byte alignment, the section in which it is
allocated must be aligned with a power-of-two alignment factor that is greater than
or equal to the data item’s required alignment.

Compilers and assemblers should align section raw data to either 8 or 16 byte
boundaries in the object file. The linker will pad sections in the output object to
achieve the maximum section alignments specified in the input objects. If the
compiler adds this padding prior to linking then much space will be wasted in
the resulting linked object file.

Individual data items should meet the following minimum requirements. Structure
members and array elements are aligned according to the minimum requirements

Headers 2-19

in order to minimize pad bytes between members. Other data items are typically
aligned with 8 or 16 byte rounding due to alignment requirements imposed by the
generated code used to access data addresses.

e Atomic data items are aligned using natural alignment.
e Structures are aligned based on the size of their largest member.

e Arrays are aligned according to the alignment requirements of the array
element.

e Procedures are aligned on a 16-byte (quadruple instruction word) boundary.
This preserves the integrity of multiple-instruction issue established by the
instruction scheduling phase of code generation.

e Common storage class symbols must be aligned when they are allocated. The
val ue field for a common storage class symbol indicates its size and determines
which section it will be allocated in (. bss or . shss). The al i gnment field
for the common storage class symbol indicates the required power-of-two
alignment biased by 273. If al i gnment is zero, the default alignment is based
on the symbol’s size. Common storage class symbols with a size of 16-bytes
or greater are aligned to octaword (16-byte) boundaries, otherwise they are
aligned to quadword (8-byte) boundaries. The maximum alignment supported
for allocating common storage class symbols is 64K bytes. This is represented
in the al i gnnent field as the value "13".

e The al i gnnment field should be set for any externally defined symbol that
requires non-default alignment. If the al i gnnment field is not set, post-link
modification tools will not preserve the alignment of the symbol.

Version Note

The definition of a power-of-two alignment field in external symbol table
entries is supported in Tru64 UNIX V5.1 and greater. Objects built by
compilers that do no support the alignment field will appear to have the
alignment set to 0 which will yield the desired default behavior.

Sections are padded wherever necessary to maintain proper alignment. Padding is
done with zero bytes in the data and bss sections. In the text segment, each routine
is padded with NOP instructions to a 16-byte boundary. The section sizes reported
in the section headers and the segment sizes reported in the a. out header reflect
this padding.

2.3.6 Section Types

The primary unit of an object file is a section, and the sections in an object are
identified, located, and broadly characterized by means of the section headers.
Object files are organized into sections primarily to enable the linker to combine
multiple input objects into an executable image. At link time, sections of the same
type are concatenated or merged. The sectional breakdown also provides the linker
flexibility in segment mapping; the linker has a choice in assigning sections to
segments for memory-mapping and loading.

Section headers include flags that describe the section type. These flags identify
the section type and attributes. See Table 27 for a complete listing of section
flags. Note that the s_f | ags field cannot be treated as a simple bit vector when
testing or accessing section types because some of the flag values are overloaded.
The algorithm below illustrates how to test for a particular section type using
the s_f1 ags field.

if (type & STYP_EXTMASK)

FOUND = ((SHDR. s_flags & STYP_EXTMASK) == type)
el se

2-20 Headers

FOUND = (SHDR s_flags & type)

Sections can be mapped or unmapped. A mapped section is one that is part of the
process image as well as the object file. An unmapped section is present only in
the on-disk object file.

Raw data, organized by section and segment, is part of the process image. For a
ZMAG Cfile, all header sections in the object are also mapped into memory as
part of the text segment.

2.3.7 Special Symbols

Some special symbol names are reserved for use by the linker or loader. The
majority of these special symbols correspond to locations in the image layout.

Table 2—8 describes the special symbols and indicates whether they are reserved
for the linker or the loader. Additional special symbols for debug information are
described in Section 11.3.4.

Table 2—8: Special Symbols
Linker Reserved Symbols

Symbol Description
_BASE_ADDRESS3 Base address of text segment.
_cobol _main First COBOL main symbol; undefined if

not a COBOL program.

_DYNAM C Starting address of . dynami ¢ section if
present; otherwise, zero.

_DYNAM C_LI NK Enumeration value identifying module
type: 0 = static executable, 1 = dynamic
executable, 2 = shared library.

_ebss End of bss segment.

_edata End of data segment.

edat al Weak symbol for end of data segment.

_end End of bss segment.

end! Weak symbol for end of bss segment.

_etext End of text segment.

etext! Weak symbol for end of text segment.
__EXEC_FLAGS (V5.1B -)Executable flags. This can be used to

recognize TASO programs. See Table 2-3

_fbss First location of bss data. Usually the virtual
address of either the . shss or . bss section.

_fdata First location of initialized data. Usually
the virtual address of the . dat a section
and data segment.

_fpdata Start of . pdat a section.

_fpdata_size Number of entries in . pdata. The
exception-handling object file sections
(. pdat a and . xdat a) are included in the output
object if this symbol is referenced.

__fstart Start of . fi ni section.

_ftext First location of executable text. Usually the
virtual address of the . t ext section.

_ftlsinit The address of the . t 1 si ni t section.

Headers 2-21

2-22

Table 2—-8: Special Symbols (cont.)

Linker Reserved Symbols

Symbol Description

_GOT_OFFSET3 Starting address of . got section if present;

_9p

otherwise, zero.

GP value stored in a. out header.
_gpinfo Table of GP ranges used exclusively by
exception handling code.
__istart Start of . i ni t section.
_procedure_string_tabl e2 String table for run-time procedures
_procedur e_t abl e2 Run-time procedure table.
_procedure_tabl e_size? Number of entries in run-time procedure table.
__tlsbsize Size of the . t | sbss section.
__tlsdsize Size of the . t | sdat a section.
__tlskey The value of this symbol is the address of the GOT

or.litaentry of thetl sof fset symbol.

__tlsoffset Offset in the TSD array of the TLS pointer for a

particular object. For static executables, this value
is set at link time. For shared objects, the value is
set to 0 at link time and filled in at run time.

__tlsregions The number of TLS regions (T'SD entries) that

are used by an executable or library.

Loader Reserved Symbols

_ldr_process_cont ext Points to loader’s data structures.
I dr _process_cont ext! Weak symbol pointing to loader’s data structures.
_rld_new_interface The generic loader entry point servicing

all loader function calls.

Table Notes:

1.

These symbols are not defined under strict ANSI standards. They are weak
symbols that are retained for backward compatibility. See Section 14.3.4.2 for
further discussion of weak aliasing to strong symbols.

These symbols relate to the run-time procedure table, which is a table of
runti me_pdr structures (their declaration is in the header file sym h). The
table is a subset of the procedure descriptor table portion of the symbol table
with one unused field, excepti on_i nf 0, that is set to zero. The run-time
procedure table is maintained for historical reasons. It is not used by the
system’s exception handling software, nor any other Tru64 UNIX run-time
support.

These symbols are recorded as scAbs symbols in the external symbol table,
but their values are relocatable addresses that are not absolute values in
a shared library. This misclassification is maintained partly for historical
reasons, and partly because the values of these symbols cannot be described
as an offset within a specific section. The equivalent dynamic symbol table
entries identify these symbols as text (SHN_TEXT) or data symbols (SHN_DATA)
rather than absolute symbols (SHN_ABS).

Headers

Version Note

Prior to Tru64 UNIX V5.1 the system linker records these symbols
as absolute symbols (SHN_ABS) in the dynamic symbol table, and
they are not relocated correctly by the dynamic loader.

The linker defines special symbols only if they are referenced.

The majority of these symbols have local binding in a shared object’s dynamic
symbol table. Consequently, a shared object can only reference its own definition
of these symbols. However, several special symbols have global scope. The
linker-defined symbols end, _end, __istart,and _cobol _nai n are global, which
implies that each has a unique value process-wide. The symbol _end and its weak
counterpart end are used by | i bc. so to identify the start of the heap in memory.
The symbol _cobol _mai n gives a COBOL program’s main entry point.

Special symbols in addition to those listed in Table 2—1 are defined by the linker to
represent object file section addresses:

. bss

. comment
.data
Cfini
.init
dit4
.1it8
dita

. pdat a
. rconst
.rdata
. Sbss

. sdat a
. text

. Xxdat a

The value of the symbol is the starting address of the corresponding section. These
symbols generally are not referenced by user code. For shared objects, they may
appear in the dynamic symbol table.

2.3.7.1 Accessing

A user program can reference, but not define, reserved symbols. An error message
is generated if a user program attempts to define a symbol reserved for system use.

A special symbol is a label, and thus its value is its address. Interpreting a
label’s contents as its value may lead to an access violation, particularly for
those linker-defined symbols that are not address locations within the image (for
example, DYNAM C LI NKor _procedure_tabl e_si ze).

The following example shows how linker-defined labels are referenced in code:

$ cat gprange.c
#i ncl ude <stdio. h>
#i ncl ude <excpt. h>

extern unsigned long _gpinfo[];
extern unsigned long _ftext;
extern unsigned long _fdata;

mai n() {
int i;
unsigned long tstart, tend;
unsi gned | ong gpval ;

if (!_gpinfo || _gpinfo[0] !'= GPINFO MAG C) {

Headers 2-23

printf("No GP range info\n");

} else {
for (i=1; _gpinfo[i] != GPINFO _LAST; i+=3){

tstart = (unsigned long)& ftext + _gpinfo[i];
tend = tstart + _gpinfol[i+1];

gpval = (unsigned long)& fdata + _gpinfo[i+2];
printf("GP=0x% x for Text Range [O0x% x - 0x% x]\n",

gpval, tstart, tend);

}

$ cc gprange.c
$ a.out
GP=0x1400080c0 for Text Range [0x120000fe0 - 0x120001440]

This example prints out the GP ranges recorded in the . xdat a section. See
Section 3.3.8 for a description of the GP range info.

2.4 Language-Specific Header Features
The linker-defined symbol _cobol _mai n is set to the symbol value of the first

external symbol encountered by the linker with its cobol _mai n flag set. COBOL
programs use this symbol to determine the program entry point.

2-24 Headers

3

Instructions and Data

Instructions and data are the portions of the object file that are logically copied into
the final process image. Instructions include all executable machine code. Data
includes initialized and zero-initialized data, constant data, exception-handling
data structures, and thread local storage (TLS) data. The breakdown of the
instructions and data into object file sections is shown in Figure 3-1.

Object file sections are organized into three loadable segments: text, data, and bss.
Multiple TLS regions may also be loaded. The mapping of sections into segments is
principally determined by segment access permissions and object file. Figure 3-1
illustrates the layout of a typical dynamic executable file. See Section 2.3.2 for

details.

Figure 3—1: Raw Data Sections of an Object File

if shared
object

File Header
a.out Header
Section Headers
Raw Data Sections
Relocations
Symbol Table
Comment Section

if shared
object

Dynatnic
Load Info
mections

feonst

rdata

| litaif

Aitd

nonshared

Jitd

text

tlsinit

segment

pdata

Jext

Anit

fini

user-text

data

user-data

dafa

Hdata

.gdata

segment

got

shes

bisg

bes

_ | segment

tlsdata

tlsbss

TL3 REeglon

The object file sections containing dynamic load information are covered separately
in Chapter 14. Chapter 15 describes the . corment section data. This chapter

covers all other raw data sections.

Instructions and Data 3-1

3.1 New or Changed Instructions and Data Features

Version 5.1 of Tru64 UNIX adds new fields to the code range descriptor (see
Section 3.2.1) and the run-time procedure descriptor (see Section 3.2.2).

Version 5.0 of Tru64 UNIX supports a new name-recognition mechanism for
ordering subsystem-generated initialization and termination routines. See
Section 3.3.5.2.4 for details.

Version 3.13 of the object file format does not introduce any new features for the
instructions or data contained within the object file.

3.2 Structures, Fields, and Values for Instructions and Data

Section 3.2.1 and Section 3.2.2 contain structure declarations for the
exception-handling data structures as stored in the . xdat a and . pdat a object file
sections. These are the only two sections covered in this chapter that contain
structured data. Text sections containing machine instructions use the Alpha
instruction formats and other sections contain binary and character data.

3.2.1 Code Range Descriptor (pdsc.h)

The . pdat a section contains a table of code range descriptors ordered by address.

typedef unsigned int pdsc_mask;
typedef unsigned int pdsc_space;
typedef int pdsc_of f set;

uni on pdsc_crd {

struct {
pdsc_of f set begi n_addr ess;
pdsc_of f set rpd_of f set;
} words;
struct {
pdsc_mask cont ext _t :1; (V5.1 -)
pdsc_mask context_s :1; (V5.1 -)
pdsc_of f set shi ft ed_begi n_address : 30;
pdsc_mask no_pr ol og 11
pdsc_mask menory_specul ation 01
pdsc_of f set shi fted_rpd_of f set : 30;
} fields;

}
SIZE - 8 bytes, ALIGNMENT - 4 bytes

Version Note

The fields marked "V5.1" in the preceding structure definition are new
fields for Tru64 UNIX V5.1 and greater. The new fields take the place of
a reserved field so there is no change in the structure size.

See the Calling Standard for Alpha Systems for a full description.

3.2.2 Run-time Procedure Descriptor (pdsc.h)

3-2

The . xdat a section contains run-time procedure descriptors. These descriptors
are not necessarily sorted, and may be intermixed with unstructured
exception-handling data.

typedef unsigned char pdsc_uchar _of f set;
typedef unsigned short pdsc_ushort _of f set;
typedef unsigned int pdsc_count ;

typedef unsigned int pdsc_regi ster;
typedef unsigned | ong pdsc_addr ess;

typedef union pdsc_rpd {

struct pdsc_short_stack_rpd {
pdsc_mask flags: 8;

Instructions and Data

pdsc_uchar _offset rsa_offset;

pdsc_mask f mask: 8;
pdsc_mask i mask: 8;
pdsc_count frane_size: 16;
pdsc_count sp_set:8;
pdsc_count entry_l ength:8;

} short_stack_rpd;

struct pdsc_short_reg_rpd {

pdsc_mask flags: 8;
pdsc_space reservedl: 3;
pdsc_regi ster entry_ra:5;
pdsc_regi ster save_ra:5;
pdsc_space reserved2: 11;
pdsc_count frane_size: 16;
pdsc_count sp_set:8;
pdsc_count entry_l ength:8;

} short_reg_rpd;

struct pdsc_l ong_stack_rpd {

pdsc_mask flags: 11;
pdsc_regi ster entry_ra:5;
pdsc_ushort _of fset rsa_offset;
pdsc_count sp_set: 16;
pdsc_count entry_l ength: 16;
pdsc_count frane_size;
pdsc_mask reserved: 2; (V5.1 -)
pdsc_of f set return_address: 30; (V5.1 -)
pdsc_mask i mask;
pdsc_mask f mask;
} long_stack_rpd;
struct pdsc_long_reg_rpd {
pdsc_mask flags: 11;
pdsc_regi ster entry_ra:5;
pdsc_regi ster save_ra:5;
pdsc_space reservedl: 11;
pdsc_count sp_set: 16;
pdsc_count entry_l ength: 16;
pdsc_count frane_size;
pdsc_mask reserved2: 2; (V5.1 -)
pdsc_of f set return_address: 30; (V5.1 -)
pdsc_mask i mask;
pdsc_mask f mask;

} long_reg_rpd;

struct pdsc_short_wi th_handl er {
uni on {
struct pdsc_short_stack_rpd short_stack_rpd;
struct pdsc_short_reg_rpd short_reg_rpd;
} stack_or_reg;
pdsc_addr ess handl er;
pdsc_addr ess handl er _dat a;
} short_wi th_handl er;

struct pdsc_long_wi th_handler {

uni on {
struct pdsc_long_stack_rpd |ong_stack_rpd;
struct pdsc_long_reg_rpd I ong_reg_rpd;

} stack_or_reg;

pdsc_addr ess handl er;

pdsc_address handl er _dat a;

} long_wi th_handl er;

} pdsc_rpd;

SIZE - 40 bytes, ALIGNMENT - 8 bytes

Version Note

The fields marked "V5.1" in the preceding structure definition are new
fields for Tru64 UNIX V5.1 and greater. The new fields take the place of
a reserved field so there is no change in the structure size.

See the Calling Standard for Alpha Systems for a full description.

Instructions and Data 3-3

3.3 Instructions and Data Usage

3.3.1 Minimal Objects

Many sections may be missing from a still-viable object file. Sections may not be
present due to the type of the object file or to the contents of a particular program.

The .init and . fini sections of the text segment are typically not present in
relocatable objects. They contain code generated during final link.

The allocation of data in the "small" and "large" writable data sections (. sdat a,
.data, .sbss, .bss)can be controlled by the user in some situations. See
Section 3.3.6 for more details.

The.lit4 and. it 8 sections, which hold 4- and 8-byte literal values respectively,
may be omitted from an object file. Compilers may choose not to emit these sections.

The . xdat a and . pdat a sections, which contain exception-handling information,
may not be present. All pre-link objects with a non-empty text segment contain
these sections because compilers are expected to provide exception-handling
information for their code. Statically linked executables will only contain these
sections if they include code which handles exceptions. The linker identifies
exception handling code by looking for references to the _f pdat a_si ze symbol.
By default, shared objects will contain these sections. The . xdat a and . pdat a
sections are required if a shared object includes exception handling code or if it is
used in conjunction with another shared object that includes exception handling
code.

Although most objects contain both text and data segments, only one loadable
segment is required for an object to be loadable. A minimal pre-link object file
may contain no sections.

3.3.2 Position-Independent Code (PIC)

3-4

Position-independent code is generated code that is not constrained to any
particular location in the virtual address space. Eventually, code must be assigned
to a portion of the address space where it can execute. However, on Tru64 UNIX,
code is kept position-independent as long as possible.

The implementation of position-independent code in eCOFF relies upon address
tables to store full virtual addresses for procedures and data locations invoked
or referenced in the text segment. Programs refer to these addresses using a
technique called GP-relative addressing.

Most eCOFF objects have address tables that hold 64-bit addresses. Address tables
in shared objects are called Global Offset Tables (GOTs) and are found in the . got
section. Address tables for relocatable and static objects are called literal address
pools and are found in the . | i t a section.

Address table entries are accessed in code by adding a signed 16-bit offset to the
currently active GP value, which is stored in the $gp register:

ldg t12, -31656(gp)

Multiple GP ranges can be associated with a program, each corresponding to a
different portion of the address table. See Section 2.3.4 for details.

In some cases, special instruction sequences may be required to update the
contents of the $gp register. In particular, the GP value used by a procedure

may or may not be the same as the value used by the calling code. Under most
circumstances, the called procedure’s GP value is calculated when a procedure is
invoked. Upon completion of the procedure’s execution, the calling code’s GP value
must be reestablished. Refer to the Calling Standard for Alpha Systems for details.

Instructions and Data

Different kinds of objects use address tables in different ways:
¢ Relocatable Objects

Pre-link objects usually have a . | i t a section with associated section relocation
information. The literal address pool contains addresses that must be adjusted
at link time.

e Static Executables

Addresses in static executables are fixed at link time. The image must be
loaded and executed at addresses the linker has chosen. Library addresses as
well as segment base addresses are known at link time.

Static executables store addresses in a . | i t a section that encompasses one or
more GP ranges. The contents of the address table are accessed by means of
the GP value or values, which are also fixed at link time.

e Shared Objects

Each . |it a entry in the input object files is relocated by the linker to form the
GOT in the output object. The loader may need to update the GOT entries
when mapping the process image. The addresses are then absolute and may be
extracted at run time to obtain the final locations of referenced items.

The loader may also update GOT entries at run time, such as when it replaces lazy
text stubs with resolved procedure addresses or dynamically loads new objects.

The GOT may contain entries for nonsymbolic text and data addresses. These are
known as local GOT entries. The GOT may also contain entries for unresolvable
symbols; which are either set to NULL or to the address of a lazy text stub routine.

Special semantics are associated with multiple GP ranges in shared objects. See
Section 14.3.3.3 for details on multiple GOT representation and usage.

Code can be only partially position independent. For example, shared libraries can
be mapped anywhere in the address space that is not in conflict with previously
mapped objects, but executable objects must be mapped at their link-time base
addresses. Dynamic executables are thus partly PIC because their own segment
addresses are fixed, but the addresses of shared libraries they use are not. Static
executables are position dependent (nonPIC) and can be optimized to rely on more
efficient position dependent methods for accessing program addresses.

3.3.3 Lazy-Text Stubs

This section applies to shared objects only. See Section 14.3.4.5 for related
information.

Final addresses may be unknown at link time for subroutines that are defined in
shared libraries and called by dynamic executables. Instructions reference these
routines in an address-independent manner, and the dynamic loader resolves the
procedure’s actual address the first time it is invoked.

Stubs are specially constructed code fragments used for this run-time symbol
resolution. They serve as placeholders for the definitions of functions that cannot
be resolved at static link time. The linker builds the stub for each called procedure
and allocates GOT table entries that point to the stubs. The stubs themselves are
inserted in the . t ext section of the shared object file by the linker.

A stub looks like this:

stub_xyz:
ldg t12, got_index(gp) //load register with .got entry
/Il of lazy text resolver
lda $at, dynsym.index_lowzero) //load register with external
I dah $at, dynsym.index_high($at) // synbol’s .dynsymindex
jmp t12, (t12) /ljunp to lazy text resolver

Instructions and Data 3-5

The first time the procedure is called, its stub is invoked. The stub, in turn, calls
the loader to resolve the associated symbol. The dynamic loader then replaces the
stub address with the correct procedure address, which is used for subsequent calls.

The calling standard requires that when control actually reaches the procedure’s
entry point, register $r 27 must contain the procedure value of the newly loaded
routine (as if no intermediate processing had occurred).

3.3.4 Constant Data

3.3.5

3-6

Constant data is data that cannot be changed over the course of program execution.
It can include constants appearing in the source program, constants that are
generated during the compilation process (usually addresses), and literal values
(also referred to as immediate values).

Constant data may appear in any data section. It is likely to appear in the . | i t 4,
.1it8,.lita,.rconst, and . rdat a sections. Compilers and other object file
producers may make varying choices concerning data placement in object file
sections.

The literal sections contain only literal values sorted by sizes. 4-byte literals

are stored in the . | i t 4 section, 8-byte literals in the . | i t 8 section, and 8-byte
address literals in the . | i t a section. However, these sections do not necessarily
contain all the literals in the program. String literals, for example, are assigned to
the . dat a section (or . r const section when the - read_onl y_stri ngs compiler
option is specified).

There are compile-time, link-time, and run-time constants. Examples of
compile-time constants include numeric constant data such as floating-point
constants and literals appearing in the source file. Examples of link-time constants
include addresses that are fully resolved at link time. Examples of run-time
constants include addresses established by the dynamic loader.

The linker places the . r const section and all three literal sections with the
text segment because they contain nonwritable data. The advantage of mapping
constant data with a program’s read-only segment is that it allows the data to be
shared among processes.

The . r dat a section contains constant data with values that may not be known
until run time (such as global symbol addresses). For shared objects, the . r dat a
section is mapped with the data segment so the loader can perform relocations
for that section without affecting the shareability of text or page table pages. If
there are no dynamic relocations, the . r dat a section may be mapped with the
text segment.

INIT/FINI Driver Routines

Every compilation unit in an executable or shared library has the opportunity

to contribute initialization or termination code to be run at startup and exit,
respectively. INIT routines perform initialization actions and are run automatically
at load time or by the routine dl open(). FINI routines are termination functions
that are executed by dl cl ose() or at program termination by exi t ().

The .init and. fini sections consist of a series of calls to the initialization and
termination routines. These calls, or drivers, are generated by the linker. They
are not present in pre-link objects. The . i ni t driver is invoked by a call from
startup code in / usr/1i b/ cnpl rs/cc/crt0. o, which must be linked into every
executable object file.

The driver code in the . i nit and . fi ni sections has the following characteristics:

e No associated symbolic information

Instructions and Data

¢ No associated call frame information

e Use of self-relative code for jumping to the routines; therefore, no use of the
GOT table or GP value

The initialization and termination routines themselves are in the . t ext section
and have the following characteristics:

¢ No arguments
¢ No return value

¢ Defined in one of the objects or archives being linked

Figure 3-2 presents a graphical overview of the INIT/FINI mechanism for shared
objects:

Figure 3—2: INIT/FINI Routines in Shared Objects

a.out
ed
—| _ start:
call rid_run_inits
call main
call exit
anit
__istart:
call all INIT routines
(in this abject)
Ailal
fsta
call all FIRI routines
(in this object)

Isbinfloader

fd_run_inits:
for each shared library
call init routine
call a.out's _ istart

o P P i o i P P i P el el i P i P Pl Pl i e i

rd_run_finis: cq) . out's __fatart
for each shared library
call fini routine

Jusr/shlibflibc.so

__istart:
call al INIT routines
(in this abject)
et
call rid_run_finis
For static executables, the first call is to the main object’s __i start () symbol

instead of rI d_run_i nit (). The dynamic loader is not involved.

Instructions and Data 3-7

System tools can generate initialization and termination routines. For example,
global constructor and destructor routines for static objects are implemented as
INIT/FINI routines by the C++ compiler.

The INIT/FINI mechanism is used for allocation and deallocation of thread-specific
data. Every object using TLS has its own INIT routine to take care of the TLS data
associated with that object. The purpose of this INIT routine is to allocate a TSD
key that will be used for the object’s TLS for the duration of the object mapping.
See Section 3.3.9 for more information on TLS data.

3.3.5.1 Linking

3-8

INIT and FINI routines can be included implicitly, by prefix recognition, or
explicitly, by option processing. With either linking method, as the routine’s
symbols are identified, a list determining the execution order is built. When the
list is complete, code to invoke the routines is generated by the linker and placed in
the.init and.fini sections.

To link explicitly, the -i nit and - fi ni linker options are used with a symbol
parameter. The symbol should meet the criteria listed above for INIT and FINI
routines.

To link implicitly, it is necessary to conform to naming and usage conventions. A
symbol is recognized as an initialization or termination symbol if:

e Automatic recognition of special symbols is not disabled.
e The symbol is defined in an object included in the link.
e The symbol bears the correct prefix (__init_or__ fini_).

¢ The symbol is a procedure.

Library archives may contain aptly named routines that are not implicitly linked
into an object as INIT or FINI routines. The reason this situation can occur is that
prefix recognition alone is not sufficient cause to extract a module from an archive.

Figure 3—-3: INIT/FINI Recognition in Archive Libraries

main.o libfubar.a
rain{) { foo.o
foo(); foo() {]
} | _init_foo{) [}
l bar.o
bar(} {}
__init_bar() {}

__init_bar() notin a.out

On the other hand, if the archived object is already linked into the object, prefix
recognition will apply to routines contained in that module. Explicit inclusion can
be used to ensure an archived routine is included as an initialization or termination
routine in all cases. See the Programmer’s Guide for more information on linking
with archive libraries.

The linker’s - no_pr ef i x_r ecogni ti on option disables implicit linking of INIT
and FINI routines.

Instructions and Data

3.3.5.2 Execution Order

This section describes the execution order of initialization and termination routines
in dynamic and static executables. It also covers the determining factors used by
the linker and loader to establish this order.

3.3.5.2.1 Dynamic Executables

The INIT driver routine for each shared object is executed after INIT drivers for
all of its dependencies. Dependencies are processed in a post-order traversal of
the dependency graph. The dependency graphs shown in this section are based
on link-line ordering (a left "sibling" appears first on the link line) as well as the
shared library dependency information.

FINI drivers are executed in precisely the reverse order of INIT drivers.

Figure 3—4: INIT/FINI Example (1)

a.out

o~

libA. 50 libB.so

NS

libc.so

INIT order: | i bc.solibB.soliDbA soa.out
FINI order: a. out i bA.solibB.solibc.so

Cyclic dependencies are handled using a first-seen approach, while still conforming
to the preceding rules. For example:

Figure 3-5: INIT/FINI Example (I1)

a.out

LN\
libA.so ﬁl libB.so -‘

INIT order: | i bA. so | i bB. so a. out

Initialization and termination routines may also be executed when shared objects
are loaded and unloaded dynamically during run time. dl open() runs INIT
routines for any shared objects that it loads. dl cl ose() runs FINI routines for
each shared object that it unloads.

Instructions and Data 3-9

Figure 3—6: INIT/FINI Example (l11)

a.out

|

libc.so

INIT order before dlopen call: I i bc. so a. out

Figure 3—7: INIT/FINI Example (1V)

aout [—¥dlopen() libfoo.so

libc.so libm so

INIT order after dlopen call: | i bm so | i bf 0o. so

FINI order after dlopen call: | i bf 00. so i bm so a. out |i bc. so

3.3.5.2.2 Static Executables

For static executables, the execution order for initialization and termination
routines is determined at link time. The linker establishes the execution order

for INIT routines by the order in which they are encountered within an object’s
external symbol table and by the ordering of objects on the command line. It also
takes into account the ordering of archive libraries on the command line. The INIT
routines from each archive are executed in the reverse order of their occurrence on
the command line. For example:

$1d x.o0y.0 z.0libma libfoo.a
INIT order: I i bfoo.alibmax.oy.0z.0

FINI order: z.oy.ox.olibmalibfoo.a

3.3.5.2.3 Ordering Within Objects

3-10

It is also possible to have multiple INIT or FINI routines within an object. The
number of initialization or termination functions that can be included from a single
object is unlimited. When multiple routines are encountered in an input object,
they are placed as a group within the overall ordering.

If both methods of linking are used, explicitly linked initialization routines are
executed prior to the implicitly linked routines for that object. Because the FINI
order is always the opposite of the INIT order, any explicitly linked termination
routines are executed last.

Instructions and Data

If the linker’s range table generating routines are present, they execute first and
last, respectively in INIT/FINI ordering on a per-object basis. These initialization
routines set up code range and GP range tables used in exception-handling. They
execute first so that range information is added before other INIT routines are
executed. These termination routines run last so that all others are run before
range information is removed. These precautions allow other INIT and FINI
routines to utilize exception handling.

3.3.5.2.4 Subsystem Control of INIT/FINI Order

Version Note

Subsystem generated initialization and termination routines are
supported in Tru64 UNIX V5.0 and greater.

Compilers may need to generate initialization and termination routines and to
control the order in which they execute. For this reason, subsystem-generated
INIT and FINI routines are distinguished from user INIT and FINI routines.

The linker recognizes a subsystem-generated routine by the prefixes I NI T_
and __FI NI _. Routines recognized with the __| NI T_ prefix always run prior to
any routines recognized with the __i ni t _ prefix within the same executable or
shared library. FINI routines recognized with the __FI NI _ prefix always run
after any routines recognized with the __ fi ni _ prefix. Subsystem INIT and FINI
routines also run, respectively, before and after any routines added by a user using
the linker’s -i nit and - fi ni switches.

All routines with the __| NI T_ prefix execute in alphabetic order, and all routines
with the __ FI NI _ prefix execute in reverse alphabetic order. For a name of

the form __| NI T_ALPHANAME, the ALPHANAME portion should be encoded as a
variable-length hexadecimal string. The string will contain one or more hex digits
followed by an underscore.

INIT routines generated by the linker for exception-handling, speculative
execution, and thread-local storage run prior to all other INIT routines. The
associated FINI routines run last.

3.3.6 Initialized Data and Zero-Initialized Data (bss)

Writable user-program data is divided between data (initialized data) and bss
(zero-initialized data) sections, which may then be subdivided according to data
element size. Zero-initialized data consists of program variables whose values
are not specified at compile time. Initialized data includes all variables that are
explicitly initialized in declaration statements.

One example of zero-initialized data is Fortran commons . Another is uninitialized
C data (i nt count;).

Note that a C-global or C-static data item explicitly initialized to zero (i nt count
= 0;) may be placed in an initialized data section, even though its value is the
same as if it were part of bss.

The primary advantage of separating initialized and uninitialized data is to save
space in the object file. All bss data elements are set to the same value (zero).
The only information required in the object file is a description of the run-time
size and location of the bss sections. This description is found in the . bss and

. sbss section headers.

Zero-filled memory is allocated for the bss segment when an object is mapped into
memory. Because the . bss and . sbss raw data sections do not require space in

Instructions and Data 3-11

the object file, their section header size field reports the size of the section in the
process image instead of in the object file.

To take advantage of all available space, zero-initialized data immediately follows
initialized data in the image. An object can have bss sections but no bss segment.
If the data in the bss sections does not exceed the size of the leftover space in the
last page of the data segment, the bss segment will be empty. This situation is
illustrated in Figure 3-8.

Figure 3—8: Data and Bss Segment Layout (1)

data
segment

bss
segment

FEEEERET IR T TR ER I
FEEEERET IR T TR ER I
LS IR AR AT

Last Page of Data Segment

For the same reason, some bss data can potentially be present in the data segment,
even if a separate bss segment exists. This situation is illustrated in Figure 3-9.

3-12 Instructions and Data

Figure 3—9: Data and Bss Segment Layout (Il)

G\

data
segment
bss
segment
bss
segment
_—
Last Page of First Page of \5
Data Segment Bss Segment

When part or all of the bss segment is contained in the last page of a data segment,
that portion of the data page must be initialized to zero in the corresponding raw
data area of the object file.

The division of initialized and uninitialized data by size may split writable data
into "small" (. sdat a, . sbss) and "large" (. dat a, . bss) sections. It may be
possible to exploit this division by grouping frequently used data together in a
section. This strategy may enhance performance by reducing page faults. The size
division may also allow post-link tools, such as omand spi ke, to generate more
efficient code sequences for accessing data items.

The default maximum value for an item allocated in a "small" section is eight bytes.
Some compilers accept a - Goption with a parameter to specify the maximum size
of a "small" data item. However, the default compilers on Tru64 UNIX do not.

When speaking of item size, note that an aggregate data item is considered as a
whole. For example, a string of ten characters has a size of ten bytes.

3.3.7 Permissions/Protections

When a process image is created for a program, loadable segments are assigned
access permissions. These are determined by the file’s MAGIC number and the
segment type.

Table 3—1: Segment Access Permissions

Image Segment Access Permissions
OVAG C text, data, bss Read, Write, Execute
NMAG C text Read, Execute

NMAG C data Read, Write

NMAG C bss Read, Write, Execute
ZNMAG C text Read, Execute

ZNAG C data Read, Write

ZNAG C bss Read, Write, Execute

Instructions and Data 3-13

3.3.8 Exception Handling Data

3-14

Exception handling is provided on the system to cope with unusual conditions. The
object file contains two sections for storing exception-handling data structures. The
declaration of these structures is shown in Section 3.2.

The object file sections . xdat a and . pdat a work together to provide
exception-handling support. The . xdat a section contains run-time procedure
descriptors, GP range information, and user-specified exception data. The . pdat a
section contains code range descriptors. Exception information is produced for

all pre-link object files. The linker produces exception information for dynamic
executables and shared libraries because they will potentially be utilized in
conjunction with other dynamic executables or shared libraries that rely on
exception handling. The linker also produces exception information for static
executables that reference f pdat a_si ze, a linker-defined symbol which
represents the number of entries in the . pdat a section.

A code range descriptor associates a contiguous sequence of addresses with a
run-time procedure descriptor. The . pdat a code range descriptors are ordered by
run-time address. The ranges never overlap. The last . pdat a entry is an end
marker. It may be followed by padding.

The code range descriptor points into both the text segment and the run-time
procedure descriptors, as shown in Figure 3-10. The relationship between code
range descriptors and run-time procedure descriptors can be a many-to-one
relationship. Also note that a code range descriptor may not have an associated
run-time procedure descriptor.

Instructions and Data

Figure 3—10: Exception-Handling Data Structures

Run-time Procedure
Descriptors (.xdata)

Code Range
Descriptors (.pdata)

begin_address

rpd_offset

begin_address
rpd_offset

begin_address
rpd_offset

Text

begin_address
rpd_offset

GP Range
Information (.xdata)

GPINFG_MAGIC
begin_address

gize
gp_offset

begin_address GF wvalue for first text range

size

gP—C'_ffSEt [T—————= GP wvalue for second text range

GFINFO_LAST

The virtual address space containing the text section of the object file is portioned
into code ranges. Each code range descriptor has only one address, which indicates
the beginning of the range. The range is implicitly ended just prior to the beginning
address of the subsequent range. The final code range descriptor serves to end the
range begun by the next-to-last descriptor, not to start a new range.

The GP range information can be accessed via the special symbol _gpi nf o (see
Section 2.3.7). It is an array of signed 64 bit integers. If the first entry is not

GPl NFO_MAG Cthe GP range information should be ignored. The end of GP range
information is identified by the constant GPI NFO_LAST. (These constants can be
found in /usr/include/excpt.h.) Each range of instructions with a unique GP value
is represented by a set of three entries as shown in Figure 3-10.

begi n_addr ess The address of the first instruction in the GP range stored
as an offset from & ftext.

si ze Size in bytes of the GP range.

Instructions and Data 3-15

gp_of f set The GP value used for the GP range stored as an offset
from & fdat a.

The Programmer’s Guide and the Calling Standard for Alpha Systems provide
detailed explanations of the exception-handling mechanisms supported by Tru64
UNIX. Related reference pages such as pdsc(4) and excepti on_i nt r o(3) are also
available for quick reference.

The data structures described in this section provide sufficient information for
general exception handling support. Language-specific exception handling, such
as C++’s try/catch mechanism, layers additional information on top of these basic
structures. An example illustrating the symbol table representation of C++
exception information can be found in Section 17.2.6.

3.3.9 Thread Local Storage (TLS) Data

3-16

Threads are available on Tru64 UNIX as a way to increase processor utilization
and overall application performance. Thread Local Storage (TLS) provides a
way for an application writer to declare data that has multiple instances, one
per thread. The object file has specific structures designed to store and manage
TLS. These structures and the impact of TLS on the object file and symbol table
are described here. For general information about threads programming, see the
Guide to DECthreads.

Three object file sections are devoted to TLS data: . t| sdat a, . t| sbss, and
.tlIsinit. The TLS region consists of the . t| sdat a and . t | sbss sections.
The . t1 si ni t section, which may be mapped with the object file’s text or data
segments, contains initialization information for . t | sdat a. Objects containing
TLS data are distinguished by the presence of these sections.

Structures outside the object file are used to reference TLS data. The Thread
Environment Block (TEB) is an architected structure provided by system libraries.
One of the fields in the TEB is the address of the Thread Specific Data (TSD) array,
which contains pointers into the TLS region. Each object containing TLS will be
allocated one or more TSD entries. In each thread, the TSD entries will contain the
address of the start of a region of that thread’s TLS area.

Instructions and Data

3.3.10

Figure 3—11: Thread Local Storage Data Structures

TER
T3D
T30l t/l: o TLZ Region
GOT/ lita
nj:tls

Because the TLS region is allocated dynamically and is unique per-thread, no
address information can be recorded in the object file. All other attributes of the
TLS region can be determined at link time and are recorded in the object file in the
TLS data and TLS bss section headers.

The TLS data and bss sections occupy no space in the object file and do not have
associated section relocation information.

The TLS INIT section contains the data which will be used to initialize each
thread’s instance of the TLS data section at run time. The TLS INIT section can
contain relocation information. Only R_REFQUAD and R_REFLONG relocations are
allowed, and the relocations must reference nonTLS symbols or sections.

The TLS region for a shared object consists of the initialized and zero-initialized
TLS data defined by that object. The TLS region is composed of two sections: the
TLS data section containing initialized TLS data (. t | sdat a) and the TLS bss
section (. t | sbss) containing zero-initialized TLS data.

If a shared object contains TLS data, an entry in the GOT (for the special symbol
__tlsoffset)contains the offset into the TSD array to the array element that
points to the TLS area. If this is a multiple-GOT shared object, the entry may be
duplicated in each GOT. The value of the GOT entry is filled in at load time when
the TLS initialization routine calls the loader with the allocated TSD key value.

If a static executable contains TLS data, the address of __t | sof f set will normally
be accessed through a . | i t a entry that contains the value 2048, the offset to
TSD key 256.

Special symbol types and relocation types are specific to TLS. See Chapter 6 and
Chapter 4 for more information.

User Text and User Data Sections

The linker contains provisions for creating and relocating user-defined object file
sections. This feature was implemented for a specific customer at the customer’s
request. It is very rarely used and minimally supported. This section is designed to
provide only a general overview.

Instructions and Data 3-17

Any number of user sections can be added to an object file. See Section 2.3.2 for the
placement of the user sections in the various object file layouts.

The section header for a user section has the same semantics as those used for
other object file sections. The section flags are set to STYP_REG. The user creating
the section chooses the section name. User text sections are distinguished from
user data sections by their addresses. User text sections have text segment
addresses, and user data sections have data segment addresses.

For user sections, the linker synthesizes special symbols for the start and end
addresses of each section. These symbols take the form:

__fuser_secti on_SECTI ON_NAVE
__euser_secti on_SECTI ON_NAVE

where SECTI ON_NAME is the name in the section header. These linker-defined
symbols are always strong symbols.

The linker also combines like-named user sections in multiple input files to form a
single section in the output file.

User sections can only have external relocation records.

Namespace issues can arise due to the user’s naming of these sections. It is
the responsibility of the user to protect against and recognize errors caused by
namespace issues.

3.4 Language-Specific Instructions and Data Features

3-18

Procedures with alternate entry points require multiple run-time procedure
descriptors. See the Calling Standard for Alpha Systems for details.

C++ has exception handling facilities in addition to those discussed in this chapter.

C++ global constructors and destructors are implemented as initialization and
termination routines invoked by driver code stored in the . init and . fini
sections.

Instructions and Data

A

Object Relocation

The purpose of relocation is to identify and update storage locations that need to be
adjusted when an executable image is created from input object files at link time.
Relocation information enables the linker to patch addresses where necessary by
providing the location of those addresses and indicating the type of adjustments to
be performed. Relocation entries in the section relocation information are created
by the assembler, compiler, or other object producer, and the address adjustments
are performed by the linker.

The linker performs relocation fixups after determining the linked object’s memory
layout and selecting starting addresses for its segments. During partial links,
relocation information is updated and preserved for subsequent links. Relocation
updates for partial links include converting external relocation entries to local
relocation entries and retargeting relocation entries to new section addresses.

See Section 4.3.2.1 for details.

Relocation information contained in an object file can have four distinct
representations:

¢ Relocation entries identified in section headers. These are the relocation
entries referred to in this document as "normal" or "actual".

e Compact relocation records, produced by the linker and consumed by om spi ke,
and profiling tools. Compact relocations are stored in the . conrment section.

e Linkerdef entries which are produced by the linker to identify all uses of
linker-defined symbols. Linkerdef entries are stored in the . conmrent section.

Version Note

Linkerdef entries are supported in Tru64 UNIX V5.1 and greater for
object format V3.13 and greater.

¢ Dynamic relocations, which are present only in shared objects. Dynamic
relocation may be performed for shared objects at load time.

The first form of relocation information is discussed in this chapter. The second
and third forms are used by post-link object modification tools. They are discussed
in Chapter 5. The fourth form is covered in Chapter 14. Figure 4-1 summarizes
which kinds of objects contain which kinds of relocation information.

Object Relocation 4-1

Figure 4-1

Objects
with
actual

relocation

records

: Kinds of Relocations

O,

a,
o/

Linker

actual
relocations
compact
relocations
compact &

dynamic

I relocations

Actual relocation entries are organized by raw data section. Not all object file
sections necessarily have relocation entries associated with them. For example,
bss sections do not have relocation entries because they do not have raw data to
relocate. Section headers for sections with relocation entries contain pointers to
the appropriate section relocation information, as shown in Figure 4-2.

Figure 4-2: Section Relocation Information in an Object File

File Header

a.out Header

Section Header

Section Header 2

Section Header N

1

Raw Data Section 1!
Raw Data Section 2[*

Section Relocation 1

Section Relocation 2|*

Symbol Table

Comment Section

Note that the ordering of section headers does not necessarily correspond to the
ordering of raw data and section relocation information. Consumers should rely on

the section header to access this information.

4.1 New or Changed Object Relocation Features

Tru64 UNIX V5.1B introduces the following new or changed features:

Section 4.3.4.8.

4-2 Object Relocation

Use of R _GPDI SP_GP_TAI LCALL flag to disable a linker optimization. See

4.2 Structures, Fields, and Values for Object Relocation

4.2.1 Relocation Entry (rel oc. h)

struct reloc {

cof f _addr r_vaddr;
cof f _uint r_symdx;
cof f _uint r_type : 8;
cof f _uint r_extern: 1;
cof f _uint r_offset:6;
cof f _uint r_reserved: 11;
cof f _uint r_size:6;

}
SIZE - 16 bytes, ALIGNMENT - 8 bytes

Relocation Entry Fields

r _vaddr Virtual address of an item to be relocated.

If the s_nr el oc field in the section header overflows,
this field contains the number of relocation entries for the
section. This possibility applies only to the first entry

in a section’s relocation information. See Section 4.2.2
for more information.

r _symmdx For an external relocation entry, r _symadx is an index into
external symbols. For a local relocation entry, r _symadx is
the number of the section containing the symbol. Table 4-1
lists the section numbering.

For entries of type R_LI TUSE, this field contains a subtype.
See Table 4-3.

r_type Relocation type code. Table 4-2 lists all possible values.

r_extern Set to 1 for an external relocation entry. Set to 0 for a
local relocation entry.

r_offset For an entry of type R OP_STORE, r _of f set is the bit
offset of a field within a quadword. For other relocation
types, the field is unused and must be zero.

r reserved Must be zero.

r_size For an entry of type R_OP_STORE, r _si ze is the bit size
of a field. For R_| MVED_* entries, it is a subtype. See
Table 4-4. For other relocation types, the field is unused
and must be zero.

Table 4—1: Section Numbers for Local Relocation Entries

Symbol Value Description
R_SN_NULL 0 no section
R_SN_TEXT 1 .text section
R_SN_RDATA 2 . rdat a section
R_SN_DATA 3 . dat a section
R_SN_SDATA 4 . sdat a section
R_SN_SBSS 5 . sbss section

Object Relocation 4-3

Table 4-1: Section Numbers for Local Relocation Entries (cont.)

Symbol Value Description

R _SN_BSS 6 . bss section

RSN INT 7 .init section

R SN LIT8 8 .11t8 section

R SN LI T4 9 .1it4 section
R_SN_XDATA 10 . Xdat a section
R_SN_PDATA 11 . pdat a section

R SN FI NI 12 .fini section

R SN LITA 13 .lita section

R _SN_ABS 14 for R_OP_xxxX constants
R_SN_RCONST 15 . rconst section

R SN _TLSDATA 16 .tlsdat a section

R SN TLSBSS 17 .tlsbss section
RSN TLSINIT 18 .tlsinit section
R_SN_GOT 20 (V5.1 -). got section

Table 4-2: Relocation Types

Symbol Value Description
R_ABS 0x0 Relocation already performed
R_REFLONG 0x1 A 32-bit reference to symbol’s virtual address
R_REFQUAD 0x2 A 64-bit reference to symbol’s virtual address
R_GPREL32 0x3 A 32-bit displacement from the global pointer
to a symbol’s virtual address
R_LI TERAL 0x4 A reference to a literal in the literal address pool
as an offset from the global pointer
R LI TUSE! 0x5 An instance of a literal address previously
loaded into a register
R_GPDI SP 0x6 An | da/ | dah instruction pair that is used to initialize
a procedure’s global-pointer register
R_BRADDR 0x7 A 21-bit branch reference to the symbol’s virtual address
R_H NT 0x8 A 14-bit j sr hint reference to symbol’s virtual address
R_SREL16 0x9 A 16-bit self-relative reference to symbol’s virtual address
R_SREL32 Oxa A 32-bit self-relative reference to symbol’s virtual address
R_SREL64 0xb A 64-bit self-relative reference to symbol’s virtual address
R _OP_PUSH Oxc A 64-bit virtual address to push on the relocation
expression stack
R_OP_STORE Oxd An address to store the value popped from the
relocation expression stack
R_OP_PSUB Oxe A symbol’s virtual address to subtract from value at
the top of the relocation expression stack
R_OP_PRSHI FT 0xf The number of bit positions to shift the value at the

top of the relocation expression stack

4-4 Object Relocation

Table 4-2: Relocation Types (cont.)

Symbol Value Description

R_GPVALUE 0x10 A new GP value to be used for the address range starting
with the address specified by the r _vaddr field

R_GPRELHI GH 0x11 The most significant 16 bits of a 32-bit displacement from
the global pointer to a symbol’s virtual address

R_GPRELLOW 0x12 The least significant 16 bits of a 32-bit displacement from
the global pointer to a symbol’s virtual address

R_| MVED? 0x13 An instruction sequence that calculates an address

R_TLS_LI TERAL 0x14 The instruction that loads the TLS key

R_TLS HI GH 0x15 The most significant 16 bits of a 32-bit displacement from
the TLS region pointer to a symbol’s virtual address

R TLS_LOW 0x16 The least significant 16 bits of a 32-bit displacement from
the TLS region pointer to a symbol’s virtual address

Table Notes

1. Ther_symdx field for the relocation type R LI TUSE is a subtype. The valid
entries for this field and their meanings are summarized in Table 4-3.

2. Ther _si ze field for the relocation type R_| MVED is a subtype. The valid
entries for this field and their meanings are summarized in Table 4—4.

Table 4-3: Literal Usage Types

Symbol Value Description

R_LU BASE 1 The base register of a memory format instruction
(except | dah) contains a literal address

R LU BYTOFF 2 Should not be used

R_LU JSR 3 The target register of a j sr instruction contains

a literal address

Table 4-4: Immediate Relocation Types

Symbol Value Description

R | MVED GP_16 1 16-bit displacement from GP value

R | MMED GP_HI 32 2 Most significant 16 bits of 32-bit displace-
ment from GP value

R | MVED_SCN HI 32 3 Most significant 16 bits of 32-bit displacement
from section start

R | MVED BR HI 32 4 Most significant 16 bits of 32-bit displacement
from instruction following branch

R_I MVED_LO32 5 Least significant 16 bits of 32-bit displacement

specified by last R | MVED * HI 32

Object Relocation 4-5

Table 4-5: R GPDI SP Flags

Symbol Value Description
R _GPDI SP_NONE 0 (V5.1B -)No flag set
R _GPDI SP_GP_TAI LCALL 0x1 (V5.1B -)Target of relocation is an ldgp

instruction following a call to a procedure
with its gp_t ai | cal | flag set.

4.2.2 Section Header

The section header contains a file pointer to the section’s relocation information
and the number of entries. (See Section 2.2.3 for the declaration.) The number of
relocation entries for a section is contained in the section header field s_nr el oc. If
that field overflows, the section header flag S NRELOCS_OVFL is set and the first
relocation entry’s r _vaddr field stores the actual number of relocation entries for
the section. That relocation entry has a type of R_ABS and all other fields are zero,
causing it to be ignored during relocation.

4.3 Object Relocations Usage

4.3.1 Relocatable Objects

An object is relocatable if it contains enough relocation information for the linker to
successfully relocate it. Relocatable objects can be produced by compiling without
linking or by partial linking.

Compilers and assemblers always produce relocatable objects. By default,

the relocatable object files produced are passed to the linker to produce a
non-relocatable executable object. Most compilers recognize a - ¢ option. The - ¢
option suppresses the link operation and writes the object file in its relocatable
form. For example, the following command produces a non-executable OVAG C
file named pgm o.

$ cc -c pgmec

By means of partial linking, the linker can also produce a relocatable object.

By default, the linker attempts to produce an executable ZMAG C file for which
all relocation entries have been processed and removed. To preserve relocation
information, the linker’s - r switch should be selected. For example, the following
command produces a non-executable OVAG C file named a. out .

$1d-r pgmo

Selection of the - r switch has other effects: common storage class symbol allocation
is deferred until final link and undefined symbol error messages are suppressed.

Relocatable objects have various uses. The most obvious is as input to a subsequent
partial or final link operation. All objects input to the linker are relocatable objects,
regardless of how they are produced. Multiple relocatable objects can be combined
during a final link to produce an executable object. The typical example of this
process is when several separately compiled modules are created at different times
and later linked together to produce the final executable program. For example,
the following steps produce an executable ZMAGQ C file named a. out .

$ cc -c partl.c

$ cc -c part2.c

$ cc -c part3.c
$ cc partl.o part2.0 part3.o

Relocatable objects are also used for archives. Although files of any type may be
archived, one important use of archives is for user or system libraries. An example
is the system library | i bc. a, which is linked with many C programs. Objects in

4-6 Object Relocation

archive libraries must be relocatable to be linked with other object files to make
executable programs.

Relocatable objects may be used as loadable device drivers, which are object files
that are dynamically added to a running kernel. See Reference Pages, Section
9r, Device Drivers (Volume 1) and Reference Pages, Section 9s, 9u, and 9v, Device
Drivers (Volume 2) for more information.

Relocatable objects can also be used by the boot linker, which builds the kernel from
object files at boot time. Information is available in the System Administration
guide.

Some profiling tools require relocatable objects as input because they rebuild the
object and require the capability of rearranging raw data. However, on Tru64
UNIX, these tools rely on compact relocations, which are an alternate form of
relocation information. Compact relocations are described in Section 5.3.1.

4.3.2 Relocation Processing

This section describes the generic process of relocating object files from a high-level
viewpoint. It does not include details of address calculations, nor does it take into
account the substantial variations in the contents of a relocation entry’s fields.
For specifics, see Section 4.3.4.

Relocation involves tracking and updating references as the referenced items move
in memory. At a minimum, one relocation entry is required for each reference
made to an item whose address may potentially change. This address, pointed to
by the r el oc structure field r _vaddr, is the target address of the relocation. This
address is adjusted when relocation records are preserved at link time. The target
address is located in one of the raw data sections of the object file.

The target address points to another item in the raw data. This item can be a data
item, procedure, or any program element that will potentially be mapped to a new
memory location when the linker builds the executable object.

Figure 4-3: Relocation Entry

Raw Data
Eelocation Entry
r_vaddr —y———#| [target address]
r_symndz —
F_extern

—* [target item]

may move

Note that a many-to-one relationship may exist between relocation entries and
target items. A target item may be addressed multiple times in an object file’s raw

Object Relocation 4-7

data, and a single target address reference may be described by multiple relocation
entries.

Taken together, the r _symmdx field and r _ext er n bit track the position of
the target item. If it is moved to a new location, the target address is updated
accordingly.

The value of the relocation is the distance that the tracked item will move in
memory.

4.3.2.1 Local and External Entries

Relocation entries are used for several purposes:

e Address references to unresolved symbols that will be imported from other
objects.

e References to addresses within an object that may change when the object is
linked at a different base address or linked with other object files.

e Identification of address references that may be optimized at link time.

Relocation entries may be local or external. Local relocation entries are used for
references to addresses within an object. External relocation entries are used for
references to any external symbols. In particular, unresolved symbol references
can only be represented by external relocation entries.

The r _ext er n flag is set in external relocation entries. This flag determines the
interpretation of the r _symmdx field. For external entries, this field provides the
external symbol table index of the referenced symbol.

Figure 4-4 shows a sample external relocation entry.

Figure 4—-4: External Relocation Entry

Relocation Entry External Symbols
r_vaddr

r_symndx
- _I—) Lr2CKed sy

r_extern=1

Raw Data

h 4

arget addr

For an external entry, the value for relocation is the run-time address of the
referenced external symbol. In cases where the symbol is undefined in an input
object, it must first be resolved. Figure 4-5 depicts this process.

4-8 Object Relocation

Figure 4-5: Processing an External Relocation Entry

Declaring Object File Defining Object File Executable Object File

text section text section text section raw
rawy olata: rawy data: data combines all
call myproc? | myproc: do a.b.c input objects' text:
call myproc -
HHTHTHTHTH f
relu:u:atiogjntry: A‘ myproc: do a.b.c
r_waddr
r_symndx external symbol
wmbo
table entry: HI
T | | e s
external syr_”nbul ralacaiaiic sddn table entry:
tahle iantr\f.u st=stProc L value=
sc:=:l:E:IUunEd—EiinEd sc=scGlobal refa.:::‘&_r_.?d&a"a’f
B Ncma:vj

Linker Swmbol table
A (matches declaration S:Sgennottir?e
with definition e oniable,

A local relocation entry has its r _ext er n flag cleared and tracks references by
section.

Figure 4-6 shows a sample local entry.

Figure 4-6: Local Relocation Entry

Relocation Entry Section k Header

r_vaddr |)
r_symndx
s_vaddr
r_extern=0
Raw Data Section k Data
fracked sy

M f2rgel Icddr

For a local entry, the value for relocation is the difference between a section’s

address in the input object and the address of that section’s data after linking.
The section is identified by a relocation section type in r _symdx. Figure 4-7
depicts this situation.

Object Relocation

4-9

Figure 4-7: Processing a Local Relocation Entry

Input Object

Input Obiject

Input Obiject

Cutput Object

SEEE
pi i i YT

\

Linker

concatenates and
relocates obiject file
gections

To complete relocation for all entries, the base address for the final process image
is required. The linker can then use that address to patch all relocatable entries.

4.3.2.2 Relocation Entry Ordering
The ordering of relocation entries is sometimes significant. The diagram below

shows the optional relocation entry count and grouping of relocation entries
according to GP range.

Figure 4-8: Relocation Entry Ordering Requirements

section KEelocations
R _AES Optional relocation owerflow count
™. Includes all GP-relative relocations
/ for first GP range
R_GPVRLUE

\\. Includes all GP-relative relocations
/ for second GP range

If a section requires an optional relocation entry overflow count, it must be in
the first relocation entry.

Relocation processing tools require GP-relative relocations to be grouped by GP
range. R_GPVALUE entries will effectively separate the groups of GP-relative
relocation entries for each GP range. For a list of GP-relative relocation types,
see Section 4.3.3.2.

4-10 Object Relocation

Some relocation types can only be used when paired with other relocation types.
These relocation groupings are:

¢ R GPRELHI GH, R_GPRELLOW

e R TLSH GH, R TLSLOW

e R LITERAL, R LI TUSE

e R OP_PUSH, R OP_PSUB, R OP_PRSHI FT, R OP_STORE

An R_GPRELHI GHentry must be followed by one or more R_GPRELL OMNentries.
An R _TLSHI GH entry must be followed by one or more R_TLSLOWentries.

An R LI TERAL entry may be followed by zero or more R_LI TUSE entries.

An R_OP_PUSH entry must be followed by exactly one R_OP_STORE entry. Zero
or more R_OP_PSUB and R_OP_PRSHI FT entries may be located between the
R_OP_PUSH and R_OP_STORE entries.

4.3.2.3 Shared Object Transformation

Part of the linker’s preparation of loading information for shared objects is to
create dynamic relocation entries from some of the actual relocation entries.

The linker must determine which relocation entries need to be converted to
dynamic relocation entries. Data references (R_REFQUAD and R_REFLONG
relocation types) must be represented in the . r el . dyn section if they are not in
the . 1 it a section. The . | i t a section is an exception because its contents are
mapped directly into the GOT. All other R_REFQUAD or R_REFLONG entries have an
associated dynamic relocation entry in the shared object file.

Dynamic relocation entries are not permitted for text addresses. The text segment
is not mapped with write permission, so text relocation fixups cannot be performed
by the dynamic loader.

4.3.3 Kinds of Relocations

Relocations types can be grouped into the following categories:
e Direct Relocations

¢ GP-relative Relocations

e Self-relative Relocations

e Literal Relocations

¢ Relocations Stack Expressions

¢ Immediate Relocations

e TLS Relocations

The categories often overlap.

4.3.3.1 Direct Relocations

Direct relocations are independent entries; all of the information necessary to
process them is self-contained. The relocation target contains either the address
of a relocatable symbol or an offset from that address. They are used for simple
address adjustments; addresses in the literal address pool (. | i t a section), for
example, will have associated direct relocation entries.

R_REFQUAD and R_REFLONG are direct relocation types. R_REFQUAD indicates a
64-bit address and thus is normally used on Alpha systems. R_REFLONGindicates

Object Relocation 4-11

a 32-bit address and most often occurs when the xtaso environment is in effect.
These types of relocations are processed in the manner described in Section 4.3.2.

The following special requirements exist for direct relocation entries for the . [it a
section:
e Only entries of type R_REFQUAD or R_REFLONG are permitted.

e R REFLONGentries pertain to the bottom 4 bytes of a . | i t a entry. The size of
the entry is unchanged, but an error is generated if the result overflows 4 bytes.

e All external entries must correspond to symbols whose value is zero prior to
relocation.

4.3.3.2 GP-Relative Relocations

This class of relocations requires use of the GP value as a factor in the calculation.
Note that the literal relocations in Section 4.3.3.4 and Section 4.3.3.7 also fit this
category.

The R_GPREL32, R_GPRELHI GH, R_GPRELLOW and R_GPDI SP relocation types are
GP-relative. They typically point to instructions that calculate or load addresses
using a GP value. The R_GPRELHI GH and R_GPRELLOWrelocation types must be
used together. The R_GPDI SP relocation type is used for instruction pairs that
load the GP value.

A special-purpose GP-relative relocation entry specifies that a new GP range is

in effect. The relocation type for this entry is R GPVALUE. The linker inserts
R_GPVALUE entries at object module boundaries during a partial link (I d - r) when
the . 1 i t a section it is building would otherwise overflow. Entries of this type
appear in the . t ext section or the . r dat a section. These entries are local entries
because they are not tied to any symbol.

4.3.3.3 Self-Relative (PC-Relative) Relocations

This class of relocations require adjustments based on the current position in the
text or data. Self-relative relocations are also referred to as PC-relative relocations.

The R_SREL16, R_SREL32, and R_SREL64 relocation types apply to 16, 32, and
64 bit target addresses, respectively.

Two more self-relative relocation types are R_ BRADDR and R_HI NT. R_BRADDR is
used to identify branching instructions whose targets are known at link time.
R_HI NT is used to adjust the branch-prediction hint bits in jump instructions.

4.3.3.4 Literal Relocations

4-12

This category of relocations encompasses both literal relocations (type R_LI TERAL)
and literal-usage relocations (type R_LI TUSE), which work together to describe
text references.

A literal relocation (type R_LI TERAL) occurs on a load of an address from the
. I'i ta section. Any associated R_L| TUSE entries always directly follow the
R LI TERAL entry.

The literal-usage entries are used for linker optimizations. Processing for these
relocation entries is optional. The linker and other tools may ignore these
relocation entries with no risk of producing an improperly relocated object file.

The advantage of literal-usage entries is that they enable link-time memory-access
optimizations. These relocation entries identify instructions which use a
previously loaded literal. With this knowledge, the linker is able to determine that
certain instructions are unnecessary or can be altered to improve performance.

Object Relocation

Optimization is performed only during final link and with an optimization level
setting of at least - OL.

4.3.3.5 Relocation Stack Expressions

Relocation stack expressions constitute a sequence of relocation entries that must
be evaluated as a group. The purpose of stack expressions is to provide a way to
represent complex relationships between relocatable addresses and store results
with bit field granularity. They are currently used only for exception-handling
sections.

An additional advantage of stack expressions is that they provide the capability to
describe a new relocation type without requiring tool support or code modification
to recognize and execute a new r _t ype. However, the greater flexibility of
relocations expressions is offset by the fact that multiple entries are necessary to
describe a single fix-up.

Special relocation types are used to build relocation expressions. The types are:
e R OP_PUSH

e R OP STORE

e R OP PSUB

e R OP PRSH FT

An R_OP_PUSH entry marks the beginning of a sequence of relocation stack
expressions and an R_OP_STORE marks the end. The types of any intervening
relocation entries should be either R_OP_PRSHI FT to shift the top of stack value
right or R_OP_PSUB to subtract an address from the top of stack value.

An R_OP_STORE entry pops the value from the top of the expression stack and
stores selected bits into a field in a word in memory. The r _of f set and r _si ze
fields of a relocation entry are used to specify the target bit field.

It is an error to cause stack underflow or to have values left on the stack when
section relocation is complete.

Currently, these relocation types are used exclusively for relocating the
exception-handling data in . xdat a and . pdat a. The reason this relocation is
performed using the stack expression types is the need to shift the address by two
bits. Bit field granularity cannot be specified with other relocation types unless it
is implicit in the relocation type.

4.3.3.6 Immediate Relocations

Immediate relocations are used to describe the linker’s optimization of literal
pool references. If optimization options are in effect, the linker will replace

R LI TERAL and R_LI TUSE entries with R_| MVED entries wherever possible. This
information is then used to generate compact relocations that sufficiently describe
all relocatable storage locations.

Immediate relocations can describe instruction sequences that calculate addresses
by adding either a 16-bit or 32-bit immediate displacement to a base address.

R _| MVED entries always point to memory-access instructions. The displacement is
obtained from the instruction.

There are five types of immediate relocations. Subcodes in the r _si ze field
identify them. The types are:

e RIMED GP 16
e RIMED GP H 32
e R_IMED SCN Hi 32

Object Relocation 4-13

e R_IMED BR H 32
e R.IMED LCB2

R | MVMED GP_16 and R_| MMED _GP_HI 32 entries identify address calculations
performed by adding an offset to the global pointer. An R_| MVED_SCN_HI 32 entry
is paired with an R_| MVED_L(B2 entry to identify a pair of instructions which add
a 32 bit displacement to the starting address of a section. An R_| MVED_BR HI 32
entry is paired with an R_| MVED_L(OB2 entry to identify a pair of instructions
which add a 32 bit displacement to the address of an instruction following a branch.

4.3.3.7 TLS Relocations

The types R_TLS LI TERAL, R TLS LOW and R _TLS HI GH are TLS-specific
relocation types.

R TLS LI TERAL is very similar to R_LI TERAL, except it relates to a literal in the
TLS data storage area, the TSD array. R TLS LOWand R_TLS HI GH entries are
used as a pair to identify instructions which load a TLS data address by adding

a 32 bit offset to the TLS region pointer. These relocation types are identical to
the R_GPRELHI GHand R_GPRELLOWrelocation types except for the fact that the
target instructions for the TLS relocation entries calculate addresses using the TLS
region pointer instead of the GP value.

4.3.4 Relocation Entry Types

The type of a relocation entry (stored in the r _t ype field) describes the action the
linker must perform. This section discusses the purposes of the different types and
provides examples of their use.

Relocation entry fields are interpreted differently based on relocation type. There
also may be constraints on fields’ contents depending on the type. Some relocation
entries are context sensitive and must be preceded or followed by a particular entry.
Some are size specific and the computed address must fall within a specified range.
Moreover, some types are constrained to be local entries only or are associated with
particular object file sections.

To describe the calculations performed by the linker, the following notation is used
in the detailed descriptions for each relocation type:

*_disp The displacement field of whatever instruction is indicated.

GP Current GP value; begins as the contents of
AQUTHDR.gp_val ue for the final object.

new_scn_addr The address of the tracked section of a local relocation
entry, as calculated by the linker.

ol d_GP GP value in the input object; begins as AGUTHDR.gp_val ue
for the input object.

ol d_scn_addr The contents of s_vaddr in the section header of the input
object file for the tracked section of a local relocation entry.

[r_vaddr] The contents at the address r _vaddr ; to be distinguished
from the address itself.

SEXT The constant immediately following is sign-extended.

4-14 Object Relocation

st ack
thi s_new addr

this_new scn_addr

this _old scn_addr

t os

result

4341 R _ABS

Fields

r_vaddr

r _symdx
r_extern
r_offset
r _size

Operation
N/A

Restrictions

N/A

Description

The relocation expression stack.
Where r _vaddr will be after relocation .

Where the section containing r _vaddr will be after
relocation, as calculated by the linker.

The contents of s_vaddr in the section header of the input
object file for the section containing r _vaddr.

Top of relocation expression stack.

The result of the relocation, which is written back into
the relocated r _vaddr in the object file that the linker is
producing.

Number of relocation entries if s_nr el oc section header
field has overflowed. This number includes itself in the
count. Otherwise, unused.

Unused.
Unused.
Unused.

Unused.

This relocation entry is used to indicate a relocation has already been performed or
should not be performed. No calculation is associated with such an entry.

The first entry in a relocation section is of type R_ABS if it contains the number
of relocation entries in that section (which is the case when the section header
field s_nr el oc overflows). This type can also be used to pad relocation data or to
delete relocation entries in place. In-place deletions of relocation entries are likely
to be performed during a partial link.

Example

An object file produced during a partial link has 99993 relocations associated with
its . t ext section. A listing of the entries begins with an R_ABS because the total
number overflows s_nr el oc:

Vaddr

Symmdx Type O f Size Extern Nane

Object Relocation 4-15

.text:

0x0000000000018699 0 ABS l ocal <null>

4.3.4.2 R_REFLONG

Fields
r _vaddr Points to target address.
r _symdx External symbol index if r _ext er n is 1; section number if
r_externisO.
r_extern Either 0 or 1.
r_of fset Unused.
r_size Unused.
Operation
if (r_extern == 0)
result = (new_scn_addr - old_scn_addr) + (int)[r_vaddr]
el se

result = EXTR asymvalue + (int)[r_vaddr]

Restrictions

Result after relocation must not overflow 32 bits.

Description

A relocation entry of this type describes a simple address adjustment to the 32-bit
value pointed to by r _vaddr. R_REFLONG entries are most likely to occur when
the compilation option - xt aso_short is specified.

The relocated value may be unaligned.

Example 1

C code fragment:

extern int i;

void *p = (void *)(& + 1);
Compile as follows:

$ cc -c -xtaso_short pgmane.c

Produces the following R_REFLONG entry:

*** RELOCATI ON | NFORMATI ON* * *
Vaddr Symmdx Type Of Size Extern Nane

. sdat a:
0x0000000000000000 0 REFLONG extern |

This relocation entry is necessary because the value of the pointer p depends on the
address of the global (common storage class) symbol i , whose address is yet to be
determined. At the location indicated by s_vaddr, the value 4 is stored, which will
be added to the resolved address of i . The "4" represents the 4 bytes to the next
integer storage location in memory after i ’s.

Example 2

From assembly code, the following declaration produces the same relocation entry
as the previous example.

4-16 Object Relocation

.long |

4.3.4.3 R_REFQUAD

Fields
r _vaddr Points to target address.
r _symdx External symbol index if r _ext er n is 1; section number if
r_externisO.
r_extern Either 0 or 1.
r_of fset Unused.
r_size Unused.
Operation
if (r_extern == 0)
result = (new_scn_addr - old_scn_addr) + (long)[r_vaddr]
el se

result = EXTR asym value + (long)[r_vaddr]

Restrictions

None.

Description

A relocation entry of this type describes a simple address adjustment to the 64-bit
value pointed to by r _vaddr. R_REFQUAD entries are most likely to occur in data
sections and almost always are used for relocation of the . | i t a section.

The relocated value may be unaligned.

Example 1

Small program:

#i ncl ude <stdio. h>

mai n() {
printf("printing!'\n");
}

Relocation entries produced for its . | i t a section:

*** RELOCATI ON | NFORMATI ON* * *
Vaddr Symmdx Type Of Size Extern Nane

dita:
0x0000000000000070 1 REFQUAD extern printf
0x0000000000000078 3 REFQUAD | ocal .data

The . | i t a section consists of two entries, and each is relocated. One entry is
external, tracking the routine name pri nt f (), and one local, tracking the address
of the string literal in the . dat a section.

Example 2
A R_REFQUAD entry can also be produced by an assembly language statement
such as:

.globl y

.data
b: .quad y

Object Relocation 4-17

Relocation entry produced:

*** RELOCATI ON | NFORMATI ON* * *
Vaddr Symmdx Type Of Size Extern Nane

. dat a:
0x0000000000000000 0 REFQUAD extern y

The variable b is allocated at s_vaddr in the . dat a section and will be updated by
adding the address of y when the symbol y is resolved.

4.3.44 R _GPREL32

Fields

r _vaddr Points to a 32-bit GP-relative value.

r _symdx External symbol index if r _ext er n is 1; section number if
r_externisO.

r_extern Either 0 or 1.

r_of fset Unused.

r_size Unused.

Operation

if (r_extern == 0)

result = (new_scn_addr - old_scn_addr) + old_GP - GP +
SEXT((int)[r_vaddr]
el se
result = EXTR asymvalue - GP + SEXT((int)[r_vaddr]

Restrictions

Signed result after relocation must not overflow 32 bits.

Description

A relocation entry of this type indicates a 32-bit GP-relative value that must be
updated. If it is a local entry, this value must be biased by the GP value for the
input object file. In both cases, the current GP value is subtracted to produce
a result that is an offset from the GP.

Example 1

Local R_GPREL32 entries are produced for a many-case switch statement. For
example, consider the following C program:

mai n() {
int i;

scanf ("%", &);

switch(i) {
case 0:i++; break;
case i--; break;
case i +=2; break;
case i-=2; break;
case i +=3; break;
case i-=3; break;
case 6:i++; break;
defaul t: i=0;

~2upwnRO

4-18 Object Relocation

A compiler may implement a switch statement with a "jump table", that is a code
sequence containing labels for each case and a jump statement selecting between
them. For each case label, a relocation entry is produced:

Vaddr Symndx Type Of Size Extern Nane
.rconst:
0x00000000000000d0 1 GPREL32 | ocal .text
0x00000000000000d4 1 GPREL32 | ocal .text
0x00000000000000d8 1 GPREL32 | ocal .text
0x00000000000000dc 1 GPREL32 | ocal .text
0x00000000000000e0 1 GPREL32 | ocal .text
0x00000000000000e4 1 GPREL32 | ocal .text
0x00000000000000e8 1 GPREL32 | ocal .text
Example 2

The following assembly code sequence also produces a R_GPREL32 entry:
.globl z

.data
a: .gprel 32 z

Relocation entry produced:

*** RELOCATI ON | NFORMATI ON* * *
Vaddr Symmdx Type Of Size Extern Nane

gprel 32. 0:

. dat a:
0x0000000000000000 0 GPREL32 extern z

4.3.45 R_LI TERAL

Fields

r_vaddr Points to a load instruction in the text segment. The value
to be relocated is the memory displacement from the $gp in
the instruction.

r _symdx R SN LI TA

r_extern Must be zero; all R_LI TERAL entries are local.

r_of fset Unused.

r_size Unused.

Operation

result = (new_scn_addr - old_scn_addr) + (SEXT((short)[r_vaddr]) +
old_GP) - GP

Restrictions
The result after relocation for an R_LI TERAL entry must not overflow 16 bits. .

R _LI TERAL entries must be local and relative to the . | i t a section.

Description

A relocation entry of this type is produced when an instruction attempts to
reference values in the literal-address pool (. | i t a section). The instruction

Object Relocation 4-19

containing the reference accesses a . | i t a entry using the GP value in effect and a
signed 16-bit constant. The original address of the item has to be reconstructed
and then adjusted for the new location of the address table. The new address then
has to be reconverted into a GP displacement using the new GP value.

An R _LI TERAL entry may or may not be followed by corresponding R LI TUSE
entries. The R LI TERAL entry is required but the R_LI TUSE entries are not.

Example

R LI TERAL entries are used when an address is loaded from the literal address
pool:

I dg t12, -32664(gp)

Relocation entry produced:

*** RELOCATI ON | NFORMATI ON* * *
Vaddr Symmdx Type Of Size Extern Nane

.text:

0x0000000000000038 13 LI TERAL | ocal .lita

43.4.6 R LITUSE: R LU BASE

Fields

r_vaddr Points to memory-format instruction.

r _symdx R LU BASE

r_extern Must be zero; all R_LI TUSE entries are local.
r_of fset Unused.

r_size Unused.

Operation

Check if displacement is within 16 or 32 bits. The displacement is calculated:

new |it = [relocated literal belonging to corresponding R LI TERAL]
disp = new lit + lituse_disp - GP

Restrictions

A relocation entry of this type must follow either an R_LI TERAL or another
R _LI TUSE entry with no other types intervening.

r _vaddr must be aligned on a byte boundary.
Ignored if optimization level is not at least - OL.

Cannot remove the first load instruction unless this is the only corresponding
R LI TUSE entry.

Description

This relocation entry is informational and indicates that the base register of the
indicated instruction holds a literal address. Note that a R_LI TERAL entry,
corresponding to an | dq instruction, precedes this entry.

4-20 Object Relocation

Possible optimizations depend on the distance of the memory displacement from the
GP value. If the displacement is less than 16 bits from the GP, a single instruction
suffices to describe the location. The code sequence can be changed as shown:

I dg rx, disp(gp) R LI TERAL
Idg/stq ry, disp2(rx) R LI TUSE(R_LU_BASE)

Idg/stqg ry, disp3(gp)

The linker converts the R_LI TUSE entry to an R_| MVED_GP_16 for the transformed
instructions.

If the displacement is within 32 bits of the GP, one memory access can be saved by
replacing the first load instruction with the faster | dah instruction.

I dg rx, disp(gp) R LI TERAL
Idg/stq ry, disp2(rx) R LI TUSE(R_LU_BASE)

| dah rx, disp3(gp)
Idg/stq ry, disp4(rx)

The linker will convert the R_LI TERAL and the R_LI TUSE, respectively, to entries
of type R_| MVED_GP_HI 32 and R_| MVED_GPLOWB2.

This can currently only be done if exactly one R_LI TUSE exists for the R_LI TERAL.

Example 1

The following instructions represent a single use of an address literal:

0x100: | dg al, -32656(gp) // R LITERAL
0x104: |da al, 32(al) /1 R_LU BASE

Relocation entries produced:

*** RELOCATI ON | NFORNMATI ON* * *

Vaddr Symmdx Type Of Size Extern Nane
.text:
0x0000000000000100 13 LI TERAL | ocal lita
0x0000000000000104 1 LITUSE | ocal R LU BASE

The potential optimization indicated by this R_LU_BASE is that the two instructions
could possibly be replaced by a single | dq instruction of the form:

1dg al, <disp>(gp)
Example 2

The following instructions illustrate multiple R_LI TUSE entries following an
R LI TERAL entry:

0x130: I dg t0, -32736(gp) /1 R_LI TERAL
0x134: I dg tl, 0O(tO0) /1 R_LU_BASE
0x138: zap tl, Ox2, t1

0x13c: i nsbl v0, O0x1, vO

0x140: bi s t1, vO, t1

0x144: stq tl, 0O(tO0) /1 R_LU_BASE

Relocation entries produced are:

*** RELOCATI ON | NFORNMATI ON* * *

Vaddr Symmdx Type Of Size Extern Nane
0x0000000000000130 13 LI TERAL | ocal .lita
0x0000000000000134 1 LITUSE | ocal R LU BASE
0x0000000000000144 1 LITUSE I ocal R LU BASE

43.4.7 R_LITUSE: R LU JSR

Fields

r _vaddr Points to jump instruction (in text segment).

Object Relocation 4-21

4-22

r _symdx R LU JSR

r_extern Must be zero; all R_LI TUSE entries are local.
r_of fset Unused.

r_size Unused.

Operation

new |it = [relocated literal belonging to correponding R LI TERAL]

this_new_ addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
branch_di sp = prologue_size + new lit - this_new addr + 4
result = branch_disp / 4

Restrictions

Must follow either an R_LI TERAL or another R_LI TUSE entry with no other types
intervening.

Result after relocation must not overflow 21 bits (size of branch displacement
field in the branch instruction format).

Description

A relocation entry of this type is informational only. It informs the linker that the
indicated jump instruction is jumping to an address previously loaded out of the
literal address pool. The load instruction had an associated R_LI TERAL entry that
precedes this relocation entry.

Under the right circumstances, the linker can optimize this sequence in several
ways:

¢ The procedure prologue can be skipped if it is not needed to load a GP value
for the procedure.

e The branch can be calculated and the instruction changed to a branch
instruction.

¢ The preceding | dg can be removed.

The first two actions may be performed but not the last if other R_LI TUSE entries
correspond to the same R LI TERAL. These optimization are performed by the
linker for optimization level 1 and greater. In order to preserve preemptibility of
symbol references, this optimization can only be done for non-weak global symbols
in a static and dynamic executable. References to static or hidden symbols can be
optimized in executables or shared libraries.

Example

The following instructions illustrate the use of a literal as the target of a jump
instruction:

0x8: I dg t12, -32736(gp) // R_LITERAL
Ooxc: | da sp, -16(sp)

0x10: stq ra, O0(sp)

0x14: jsr ra, (t12) /1 R_LUJSR

Relocation entries produced:

*** RELOCATI ON | NFORNMATI ON* * *

Vaddr Symmdx Type Of Size Extern Nane
.text:
0x0000000000000008 13 LI TERAL | ocal .lita
0x0000000000000014 3 LITUSE | ocal R LU JSR

Object Relocation

The instructions identified by the R_LI TERAL and R _LU_JSR entries in this
example can be optimized. The | dq instruction can be replaced with a NOP
instruction and the j sr can be replaced with a bsr yielding:

0x1200011a8: ldg_u zero, 0(sp) /1 NOP
0x1200011ac: | da sp, -16(sp)
0x120001110: stq ra, 0(sp)

0x120001114: bsr ra, 0x1200011d8

4.3.48 R_GPDI SP

Fields

r_vaddr Points to the first of a pair of instructions: | da and | dah.
Either instruction may occur first.

r_symmdx Contains the unsigned byte offset from the instruction
indicated in r _vaddr to the other instruction used to load
the GP value.

r_extern Must be zero; all R_GPDI SP entries are local.

r_of fset Unused.

r_size R_GPDI SP_NONE or R_GPDI SP_GP_TAI LCALL (see
Table 4-5)

Operation

result = (old_GP - GP) + (this_old_scn_addr - this_new scn_addr)
+ (65536 * high_disp) + [ow. disp

The result after relocation is written back into the instruction pair.

I da_disp = result
I dah_disp = (result + 32768) / 65536

Restrictions
Must be a local relocation.
Must describe an | da/ | dah instruction pair.

Result after relocation must not overflow 32 bits.

Description

A relocation entry of this type corresponds to two instructions in the code. The
field r _vaddr points to one instruction and the address of the other is computed
by adding the value of r _symmdx to r _vaddr. This relocation entry occurs for
each instruction sequence that loads the GP value. For instance, procedure entry
points typically include instructions which load their effective GP value. They are
normally the first instructions in a procedure’s prologue.

Version Note

The R_GPDI SP_GP_TAI LCALL flag is supported on Tru64 UNIX V5.1B
and greater.

Under certain conditions, the linker can optimize the code by replacing ldgp
instructions with NOP instructions. If this relocation’s r _si ze field is set to

Object Relocation 4-23

R _GPDI SP_GP_TAI LCALL, the linker will not remove the relocation’s targetted ldgp
instruction. The R_GPDI SP_GP_TAI LCALL flag indicates that the ldgp instruction
follows a call to a procedure with it gp_t ai | cal | flag set. The linker cannot rely
on the state of the GP following the procedure call, so the 1dgp instruction must be
retained to insure the GP is properly restored.

Example
A simple example of an occurrence of the R_GPDI SP entry is the program entry
point:

mai n() {

Instructions generated:

0x0: | dah gp, 1(t12) /1 R_GPDI SP (r_vaddr)
0x4: | da gp, -32704(gp) // R_GPDISP (r_vaddr + r_symdx)

Relocation entry produced:
Vaddr Symmdx Type Of Size Extern Nane

.text:
0x0000000000000000 4 GPDI SP | oca

There are situations where a procedure is called but the R_GPDI SP entry is not
required. In this case, the gp_used field of the procedure’s descriptor will be zero,
and an R_LU_JSR optimization may cause the prologue to be skipped. See the
Calling Standard for Alpha Systems for details on when a procedure requires
calculation of a GP value.

4.3.4.9 R_BRADDR

4-24

Fields
r_vaddr Points to a branch instruction.
r_symmdx External symbol index if r _ext er n is 1; section number if
r_externisO.
r_extern Either 0 or 1.
r_of fset Unused.
r_size Unused.
Operation
if (r_extern == 0)
this_new_ addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
result = ((new_scn_addr - old_scn_addr) +
(branch_di spl acenent * 4)
+ r_vaddr + 4 - this_new addr) / 4
el se

this_new_addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
result = (EXTR asymval ue + (branch_di spl acenent * 4)
- this_new addr) / 4

Restrictions
After relocation the result should be aligned on a 4-byte boundary.

The signed result must not overflow the 21-bit branch displacement field.

Object Relocation

4.3.4.10

Description

A relocation entry of this type identifies a branch instruction in the code. The
branch displacement is treated as a longword (32-bit, or one instruction) offset. The
branch target’s virtual address is computed:

va <- PC + (4 * branch_di spl acenent)
The branch displacement must be relocated.

The R_BRADDR relocation can only be used for local or static references because the
displacement is fixed at link time. Updating it at run time would require writing
to the text segment, which is not permitted. Without the ability to update at run
time, symbol preemption for shared objects will not function.

Example

A relocation of this type is used for a call of a static procedure:
static bar(){

int q =1;

printf ("the value of q is %\n", q);

main (){
bar ();
}

Instruction generated:

Ox4c: bsr ra, 0x8(zero) /1 R_BRADDR

Relocation entry produced:

Vaddr Symmdx Type Of Size Extern Nane
.text:
0x000000000000004c 1 BRADDR | ocal .text
R HI NT
Fields
r_vaddr Points to jump-format instruction.
r_symmdx External symbol index if r _ext er n is 1; section number if
r_externisO.
r_extern Either 0 or 1.
r_of fset Unused.
r_size Unused.
Operation
if (r_extern == 0)
this_new_ addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
result = ((new_scn_addr - old_scn_addr) + (junp_disp * 4) +
r_vaddr + 4 - this_new addr) / 4
el se

this_new_addr = r_vaddr - this_old_scn_addr + this_new scn_addr
result = (EXTR asymval ue + (junp_displacenent * 4) -
this_new addr) / 4

Restrictions

Result after relocation should be aligned on a 4-byte (instruction-size) boundary.

Object Relocation 4-25

4.3.4.11

Description

Jump instructions are memory-format instructions where the 14 bits of the
displacement field serve as a hint for determining the jump target. The hint is
PC-relative and must be relocated to remain relevant. Note that the use of hints is
for optimization purposes only and takes advantage of branch-prediction logic built
into the architecture. If the hint values were not relocated, a correct executable
program would still be produced but potential performance improvements would be
lost.

A characteristic of R_HI NT entry processing is that instead of checking for overflow
of the 14-bit result after relocation, the linker truncates the result and writes it
back without issuing an error or warning.

Example

Subroutine calls often cause R_HI NT entries.

mai n() {
printf("hello\n");

Instructions generated:

0x14: I dg t12, -32752(gp) /1 R_LI TERAL
0x18: jsr ra, (t12), printf /1 R_HINT

Relocation entries produced:

Vaddr Symmdx Type Of Size Extern Nane
.text:
0x0000000000000018 3 LITUSE | ocal R LU JSR
0x0000000000000018 0 HI NT extern printf

Note that the same source line and corresponding instruction produce a second
relocation entry of type R_LI TUSE_JSR. This second entry is also informational
only. It indicates that the target register of the jump instruction contains a
previously loaded literal address.

R SREL16

Fields

>

r _vaddr Points to a 16-bit self-relative value.

r_symmdx External symbol index if r _ext er n is 1; section number if

r_externisO.

r_extern Either 0 or 1.

r_of fset Unused.

r_size Unused.

Operation

if (r_extern == 0)
this_new_ addr = r_vaddr - this_old_scn_addr + this_new scn_addr
result = (new_scn_addr - old_scn_addr) +

SEXT((short)[r_vaddr]) + r_vaddr - this_new addr
el se

this_new_addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
result = EXTR asym val ue - this_new_addr

4-26 Object Relocation

4.3.4.12

Restrictions

The result after relocation must not overflow 16 bits.

Description

A relocation entry of this type is identical to an R_SREL32 entry except for the
size of the value being adjusted.

Example

This type is currently not used by the compilation system.

R _SREL32
Fields
r_vaddr Points to a 32-bit self-relative value.
r_symmdx External symbol index if r _ext er n is 1; section number if
r_externisO.
r_extern Either 0 or 1.
r_of fset Unused.
r_size Unused.
Operation
if (r_extern == 0)
this_new_ addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
result = (new_scn_addr - old_scn_addr)
+ SEXT((int)[r_vaddr]) + r_vaddr - this_new addr
el se

this_new_addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
result = EXTR asym val ue - this_new_addr

Restrictions

The result after relocation must not overflow 32 bits.

Description

A relocation entry of this type indicates a value that describes a reference as an
offset to its own location. In other words, the target address is computed by adding
the contents of the relocation address ([r _vaddr]) to the address of the relocation
(r _vaddr). To perform this relocation, the new location of r _vaddr must be
computed and subtracted from the new target address to provide the correctly
adjusted self-relative, offset which is then written back into the raw data.

Example

The code range descriptors that are generated for each object contain a 32-bit
self-relative offset in the r pd_of f set field. See Section 3.2.1. The r pd_of f set
field contains an offset to the associated run-time procedure descriptor in the

. xdat a section. The R_SREL32 entry identifies this value.

mai n() {

printf("Printing\n");
}

Relocation entry produced:

Object Relocation 4-27

4.3.4.13

4.3.4.14

Vaddr Symmdx Type Of Size Extern Nane
. pdat a:
0x0000000000000054 10 SREL32 local .xdata
Note that this relationship between the . xdat a and . pdat a sections imposes a
restriction on the distance between the text and data segments. The run-time

procedures in the .xdata section must be within reach of a 32-bit signed offset from
the code range descriptors in .pdata.

R _SREL64
Fields
r _vaddr Points to a 64-bit self-relative value.
r_symmdx External symbol index if r _ext er n is 1; section number if
r_externisO.
r_extern Either 0 or 1.
r_of fset Unused.
r_size Unused.
Operation
if (r_extern == 0)
this_new_ addr = r_vaddr - this_old_scn_addr + this_new_scn_addr
result = (new_scn_addr - old_scn_addr) + (long)[r_vaddr]
+ r_vaddr - this_new addr
el se

this_new_addr = r_vaddr - this_old_scn_addr + this_new scn_addr
result = EXTR asym val ue - this_new_addr

Restrictions

None.

Description

A relocation entry of this type is identical to an R_SREL32 entry except for the
size of the value being adjusted.

Example

This type is currently not used by the compilation system.

R _OP_PUSH

Fields

r _vaddr 0 if r _ext er nis 1; an unsigned offset within a section if
r_externisO.

r _symdx External symbol index if r _ext er n is 1; section number if
r_externisO.

r_extern Either 0 or 1.

r_of fset Unused.

4-28 Object Relocation

4.3.4.15

r_size Unused.

Operation
if (r_extern == 0)

stack[++tos] = (new_scn_addr - ol d_scn_addr) + r_vaddr
el se

st ack[++t os] = EXTR asym val ue

Restrictions

This relocation entry must be followed by an R_OP_STORE entry, with one or more
R _OP_PSUB or R_OP_PRSHI FT entries in between.

Stack can hold a maximum of 20 entries.

Description

A relocation entry of this type causes a value to be pushed onto the relocation stack.
The value is generally the target address of the relocation, which will be adjusted
using subsequent R_OP_PSUB and R_OP_PRSHI FT relocation calculations.

Example

A code range descriptor in the . pdat a section contains a 32-bit field,

begi n_addr ess, which is the offset of the associated code range address from the
beginning of the code range descriptor table. The two low-order bits of this value
are used as flags. See Section 3.2.1. This value is calculated by subtracting two
addresses, shifting the result two bits to the right and storing the result in the most
significant 30 bits of the begi n_addr ess field. A series of four stack relocation
entries is used to represent this offset calculation.

mai n() {
foo();

}

foo(){
printf("Printing\n");

}

Relocation entries produced for use in calculating the begi n_addr ess in the
code range descriptor for f oo() :

Vaddr Symmdx Type Of Size Extern Nane
. pdat a:
0x0000000000000030 1 PUSH | ocal .text
0x0000000000000000 3 PSUB extern _fpdata
0x0000000000000002 14 PRSH FT | ocal . abs
0x0000000000000078 11 STORE 2 30 |local . pdat a

The following series of relocation entries will effectively perform the calculation:

value = (long)(((.text+0x30)-& fpdata) & Oxffffffff) >> 2;
(. pdat a+0x78) = ((.pdata+0x78) & 0x3) + (value << 2)

R OP_STORE
Fields

r_vaddr Location to store calculated bit field.
r_symadx Section index of containing section.
r_extern Must be 0.

Object Relocation 4-29

4.3.4.16

r_of fset Bit offset from r _vaddr. (Bit 0 is the least significant
bit in little-endian objects and the most significant bit in
big-endian objects. See Section 1.7.)

r_size Number of bits to store.

Operation

if (little_endian)
rshift = r_offset
el se
rshift = 64 - (r_offset + r_size)
bitfield = ((long)[r_vaddr] >> r_offset) & ((1 << r_size) - 1)
bitfield <- stack[tos--]

Restrictions

Stack cannot be empty.

Description

A relocation entry of this type causes the value currently on the top of the
relocation stack to be written into a bit field specified by the entry. The bit field is
described using a bit position and size in bits. Note that bit numbering is reversed
in a big-endian representation.

Example

An example of the R_OP_STORE entry is given in Section 4.3.4.14.

R _OP_PSUB
Fields
r_vaddr 0 if r _ext ernis 1; an unsigned offset within a section if
r_externisO.
r_symmdx External symbol index if r _ext er n is 1; section number if
r_externisO.
r_extern Either 0 or 1.
r_of fset Unused.
r_size Unused.
Operation
if (r_extern == 0)
result = (new_scn_addr - old_scn_addr) + r_vaddr
stack[tos] = stack[tos] - result
el se
result = EXTR asym val ue
stack[tos] = stack[tos] - result

Restrictions

The relocation stack cannot be empty. This entry must fall somewhere between an
R_OP_PUSH entry and an R_OP_STORE entry.

4-30 Object Relocation

4.3.4.17

Description

A relocation entry of this type causes the value at the top of the relocation
expression stack to be popped, adjusted by subtracting the address described by
r_extern and r_symdx, and pushed back on the stack.

Example

An example of the R_OP_STORE entry is given in Section 4.3.4.14.

R OP_PRSHI FT
Fields
r_vaddr 0if r _ext ernis 1; an unsigned offset within a section if
r_externisO.
r_symmdx External symbol index if r _ext er n is 1; section number if
r_externisO.
r_extern Either 0 or 1.
r_of fset Unused.
r_size Unused.
Operation
if (r_extern == 0)
result = (new_scn_addr - old_scn_addr) + r_vaddr
stack[tos] = stack[tos] >> result
el se
result = EXTR asym val ue
stack[tos] = stack[tos] >> result

Restrictions

The stack cannot be empty. So this entry must fall somewhere between an
R_OP_PUSH and an R_OP_STORE.

Description

A relocation entry of this type causes the value at the top of the relocation
expression stack to be popped, adjusted by right shifting the value by the number
of bits described by r _ext ern and r _symmadx, and pushed back on the stack.

Example

This relocation type can be used to convert a byte offset into an instruction offset.
Right shifting a byte offset by two bits will produce an instruction offset because
Alpha instructions are 4 bytes wide.

The following assembly code will result in an R_Hl NT entry for the 14-bit instruction
offset contained in the hint field of a j sr instruction. See Section 4.3.4.10 for a
description of the R_HI NT entry.

0x3c I dg t12, -32752(gp) /* &orintf */
0x40 jsr ra, (t12)

The R_HI NT entry for the instruction at 0x40 could also be accomplished with a
series of stack relocation options:

.text:

0x0000000000000000 2 PUSH extern printf

Object Relocation 4-31

4.3.4.18

4.3.4.19

0x0000000000000044 1 PSUB | ocal .text
0x0000000000000002 14 PRSH FT | ocal . abs

0x0000000000000040 1 STRE 0 14 local .text
R _GPVALUE
Fields
r _vaddr Starting virtual address for new GP value.
r_symmdx Constant that is added to the GP value in the a. out
header to obtain the new GP value.
r_extern Must be zero; all R_GPVALUE entries are local.
r_of fset Unused.
r_size Unused.
Operation

new GP = AOUTHDR. gp_val ue + r_symdx

Restrictions

This type of relocation entry cannot be external.

Description

A relocation entry of this type identifies the position in the code where a new GP
value takes effect. R_GPVALUE entries are inserted by the linker during partial
links.

Example

A linked program that references 20,000 external symbols will have at least 3 GOT
entries with 3 corresponding GP values. See Section 2.3.4. If the program has
GP-relative relocation entries in both . t ext and . r dat a sections, two R_GPVALUE
entries would be reported for each of these sections.

Vaddr Symmdx Type Of Size Extern Nane

.text:

0x0000000010084cf 0 64000 GPVALUE I ocal

0x00000000100cbh190 111984 GPVALUE I ocal
.rdat a:

0x000000001000f a00 64000 GPVALUE I ocal

0x000000001001b570 111984 GPVALUE I ocal
R GPRELH GH
Fields
r _vaddr Points to a memory format instruction (I dah).
r_symmdx External symbol index if r _ext er n is 1; section number if

r_externisO.

r_extern Either 0 or 1.
r_of fset Unused.

4-32 Object Relocation

4.3.4.20

r_size Unused.

Operation

See R_GPRELLOWrelocation type.

Restrictions
Must be followed by at least one R_GPRELLOW

Relocated result must not overflow unsigned 32-bit range.

Description

A relocation entry of this type is invalid unless it is followed by at least one
R_GPRELLOWentry. When an R_GPRELHI GH entry is encountered, no calculation is
performed. The relocation calculation is deferred until the R_GPRELLOWentry is
processed. See the R_GPRELLOWAdescription for more information.

Example

See R_GPRELLOW

R_GPRELLOW

Fields

r_vaddr Points to memory format instruction (I d* or st *).
r _symmdx Must match R_GPRELHI GH.

r_extern Must match R_GPRELHI GH.

r_of f set Unused.

r_size Unused.

Operation

low_disp = [r_vaddr]. di spl acement

hi gh_di sp = [R_GPRELHI GH >r _vaddr] . di spl acenent
di spl acement = high_disp * 65536 + | ow_disp
if (r_extern = 0)

result = displacenent + (new_scn_addr - old_scn_addr) +

(old_GP - @GP

el se

result = displacenent + EXTR asymvalue + (old_GP - GP)
[R_GPRELH GH >r_vaddr] . di spl acement = (result+32768) >> 16
[r_vaddr].displacenent = result & OxFFFF

Restrictions

The R_GPRELH GHR_GPRELLOWrelocations must be used as a pair or set. At least
one R_GPRELLOWentry follows each R_GPRELHI GH entry.

After relocation, the result must not overflow 32 bits.

The memory displacement for all R_GPRELLOWentries corresponding to the same
R_GPRELH GH must match.

Object Relocation 4-33

4.3.4.21

Description

The R_GPRELHI GH/R_GPRELLOWentry pair is used to describe GP-relative
memory accesses. The R_GPRELHI GH entry indicates an | dah instruction. The
R_GPRELLOWentry (or entries) indicates a load or store instruction. If multiple
R_GPRELLOWentries are associated with an R_GPRELHI GH, they must all describe
the same memory location. A relocatable address can be formed with the following
computation:

addr = 65536 * high_disp + SEXT (low_disp)

To relocate this code sequence, the memory displacement fields in each instruction
must be adjusted to reflect changes in the target address they compute and in
the GP value.

The reason these entries are treated as a pair is that sign extension of the low
instruction’s displacement field can result in an off-by-one error that must be fixed
by adding one to the high instruction’s displacement. This situation can only be
detected if the instructions are considered together.

These relocation entries describe instructions that are primarily used for computing
addresses in kernel code.. The kernel is built without a . | i t a section, and kernel
performance is enhanced by code that calculates addresses directly instead of
loading addresses from a . | i t @ memory location. The code size, on average, is
unaffected by the kernel’s use of this addressing method.

Example

Use the kernel build option - Wb, - st at i ¢ to compile the following sample code.

static int a;

foo(){

at++;
}

Code generated for loading the address of "a":

0x0: | dah t0, 0(gp)
0x4: I da t0, 16(tO0)

Relocation entries produced are:

Vaddr Symmdx Type Of Size Extern Nane
.text:
0x0000000000000000 5 GPHI GH local .sbss
0x0000000000000004 5 GPLOW local .sbss
R | MVED: GP16
Fields
r_vaddr Points to memory-format instruction.
r_symmdx External symbol index if r _ext er n is 1; section number if
r_externisO.
r_extern Either 0 or 1.
r_offset Unused.
r_size R I MVMED GP_16.
Operation
N/A

4-34 Object Relocation

4.3.4.22

4.3.4.23

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that adds a 16-bit
displacement to the GP value, obtaining an address. The r _ext ern and r _symdx
fields specify the external symbol or section to which the calculated address is
relative.

This relocation entry is created by the linker to indicate that an optimization has
taken place because the displacement is within 16-bits of the GP value.

Example

N/A

R I MVED: GP_Hi 32

Fields

r_vaddr Points to memory-format instruction.
r_symdx Unused.

r_extern Unused.

r_of fset Unused.

r_size R | MVED _GP_HI 32.

Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that is part of a pair of
instructions that add a 32-bit displacement to the GP value. This instruction
adds the high portion of the 32-bit displacement. The next R_| MVED LO32 entry
identifies the instruction containing the low portion of the displacement. More than
one subsequent R_| MVED _LOB32 entry can share the same R | MVED_GP_HI 32 entry.

Example

N/A

R | MVED: SCN_H 32

Fields
r_vaddr Points to memory-format instruction.
r _symdx Unused.

Object Relocation 4-35

4.3.4.24

r_extern Unused.

r_of fset Unused.

r_size R_| MVED_SCNHI 32.
Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that is part of a pair of
instructions that add a 32-bit displacement to the starting address of the current
section. This instruction adds the high portion of the displacement. The next

R | MVED_LOB2 entry identifies the instruction with the low portion.

Example

N/A

R | MVED: BR_HI 32

Fields

r _vaddr Points to a memory-format instruction following a branch
(br, bsr,j sr, or j np) instruction.

r _symadx Specifies a byte offset from r _vaddr to the branch
instruction.

r_extern Unused.

r_of fset Unused.

r_size R | MVED_BRHI 32.

Operation

N/A

Restrictions

N/A

Description

A relocation entry of this type identifies an instruction that is part of a pair of
instructions that add a 32-bit displacement to the address of the instruction
following a branch (br, bsr, j sr, or j np). The branch must precede this
instruction. The r _symmdx field specifies a byte offset from r _vaddr to the
branch instruction. The instruction identified by this relocation entry adds the
high portion of the displacement. The next R_| MVED_LOB2 entry identifies the
instruction with the low portion of the displacement.

4-36 Object Relocation

4.3.4.25

4.3.4.26

Example

N/A
R | MMED: LG32

Fields

r_vaddr

r _symdx

r_extern
r_offset
r_size

Operation

N/A

Restrictions

N/A

Description

Points to a memory-format instruction.

External symbol index if r _ext er n is 1; section number if
r_externisO.

Either 0 or 1.
Unused.

R I MMED_LGB2.

A relocation entry of this type identifies an instruction that is part of a pair of
instructions that add a 32-bit displacement to a base address. This instruction
adds the low portion of the displacement. This relocation entry is combined with
the previous R_| MVED_GP_HI 32, R_| MVED_SCN_HI 32, or R_| MVED_BR_HI 32
entry. The r _ext ern and r _symndx fields specify the external symbol or section to
which the calculated address is relative.

Example

N/A
R TLS_ LI TERAL

Fields

r_vaddr

r_symdx
r_extern
r_offset

r_size

Points to an instruction that loads the TSD key for
initiating a thread local storage reference — actually, not
the key itself but key * 8, which gives the offset of the TLS
pointer in the TSD array.

R SN LI TA
Must be zero; all R_TLS LI TERAL entries are local.
Unused.

Unused.

Object Relocation 4-37

4.3.4.27

Operation

result = (new_scn_addr - old_scn_addr) +
(SEXT((short)[r_vaddr]) +old_GP) - GP

Restrictions
The result after relocation for an R_TLS LI TERAL entry must not overflow 16 bits.
R _TLS LI TERAL entries must be local and relative to the . | i t a section.

Description

A relocation entry of this type is very similar to an R_LI TERAL entry. An
R TLS LI TERAL entry identifies an instruction that uses a GP displacement to
load an the address of the symbol __t | sof f set from the . | it a section.

The value of the __t | sof f set symbol is fixed at run time to be the TSD array
offset of the TLS pointer. The symbol can occur anywhere in the GOT or .lita
section. The linker-defined symbol __t | skey points to one of the instances of the
__tlsoffset symbol.

The linker processes the R_ TLS LI TERAL relocation by adjusting the GP offset in
the displacement of the target instruction.

Example

Routines that reference TLS addresses will have at least one R_TLS LI TERAL
entry for the load of the __t | sof f set value.
__decl spec(thread) long foo;
mai n() {
foo = 2;

}

Code generated will include the instruction:

0x14: ldg at, -32752(gp)

Relocation entry produced:

Vaddr Symmdx Type Of Size Extern Nane
.text:
0x0000000000000014 13 TLSLI TE local .lita
R TLS H GH
Fields
r_vaddr Points to memory-format instruction.
r _symmdx External symbol index if r _ext er n is 1; section number if
r_externisO.
r_extern Either 0 or 1.
r_of fset Unused.
r_size Unused.
Operation

See R_TLS LOWdescription.

4-38 Object Relocation

4.3.4.28

Restrictions

Must be followed by R_TLS LOWentry.

Description

See R TLS LOW

Example

See R TLS LOW

R TLS LOW

Fields

r_vaddr Points to memory-format instruction.

r _symdx External symbol index if r _ext er n is 1; section number if
r_externisO.

r_extern Either 0 or 1.

r_of f set Unused.

r_size Unused.

Operation

low_ di sp = [r_vaddr]. di spl acenment

hi gh_di sp = [R_TLS_HI GH >r _vaddr] . di spl acenment
di spl acement = high_disp * 65536 + | ow_disp
if (r_extern = 0)
result = displacenent + (new_scn_addr - ol d_scn_addr)
el se
result = displacenent + EXTR asym val ue

[R.TLS H GH>r_vaddr]. di spl acement = (resul t+32768) >> 16
[r_vaddr].displacenent = result & OxFFFF

Restrictions
External relocation entries of this type are limited to TLS symbols.

Local relocation entries of this type are restricted to the TLS sections . t | sdat a
and . t| sbss.

The relocated result must not exceed 32 bits.

Description

The linker must handle R TLS H GHand R_TLS L OWentries as a pair. The pairs
of relocation entries must be in sequence starting with R_TLS HI GH. The order
and location of the instructions associated with these relocation entries are not
restricted.

Example

The load of a TLS symbol’s address requires an R_TLS Hl G¥R_TLS_ LOWentry pair.

__decl spec(thread) long foo;
mai n() {
foo = 2;

}
Code generated:

Object Relocation 4-39

0x0c: call _pal rduniq

0x10: ldg vO0, 96(v0)
0x14: ldg at, -32752(gp)
0x18: addq vO, at, vO
Ox1c: Idg vO0, 0(vO0)
0x20: I dah v0, 0(v0)
0x24: stq tO0, 0(v0)

Relocation entries produced:

Vaddr Symmdx Type Of Size Extern Nane
.text:
0x0000000000000020 0 TLSH GH extern foo
0x0000000000000024 0 TLSLOW extern foo

4.4 Language-Specific Relocations Features

Relocation entries may be generated for language-specific compiler-generated
external symbols. For example, they are often generated in Fortran programs
for the procedure f or _set _reentrancy() and in C++ programs for
exception-handling labels.

4-40 Object Relocation

5

Image Relocation

Post-link modification tools often require detailed relocation information for a
linked image. Some tools may require normal relocations that are preserved in
images linked with the - r switch. Newer tools rely on compact relocations and
linkerdef records, which retain the same level of detail as normal relocations while
requiring much less space in the file.

5.1 New or Changed Image Relocations Features

Tru64 UNIX V5.1B introduces the following new or changed features:
e Compact relocations for TLS. See Section 5.3.1.2.4.

Tru64 UNIX V5.1 introduces the following new or changed features:
e Full compact relocations. See Section 5.3.1.

e Linkerdef relocations. See Section 5.3.2.

5.2 Structures, Fields, and Values for Image Relocation

5.2.1 Compact Relocation Records

Compact relocation records are written into the free-form data area of the comment
section. They are identified by a tag type of CM_COVPACT_RLC in the comment
header. The public versions of compact relocation interfaces for producers and
consumers are located in the header file cnpl rs/ cnrl c. h. See Section 5.3.1 and
Chapter 15 for more information.

5.2.2 Linkerdef Relocation Records (scnconment . h)

Linkerdef relocation records are written into the free-form data area of the
comment section. They are identified by a tag type of CM LI NKDERDEF in the
comment header. The Linkerdef comment subsection is an array of | i nker _dat a
structures that contain information similar to the r el oc structure. See

Section 5.3.2 and Chapter 15 for more information.

Version Note

The | i nker _dat a structure is supported on Tru64 UNIX V5.1 and

greater.
struct linker_data {
unsi gned i nt I d_scnptr;
unsi gned int | d_base : 6
unsi gned i nt I d_synbol : 6;
unsi gned int I d_type © 8
unsi gned i nt 1 d_si ze © 6
unsi gned int Id_offset : 6;

}
SIZE - 8 bytes, ALIGNMENT - 4 bytes

Image Relocation 5-1

Linkerdef Relocation Entry Fields

| d_scnptr

| d_base

| d_synbol

I d_type

I d_size

| d_of fset

A byte offset relative to the starting file offset of the section
identified by | d_base. Together, these fields identify the
target address for the relocation.

The number of the section containing the target address.
See Table 41 for a list of valid section numbers.

An enumeration value identifying a linker-defined symbol.
See Section 5.2.2.1 for a list of valid values.

A relocation type. See Table 4-2 for a list of relocation
types.

The size of a bitfield for the R_OP_STORE relocation.

The bit offset of a bitfield for the R_OP_STORE relocation.

5.2.2.1 Linkerdef Symbol Enumeration

Linker-defined symbols are identified by the following enumeration. Each
enumeration value corresponds to the linker-defined symbol of the same name
(excluding the "LDEF_" prefix).

Version Note

The LD_SYMBOL enumeration is supported on Tru64 UNIX V5.1 and

greater.

enum LD_SYMBOL {

LDEF__BASE_ADDRESS

LDEF__cobol _nain
LDEF__DYNAM C

LDEF__DYNAM C_LI NK

LDEF__ebss
LDEF__edata
LDEF_edat a
LDEF__end
LDEF_end
LDEF__et ext
LDEF_et ext
LDEF__fbss
LDEF_fdata
LDEF__f pdat a
LDEF__f pdat a_si ze
LDEF__ fstart
LDEF__ftext
LDEF__ftlsinit
LDEF_GOT_OFFSET
LDEF__gp
LDEF__gpi nfo
LDEF___istart

LDEF__procedure_string_table
LDEF__procedure_t abl e
LDEF__procedure_t abl e_si ze

LDEF___ tl sbsize
LDEF__ tl sdsize
LDEF__ tl skey
LDEF__ tl sof fset
LDEF__ tl sregions
LDEF___EXEC_FLAGS
LDEF_MAX

5-2 Image Relocation

SN~ ONRO

L 1 1 1 {1 O 1 O 1 1 1 e 1 A Y [A 1}
=
(42

30, (V5.1B -)

5.3 Image Relocation Usage

5.3.1 Compact Relocations

Compact relocations are a highly compressed form of relocation records designed
for the use of profiling tools and object restructuring tools. By default, they are
generated by the linker for all fully linked executable objects and recorded in the
object’s . corment section. The linker produces this information using | i bl d. a
APIs, which implement the reading and writing of compact relocations. Compact
relocations are not produced for images linked with the following linker options:
-r,-s. The stri p utility will remove the comment subsection that contains
compact relocations. See Chapter 15 for the format of the . conment section.

Compact relocations must provide crucial relocation information in much less space
than the space required for actual relocation entries. This goal is accomplished

by employing a heuristic function to predict relocations. For some sections, this
heuristic is highly accurate. Detailing many records in the object file becomes
unnecessary because the algorithm can be used instead to recreate many of the
actual relocation entries.

Version Note

In releases of Tru64 UNIX prior to V5.1, compact relocations contained
only enough relocation information to drive tools that restructure an
executable’s . text,.init,and.fini sections. From Tru64 UNIX
V5.1 onward, executables contain full compact relocation information
including relocation records for text and data segment addresses in

all mapped object sections.

The interfaces for compact relocations continue to evolve. These interfaces are
defined and described in the header file cnpl r s/ cnr | c. h. This section describes
the on-disk file format of compact relocations and the producer and consumer
algorithms.

5.3.1.1 Overview
The procedure for creation of compact relocations is as follows:

1. Generate a list of predicted relocations using heuristics.

2. Compare the predicted relocations to the actual relocation entries (which are
input data to the compact relocations producer).

3. Wherever a "miss" occurs (that is, the predicted and actual entries do not
match) output a compact relocation record.

The procedure for the use of compact relocation records follows:

1. Generate the list of predicted relocations using the same heuristics as the
compact relocations producer.

2. Compare the expanded compact relocations data with predicted relocations to
reconstruct the actual relocation entries.

See Section 5.3.1.3 for more details.

5.3.1.2 File Format

Compact relocations are stored in a subsection of the . comment section. The linker
and other tools do not need to be aware of the details of the internal structure of
the compact relocation subsection. This knowledge is encapsulated in the cnr| c_*
routines found in | i bn d. a.

Image Relocation 5-3

The on-disk format of the compact relocations data consists of the following
components, in order:

e Version identifier

e Compact relocations file header

e Compact relocations section headers (for each section)

e Compact relocations tables (for each section)

e Expression stack relocations tables (for each section)

eGP value tables (for each section)

Code may only assume that the version and the file header are contiguous. To

access other structures, it is necessary to rely on the location information in the
file header.

5.3.1.2.1 Compact Relocation Version

5-4

The compact relocation section begins with a version identifier, which has the
following structure:
struct {

unsi gned int ver si on_ngj or;

unsi gned i nt ver si on_mi nor;

s
SIZE - 8 bytes, ALIGNMENT - 4 bytes

The version identifier allows the format of the compact relocations to change from
one release to another while providing a mechanism for tools to work on binaries
with either the old or new formats. The version identifiers are separate from the
header because the format of the header itself may change from release to release.

The major version identifier is incremented for changes in the format of the
compact relocation data that affect the most basic access to the data. For example,
changes in structure sizes or structure layout are likely to cause failures in existing
code that simply reads the raw compact relocation data.

The minor version identifier is incremented whenever the compact relocation data
is modified without impacting the format of the data. For example, changing the
heuristic to further compact the stored relocation information would require the
minor version identifier to be incremented. If the consumer routines see that an
object has an old minor version number, they can call a matching version of the
heuristic to correctly reconstruct the relocation information.

The major and minor version identifiers that have been used for compact relocation
data are described in Table 5-1. Enumeration values for supported versions can be
found in the header file / usr/i ncl ude/ cnpl rs/cnrlc. h.

Table 5-1: Compact Relocation Version Identifiers

Major Minor OS Version Description

0 0 V3.0 Initial version

1 0 V3.2 Fix for dynsym relocations

2 0 V4.0 Miscellaneous bug fixes

2 3 V5.1 Full compact relocations

2 4 V5.1B Full compacts with TLS relocations

Image Relocation

5.3.1.2.2 Compact Relocations File Header

The version identifier is followed by a high-level header structure that stores the
sizes and locations of the other tables with compact relocations information:

struct cnmrlc_file_header {
/*
* Total nunber of elements in each sub-table.
*/
unsi gned | ong scn_num /* section header table */
unsi gned | ong rlc_num /* conpact relocation table */
unsi gned | ong expr_num /* expression relocation table */
unsi gned | ong gpval _num /* GP value table */

/*
* Relative file offset fromstart of conpact relocation data
* to each sub-table.
*/

unsi gned | ong scn_of f;

unsi gned | ong rlc_off;

unsi gned | ong expr_off;

unsi gned | ong gpval _of f;

}
SIZE - 64 bytes, ALIGNMENT - 8 bytes

Each of the *_numfields indicates the number of entries in the corresponding
tables. Each of the * _of f fields contains a relative file offset from the start of the
compact relocations . comment subsection to the start of the corresponding table. If
any of the tables are not present for a particular program, the *_numand * _of f
fields should be set to zero.

5.3.1.2.3 Compact Relocations Section Header

One or more compact relocations section headers follow the compact relocations file
header. Each section header has the following structure:

struct cmrlc_file_scnhdr {
char nane[8] ; /* section name */

/*
* Nunber of elenents for this section in each sub-table.
*/

unsigned long rlc_snum

unsi gned | ong expr_snum

unsi gned |l ong gpval _snum

/*
* Index fromstart of table to this section’s el enents.
* (This is an elenment index, not a byte offset.)
*/
unsigned long rlc_indx;
unsi gned | ong expr_indx;
unsi gned | ong gpval _i ndx;
/*
* Flag: True if conpact relocation table is sorted by
* increasing virtual address.
*/
unsigned long rlc_sorted:1;
unsigned long :63;

s
SIZE - 64 bytes, ALIGNMENT - 8 bytes

One compact relocation section header is created for each eCOFF object file section
for which compact relocation data is stored. This section header is unrelated to the
eCOFF section header structure except for the name field, which connects the two.

Each of the * _numfields indicates the number of entries in the corresponding table
for this object file section. If the * _numfield is non-zero, the corresponding * _i ndx
field contains the index of the start of that section’s entries within the table.

The r | c_sort ed field indicates whether the compact relocation table entries for
this section are sorted by virtual address.

Image Relocation 5-5

If an object file section does not have entries in one of the tables for a particular
program, the corresponding fields should be set to zero.

5.3.1.2.4 Compact Relocations Table

Compact relocation tables follow the compact relocation section headers. Each
compact relocation table consists of an array of structures:

struct cnmrlc_file_rlc {

unsi gned v_of fset;
uni on {
unsi gned wor d;
struct {
unsi gned type: 5;
unsi gned 127,
} comon;
struct { /* GPDISP */
unsi gned type: 5;
unsi gned | da_of f set: 27;
} gpdi sp;
struct { /* EXPRESSI ON */
unsi gned type: 5;
unsi gned i ndex: 27;
} expr;
struct { /* REF*, SREL*, GPREL32 */
unsi gned type: 5;
unsi gned rel _scn:5;
unsi gned count: 12;
unsi gned di st: 4; (V5.0 -)
unsi gned 1 6;
} addrtype;
struct { /* External REF */ (V5.1 -)
unsi gned type: 5; (V5.1 -)
unsi gned r_symdx: 27; (V5.1 -)
} eref; (V5.1 -)
struct { /* LITERAL */ (V5.1 -)
unsi gned type: 5; (V5.1 -)
unsi gned rel _scn:5; (V5.1 -)
unsi gned count: 12; (V5.1 -)
unsi gned di st: 4; (V5.1 -)
unsi gned . 6; (V5.1 -)
} literal; (V5.1 -)
struct { /* LITUSE */ (V5.1 -)
unsi gned type: 5; (V5.1 -)
unsi gned rel _scn:5; (V5.1 -)
unsi gned lit_type:5; (V5.1 -)
unsi gned it OFFSET: 17, (V5.1 -)
} lituse; (V5.1 -)
struct { /* NO_RELCC, NO LITUSE */ (V5.0 -)
unsi gned type: 5; (V5.0 -)
unsi gned count: 12; (V5.0 -)
unsi gned di st: 4; (V5.0 -)
unsi gned 011, (V5.0 -)
} norel oc; (V5.0 -)
struct { /* IMMED: GP_HI 32, SCN_HI 32, BR_HI 32 */
unsi gned type: 5;
unsi gned subop: 6;
unsi gned br_of fset: 21;
} i medhi;
struct { /* I MED: all other sub-opcodes */
unsi gned type: 5;
unsi gned subop: 6;
unsi gned rel _scn:5;
unsi gned hi _of f set: 16; (V5.1 -)
} i medl o;
struct { /* VADJUST */
unsi gned type: 5;
si gned adj ust: 27;
} vadj ust;
struct { /* BRADDR, HI NT */
unsi gned type: 5;
unsi gned rel _scn:5;
unsi gned 1 22;
} other;
struct { /* TLS_H GH, TLS LOW */ (V5.1B -)
unsi gned type: 5; (V5.1B -)
unsi gned rel _scn:5; (V5.1B -)
unsi gned 1 22; (V5.1B -)
} tlshighlo; (V5.1B -)
} info;

5-6 Image Relocation

}
SIZE - 8 bytes, ALIGNMENT - 4 bytes

/ *
* Values for 'type field.
*/
enum cnrlc_rlctypes {
CVRLC_REFLONG-1,
CVRLC_REFQUAD=2,
CVRLC_GPREL32=3,
CVRLC_GPDI SP=4,
CVRLC_BRADDR=5,
CVRLC_HI NT=6,
CVRLC_SREL16=7,
CVRLC_SREL32=8,
CVRLC_SREL64=9,
CMRLC_EXPRESSI ON=10, /* R _OP_* expression */

CVRLC_| MVEDHI =11, /* RIMVED for high part */

CVRLC_| MVEDLO=12, /* RIMVED for |ow part */
CMRLC_NO_RELOC=13, /* correct mspredicted relocation */
CVMRLC_VADJUST=14, /* adjust base for succeeding 'v_offset’'s */
CVRLC_LI TERAL=15, (V5.1 -)
CVRLC_LI TUSE=16, (V5.1 -)
CVRLC_NO _LI TUSE=17, (V5.1 -)
CVRLC_REFQUAD EXTERN=18, /* not used */ (V5.1 -)
CVRLC_TLS_LI TERAL=19, (V5.1B -)
CVRLC_TLS_HI GH=20, (V5.1B -)
CVRLC_TLS_LOW-21 (V5.1B -)

b

*
/* Maxi mum value for ’'count’ field in "addrtype’ relocations.
*
#d:efi ne CMRLC_COUNT_NMAX ((1<<12) - 1)
/*
* Maxi mum value for 'dist’ field in "addrtype’ and 'noreloc’ relocations.
*
#d:efi ne CVRLC_DI ST_MAX ((1<<4) - 1)

The number of elements in the array is determined by the corresponding * _num
field in the section header.

The v_of f set field specifies the virtual address of each relocation entry as a
byte offset from a base address. Initially, the base is the starting virtual address
of the current section. If relocations are required at addresses that cannot be
expressed as a 32-bit offset from the section’s start address, CVRLC_VADJUST
relocation entries are used to extend the addressing range. However, this feature
is not fully supported.

The value of the t ype field determines how to interpret the remainder of a compact
relocation structure.

The | da_of f set field specifies an instruction offset (byte offset divided by 4) from
the relocation entry’s virtual address to the | da instruction in an R_GPDI SP entry’s
| dah/l da pair. This design does not support | dah/l da pairs that are separated by
more than 2”29 bytes.

The r el _scn field indicates the ID of the section to which this relocation is
relative. It uses the R_ SN _* values from the header file r el oc. h.

The count and di st fields are used to specify consecutive relocation entries

that are identical. The count field can be used in this manner for R REFLONG
R_REFQUAD, R_SREL16, R_SREL32, R_SREL64, R GPREL32, and R_LI TERAL
entries. Two relocation entries are identical if they have the same type and relative
section. Two relocation entries are consecutive if the difference in their virtual
addresses is equal to the same multiple of the natural size for the relocation

type (16 bits for R_SREL16; 32 bits for R REFLONG, R_SREL32, R_GPREL32;

and R_LI TERAL, and 64 bits for R_ REFQUAD and R_SREL64). The di st field

Image Relocation 5-7

multiplied by the natural size of the relocation type gives the byte distance between
repetitions of the relocation. A count value of zero is not allowed. These fields
reduce the impact of mispredicting the relocations for jump tables.

5.3.1.2.5 Stack Relocation Table

Expression stack relocation information is stored separately. Each stack relocation
table entry has the following structure:

struct cnmrlc_file_expr {
unsigned long vaddr;

unsi gned type: 5;

unsi gned rel _scn:5;

unsi gned of fset:6; /* CMRLC_EXPR_STORE only */

unsi gned si ze: 6; /* CVMRLC_EXPR_STORE only */

unsi gned last: 1; /* true for last reloc in expr */
unsi gned 1 9;

unsi gned reserved;

}
SIZE - 16 bytes, ALIGNMENT - 8 bytes

/*
* Values for 'type field.
*/

enum cnrl c_exprtypes {

CMRLC_EXPR_PUSH=1, /* R_OP_PUSH */
CMRLC_EXPR_PSUB=2, /* R_OP_PSUB */
CMRLC_EXPR_PRSHI FT=3, /* R _OP_PRSHI FT */
CMRLC_EXPR_STORE=4 /* R OP_STORE */

b

Expression stack compact relocation records are stored in a separate table because
each record requires more space than other types of compact relocation records.
Entries in this table are grouped into sequences of relocation entries that form a
single expression. The first entry in each table starts a sequence. The last entry in
each sequence has its | ast field set to one. A new sequence starts immediately
after the end of the previous sequence.

The start of each sequence is referenced by a CMRLC_EXPRESSI ON entry in the
section’s compact relocation table. The index field of that entry points to the first
entry in a stack relocation sequence. All sequences in the stack relocation table
should have a corresponding CVRLC_EXPRESSI ON entry in the compact relocation
table.

5.3.1.2.6 GP Value Tables

5-8

Additional tables called GP value tables are used to store GP range information.
GP values are kept in tables separate from other compact relocations to reduce the
processing required to map a virtual address to the corresponding active GP value.

Each GP value table consists of an array of these structures:

struct {
unsi gned | ong vaddr
unsi gned gp_of f set
unsi gned reserved

}
SIZE - 16 bytes, ALIGNMENT - 8 bytes

Each additional GP range after the first range has an entry in the table. (The
first range is described by the GP value in the file’s a. out header.) Therefore, a
single-GOT program will have no entries in its GP value tables.

If an executable’s sections have different numbers of GP ranges, gpval _numshould
be set to describe the section with the largest number of ranges. eCOFF sections
with fewer GP ranges must still have GP value tables with gpval _numentries.
Sections with short GP value tables can duplicate their last GP value table entry
until the table is the proper length.

Image Relocation

The vaddr field contains the virtual address where the new range starts. vaddr
must point within the section to which this GP value table corresponds. The new
GP value is computed by adding gp_of f set to the GP value in the file’s a. out
header.

5.3.1.3 Basic Algorithm for Compact Relocations Production

In order to produce compact relocations, a tool must have a set of actual relocation
entries and the raw data to which those relocation entries apply. It should then
apply the following algorithm to create a set of matching compact relocations:

Convert the external relocation entries to local relocation entries.

2. Run the prediction heuristic function to construct a set of predicted relocation
entries from the raw data.

3. Compare the predicted relocation entries to the remaining actual relocation
entries and create a compact relocation record for any mismatches.

4. Compress any sequences of consecutive, identical R_ REF*, R_SREL*,
R _GPREL32, or R LI TERAL entries.

5. Settherl c_sort ed field if the compact relocation entries are stored in a
sorted order.

Any R_GPVALUE entries must be handled specially. These relocation entries must
be added to their section’s GP value table. They should then be removed from the
list of actual relocation entries used to create compact relocations.

The first step in the algorithm is to convert actual relocation entries from external
to local. The compact relocations only exist in fully linked executables with no
undefined symbols. Thus, external relocation entries are not usually needed.
(The compact relocation types include a type for retaining external R_REFQUAD
relocations wherever symbol correspondence might be needed for post-link
processing.) An external relocation entry is converted to a local relocation entry
by setting its r _ext er n field to zero and changing its r _symadx field to the
appropriate relocation section constant (see Table 4-1).

The second step is to run the prediction heuristic function over the raw data
for which these actual relocation entries apply. This produces a set of predicted
relocation entries.

Step three compares the predicted relocation entries to the actual relocation
entries as follows:

a. If a match exists between a predicted relocation entry and an actual relocation
entry at the same virtual address, do nothing.

b. If a predicted relocation entry and an actual relocation entry at the same
virtual address do not match, write a compact form of the actual relocation
entry to the compact relocation data file.

c. Ifonly a predicted relocation entry exists for a particular virtual address, write
a compact CMRLC_NO_RELOCrecord to the data file at this virtual address.

d. Ifonly an actual relocation entry exists for a particular virtual address, write a
compact form of the actual relocation entry to the compact relocation data file.

Creating a compact relocation entry from an actual relocation entry is fairly
straightforward except in the case of an expression stack relocation sequence.
First, create entries in the stack relocation table for each relocation entry in the
sequence. Normally, this sequence starts with an R_OP_PUSH entry and ends with
an R_OP_STORE entry. The last entry should have the | ast field set to one. Then
create a CVRLC_EXPRESSI ON compact relocation entry whose index field points to

Image Relocation 5-9

the first entry in the stack relocation table for this expression. (This can only be
done for a sequence that describes a complete expression.)

The fourth step is to compress any sequences of R REF*, R SREL* , R_GPREL32, or
R _LI TERAL entries that are consecutive and identical . Such a sequence exists if
all relocation entries in the sequence have the same relocation type, are relative to
the same rel_scn value (R_SN_* constant), and have v_offset fields that increase
by a multiple of the natural size of the relocation type (for example, 8 bytes for
R_REFQUAD, 2 bytes for R_SREL16). Such sequences can be replaced with a single
compact relocation entry that has the sequence’s t ype and r el _scn value. The
v_of f set field should be that of the first relocation entry in the sequence. The

di st field should be set to the distance between repeated relocations in natural
size increments, and the count field should be set to the number of relocation
entries in the sequence.

The final step is to set the r1 c_sort ed field in the compact relocation section
header. If the compact relocations are stored in order of increasing v_of f set
values, this field should be set to one. Otherwise, it should be set to zero.

5.3.1.4 Basic Algorithm for Compact Relocations Consumption

5-10

A consumer tool can read back the compact relocation entries if it has the compact
relocation information and the raw data that they describe. The consumer tool
can use this information to regenerate the actual relocation entries by following
this algorithm:

1. Expand any R REF*, R SREL* , R GPREL32, or R_LI TERAL compact relocation
entries whose count field is greater than one.

2. Run the prediction heuristic function to construct a set of predicted relocation
entries from the raw data.

3. Compare the predicted relocation entries to the compact relocation entries and
reconstruct the actual relocation entries.

The first step in this algorithm just undoes the compression step (step four) in the
production algorithm.

The second step runs the same prediction heuristic that was used in the production
algorithm. To guarantee that the generated predicted relocation entries are the
same as when the compact relocation entries were produced, it is critical that the
heuristic function is the same. It is also critical that the raw data is the same as
when the compact relocation entries were produced.

The final step compares the predicted relocation entries with the stored compact
relocation entries as follows:

1. Ifonly a predicted relocation entry exists for a particular virtual address,
report the predicted relocation entry.

2. Ifa COVRLC_NO_RELCC entry exists at the same virtual address as a predicted
relocation entry, do not report a relocation entry at this virtual address.

3. If a compact relocation entry other than CVMRLC_NO_RELCC exists at the same
virtual address as a predicted relocation entry, report the compact relocation
entry.

4. Ifonly a compact relocation entry exists for a particular virtual address, report
the compact relocation entry.

Image Relocation

5.3.2 Linkerdef Relocations

Version Note

Linkerdef relocations are supported in Tru64 UNIX V5.1 and greater for
symbol table format V3.13 and greater.

Linkerdef relocations are generated by the linker for all fully linked executable
objects and shared libraries. They are not produced for images linked with the
following linker options: - r, -s. The stri p utility will remove the comment
subsection that contains linkerdef relocations. See Chapter 15 for the format of
the . coment section.

The linkerdef relocations supplement compact relocation information. They
provide relocation information for all uses of linker-defined symbol values within
the section data of an object. This information is not currently accessible in
compact relocation information. Compact relocations are generally stored as local
relocations with no symbolic information. Linkerdef relocations are also unique
because they contain relocations for absolute symbols with literal values such as
_DYNAM C LI NK and _procedure_tabl e_si ze.

Tools that modify linked objects, such as omand spi ke, can use linkerdef
relocations to update references to linker-defined symbol values that are
necessarily changed as a result of other changes made to the linked object.

5.4 Language-Specific Image Relocations Features

Relocation entries may be generated for language-specific compiler-generated
external symbols. For example, they are often generated in Fortran programs
for the procedure f or _set _reentrancy() and in C++ programs for
exception-handling labels.

Image Relocation 5-11

6

Symbol Table

One of the chief tasks of the compilation process is the production of a symbol
table, which is a collection of data structures whose purpose is to store type, scope,
and address information about program data. Compilers and assemblers create the
symbol table. It is read and may be modified by linkers, profiling tools, and assorted
object manipulation tools. It also contains information required for debugging.

For large applications, a single compilation can involve many program components,
including source files, header files, and libraries. Data from all of these files must
be described in the symbol table.

The Tru64 UNIX eCOFF symbol table, when present, comprises a large portion of
the physical object file and is often considered a stand-alone entity. It is divided
into numerous sections, including a header section that is used for navigation. The
contents of the symbol table are shown in Figure 6-1.

Figure 6-1: Symbol Table Sections

Symbolic Header
Procedure Descriptors |
Local Symbols *
: Auxiliary Symbols %
File Header LﬂcaﬁySt:ngs *
a.out Header External Strings
Section Head‘?rs File Descriptors
Raw Data Sections Relative File Descriptors| *
Relocations External Symbols
Symbol Table Optimization Symbols | *
Comment Section [~ Line Numbers *

* one subtable per
source file

The symbol table has a hierarchical design. The sections storing local symbols, local
strings, relative file descriptors, procedure descriptors, line numbers, auxiliary
symbols, and optimization symbols are divided into subtables and organized by file.
Local symbols, local strings, and optimization symbols are further broken down by
procedure. Figure 6-2 depicts this hierarchy.

Symbol Table 6-1

6-2

Figure 6—2: Symbol Table Hierarchy

Symbolic Header

File Descriptors

External Symbols
External Strings

Procedure Desc. (file 1)
Procedure Desc. (file N

v

Line Numbers (file 1)

| Line Numbers (file N)

| Local Symbols (file 1)

T

h

Local Symbols (file N)

Local Strings (file 1)

Local Strings (file N)

L'

“| Aux. Symbals (file 1)

W

Aux. Symbaols (lile N)

Rel. File D_g_sc. (file 1)

Rel. File Desc. (file N)

W

———| Opt. Symbols (file n)

— | Opt. Symbols (file 1)

A particular symbol table may not contain all sections, for one of the following
reasons:

Relative file descriptors are present in linked objects only.

The line number, auxiliary symbol and optimization symbol tables are produced
only when debugging information is requested.

Symbol table information may be partially or entirely removed by post-link
object tools.

Optimization symbols are not present in symbol table formats less than V3.13.

The function of each symbol table section is summarized below:

The symbolic header stores the sizes and locations of all other symbol table
sections.

The line number table enables debuggers to map machine instructions to
source code lines.

The procedure descriptor table contains call-frame information as well as
pointers to a procedure’s local symbols, line numbers and optimization entries.

The local symbol table describes procedures, static and local data, and
user-defined types.

The external symbol table stores information about global symbols.

The relative file descriptor table contains a post-link file descriptor table index
mapping for each file in the compilation.

Symbol Table

e The local and external string tables store local and external symbol names,
respectively.

¢ The file descriptor table stores the sizes and locations of each subtable produced
for contributing source and include files. It also contains miscellaneous
information about each file, such as the source language and the level of
symbolic information.

¢ The auxiliary symbol table contains data type information for local and
external symbols.

¢ The optimization symbols section stores procedure relative information,
including extended source location information and optimized debugging
information.

Several tools are available to view the contents of the symbol table. See st dunp(1),
odunp(1), and nm1).

This chapter covers symbol table organization and usage, concentrating on the
overall structure. Subsequent chapters will cover more detailed aspects of
information contained in the symbol table.

The current version of the symbol table is V3.14. The dynamic symbol table built
by the linker is discussed separately in Section 14.3.3.

6.1 New or Changed Symbol Table Features

Tru64 UNIX V5.1B includes the following new or changed features:
e New PPODE tags for object annotation (see Table 6-1)

Version 3.13 of the symbol table includes the following new or changed features:
e New optimization symbols section (see Section 6.3.3)
¢ Address of locally stripped FDRs set to addr essNi | (see Section 6.3.1.2)

6.2 Structures, Fields and Values for Symbol Tables

Unless otherwise specified, all structures described in this section are declared in
the header file sym h, and all constants are defined in the header file syntonst . h.

6.2.1 Symbolic Header (HDRR)

typedef struct {

cof f _ushort magi c;

cof f _ushort vst anp;

cof f_int ilineMax;
cof f _int i dnMax;
cof f _int i pdMVax;
cof f _int i symvax;
cof f _int i opt Max;
cof f _int i auxMax;
cof f _int i ssMax;
cof f _int i sSSExt Max;
cof f _int i f dMax;
cof f _int crfd;

cof f _int i ext Max;
cof f _l ong cbLi ne;

cof f _of f cbLi neO f set ;
cof f _of f cbDnOf f set ;
cof f _of f cbPdOf f set ;
cof f _of f cbhSynX f set ;
cof f _of f chOpt O f set ;
cof f _of f chAuxcf f set ;
cof f _of f chSsO f set ;
cof f _of f chSsExt Of f set ;
cof f _of f cbFdOf f set ;
cof f _of f chbRf dOf f set ;

Symbol Table 6-3

cof f _of f chExt Of f set ;

} HDRR *pHDRR

SIZE - 144 bytes, ALIGNMENT - 8 bytes

Symbolic Header Fields

magi ¢

vst anp

i |ineMax

i dnMax

i pdMax

i synivax

i opt Max

i auxMax

i ssiax

i SSExt Max
i fdivax
crfd

i ext Max
chLi ne
cbLi neOf f set
chDnOfF f set
chbPdO f set

cbSyntX f set

6—4 Symbol Table

To verify validity of the symbol table, this field must
contain the constant magi cSym defined as 0x1992.

Symbol table version stamp. This value consists of a major
version number and a minor version number, as defined in
the st anp. h header file:

Symbol Value Description

MAJ_SYM STAMP 3 Current major object
format version

M N_SYM STAMP 14 Current minor object
format version

See Section 1.4.5 for a description of object and symbol
table versioning.

Number of line number entries (if expanded).
Obsolete.

Number of procedure descriptors.

Number of local symbols.

Byte size of optimization symbol table.
Number of auxiliary symbols.

Byte size of local string table.

Byte size of external string table.

Number of file descriptors.

Number of relative file descriptors.

Number of external symbols.

Byte size of (packed) line number entries.
Byte offset to start of (packed) line numbers.
Obsolete.

Byte offset to start of procedure descriptors.

Byte offset to start of local symbols.

cbOpt O f set Byte offset to start of optimization entries.

CcbAuxCr f set Byte offset to start of auxiliary symbols.
chSsOf f set Byte offset to start of local strings.

chSsExt O f set Byte offset to start of external strings.
CchFdOf f set Byte offset to start of file descriptors.

cbhRf dOf f set Byte offset to start of relative file descriptors.
chExt O f set Byte offset to start of external symbols.

General Notes:

The size and offset fields describing symbol table sections must be set to zero if the
section described is not present.

The cb* O f set fields are byte offsets from the beginning of the object file.

The i * Max fields contain the number of entries for a symbol table section. Legal
index values for a symbol table section will range from 0 to the value of the
associated i*Max field minus one.

For an explanation of packed and expanded line number entries, see the discussion
in Section 7.3.1.

6.2.2 Relative File Descriptor Entry (RFDT)

The relative file descriptor table provides a post-link mapping of file descriptor
indices. The purpose of this table is to minimize work for the linker, which does
not update symbol table references to local symbols. This information is used

to obtain the file offset used to bias local symbol indices. Because this table is
also known as the File Indirect Table, two declarations are included in the sym h
header file, as shown here.

typedef int RFDT, *pRFDT;
typedef int FIT, *pFIT;

SIZE - 4 bytes, ALIGNMENT - 4 bytes

See Section 6.3.2 for related information.

6.2.3 Optimization Symbol Entry (PPODHDR)

The optimization symbol table contains information for optimized debugging, basic
block profiling, and other miscellaneous procedure-specific data. Each procedure’s
associated optimization symbol table data begins with an array of PPODHDR
structures. See Section 6.3.3 for a description of the optimization symbol table.

Version Note

The following structure definition is for Tru64 UNIX V5.0 and greater.
It is used for symbol table format V3.13 and greater.

typedef struct {

cof f _uint ppode_t ag;
cof f _uint ppode_| en;
cof f _ul ong ppode_val ;

} PPODHDR, * pPPODHDR;

Symbol Table 6-5

SIZE - 16 bytes, ALIGNMENT - 8 bytes

Optimization Symbol Entry Fields
ppode_t ag Identifies the kind of data described by this entry.

ppode_I| en Indicates the size in bytes of the data that is found in the
raw data area for this entry. When this field is zero, the
only data is stored in the ppode_val field.

ppode_val This field is either a pointer to the entry’s data or is
itself the data. If ppode_I en is nonzero, this field is a
relative file offset from the beginning of the current PPOD
(Per-Procedure Optimization Descriptor) to the applicable
data area. If ppode_I en is zero, this field contains the
data for the entry.

A PPOD contains multiple PPODHDRs. A PPODHDR and its
associated data are collectively referred to as a PPODE
(Per-Procedure Optimization Descriptor Entry.) Figure 6—4
in Section 6.3.3 shows several PPODs with multiple
PPODHDRs and their data.

Table 6-1: Optimization Tag Values

Name Value Description

PPCDE_STAWP 1 Version number of the PPOD
stored in ppode_val . The
current PPOD_VERSI| ON

value is 1.
PPODE_END 2 End of entries for this PPOD.
PPCDE_EXT_SRC 3 Extended source line

information. See
Section 7.3.1.2.

PPODE_SEM EVENT 4 Semantic event information.
See Section 12.3.1.

PPODE_SPLI T 5 Split lifetime information.
See Section 12.3.2.

PPODE_DI SCONTI G_SCCPE 6 Discontiguous scope

information. See
Section 12.3.3.
PPODE_| NLI NED_CALL 7 Inlined procedure call

information. (Reserved for
future use.)

PPODE_PROFI LE_| NFO 8 Profile feedback information.
See Chapter 9.
PPODE_WHERE_| NLI NED 9 (V5.1A -)Procedure inlining

site information. (Reserved
for future use.)

PPCDE_ANNOT_RESERVED_FI RST 64 (V5.1B -) First object

annotation tag. (See
Chapter 10.)

PPODE_ANNOT_ SUMVARY 64 (V5.1B -) Object

annotation summary. (See
Section 10.3.1.1.)

6-6 Symbol Table

Table 6-1: Optimization Tag Values (cont.)

Name

Value

Description

PPCDE_ANNOT_RESTRI CTED_FI RST

PPCDE_ANNOT_RESTRI CTED_OFFSET

PPCDE_ANNOT_RESTRI CTED_I NSTRUCTI ON

PPODE_ANNOT_RESTRI CTED_SEQUENCE

PPODE_ANNOT_RESTRI CTED CALL

PPCDE_ANNOT_RESTRI CTED_ENTRY

PPCDE_ANNOT_RESTRI CTED_RETURN

PPCDE_ANNOT_RESTRI CTED_LAST

PPCDE_ANNOT_OPTI M ZATI ON_FI RST

PPCDE_ANNOT_GPREL32_JUMP_TABLE

PPODE_ANNOT_CALL_SPECI FI ED_LI NKAGE

PPCDE_ANNOT_ENTRY_SPECI FI ED_LI NKAGE

PPODE_ANNOT_ENTRY_UTI LI ZED_LI NKAGE

PPODE_ANNOT_ENTRY_| MPLEMENTED_LI NKAGE

PPCDE_ANNOT_RETURN_SPECI FI ED_LI NKAGE

PPCDE_ANNOT_OPTI M ZATI ON_LAST

PPODE_ANNOT _RESERVED_LAST

65

65

66

67

68

69

70

95

96

96

97

98

99

100

101

127

127

(V5.1B -) First restrictive
annotation tag. (See
Section 10.3.)

(V5.1B -) Restricted
offset annotation. (See
Section 10.3.1.2.)

(V5.1B -) Restricted
instruction annotation. (See
Section 10.3.1.3.)

(V5.1B -) Restricted
instruction sequence
annotation. (See
Section 10.3.1.4.)

(V5.1B -) Restricted
call annotation. (See
Section 10.3.1.5.)

(V5.1B -) Restricted
entry annotation. (See
Section 10.3.1.6.)

(V5.1B -) Restricted
return annotation. (See
Section 10.3.1.7.)

(V5.1B -) Last restrictive
annotation tag. (See
Section 10.3.)

(V5.1B -) First optimization
enabling annotation. (See
Section 10.3.)

(V5.1B -) Jump table
annotation. (See
Section 10.3.1.8.)

(V5.1B -) Call specified
linkage annotation. (See
Section 10.3.1.9.)

(V5.1B -) Entry specified
linkage annotation. (See
Section 10.3.1.10.)

(V5.1B -) Entry utilized
linkage annotation. (See
Section 10.3.1.11.)

(V5.1B -) Entry implemented
linkage annotation. (See
Section 10.3.1.12.)

(V5.1B -) Return specified
linkage annotation. (See
Section 10.3.1.13.)

(V5.1B -) Last optimization
enabling annotation. (See
Section 10.3.)

(V5.1B -) Last object
annotation tag. (See
Chapter 10.)

Symbol Table 6-7

6.3 Symbol Table Usage

6.3.1 Levels of Symbolic Information

Different levels of symbolic information can be stored with an object file. Compilers
often provide options that allow the user to choose the desired level of symbolic
information for their program. This choice may be influenced by size considerations
and debugging needs. A trade-off exists between the benefit of saving space in the
object file and the amount of information available to tools that consume symbolic
information.

It is also possible to change the amount of symbolic information present in a
program that has already been compiled and linked. Information can be added

or deleted. Two of the most common and useful operations are locally stripping
and fully stripping the symbol tables in executable files. Tools that modify linked
executables, such as instrumentation tools and code optimizers, may rewrite parts
of the symbol table to reflect changes that they made.

6.3.1.1 Compilation Levels

The representation of symbolic information supported by compilers can be broken
down into four levels:
Minimal- Only information required for linking

2. Limited— Source file and line number information for profiling and limited
debugging (stack-tracing)

3. Full- Complete debugging information for non-optimized code
Optimized— Debugging information for optimized code
These levels correspond to the system compiler switches - g0 (minimal), - g1

(limited), - g2 (full), and - g3 (optimized). Table 6—2 shows the symbol table
sections that are produced by system compilers at each compilation level.

Table 6—2: Symbol Table Sections Produced at Various Compilation Levels
Compilation Level

Symbol Table Section Minimal Limited Full Optimized
Symbolic header Yes Yes Yes Yes
File Descriptors Yes Yes Yes Yes
External Symbols Yes Yes Yes Yes
External Strings Yes Yes Yes Yes
Procedure Descriptors Yes Yes Yes Yes
Line Numbers No Yes Yes Yes
Relative File Descriptors No No Yes Yes
Optimization Symbols No Partial Yes Yes
Local Symbols No Partial Yes Yes
Local Strings No Partial Yes Yes
Auxiliary Symbols No Partial Yes Yes

The minimal level of symbolic information that may be produced during
compilation includes only the symbol information required for the linker to function

6-8 Symbol Table

properly. This includes external symbol information that is needed to perform
symbol resolution and relocation.

If the limited level of symbolic information is requested, line number entries are
generated, as well as external symbol information and procedure descriptors. In
addition, local symbols for procedures (and the corresponding auxiliary symbols,
optimization symbols, and local strings) are present. Limited symbolic information
is sufficient to meet the needs of profiling tools. The information present at this
level is a subset of that required for full debugger support.

If full symbolic information is included, all symbol table sections are produced in
full. This level enables full debugging support with complete type descriptions for
local and external symbols. Optimization is disabled.

Optimized symbolic information is designed to balance the aims of performance
and debugging capabilities. This level supplies the same information as the full
debugging option, but it also allows all compiler optimizations. As a result, some of
the correlation is lost between the source code and the executable program.

On Tru64 UNIX systems, users can choose to compile their programs with any
one of the four levels of symbolic information. The options - g0, - g1, and - g2
specify increasing levels of symbolic information. The system compiler’s default is
to produce the minimal level (- g0). Debugging of optimized code (- g3) is supported
by the | adebug debugger.

6.3.1.2 Locally Stripped Images

Objects can be produced with only global symbolic information stored in the symbol
table. Selection of the - x option causes the linker to create a locally-stripped
object. Reasons for stripping local symbolic information include reducing file

size and limiting the amount of symbolic information available to end users of

an application.

A locally-stripped object is very similar to an object produced with minimal
symbolic information (see Section 6.3.1.1). The difference is the consolidation of file
descriptors, which the linker does only for locally-stripped objects.

In a locally-stripped image, the file descriptors are included solely for the purpose
of identifying source file languages. One file descriptor is present for each source
language involved in the compilation. These file descriptors will have their adr
field set to addr essNi | indicating the file descriptors cannot be used to identify
text addresses.

Version Note

The preceding use of addr essNi | is supported in symbol table format
V3.13 and greater. In symbol table formats less than V3.13, the file
descriptor adr value should be ignored.

The procedure descriptor table is present in full but is rearranged to group
procedures by source language. All procedure descriptors for procedures written
in a particular source language are thus contiguous, and they reflect the file
descriptor’s information.

External symbols are also present in a locally-stripped image. The file indices (i f d
field) of the external symbols are updated to identify the generic file descriptor for
the appropriate source language. The index fields are set to zero to indicate that
no type information is available. External symbols with the storage class scNi |
are removed. These are debugging symbols that are not normally produced for
minimal symbol tables.

Symbol Table 6-9

Limited debugging is possible with locally-stripped objects. Because the procedure
descriptors are retained, stack traces are possible. External symbol information
can also be viewed, and language-dependent handling of symbols (for example,
C++ name demangling) is preserved.

A linked executable file can be locally stripped at any time after its creation
using the command ost ri p - x. The output is the same as described above. This
operation may also alter the raw data of the . corment section. See Chapter 15
for details.

6.3.1.3 (Fully) Stripped Images

Executable files may be fully stripped at any time after creation using either the
stri p command or the command ostri p -s. Stripping an executable will result
in complete removal of the symbol table, including the symbolic header. The file

header fields f _synptr and f _nsyns are set to zero to indicate that the file has
been stripped.

This operation may also alter the raw data of the . corment section. See
Chapter 15 for details.

6.3.2 Source File Merging

Much of the complication of source information stems from the "include" system.
When a compilation involves several source files, there may be duplication of the
header files included in each source file, or of the source files themselves. To avoid
repetition of header file information in the linked object, the linker merges the
input objects’ included files wherever possible. Compilers mark file descriptors as
mergeable or unmergeable. The linker then examines the input file descriptors and
performs the merge whenever possible.

The linker considers two file descriptors to be mergeable if all of the following
criteria are met:

The file descriptor f Mer ge bit is set in both (marked as mergeable by compiler).
Files have the same name.

Files are written in the same language.

Files contain the same number of local and auxiliary symbols.

A e

Checksums match.

The checksums match if either:

a. Neither file’s first auxiliary record is a bt Checksum

b. Both files’ first auxiliary record is a bt Checksumand they are identical.

C++ header files may be divided into separate entries for the mergeable and
unmergeable parts of the headers. When this occurs, the unmergeable portion is
entered as a file with a mangled name as described in Section 13.3.3.

The role of the relative file descriptor (RFD) tables is to track file-relative
information after merging. A relative file descriptor table entry maps the index
of each file at compile time to its index after linking. After linking, local or
auxiliary symbols must be accessed through the RFD table to obtain the updated
file descriptor index. This mechanism is necessary because the indices in the local
symbol table are not updated when files are merged.

Figure 6-3 is an example of the use of the relative file descriptor table.

6-10 Symbol Table

Figure 6-3: Relative File Descriptor Table Example

#include a.h #include b h
#include b.h #¥include a.h
dEl’[c '['ab '
0) dat.c
1)tab.c
File
2)ah Descriptors
3) b.h (merged)
datc —— 0) 0
1)2 Relative
2) 3 File
tab ¢ > o1 Descriptors
13 (per file)
2) 2

For a symbol reference composed of a file index and symbol index (offset within
file), the relative file descriptor table is used as follows:

1. To look up given file index in the RFD table to get the updated file index.

2. To look up new file index in the (merged) file descriptor table to get the base of
symbols for that file.

3. To add symbol index to file’s base to access the symbol entry.

See Section 11.3.2.3 for the representation of relative indices in the auxiliary
symbol table.

6.3.3 Optimization Symbols

Version Note

Optimization symbols are supported for symbol table format V3.13.
and greater.

The optimization symbols section gives individual producers and consumers the
ability to communicate information about any aspect of the object file, in any
form they choose. New information can be generated at any time with minimal
coordination between all producers and consumers.

The optimization section is organized on a per-procedure basis. Each procedure
descriptor has a pointer to the optimization symbols in the field PDR.i opt . If

no optimization symbols are associated with the procedure, the field contains

i opt Ni | . Otherwise, it contains the index of the first optimization symbol entry
for this procedure. Consumers should access the optimization symbols through the

Symbol Table 6-11

procedure descriptors. The optimization section is not present in a locally-stripped
object.

This section consists of a sequence of zero or more Per-Procedure Optimization
Descriptions (PPODs), as shown in Figure 6—4. Each PPOD’s internal structure
consists of two parts:

1. A leading sequence of structured entries using a Tag-Length-Value model to
describe subsequent raw data. The structure of the PPOD entry can be found
in Section 6.2.3.

2. The raw data area.

Figure 6—4: Optimization Symbols Section

HDRFR. chOptOffset +
FDE. ioptBase+ > —EoTE oT —
PDE iopt Al
1op FPODE _EXT SRC
PEODE END
|: PPOD O
extended source
location information
PDE.10pt ? I TTODE STAMT n
PPODE EXT SRC
<other entry type>
FPPODE END
extended source PPOD 1
location information
—
_ data
FDE 1optBaze +]
PLE.1opt TPODE STAMD 7
(file boundary) Zother eniry type> PPOD 2
FPPODE END _

This section has the following alignment requirements:

¢ Octaword (16-byte) alignment of the beginning of the section.

e Octaword (16-byte) alignment of the beginning of the raw data area.
e Octaword (16-byte) alignment of each PPOD.

Object file producers must produce either an empty optimization symbols section
or a valid one. An empty one has the symbolic header fields cbOpt O f set and

i opt Max set to zero. If an optimization section is present, but a particular file
does not contribute to it, the file descriptor field copt is set to zero. In this case,
all procedure descriptors belonging to the file must have their i opt fields set
toioptNil.

Tools that both read and write object files must consume a valid optimization
symbols section (if present in the input file) and produce an equivalent and valid
section in its output file. If a tool does not know how to process the section contents,
the section must be omitted from the output file. If a tool does know how to process

6-12 Symbol Table

portions of the optimization symbols, those portions may be modified and the rest
should be removed. The linker concatenates input optimization symbols sections
into one output section without reading or modifying any of the entries.

The format and flexible nature of this section are similar by design to the

. conment section. The structures are the same size and contain the same fields
(with different names), and the rules of navigation are the same. The primary
difference is that the optimization section contains procedure-specific information;
whereas, the comment section contains object-specific information.

Symbol Table 6-13

v

Line Number Information

The final executable image for a program bears little resemblance to the source
code files from which it was created. One of the principal functions of the symbol
table is to track the relationship between the two so that the debugger is able to
describe the resulting program in a way that the programmer can recognize.

Source file and line number information provide the data necessary to convert
between locations in source code and the generated machine instructions.

7.1 New or Changed Line Number Features
Tru64 UNIX V5.1 includes the following new or changed features:

e A new ESLI command to describe gaps in address ranges (see Section 7.3.1.2)

Version 3.13 of the symbol table includes the following new or changed features:

e Extended Source Location Information (see Section 7.3.1.2)

7.2 Structures, Fields, and Values for Line Numbers

Unless otherwise specified, all structures described in this section are declared in
the header file sym h, and all constants are defined in the header file syntonst . h.

7.2.1 Line Number Entry (LI NER)

Line numbers are represented using two formats: packed and expanded.

The packed format is a byte stream that can be interpreted as described in
Section 7.3.1.1 to build an expanded table that maps instructions to source line
numbers. The LI NER type is used to refer to a single entry in the expanded table.
It is declared as:

typedef int LINER *pLINER;

A second, newer form of line number information is located in the optimization
symbols section. See Section 6.2.3 and Section 7.3.1.2.

7.3 Line Number Usage

7.3.1 Line Number Information

For a debugger to be effective, a connection must be made between
high-level-language statements in source files and the executable machine
instructions in object files. Line number entries map executable instructions to
source lines. This mapping allows a debugger to present to a programmer the
line of source code that corresponds to the code being executed. The line number
information is produced by the compiler and should be rewritten if an application
such as an instrumentation tool or an optimizer modifies code.

Line number information is emitted in two forms, one found in the line number
table and one in the optimization symbol table (see Section 6.3.3).

The line number information found in the optimization symbol table is referred
to as ESLI (extended source location information). This is a new form of line
number that augments the information in the line number table. ESLI will only

Line Number Information 7-1

be present for procedures that cannot be described accurately by entries in the
line number table.

Version Note

In symbol table formats less than V3.13 line number information is
found exclusively in the line number table.

7.3.1.1 The Line Number Table

7-2

Line number information is generated for each source file that contributes
executable code to a program. Within each source file, line numbers are organized
by procedure, in the order of appearance in the file. The line number symbol table
section is produced only when a program is compiled with limited or greater
symbolic information (see Section 7.3.1).

Figure 7-1 illustrates the organization of the line number table.

Figure 7-1: Line Number Table

File 1
Froc 1
Froc 2

Froc M
File 2

Proc 1

Froc 2

Froc M
File M
Froc 1

Froc 2
Froc

The order outlined in Figure 7-1 is not guaranteed to match the ordering of file
descriptors or procedure descriptors in those tables. The starting offset for a
procedure’s line table entries can be computed by adding the procedure descriptor’s
cbLi nek f set to the containing file descriptor’s cbLi neCf f set . The count of
line number entries for a specific procedure can only be determined by finding

the starting offset of the next procedure’s entries in the line number table. This
calculation is illustrated by the proc_pl i ne_count () function in the packed line
number programming example in Section 18.1.

Alternate entry points have a starting line number, but they have no specific ending
line number. Procedure descriptors for a procedure and each of its associated
alternate entry points share a common end offset in the line number table. See
Section 11.3.1.9 for more information on alternate entry points.

The line number table has two forms. The "packed" form is used in the object file.
The "expanded" form is a more useful representation to programmers and can be
derived algorithmically (or by API) from the packed form.

The packed line numbers are stored as bytes. Each packed entry within the single
byte value consists of two parts: count and delta. The count is the number of
instructions generated from a source line. The delta is the number of source lines

Line Number Information

between the current source line and the previous one that generated executable
instructions.

Figure 7-2 shows how these two values are represented.

Figure 7-2: Line Number Byte Format
Bit:
7 0

) RV e The g

Delta Count

The four-bit count is interpreted as an unsigned value between 1 and 16 (0 means
1, 1 means 2, and so forth). A zero value would be wasted when no instructions
are generated for a source line and, as a result, no line number entry will exist
for that line.

The four-bit delta is interpreted as a signed value in the range -7 to +7. Code
generators may produce instructions that are not in the same order as the
corresponding source lines. Therefore, the offset to the "next" source line may be a
forwards or backward jump.

Either of these quantities may fall outside the representable range. For a delta
outside the range, an extended format exists (as shown in Figure 7-3). This
extended format can represent delta values in the range -32768 to 32767. Delta
values outside of this range are not representable. This is a permanent restriction
of the packed line number format.

Line Number Information 7-3

Figure 7-3: Line Number 3-Byte Extended Format
Bit:
7 0

" RV e TheT d

Constant Count

Bit:

—_—

Upper 8 bits of Delta
Bit:

o
"
Lower 8 bits of Delta

For a count outside the range, one or more additional entries follow, with the
delta set to zero.

If both fields are out of range, the delta is handled first. An extended-format delta
representation is followed by an entry with the delta bits set to zero and the
remainder of the count contained in the count value.

The packed line number format can be expanded to produce the
instruction-to-source-line mapping that is needed for debugging. A sample program
is provided in Section 18.1 to illustrate interpretation of packed line numbers.

The following source listing of a file named | i nes. ¢ provides an example that
shows how the compiler assigns line numbers:

1 #i ncl ude <stdio. h>

2 mai n()

3

4 char c;

5

6 printf("this programjust prints input\n");
7 for (;;) {

8 if ((c =fgetc(stdin)) != ECF) break;

9 I* this is a greater than 7-1ine comment
10 * 1

11 * 2

12 * 3

13 * 4

14 * 5

7-4 Line Number Information

15 * 6

16 * 7

17 */

18 printf("%", c);
19 } /* end for */

20 } /* end main */

The compiler generates line numbers only for the lines 2, 6, 8, 18, and 20; the other
lines are either blank or contain only comments.

Table 7-1 shows the packed entries’ interpretation for each source line.

Table 7-1: Line Number Example

Source Line LI NER contents Interpretation

2 03 Delta 0, count 4

6 44 Delta 4, count 5

8 29 Delta 2, count 10
18 1 88 00 Oa Delta 10, count 9
19 10 Delta 1, count 1

20 14 Delta 1, count 5

Table Note:

1. Extended format (delta is greater than 7 lines).

The compiler generates the following instructions for the example program:

[lines.c: 2] 0x0: | dah ap,
[lines.c: 2] 0x4: | da ap,
[lines.c: 2] 0x8: | da sp,
[lines.c: 2] Oxc: stq ra,
[lines.c: 6] 0x10: I dg ao,
[lines.c: 6] 0x14: I dg t12,
[lines.c: 6] 0x18: jsr ra,
[lines.c: 6] Oxlc: | dah ap,
[lines.c: 6] 0x20: | da ap,
[lines.c: 8] 0x24: I dg ao,
[lines.c: 8] 0x28: I dg t12,
[lines.c: 8] 0x2c: jsr ra,
[lines.c: 8] 0x30: | dah ap,
[lines.c: 8] 0x34: | da ap,
[lines.c: 8] 0x38: and vO,
[lines.c: 8] 0x3c: stq vO,
[lines.c: 8] 0x40: xor to,
[lines.c: 8] 0x44: bne to,
[lines.c: 18] 0x48: I dg t2,
[lines.c: 18] Ox4c: sl | t2,
[lines.c: 18] 0x50: sra t2,
[lines.c: 18] 0x54: I dg ao,
[lines.c: 18] 0x58: I dg t12,
[lines.c: 18] O0x5c: jsr ra,
[lines.c: 18] 0x60: | dah ap,
[lines.c: 18] 0x64: | da ap,
[lines.c: 19] 0x68: br zero,
[lines.c: 20] Ox6c: bi s zero,
[lines.c: 20] 0x70: I dg ra,
[lines.c: 20] 0x74: | da sp,
[lines.c: 20] 0x78: ret zero,
[lines.c: 20] Ox7c: call _pal halt

1(t12)
-32592(gp)
-16(sp)
0(sp)
-32720(gp)
-32728(gp)
(t12), printf
1(ra)
-32620(gp)
-32736(gp)
-32744(gp)
(t12), fgetc
1(ra)
-32640(gp)
oxff, tO
8(sp)
oxff, tO
0x6¢
8(sp)
0x38, t2
0x38, al
-32752(gp)
-32728(gp)
(t12), printf
1(ra)
-32688(gp)
0x24
zero, vO
0(sp)
16(sp)
(ra), 1

After expanding packed line numbers, the following instruction-to-source mapping
(formatted i nstructi on nunber. source |ine nunber)is produced by odunp

for the -1 option:

0. 2 1. 2
3. 2 4. 6
6. 6 7. 6
9. 8 10. 8
12. 8 13. 8
15. 8 16. 8
18. 18 19. 18

[y
[N
W WWwWwmwo o N

N
©:
i

Line Number Information

7-5

21. 18 22. 18 23. 18

24. 18 25. 18 26. 19
27. 20 28. 20 29. 20
30 20 31 20

Header files included in an object have no associated line numbers recorded in
the symbol table. Line number information for included files containing source
code is not supported by the packed line number format. The following section
describes a more comprehensive line number representation that includes line
number information for header files.

7.3.1.2 Extended Source Location Information (ESLI)

7-6

Version Note

ESLI is supported for symbol table format V3.13 and greater.

The line number table does not correctly describe optimized code or programs with
untraditional source files, resulting in images that are difficult to debug. Extended
Source Location Information (ESLI) is intended to provide more information to
enable debugging of optimized programs, including PC and line number changes,
file transitions, and line and column ranges. ESLI is essentially a superset of the
older line number table.

ESLI is stored in the optimization symbols section. This information is accessible
on a per-procedure basis from the procedure descriptors. See Section 6.3.3 for more
detail on accessing information in the optimization symbols section.

ESLI is a byte stream that can be interpreted in two modes: data mode or
command mode. Currently, two formats are defined for data mode. These are
designated as "Data Mode 1" and "Data Mode 2". Additional data modes may
be defined as needed.

Figure 7—4: ESLI Data Mode Bytes
Data Mode 1
Bit:
7 0

H_.\/_,_. k—\/__/
Delta Count
Data Mode 2
Bit:
7 0 7 0

Delta Count Column #

Data Mode 1 is the initial mode for a procedure’s ESLI. Data Mode 1 is identical to
the packed line number format with the exception of the interpretation of the delta
PC escape value 0x80 (which indicates a switch to command mode).

In Data Mode 2, each entry consists of two bytes. The first byte is identical to
the encoding and interpretation of Data Mode 1. The second byte is an absolute
column number (from 0 to 255), where column number 0 indicates that column

Line Number Information

information is missing or not meaningful for this entry. The escape from Data
Mode 2 to command mode consists of a delta PC escape value set to 0x80 and
column number set to 0.

In command mode, each byte is either a command or a command parameter. For
a command byte, the low-order six bits are a command code, and the two high
bits are used as flags, as shown in Figure 7-5. The "mark" flag, if set, announces
that a new state has been established. Several commands may be required to
fully describe a new state. The "resume" flag, if set, indicates the end of command
mode. The next byte following a command with "resume" set will be a data mode
byte. The effective data mode can be changed by SET_DATA MODE commands in
command mode, otherwise the data mode that was in effect prior to the escape to
command mode will be resumed. See Table 7-2 for a complete list of commands.

Figure 7-5: ESLI Command Byte
Bit:
7 0

= -
-
- -

I
Marlk TR
command code
Resume

Command parameters are stored in LEB (Little Endian Byte) 128 format. See
Section 1.4.6 for a description of this data representation. PC deltas are always
expressed as machine instruction offsets and must be scaled by the size of a
machine instruction before adding to the current PC. No other deltas need to be
scaled.

Table 7-2 shows how to interpret the bytes in command mode. These definitions
can be found in the system header file | i nenum h.

Table 7-2: ESLI Commands

Name Value Parameters by Type
ADD PC 1 SLEB

ADD_LI NE 2 SLEB

SET_COL 3 LEB

SET _FILE 4 LEB

SET_DATA MODE 5 LEB

ADD LI NE _PC 6 SLEB, SLEB
ADD LI NE_PC_COL 7 SLEB, SLEB, LEB
SET_LI NE 8 LEB

SET_LI NE_COL 9 LEB, LEB
SEQUENCE_BREAK 10 SLEB

ADD_PC Parameter is a signed value to add to the current PC value.

Line Number Information 7-7

ADD_LI NE

SET_coL

SET_FI LE

SET_DATA_MODE

ADD_LI NE_PC

ADD_LI NE_PC_COL

SET_LI NE

SET_LI NE_COL

SEQUENCE_BREAK

Parameter is a signed value to add to the current line
number.

Parameter is an unsigned value that represents a

new column number. The column number is used to
associate the PC with a particular location within a
source line. Column number parameters use a zero-based
representation that must be adjusted by adding 1.

Parameter is an unsigned value used to switch file context.
This command is typically followed by a set _| i ne
command.

Parameter is an unsigned value used to set the data mode

that will be in effect when data mode is resumed. The only
parameter values that are currently accepted are 1 and 2.

Additional data modes may be defined in future releases.

Both parameters are signed values. The first is added to
the line number and the second is added to the PC.

The first two parameters are signed values and the third
is an unsigned value. The first two are added to the line
number and PC respectively. The third is used to set the
column number.

Parameter is an unsigned value that sets the current line
number.

Both parameters are unsigned values. The first represents
the line number and the second represents the column
number.

Indicates the end of a contiguous sequence of address
descriptions. The value of the parameter is added to

the current address, and the resulting address becomes
the starting address of the next sequence of address
descriptions. The current file and line number continue to
apply as the current values for the new sequence as well.
(These can, however, be changed using the appropriate
commands.)

Version Note

The SEQUENCE_BREAK command is supported in
Tru64 UNIX V5.1 and greater for symbol table
format V3.13 and greater.

A tool reading the ESLI must maintain the current PC value, file number, line
number, and column. Taken together, these four values represent the current
"state". Consumers must also keep track of the mode in effect to interpret the data
properly. A sample program is provided in Section 18.2 to illustrate consumption

of ESLI.

7-8 Line Number Information

Data encoded in ESLI can be represented in tabular format. The PC value and file,
line, and column numbers can be stored as a state table. The following example

shows how to build this state table.

In this example ESLI will record line numbers for a routine that includes text

from a header file.

Source listing for | i nel. c:

Source listing for | i ne2. h

/*

O

*

1
2
3
4
5
6
7
8
9
10 */
11

exanpl e using included source lines */

strcpy(mnsg,

1 /* ESLI

2

3 mai n() {

4 char *msg;

5

6 msg = (char *)O0;
7

8 #i nclude "line2.h"
9

10 printf("%", nsQg);
11 }

msg = (char *)nalloc(20);

"Hello\n");

The compiler generates the following instructions for the example program:

8

inel.
inel.
inel.
inel.
inel.
inel.
i ne2.
i ne2.
i ne2.
i ne2.
i ne2.
i ne2.
i ne2.
i ne2.
i ne2.
i ne2.
i ne2.
i ne2.
inel.
inel.
inel.
inel.
inel.
inel.
inel.
inel.
inel.
inel.
inel.
inel.

O0O0000000000 I T I I I O3J000000

11]

0x1200011d0:
0x1200011d4:
0x1200011d8:
0x1200011dc:
0x1200011e0:
0x1200011e4:
0x1200011e8:
0x1200011ec:
0x1200011f O:
0x1200011f 4:
0x1200011f 8:
0x1200011fc:
0x120001200:
0x120001204:
0x120001208:
0x12000120c:
0x120001210:
0x120001214:
0x120001218:
0x12000121c:
0x120001220:
0x120001224:
0x120001228:
0x12000122c:
0x120001230:
0x120001234:
0x120001238:
0x12000123c:
0x120001240:
0x120001244:

| dah
| da
| da
stq
stq
bi s
bi s
I dg
jsr
| dah
| da
bi s
bi s
| da
I dg
jsr
| dah
| da
ldg_u
| da
bi s
I dg
jsr
| dah
| da
bi s
I dg
I dg
| da
ret

gp, 8192(t12)
gp, 28336(gp)

sp, -16(sp)

ra, 0(sp)

s0, 8(sp)

zero, zero, sO
zero, 0x14, a0
t12, -32560(gp)
ra, (t12)

gp, 8192(ra)
gp, 28300(gp)
zero, v0, sO
zero, sO, a0
al, -32768(gp)
t12, -32600(gp)
ra, (t12)

gp, 8192(ra)
gp, 28272(gp)
zero, 0(sp)
a0, -32760(gp)
zero, sO, al
t12, -32552(gp)
ra, (t12)

gp, 8192(gp)

gp, 28244(gp)
zero, zero, vO

ra, 0(sp)
s0, 8(sp)
sp, 16(sp)
zero, (ra)

The ESLI and its interpretation for the generated code is shown in the following

table.

Line Number Information

7-9

7-10

Table 7-3: ESLI Example

Command State

(M)ark (R)esume (F)ile (L)ine (C)olumn
ESLI bytes (hex) Mode Code M R PC (hex) F L C
Initial State (from Datal 1200011d0 0 3 0
PDR)
04 Datal 1200011e4 0 3 0
30 Datal 1200011e8 O 6 0
80 Datal Escape
04 01 Cmd set_file(1) 1
48 01 Cmd set_line(l) R 1
05 Datal 120001200 1 1 0
80 Datal Escape
86 Oa 06 Cmd add_line_pc(10,6) M 120001218 1 11 O
04 00 Cmd set_file(0) 0
48 Oa Cmd set_line(10) R 10
06 Datal 120001234 0 10 O
16 Datal 120001250 0 11 O

The handling of alternate entry points differs from the handling of main entry
points. Procedure descriptors for alternate entry points are identified by a
PDR.I nHi gh value of - 1. If the PC for an instruction maps to an alternate entry
point, the following steps should be taken:

¢ Find procedure descriptor for the corresponding main entry. This is
accomplished by searching back in the procedure descriptors until a PDR is
found that is not an alternate entry (PDR.I nHi gh is not - 1).

e Access the ESLI for the procedure.

¢ Read the ESLI until the PC value matches the PDR.adr field of the alternate
entry’s procedure descriptor.

Line Number Information

8

Run-Time Information

The symbol table contains information that debuggers must interpret to find
symbols at run time. This chapter describes the information that the static symbol
table structures provides. Algorithms for determining run-time symbol addresses
are included.

8.1 New or Changed Run-Time Information Features

Tru64 UNIX V5.1B includes the following new or changed features:

e no_stack_data flag in procedure descriptors (see Section 8.2.2)

Tru64 UNIX V5.1 includes the following new or changed features:

e Tail call flag used in procedure call optimization (see Section 8.2.2)

Version 3.14 of the symbol table includes the following new or changed features:

e fullExternals flag in file descriptors to identify the usage policy for stExternal
entries (see Section 8.2.1)

Version 3.13 of the symbol table includes the following new or changed features:

e vstamp field in file descriptors to identify the symbol table version for an
individual compilation unit (see Section 8.2.1)

e Uplevel links for referencing local symbols in an outer scope (see Section 8.3.4)

8.2 Structures, Fields, and Values for Run-Time Information

Unless otherwise specified, all structures described in this section are declared in
the header file sym h, and all constants are defined in the header file syntonst . h.

8.2.1 File Descriptor Entry (FDR)

typedef struct fdr {

cof f _addr adr ;

cof f _l ong cbLi neOf f set ;
cof f _l ong cbLi ne;
cof f _l ong chSs;

cof f _int rss;

cof f _int i ssBase;

cof f_int i synBase;
cof f _int csym

cof f _int ilineBase;
cof f _int cline;

cof f _int i opt Base;
cof f _int copt ;

cof f _int i pdFirst;
cof f _int cpd;

cof f _int i auxBase;

cof f_int caux;

cof f _int r f dBase;
cof f _int crfd;

cof f _uint lang : 5;
cof f _uint fMerge : 1;
cof f _uint fReadin : 1;
cof f _uint fBigendian : 1;
cof f _uint gl evel : 2;
cof f _uint fTrim: 1;
cof f _uint reserved : 4;
cof f _uint ful | Externals : 1; (SV3.14 -)

Run-Time Information 8-1

8-2

cof f _ushort
cof f _uint

} FDR, *pFDR;

vst anp; (SV3.13 -)
reserved?2;

SIZE - 96 bytes, ALIGNMENT - 8 bytes

See Section 6.3.2 for related information.

File Descriptor Table Entry Fields

adr

cbLi neOF f set

cbLi ne

chSs

I'ss

i ssBase
i synBase

csym

i lineBase

cline

i opt Base

copt

i pdFirst

Run-Time Information

Address of first instruction generated from this source file,
which should be the same value as found in the PDR.adr
field of the first procedure descriptor for this file. If no
instructions are associated with this source file, this field
should be set to 0. File descriptors that have been merged
by source language in locally-stripped objects will have this
field set to addressNi | (-1).

Version Note

This use of addr essNi | is supported in symbol
table format V3.13 and greater.

Byte offset from start of packed line numbers to start of
entries for this file.

Byte size of packed line numbers for this file.
Byte size of local string table entries for this file.

Byte offset from start of file’s local string table entries to
source file name; set toi ssNi | (- 1) to indicate the source
file name is unknown.

Start of local strings for this file.
Starting index of local symbol entries for this file.
Count of local symbol entries for this file.

Debuggers and other tools expand the packed line numbers,
producing an array of line numbers with an entry for each
machine instruction in the program. This field is an index
for this file’s first line number entry in the expanded line
number array.

See the preceding description of i | i neBase. This field is
a count of this file’s entries in the expanded line number
array.

Byte offset from start of optimization symbol table to
optimization symbol entries for this file.

Byte size of optimization symbol entries for this file.

Starting index of procedure descriptors for this file.

cpd

i auxBase
caux

rf dBase
crfd

I ang

f Mer ge

f Readi n

f Bi gendi an

gl evel

fTrim

full External s

Count of procedure descriptors for this file.

Starting index of auxiliary symbol entries for this file.
Count of auxiliary symbol entries for this file.
Starting index of relative file descriptors for this file.
Count of relative file descriptors for this file.

Source language for this file (see Table 8-1).

Informs linker whether this file can be merged.

True if file was read in (as opposed to just created).
Unused.

Symbolic information level with which this file was
compiled. This value is not the same as the user’s idea of
debugging levels. The value mapping from the user level
- g option to the symbol table value is:

Debug switch glevel contents
-g0 2

-gl 1

-g2 0

-g3 3

Unused.

Indicates which of two usage policies apply concerning the
use of st Ext er nal entries in the local symbols associated
with the file descriptor.

If the flag is clear, then the local symbol table is produced
under the assumption that a debugger will search the
external symbol table for a name that is not found in the
current local scope.

If the flag is set, then the local symbol table is produced
under the assumption that a debugger will not search the
external symbol table for a name that is not found in the
current local scope. All external symbols that are visible in
a local scope are identified with st Ext er nal / scl nf o local
symbol table entries in file scope or lower.

Version Note

The f ul | Ext er nal s field is supported on
Tru64 UNIX V5.1B and greater for symbol table
version V3.14 and greater.

Run-Time Information 8-3

vst anp Symbol table version stamp (HDRR. vst anp) value from
the original object module (.o file) that is recorded by the
linker. The linker may combine objects that were compiled
at different times and potentially contain different versions
of the symbol table. In post-link objects, this value may or
may not match the version stamp in the symbolic header.
For pre-link objects, the value in this field will either be
zero or the same as the symbolic header stamp.

Version Note

The vst anp field is supported on Tru64 UNIX
V5.0 and greater for symbol table version V3.13
and greater.

reserved Must be zero.
reserved?2 Must be zero.

General Notes:

The i *Base fields provide the starting indices of this file’s subtables within the
symbol table sections. If the associated count fields are set to 0, the base fields
will also be set to zero.

For an explanation of packed and expanded line number entries, see the discussion
in Section 7.3.1.

Table 8-1: Source Language (| ang) Constants

Name Value Commant

| angC

| angPascal

| angFortran

| angAssenbl er
| angMachi ne

| angNi |

| angAda

| angPl 1

| angCobol

© 00 I & Ok~ W N = O

| angSt dc
I angM PSCxx
| angDECCxx

[y
o

Unused.

-
—

| angCxx

[
[\)

| angFort ran90

=
w

Not used by all compilers -
| angFor t r an might be used
instead for both {77 and 90

I angBl i ss 14
| angvax 31 Number of language codes available

8-4 Run-Time Information

8.2.2 Procedure Descriptor Entry (PDR)

struct pdr {

cof f _addr adr ;
cof f _l ong cbLi neOf f set ;
cof f _int isym
cof f _int iline;
cof f _uint regmask;
cof f _int regof f set;
cof f _int i opt;
cof f _uint fregnmask;
cof f _int fregoffset;
cof f _int franmeof f set ;
cof f _int | nLow;
cof f _int I nHi gh;
cof f _uint gp_prol ogue : 8;
cof f _uint gp_used : 1;
cof f _uint reg_franme : 1;
cof f _uint prof : 1,
cof f _uint gp_tailcall : 1; (V5.1 -)
cof f _uint reserved4 : 4, (V5.1B -)
cof f _uint no_stack_data : 1; (V5.1B -)
cof f _uint reserved : 7;
cof f _uint l ocal off : 8;
cof f _ushort franereg;
cof f _ushort pcreg;
} PDR, *pPDR

#endi f
SIZE - 64 bytes, ALIGNMENT - 8 bytes

See Section 8.3 for related information.

Procedure Descriptor Table Entry Fields

adr The start address of this procedure. Set to addr essNi |
(- 1) for procedures with no text.

Version Note

Prior to symbol table format V3.13 this field
may not be updated by the linker. To determine
the procedure start address for symbol table
formats V3.10 - V3.12, use the algorithm
described in Section 8.3.1.

cbLi neCr f set Byte offset to the start of this procedure’s packed line
numbers from the start of the file descriptor entry
(FDR.cbLi neOr f set).

isym Start of local symbols for this procedure. This symbol is
the symbol for the procedure (symbol type st Proc). The
name of the procedure can be obtained from the i ss field
of the symbol table entry.

If the object is stripped of local symbol information, this
field contains an external symbol table index for the
procedure symbol’s entry.

If this procedure has no symbols associated with it, this
field should be set toi symNi | (-1). This situation occurs
for a static procedure in an object stripped of local symbol
information.

Run-Time Information 8-5

iline

regmask

regof f set

i opt

fregmask

fregof f set

frameof f set

| nLow

[nHi gh

gp_pr ol ogue

gp_used

reg _frame

pr of

gp_tailcall

8-6 Run-Time Information

Start of line number entries (if expanded) for this
procedure. SettoilineN | (-1) toindicate that this
procedure does not have line numbers.

Saved general register mask.

Offset from the virtual frame pointer to the general register
save area in the stack frame.

Start of procedure’s optimization symbol entries. Set to
ioptNi | (-1) toindicate that this procedure does not
have optimization symbol entries.

Saved floating-point register mask.

Offset from the virtual frame pointer to the floating-point
register save area in the stack frame.

Size of the fixed part of the stack frame. The actual frame
size can exceed this value. A routine can extend its own
frame size for frame sizes larger than 2 GB or for dynamic
stack allocation requests.

Lowest source line number within this file for the
procedure. This is typically the line number of the first
instruction in the procedure, but not always. Code
optimizations can rearrange or remove instructions making
the first instruction map to a different line number.

Highest source line number within this file for the
procedure. This field contains a value of - 1 for alternate
entry points, which is how an alternate entry point is
identified.

Byte size of GP prologue.
Flag set if the procedure uses GP.

True if the procedure is a light-weight or null-weight
procedure. See the General Notes section following these
definitions for more details on procedure weights.

True if the procedure has been compiled with - pg for
gpr of profiling.

Indicates that a call to this procedure may result in a tail
call return from a different GP domain. This bit is used
exclusively for tail call optimizations.

Version Note

The gp_t ai |l cal | field is supported in Tru64
UNIX V5.1 and greater.

reserved4 Must be zero.

no_stack_data Indicates that no data is being passed on the stack to this
procedure. This flag will always be zero for procedures
with a variable number of arguments.

Version Note

The no_st ack_dat a field is supported in Tru64
UNIX V5.1B and greater.

reserved Must be zero.

| ocal of f Bias value for accessing local symbols on the stack at run
time.

framereg Frame pointer register number.

pcreg PC (Program Counter) register number.

General Notes:
For more information on call frames, see Section 8.3.2.

If the value of gp_pr ol ogue is zero and gp_used is 1, a gp prologue is present
but was scheduled into the procedure prologue. Otherwise, the gp_pr ol ogue
field gives the number of bytes occupied by the GP prologue instructions at the
procedure’s start address.

If there is a chain of tail call procedures, some of which are in the same GP domain,
and some that are in a different GP domain, then gp_t ai | cal | must be set for all
procedures in the chain. For example, suppose there is a tail call from A to B, and a
tail call from B to C. A and B are in the same GP domain, but C is in a different GP
domain. In this case gp_t ai | cal | must be set in both A’s and B’s PDR, because
callers can’t rely on the standard definition of GP after calling A. See the Alpha
Architecture Reference Manual for additional details.

For an explanation of packed and expanded line number entries, see the discussion
in Section 7.3.1.

A procedure may be heavy-, light-, or null-weight. The weight of a procedure can be
determined from its descriptor by using the following guidelines:

Weight Indications

Heavy reg_frane is 0 and bit 26 of the register mask (r egmask) is on
Light reg_frane is 1 and regof f set is ra_save

Null reg_frane is 1 and regof f set is 26

See the Calling Standard for Alpha Systems for details on the calling conventions
for different weight procedures. Note that a calling routine does not need to know
the weight of the routine being called.

Run-Time Information 8-7

8.3 Run-Time Information Usage

8.3.1 Procedure Addresses

The following pseudocode describes an algorithm for determining the procedure
start address:
if (HDRR vstanp >= 0x30D || PDR isym==isymNil)
return(PDR adr)
el se
foreach FDR in HDRR
foreach PDR in FDR
i f PDR mat ches
if (FDR csym==0) /* Use external synbol */
return (EXTR[PDR isyni.asym val ue)

el se /* Use local synbol */
return (SYMR[FDR i synbase + PDR.isyni. val ue)

If local symbol information is present for the given PDR, the i symfield identifies
the local symbol table entry that contains the start address of the procedure. If no
local symbol information is present, the i symfield identifies the external symbol
table entry containing the start address of the procedure. If no symbol information
is present for the PDR, the i symfield is set to i synmNi | and the adr field will
contain a reliable start address.

Version Note

The PDRadr field is reliably updated by the linker for symbol table
format V3.13. The preceding algorithm is recommended for determining
procedure addresses in symbol table formats less than V3.13.

8.3.2 Stack Frames

A stack frame is a run-time memory structure that is created whenever a procedure
is called. The Calling Standard for Alpha Systems specifies the stack frame format
and related code requirements. This section explains how to interpret procedure
descriptor fields related to the stack frame.

Two types of stack frames are supported: fixed-size frames and variable-size
frames. The variable frame format is used for procedures that dynamically allocate
memory and for those with very large frames. Figure 8-1 shows a fixed-size frame
and Figure 8-2 shows a variable-sized frame.

From the procedure descriptor, you can determine which type of stack frame the
procedure has. The field PDRf r armer eg stores the frame pointer register number.
If this field has a value of 30 ($sp), the stack frame is a fixed-size frame. If it has a
value of 15 ($fp), the stack frame is a variable-size frame.

8-8 Run-Time Information

Figure 8-1: Fixed-Size Stack Frame

lowr memory

$ap—
temporary
local storage frame
size

argument
home

wirtual | area

frame arguments

polnter | nassed in
memory

high memory

Figure 8-2: Variable-Size Stack Frame

low memory

$sp—s —
caller- warighle
allocated part
$p—
F
temporary E
local storage Fixed ia.:I
art
P E
argument
home
Vil"tual_\‘ area

frame 1 arouments
pointer | nassed in
Memory

high memory

For both types of stack frames, the value of PDR.f r aneof f set is the size of the
fixed part of the stack frame. In the case of a fixed-size frame, it is the entire frame
size. For a variable-sized frame, the entire frame size cannot be determined from
the symbol table. The code may dynamically increase and decrease the size of the
frame multiple times during procedure execution.

The virtual frame pointer represents the contents of the frame pointer register
at procedure entry, prior to prologue execution. The (real) frame pointer is the
contents of the frame pointer register after prologue execution. The difference

Run-Time Information 8-9

between the virtual and real frame pointer values is the fixed frame size, which is
subtracted from the $sp contents during the procedure prologue. Note that stack
offsets recorded in the symbol table are relative to the virtual frame pointer, not
the real value used at run time.

The contents of the frame pointer register at are used at run time as the base
address for accessing data, such as parameters and local variables, on the stack.
See Section 8.3.3 for details.

8.3.3 Local Symbol Addresses

Local variables and parameters may be stored in registers or on the stack. Those
stored in registers (identified by a storage class of scRegi st er) do not have
addresses. For local variables and parameters with addresses, this section explains
how to calculate their run-time locations from the symbol table information.

To calculate the run-time address for a local variable (st Local) based on its
symbol table value:

Frame pointer - PDR |ocal off + SYMR val ue

To calculate the run-time address for a parameter (st Par am based on its symbol
table value:

Frame pointer - argument_hone_area_size + SYMR val ue

The argument home area is a portion of the stack frame designated for parameter
storage. See Figure 81 for an illustration. For historical reasons, the size of this
area is always 48 bytes.

The calculations above must be performed at run time when the actual frame
pointer value is known. Note that the value becomes valid only after the procedure
prologue has executed.

To calculate the locations based on static information, convert the symbol’s value to
an offset from the real frame pointer:

Local:

PDR. franmeof fset - PDR | ocal off + SYMR val ue
Parameter:

PDR. franmeof fset - 48 + SYMR val ue

The resulting offsets are always positive values because the frame pointer contains
the address of the lowest memory in the fixed part of the stack frame at run time.

8.3.4 Uplevel Links

Version Note

Uplevel links are supported in symbol table format V3.13 and greater.

An uplevel link is the real frame pointer of an ancestor of a nested routine. The
routine nesting may be a feature of the language (such as Pascal), or the nesting
may occur in optimized code which has been decomposed for parallel execution into
smaller routines. Uplevel links provide debuggers a method of finding all local
symbols associated with the ancestor routine.

When a procedure is passed a static link, that static link will be represented within
the scope of the procedure definition as a local automatic symbol with a special

8-10 Run-Time Information

name beginning with " __St ati cLi nk. ". The lifetime of this symbol begins after
the procedure prologue has been executed.

The static link symbol will occur between the procedure’s parameter definitions
and the first st Bl ock symbol.

The full name of the symbol will be " __St ati cLi nk. " followed by a positive
decimal integer with no leading zeros. This integer value identifies the number of
levels up the ancestor tree the static link points to.

For example, if the name is " __St ati cLi nk. 3" it will contain the static link
of the procedure in which it is defined, and that procedure’s static link points
to a stack frame that is three levels up in the procedure’s ancestor tree, the
great-grandfather of the procedure.

Figure 8-3: Representation of Uplevel Reference

Local Symbols Execution Stack
outer procedure
<parameterss
low memory
block (start)
stack frame for
nested procedure
$ip—» P
nested procedure <locals>

<parameters=

/ [
_ ataticLankc 1

stack frame for

outer procedure
block (start) $p—»
end (block) <locals=
and (procedure)
high memory

end (block)

end (procedure)

Debuggers of Tru64 UNIX object files need to use the uplevel link information to
determine which symbols are visible at a location in the program and to compute
the addresses of local symbols in ancestor routines. When the debugger needs the
current value or address of a name that might be defined as an uplevel reference,
two separate actions may be required: finding the procedure that defines the
currently visible instance of that name, and finding the address of the currently
visible instance of that name. If only type information is required, finding the
procedure that defines the name may be sufficient.

Run-Time Information 8-11

Finding the defining procedure is accomplished by repeatedly looking up the
name in the local symbol table of a chain of procedures that extends from the
current procedure through its chain of ancestors until either the name is found in
a procedure or the end of the chain of ancestors is reached without finding the
name. If this search terminates without finding the name, the debugger should
conclude that the name is not visible by uplevel reference at the current location in
the program.

When searching for the desired procedure, the debugger should count how many
levels in the ancestor chain were traversed before finding the name. If zero levels
were traversed, the name is defined within the current procedure and is not an
uplevel reference. The number of levels traversed is assumed to be in the variable
Level sToGo in the algorithm below.

Finding the address for the name involves locating static link values and
dereferencing them with appropriate offsets. Basically, while the number of levels
to be traversed is greater than zero, find the static link symbol for the current level
and obtain its value. Finally, add the desired symbol’s offset from the real frame
pointer to the final static link value.

The recommended algorithm for finding the address is as follows:

Level sToGo = <from nane | ookup above>
NewPr oc = Current Procedure
NewFr ane = Fr anePoi nt er Val ue(Cur r ent Procedur e)
Failed = fal se
while (Level sToGo > 0 && !Fail ed)
StaticLink = FindStaticLi nkSyn{ NewPr oc)
if (StaticLink == NULL)
Failed = true
el se
NewFr ane = *(NewFrane + StaticLi nk->synbol . of f set)
Level s = StaticLinkLevel s(Stati cLi nk)
Level sToGo = Level sToGo - Levels
for (; Levels > 0; Levels--)
NewPr oc = NewPr oc- >proc. par ent

if Fai | ed is true after executing this algorithm, required information about static
links is missing in the symbol table, and an error has occurred. If Level sToGo
ends up less than zero, the optimizer’s static link optimization has eliminated

a static link level that would be needed to compute the address of the name. It

is recommended that debuggers inform the user that optimization prevents the
debugger from computing the address of the name.

If Fai | ed is false and Level sToGo is equal to zero, the address for the currently
visible instance of the name is NewFr ane plus the offset of the name with respect
to the real frame pointer for NewPr oc.

The function St ati cLi nkLevel s returns the integer at the end of the name for
the indicated static link symbol.

8.3.5 Finding Thread Local Storage (TLS) Symbols

8-12

This section explains how to interpret symbolic information for TLS symbols
(identified by a storage class of scTl sDat a or scTl sBss). See Section 3.3.9 or the
Programmer’s Guide for general information on TLS.

A TLS symbol’s value contains its offset from the start of the TLS region for that
object. This offset can be used at process execution time to determine the address
of the TLS symbol for a particular thread.

A debugger can calculate TLS symbol addresses by looking up the address of the
TLS region using run-time structures and adding the offset of the TLS symbol to
that address. The following formula can be used to calculate TLS symbol addresses.

TLS sym address = *(TEB. TSD + __tlskey) + SYMR val ue

Run-Time Information

A detailed description of this formula follows:

Get the address of the Thread Environment Block (TEB).

2. Get the address of the Thread Specific Data (TSD) array from the TEB
structure.

3. Get the offset of the TLS pointer in the TSD array.

This offset is normally stored in a . | i t a or . got entry. This value should be
accessed using the symbol __t | skey . In spite of the fact that __t| skey is a
label symbol, no ampersand is used in this context because the value that the
label points to is being retrieved. The address of __t | skey will need to be
adjusted by the address mapping displacement in the same manner that the
debugger adjusts addresses of text and data symbols.

For static executables, the . | i t a entry contains the constant offset (2048).
This offset identifies the first and only T'SD slot (256) that will be allocated
for the TLS pointer.

For shared objects, the . got entry labeled by __t | skey is initially 0,
indicating that the TSD slot has not been allocated yet. After the object’s
initialization routines have run, a TSD key will be allocated and the . got
entry will contain its offset.

4. Get the TLS pointer value. The TLS pointer is a 64-bit address set to the
start of the TLSS Region.

5. Calculate the address of the TLS symbol by adding the offset of the TLS
symbol to the TLS pointer value.

TLS common symbols (scTl sConmon) should not occur in linked objects, so
debuggers should not need to support them. Executables and shared libraries can
only reference TLS symbols that they define, so successfully linked objects should
have not TLS undefined or TLS common symbols.

Run-Time Information 8-13

9

Profile Feedback Data

Version Note

Profile feedback data is supported in symbol table format V3.13 and
greater.

Profile feedback data is stored in entries in the optimization symbols table with
tag type PPODE_PRCFI LE_| NFO. The data contained in this section is intended for
HP internal use only. It contains execution profiling feedback used by compilers
and the omutility.

9.1 New or Changed Profile Feedback Data Features

No changes have been introduced to profile feedback data.

9.2 Structures, Fields, and Values for Profile Feedback Data

No structure types or enumeration values are used in representing profile feedback
data.

9.3 Profile Feedback Data Usage

Profile feedback data contains relative file descriptor and local symbol table
indexes. If an object tool removes, adds, or rearranges relative file descriptors or
local symbol table entries it must also remove all optimization symbol table entries
including the profile feedback data.

Profile Feedback Data 9-1

10

Object Annotation Data

Version Note

object annotation data is supported in Tru64 UNIX V5.1B and greater.

Object annotation data is stored in entries in the optimization symbols

table with tag types in the range PPODE_ANNOT_RESERVED FI RST to
PPCODE_ANNOT_RESERVED LAST. The data contained in this collection of PPODE’s
is used to characterize register usage, call linkage, and other aspects of a
procedure’s text pertaining to calling standard conventions. This data identifies
the level of compliance with coding conventions that enable post-link optimizations
performed by the spi ke utility.

10.1 New or Changed Object Annotation Data Features

Tru64 UNIX V5.1B includes support for object annotation data as described by
this chapter.

10.2 Structures, Fields, and Values for Object Annotation Data

All structure types and enumeration values described in this section are defined in
the header files sym h and syntonst . h.

10.2.1 Annotation Summary Header

type struct {

cof f _uint version : 8;

cof f _uint saf e_pc_usage : 1;
cof f _uint saf e_gp_usage : 1;
cof f _uint safe_references : 1;
cof f _uint safe_targets : 1;
cof f _uint safe_frame : 1;
cof f _uint safe_calls : 1;
cof f _uint safe_l i nkage : 1;
cof f _uint safe_floating_use : 1;
cof f _uint arch : 8;

cof f _uint tune : 8;

cof f _uint os_version : 8;
cof f _uint junp_tabl e_annot : 1;
cof f _uint reserved : 23;

} ANNOT_SUMMARY_VAL, *pANNOT_SUMVARY_VAL;

SIZE - 8 bytes, ALIGNMENT - 8

Annotation Summary Header Fields

ver sion Annotation summary version. This field contains the
constant ANNOT _VERSI| ON, currently defined as 1.

saf e_pc_usage PC values are only generated from standard linkage
mechanisms, relocations, branch targets, or explicit
reading of the PC via a branch to the next instruction
in a GP reload sequence. Exceptions to this rule are
annotated in exact sequences. This flag must be cleared
if the exceptions are not annotated.

Object Annotation Data 10-1

10-2

saf e_gp_usage

saf e _references

safe_targets

safe franme

safe calls

saf e_l i nkage

safe float-
I ng_use

arch

tune

0Ss_version

j unp_t abl e_annot

reserved

Object Annotation Data

GP is only accessed via instructions with relocations or
explicit save/restore. This flag must be cleared if the
procedure contains exceptions to this rule.

References are not volatile. Explicit volatile accesses must
be annotated as volatile or exact. This flag must be cleared
if the exceptions are not annotated.

All relocated targets are not volatile, handler targets,
uplevel referenced, etc., unless explicitly annotated. This
flag must be cleared if the exceptions are not annotated.
(Note, if a non-relocated target is somehow volatile,

saf e_pc_usage must be cleared.)

The procedure’s stack frame is entirely private to the code
for this procedure. There are no static links, $sp-derived

accesses from callees, etc. If there are exceptions this flag
must be cleared.

Calls use standard linkage (live in:$r 16 through $r 21
and $f 16 through $f 21; live out: $r 0, $r 1, $f 0, and
$f 1; standard kill mask). Calls do not have abnormal
flow, different $sp values on return, etc. Exceptions
are annotated as restricted calls. If exceptions are not
annotated this flag must be cleared. (There may or may
not be additional annotations describing more detailed
linkage information.)

The procedure’s entry and exit use standard linkage (live
in:$r 16 through $r 21 and $f 16 through $f 21; live out:
$r0, $r 1, $f 0, and $f 1). The procedure has no specified
or implemented callers with restricted linkages, and no
results are passed on the stack. If there are exceptions
this flag must be cleared.

The procedure may have floating point introduced where it
doesn’t already exist. If the code was compiled with the
- nof | oat option this flag must be cleared.

The base architecture for the procedure (see Table 10-1).
The - ar ch option is used to select the base architecture
for a compilation (see cc(1)). Architecture choices are
described in the Alpha Architecture Reference Manual.

The base tuning for the procedure (see Table 10-1).
The - t une option is used to select the base tuning for
a compilation (see cc(1)).

The effective revision of Tru64 UNIX for which the
procedure was compiled (see Table 10-2).

Indicates that all jump tables referenced by the procedure
are annotated.

Must be zero.

Table 10-1: Architecture and Tuning Values

Constant Value Description
ANNOT_ARCH_GENERIC 1 Generic Alpha system
ANNOT_ARCH_EV4 3 EV4 system
ANNOT_ARCH_EV5 4 EV5 system
ANNOT_ARCH_EV56 5 EV56 system
ANNOT_ARCH_PCA56 6 PCA56 system
ANNOT_ARCH_EV6 7 EV6 system
ANNOT_ARCH_EV67 8 EV67 system
ANNOT_ARCH_EV68 9 EV68 system
ANNOT_ARCH_EV69 10 EV69 system
ANNOT_ARCH_EV7 11 EV7 system

Table 10-2: Object Annotation OS Revisions

Constant

Value

Description

ANNOT_OS_V30 2
ANNOT_OS_V40 3
ANNOT_OS_V50 4
ANNOT_OS_V51 5
ANNOT_OS_V51A 7
ANNOT_OS_V51B 8

Tru64 UNIX V3.0 or later
Tru64 UNIX V4.0 or later
Tru64 UNIX V5.0 or later
Tru64 UNIX V5.1 or later
Tru64 UNIX V5.1A or later
Tru64 UNIX V5.1B or later

10.2.2 Annotation Restricted Offset Flags

typedef struct {
cof f _uint
cof f _uint
cof f _uint
cof f _uint
cof f _uint
cof f _uint

} ANNOT_RESTRI CTED_OFFSET_FLAGS,

vol atile_target : 1;

handl er _target : 1;

nonl ocal _referenced : 1;

upl evel _referenced : 1;

exception_fence : 1;

soft_order : 1;

*pANNOT_RESTRI CTED_OFFSET_FLAGS;

SIZE - 1 byte, ALIGNMENT - 1

Annotation Restricted Offset Fields

vol atil e_target
handl er _t ar get

nonl ocal refer-
enced

upl evel _refer-
enced

exception_fence

soft _order

Target of asynchronous transfer.
Target of transfer from a handler, only.

Target of reference from another procedure.

Target of reference from a contained procedure.

Target is an exception fence.

Recommended ordering break (pipelining).

Object Annotation Data

10-3

10.2.3 Annotation Restricted Instruction Flags

typedef struct {

cof f _uint io_volatile : 1;

cof f _uint must _read : 1;

cof f _uint must_wite : 1;

cof f _uint preserve_exceptions : 1;
cof f _uint no_exception : 1;

} ANNOT_RESTRI CTED_| NSTRUCTI ON_FLAGS, *pANNOT_RESTRI CTED | NSTRUCTI ON_FLAGS;

SIZE - 1 byte, ALIGNMENT - 1

Annotation Restricted Instruction Fields

io_volatile Memory accesses must be treated as volatile.
nmust _read All inputs (both register and memory) must be read if used.
must_wite All outputs (both register and memory) must be written for

potential use in exception handling. (Exception states may
be collapsed.)

ir gﬁ gr ve_excep- Potential exceptions are relevant.
no_exception No exceptions are possible for this instruction.

10.2.4 Annotation Restricted Sequence Flags

typedef struct {

cof f _uint nonove : 1;
cof f _uint noreorder : 1;
cof f _uint noschedule : 1;
cof f _uint reserved : 5;
cof f _uint arch : 8;
cof f _uint tune : 8;

} ANNOT_RESTRI CTED_SEQUENCE_FLAGS, *pANNOT_RESTRI CTED SEQUENCE_FLAGS;

SIZE - 3 bytes, ALIGNMENT - 1

Annotation Restricted Sequence Fields

nonove The instructions in this sequence must remain in order.

nor eor der No instructions may be reordered relative to this sequence.

noschedul e Strong recommendation to avoid modifying this hand-tuned
instruction sequence.

reserved Must be zero.

arch The base architecture for the procedure (see Table 10-1).
The - ar ch option is used to select the base architecture for
this instruction sequence (see cc(1)). Architecture choices
are described in the Alpha Architecture Reference Manual.

tune The base tuning for this instruction sequence (see

Table 10-1). The - t une option is used to select the base
tuning for a compilation (see cc(1)).

10-4 Object Annotation Data

10.2.5 Annotation Restricted Call Flags

typedef struct {
cof f _uint
cof f _uint
cof f _uint
cof f _uint
cof f _uint

extra_inputs : 1;
extra_outputs @ 1;
extra_kill : 1;
nonstandard_flow : 1;
stack_return : 1;

} ANNOT_RESTRI CTED_CALL_FLAGS, *pANNOT_RESTRI CTED_CALL_FLAGS;

SIZE - 1 byte, ALIGNMENT - 1

Annotation Restricted Call Fields

extra_inputs

extra_out puts

extra kill

One or more non-standard register inputs.
One or more non-standard register outputs.

Non-standard scratch registers are killed.

nonst andar d_fl ow May return asynchronously (setjmp).

stack_return

The stack pointer on input may not match the stack pointer
on return.

10.2.6 Annotation Restricted Entry Flags

typedef struct {
cof f _uint
cof f _uint

extra_inputs : 1;
nonst andard_save_kill : 1;

} ANNOT_RESTRI CTED_ENTRY_FLAGS, *pANNOT_RESTRI CTED ENTRY_FLAGS;

SIZE - 1 byte, ALIGNMENT - 1

Annotation Restricted Entry Fields

extra_inputs

A9t 80ve kil

One or more non-standard register inputs.

Non-standard scratch or preserved registers.

10.2.7 Annotation Restricted Return Flags

typedef struct {
cof f _uint
cof f _uint

extra_outputs @ 1;
nonst andard_save_kill : 1;

} ANNOT_RESTRI CTED_RETURN_FLAGS, *pANNOT_RESTRI CTED _RETURN_FLAGS;

SIZE - 1 byte, ALIGNMENT - 1

Annotation Restricted Return Fields

extra_out puts

29rg' 20ve «il

One or more non-standard register outputs.

Non-standard scratch or preserved registers.

10.2.8 Annotation Linkage Flags

typedef struct {
cof f _uint
cof f _uint
cof f _uint
cof f _uint

} ANNOT_LI NKAGE_FLAGS,

previ ous_nasks : 1;
must_not _inline : 1;
requires_call : 1;
abnormal _flow : 1;
*PANNOT_LI NKAGE_FLAGS;

SIZE - 1 byte, ALIGNMENT - 1

Object Annotation Data 10-5

Annotation Linkage Fields

previ ous_masks Use masks from previous linkage description.
must _not _inline Cannot be inlined.
requires_call Call instruction cannot be replaced (e.g. can’t be changed

to a tailcall.)

abnormal _fl ow Transfer to this linkage might not return.

10.3 Object Annotation Data Usage

10.3.1

10.3.1.1

Object annotation data contains offsets into a procedure’s text and specific details
about the procedure’s instructions. If an object tool removes, adds, rearranges, or
changes procedure text it must remove or update all optimization symbol table
entries including the object annotation data.

All object annotation data will be contained in optimization symbol table entries in
the range PPODE_ANNOT_RESERVED FI RST to PPODE_ANNOT RESERVED LAST.
This range is further divided into a range of restrictive annotations from
PPODE_ANNOT_RESTRI CTED_FI RST to PPODE_ANNOT_RESTRI CTED_LAST and
pure optimization annotations from PPODE_ANNOT_OPTI M ZATI ON_FI RST to
PPODE_ANNOT_OPTI M ZATI ON_LAST.

New annotations and annotation flags may be introduced that are not described
here.

If a tool encounters an unknown restrictive annotation it must process the
procedure as if it were unannotated. If a tool encounters an unknown restrictive
annotation flag, it must treat the annotation as if all its flags were set.

Tools can ignore unknown optimization annotations and unknown optimization
annotation flags.

Link-time text modification does not alter annotation data, because the link-time
modifications replace instructions without affecting instruction offsets or attributes
of the text that require annotations.

Representation of Object Annotation Data

Annotation data for a procedure must begin with a PPODE_ANNOT_SUMMARY, which
must occur only once per procedure and before any other annotation PPODE’s.

All object annotation PPODE’s except PPODE_ANNOT_SUMMARY contain variable
length data represented in LEB 128 format. See Section 1.4.6 for a description of
this data representation.

Object Annotation Summary

Each PPODE_ANNOT_SUMVARY entry consists of a single ANNOT_SUMVARY_ VAL
structure. This structure can be encoded as an immediate value in the PPODE’s
ppode_val field. See Section 10.2.1 for a description of the ANNOT_SUMVARY_VAL
structure.

This structure includes a version field which will be incremented when new flags
are added to annotation records and when new annotation types are added.

The ar ch and t une fields identify the default values for the compilation
environment or the values set by the compilation options - ar ch and -t une.
Hand-coded programs can set these values with assembly directives.

10-6 Object Annotation Data

10.3.1.2

10.3.1.3

The os_ver si on field identifies the release of Tru64 UNIX for which the
procedure was compiled. This value can be used to test for the potential inclusion
of release-specific compilation features. A compiler’s release notes provide details
on new features added for specific releases.

The safety flags are used to indicate that the procedure’s text complies with a set of
rules for "well-behaved" code, or that any exceptions to these rules are annotated
with additional annotation PPODE’s. For most compiler-generated code, it should
be sufficient to record the annotation summary PPODE with all safety flags set
and no additional annotations.

Restricted Offset Annotation

This annotation identifies targets in the procedure that may have restrictive
properties. Live register sets, etc., must be computed by tools. In assembly source,
labels occuring in a . set vol ati | e region should have the vol atil e_t ar get
flag set.

The PPODE_ANNOT_RESTRI CTED OFFSET section consists of an array of one or
more records, each composed of two fields:

Field Type Description

SLEB Offset. This field identifies the instruction location within the
procedure. For the first record in this PPODE it gives the instruction
offset relative to the procedure address as specified in the adr field of
the PDR. For subsequent records the instruction offset is relative to the
instruction identified by the previous record. (Instruction offsets are
measured in 4-byte units.)

LEB Flags. This field contains an ANNOT_RESTRI CTED_OFFSET_FLAGS
structure that flags the restrictions. The structure is described in
Section 10.2.2.

Restricted Instruction Annotation

This annotation identifies instructions with restrictive properties.

The i o_vol ati | e flag identifies a reference that must be preserved according to
volatile semantics:

e The size and type of the access must be preserved.

¢ The dynamically occuring reference cannot be moved relative to other volatile
references, potential exceptions, or relative to control flow.

Note that the source and target registers of io_volatile memory references can be
adjusted if the instructions aren’t also marked with the must _read ornust_wite
flags. i o_vol ati | e specifically applies to the memory being accessed. In assembly
source, this is generated for all memory references in a . set vol ati | e region.
Non-memory reference instructions in a volatile region are not marked as volatile.

The PPODE_ANNOT_RESTRI CTED | NSTRUCTI ON section consists of an array of one
or more records, each composed of two fields:

Object Annotation Data 10-7

Field Type Description

SLEB Offset. This field identifies the instruction location within the
procedure. For the first record in this PPODE it gives the instruction
offset relative to the procedure address as specified in the adr field of
the PDR. For subsequent records the instruction offset is relative to the
instruction identified by the previous record. (Instruction offsets are
measured in 4-byte units.)

LEB Flags. This field contains an ANNOT_RESTRI CTED | NSTRUC-
TI ON_FLAGS structure that flags the restrictions. The structure is
described in Section 10.2.3.

10.3.1.4 Restricted Instruction Sequence Annotation

This annotation identifies instruction sequences with restrictive properties. The
instructions inside this sequence must not be changed in any way. This annotation
is commonly used for hand-tuned assembly source code that uses assembly
directives such as . set noreorder,.set nonpbve,.arch, and. tune.

The PPODE_ANNOT _RESTRI CTED SEQUENCE section consists of an array of one or
more records, each composed of three fields:

Field Type Description

SLEB Offset. This field identifies the location within the procedure for the
first instruction in the sequence. For the first record in this PPODE
it gives the instruction offset relative to the procedure address as
specified in the adr field of the PDR. For subsequent records the
instruction offset is relative to the first instruction after the sequence
identified by the previous record. (Instruction offsets are measured
in 4-byte units.)

ULEB Length. This field identifies the sequence length in instructions
(4-byte units).
LEB Flags. This field contains an ANNOT_RESTRI CTED_SEQUENCE_FLAGS

structure that flags the restrictions and architecture settings. The
structure is described in Section 10.2.4.

10.3.1.5 Restricted Call Annotation

This annotation identifies restrictive properties of a call site.

The PPODE_ANNOT_RESTRI CTED _CALL section consists of an array of one or more
records, each composed of two fields:

Field Type Description

SLEB Offset. This field identifies the location of a call site within the
procedure. For the first record in this PPODE it gives the instruction
offset relative to the procedure address as specified in the adr field of
the PDR. For subsequent records the instruction offset is relative to the
instruction identified by the previous record. (Instruction offsets are
measured in 4-byte units.)

LEB Flags. This field contains an ANNOT_RESTRI CTED_CALL_FLAGS
structure that flags the restrictions. The structure is described in
Section 10.2.5.

10.3.1.6 Restricted Entry Annotation

This annotation identifies restrictive properties of an entry point.

10-8 Object Annotation Data

10.3.1.7

10.3.1.8

10.3.1.9

The PPODE_ANNOT_RESTRI CTED_ENTRY section consists of an array of one or more
records, each composed of two fields:

Field Type Description

SLEB Offset. This field identifies the location of an entry point within the
procedure. For the first record in this PPODE it gives the instruction
offset relative to the procedure address as specified in the adr field of
the PDR. For subsequent records the instruction offset is relative to the
instruction identified by the previous record. (Instruction offsets are
measured in 4-byte units.)

LEB Flags. This field contains an ANNOT_RESTRI CTED _ENTRY_FLAGS
structure that flags the restrictions. The structure is described in
Section 10.2.6.

Restricted Return Annotation

This annotation identifies restrictive properties of a return instruction.

The PPODE_ANNOT_RESTRI CTED_RETURN section consists of an array of one or
more records, each composed of two fields:

Field Type Description

SLEB Offset. This field identifies the location of a return instruction
within the procedure. For the first record in this PPODE it gives
the instruction offset relative to the procedure address as specified
in the adr field of the PDR. For subsequent records the instruction
offset is relative to the instruction identified by the previous record.
(Instruction offsets are measured in 4-byte units.)

LEB Flags. This field contains an ANNOT_RESTRI CTED_RETURN_FLAGS
structure that flags the restrictions. The structure is described in
Section 10.2.7.

Jump Table Annotation

This annotation identifies jump tables used by a procedure. A jump table is an
array of 32-bit GP-relative offsets to jump labels within a procedure.

The PPODE_ANNOT_GPREL32_JUMP_TABLE section consists of an array of one or
more records, each composed of two fields:

Field Type Description

SLEB Offset. This field identifies the location of an instruction with a
relocation to the jump table. For the first record in this PPODE it gives
the instruction offset relative to the procedure address as specified
in the adr field of the PDR. For subsequent records the instruction
offset is relative to the instruction identified by the previous record.
(Instruction offsets are measured in 4-byte units.)

LEB Length. This field contains the size of the jump table in 4-byte units.

Call Specified Linkage Annotation

This annotation identifies the language specified linkage for a call at the source
language level. In the absence of more specific information, this is what must be
assumed by the caller.

The PPODE_ANNOT_CALL_SPECI FI ED_LI NKAGE section consists of an array of one
or more linkage description records, each composed of either two or five fields:

Object Annotation Data 10-9

Field Type Description

SLEB Offset. This field identifies the location of an entry point or call site
within the procedure. For the first record in this PPODE it gives
the instruction offset relative to the procedure address as specified
in the adr field of the PDR. For subsequent records the instruction
offset is relative to the instruction identified by the previous record.
(Instruction offsets are measured in 4-byte units.)

LEB Flags. This field contains an ANNOT_LI NKAGE_DESCRI PTI ON
structure that describes properties of a linkage. The structure is
described in Section 10.2.8.
The pr evi ous_nasks field in the ANNOT_LI NKAGE_DESCRI PTI ON
structure is cleared when the following three mask fields are present
in the record. When pr evi ous_masks is set, the mask values are the
same as those used for the previous record in this same PPODE.

Note that registers not appearing in any mask are unused, not
just preserved. Normally, standard linkage registers are preserved,
but there can be special linkages where the register assumption of
the caller is that the register is volatile. Unused registers can’t be
allocated in that case.

[LEB] Read. This field contains the register mask for registers that are read
by the linkage.

[LEB] Written. This field contains the register mask for registers that are
written by the linkage.

[LEB] Preserved. This field contains the register mask for registers that are
preserved by the linkage.

10.3.1.10 Entry Specified Linkage Annotation

This annotation describes the language specified linkage for the entry at the source
language level. Any unknown callers may assume this about the entry. Note that
this is not a description of the constraints the procedure must follow, but rather
what callers may assume in general. Anything compiled with the procedure could
use a more restricted linkage (see Section 10.3.1.9).

The PPODE_ANNOT_ENTRY_SPECI FI ED_LI NKACE section consists of an array of
linkage description records as described in Section 10.3.1.9

10.3.1.11 Entry Utilized Linkage Annotation

This annotation describes the linkage actually utilized by the union of all callers.
This linkage may be more restrictive than the PPODE_ANNOT _ENTRY_SPECI -

FI ED_LI NKAGE. For example, callers that were compiled with the procedure
may have been able to use some registers known to be preserved by the current
implementation, even though they weren’t preserved in the specified linkage.

If callers are modified to take advantage of the difference between the
PPODE_ANNOT_ENTRY_UTI LI ZED_LI NKAGE and the PPODE_ANNOT_ENTRY_| M
PLEMENTED LI NKAGE (for example, by utilizing more registers across calls to the
procedure) the PPODE_ANNOT_ENTRY_UTI LI ZED LI NKAGE must be updated, if
it is still present.

The PPODE_ANNOT_ENTRY_UTI LI ZED LI NKAGCE section consists of an array of
linkage description records as described in Section 10.3.1.9

10.3.1.12 Entry Implemented Linkage Annotation

This annotation describes the linkage actually implemented by the code. This may
be a more restrictive linkage than the caller utilized linkage. For example, callers
may not have taken advantage of some properties of the implementation.

10-10 Object Annotation Data

If the current procedure is modified to take advantage of the difference between
the PPODE_ANNOT_ENTRY_| MPLEMENTED LI NKAGE and the PPODE_ANNOT _EN-
TRY_UTI LI ZED_LI NKACE (for example, by utilizing more registers in the
procedure’s code) the PPODE_ANNOT_ENTRY_| MPLEMENTED LI NKAGE must be
updated, if it is still present.

The PPODE_ANNOT_ENTRY_| MPLEMENTED_ LI NKAGE section consists of an array of
linkage description records as described in Section 10.3.1.9

10.3.1.13 Return Specified Linkage Annotation

This annotation describes the "live-out" results for a procedure. These are the
registers written by the procedure that may be read by callers. If no annotation
is present, it may be assumed that the union of specified return results for entry
points to the procedure are the maximum live-out set. (Compilers are expected to
annotate only the single entry point with the specified linkage.)

The PPODE_ANNOT_RETURN_SPECI FI ED_L| NKAGE section consists of an array of
linkage description records as described in Section 10.3.1.9

Object Annotation Data 10-11

11

Symbol Information

This chapter focuses on the symbol table data used to represent a program’s
symbols and the scopes in which they occur. This information is primarily used
by symbolic debuggers.

11.1 New or Changed Symbol Information Features

Tru64 UNIX V5.1B includes the following new or changed features:
e New basic types for boolean and wchar_t (see Table 11-4).

¢ A new representation of C++ using directives for global symbols (see
Section 11.3.1.5.4).

Tru64 UNIX V5.1 includes the following new or changed features:
* A new basic type for 32-byte complex (see Table 11-4).

e A new representation for empty classes or structures (see Section 11.3.3.6.1) to
distinguish them from opaque classes and structures (see Section 11.3.3.6.2).

Version 3.14 of the symbol table includes the following new or changed features:
¢ local symbols with external linkage (see Section 11.3.1.1)
¢ Fortan 90 modules (see Section 11.3.1.6)

Version 3.13 of the symbol table includes the following new or changed features:

® 64-bit auxiliary support (see Section 11.3.2.3)

e Parameters with static storage and unallocated parameters (see Section 11.2.4)
e New representation for procedures with no text (see Section 11.3.1.2)

e Modified variant record representation (see Section 11.3.3.11)

e New function pointer representation (see Section 11.3.3.5)

¢ Block symbol added for alternate entry prologue size (see Section 11.3.1.9)

e New representation for C++ namespaces (see Section 11.3.1.5)

¢ Unnamed union or structure representation (see Section 11.3.3.3)

11.2 Structures, Fields, and Values for Symbol Information

11.2.1

Unless otherwise specified, all structures described in this section are declared in
the header file sym h, and all constants are defined in the header file syntonst . h.

Local Symbol Entry (SYMR)

typedef struct {

cof f _l ong val ue;

cof f _int iss;

cof f _uint st : 6;
cof f _uint sc : b;
cof f _uint reserved : 1;
cof f _uint index : 20;

} SYMR *pSYMR
SIZE - 16 bytes, ALIGNMENT - 8 bytes

Symbol Information 11-1

See Section 11.2.4, Section 8.3, and Section 11.3.3 for related information.

Local Symbol Table Entry Fields

val ue

st

SC

reserved

i ndex

A field that can contain an address, size, offset, or index.
Its interpretation is determined by the symbol type and
storage class combination, as explained in Section 11.2.4.

Byte offset from the i ssBase field of a file descriptor table
entry to the name of the symbol. If the symbol does not
have a name, this field is set toi ssSNi | (-1). Generally,
all user-defined symbols have names. A symbol without

a name is one that has been created by the compilation
system for its own use.

Symbol type (see Table 11-1).
Storage class (see Table 11-2).
Must be zero.

An index into either the local symbol table or auxiliary
symbol table, depending on the symbol type and class.
The index is used as an offset from the i synBase field in
the file descriptor entry for an entry in the local symbol
table or an offset from the i auxBase field for an entry in
the auxiliary symbol table.

The index field may have a value of i ndexNi | , which is
defined as (long)Oxf f f f f . This value is used to indicate
that the index is not a valid reference.

The next two tables contain all defined values for the st and sc constants, along
with short descriptions. However, these fields must be considered as pairs that
have a limited number of possible pairings as explained in Section 11.2.4.

Table 11-1: Symbol Type (st) Constants

Constant Value Description

StNil 0 Dummy entry

st d obal 1 Global variable

stStatic 2 Static variable

st Param 3 Procedure argument

st Local 4 Local variable

st Label 5 Label

st Proc 6 Global procedure

st Bl ock 7 Start of block

st End 8 End of block, file, or procedure
st Mermber 9 Member of class, structure, union, or enumeration
st Typedef 10 User-defined type definition
stFile 11 Source file name

Symbol Information

Table 11-1: Symbol Type (st) Constants (cont.)

Constant Value Description

st Stati cProc 14 Static procedure

st Const ant 15 Constant data

st Base 17 Base class (for example, C++)

st Virt Base 18 Virtual base class (for example, C++)

st Tag 19 Data structure tag value (for example, C++ class or struct)

stlnter 20 Interlude (for example, C++)

st Modul e 22 (V5.1B -) Fortran90 module definition

st Namespace 22 (V5.0 -) Namespace definition (for example, C++)

st Usi ng 23 (V5.0 -) Namespace use (for example, C++ "using")

stAlias 24 (V5.0 -) Defines an alias for another symbols. Currently,
only used for namespace aliases.

st Ext er nal 30 (V5.1B -) Local symbol with external linkage

st UseMbdul e 31 (V5.1B -) Fortran90 module use

st Renanme 32 (V5.1B -) Name replacement

stlnterface 33 (V5.1B -) Name replacement

st Max 64 Maximum number of symbol types

General Notes:

Symbol type codes with more than one interpretation are identified by the | ang
field in the associated file descriptor. This applies to the st Modul e/st Namespace

symbol types.

Table 11-2: Storage Class (sc) Constants

Constant Value Description

scNi | 0 Dummy entry

scText 1 Symbol allocated in the . t ext section

scDat a 2 Symbol allocated in the . dat a section

scBss 3 Symbol allocated in the . bss section

scRegi ster 4 Symbol allocated in a register

ScAbs 5 Symbol value is absolute

scUndef i ned 6 Symbol referenced but not defined in the current module
scUnal | ocated 7 Storage not allocated for this symbol

scTl sUndefined 9 TLS symbol referenced but not defined in the current module
sclnfo 11 Symbol contains debugger information

scSDhat a 13 Symbol allocated in the . sdat a section

scSBss 14 Symbol allocated in the . sbss section

scRDat a 15 Symbol allocated in the . r dat a section

scVar 16 Parameter passed by reference (for example, Fortran or Pascal)
scConmmon 17 Common symbol

scSConmon 18 Small common symbol

Symbol Information 11-3

Table 11-2: Storage Class (sc) Constants (cont.)

Constant Value Description

scVar Regi st er 19 Parameter passed by reference in a register
scVari ant 20 Variant record (for example, Pascal or Ada)
scFi | eDesc 20 File descriptor (for example, COBOL)
scSUndef i ned 21 Small undefined symbol

sclnit 22 Symbol allocated in the . i nit section
scReport Desc 23 Report descriptor (for example, COBOL)
scXDat a 24 Symbol allocated in the . xdat a section
scPDat a 25 Symbol allocated in the . pdat a section
scFi ni 26 Symbol allocated in the . fi ni section
scRConst 27 Symbol allocated in the . r const section
scTl sConmmon 29 TLS common symbol

scTl sDat a 30 Symbol allocated in the . t | sdat a section
scTl sBss 31 Symbol allocated in the . t | shss section
schMax 32 Maximum number of storage classes

Table 11-3: Use Module Constants

Constant Value Description

USE_MODULE_ONLY 0 Import only the explicitly listed symbols from
a Fortran module

USE_MODULE_ALL 1 Import all symbols from a Fortran module

Version Note

Fortran modules are supported in symbol table format V3.14 and
greater.

11.2.2 Auxiliary Symbol Table Entry (AUXU)

The auxiliary symbol table entry is a 32-bit union. It is either interpreted as a
TI R or RNDXR structure or as an integer value. See Section 11.3.2.3 for detailed
instructions on reading the auxiliary symbols.

typedef union {

TIR ti;

RNDXR r ndx;

cof f_int dnLow;

cof f _int dnHi gh;

cof f _int isym

cof f _int iss;

cof f _int wi dt h;

cof f _int count;

cof f _int slice; (V5. 0A)

} AUXU, *pAUXU;
SIZE - 4 bytes, ALIGNMENT - 4 bytes

See Section 11.3.2.3 for related information.

11-4 Symbol Information

11221

Auxiliary Symbol Table Entry Fields

ti

r ndx

dnLow

dnHi gh

i sym

wi dt h

count

slice

General Notes:

Type information record (Tl R), as defined in
Section 11.2.2.1.

Relative index into local or auxiliary symbols (r ndx), as
defined in Section 11.2.2.2.

Lower bound of range or array dimension. For large
structures, two of these fields can be used together to form
one 64-bit number.

Upper bound of range or array dimension. For large
structures, two of these fields can be used together to form
one 64-bit number.

For procedures (st Proc or st St at i cPr oc symbols), this
field is an index into the local symbols. It is also used as an
index into the relative file descriptors.

Unused.

Width of a bit field or array stride in bits. Fortran compilers
set the array stride to the array element size in bits. Two of
these fields can be used together to form one 64-bit number.

Count of ranges for variant arm. This field name is
only used within the type description of a variant block
(st Bl ock, scVari ant).

Reserved.

The fields dnLow, dnHi gh, or wi dt h must all use either the 32-bit or 64-bit
representation when used together. For example, an array dimension cannot be
specified with a 32-bit dnLow and a 64-bit dnHi gh.

Type Information Record (TI R)

typedef struct {

cof f _uint
cof f _uint
cof f _uint
cof f _uint
cof f _uint
cof f _uint
cof f _uint
cof f _uint
cof f _uint

} TIR *pTIR

fBitfield : 1;
continued : 1;
bt : 6;

tg4 :
tg5 :
tqo :
tql :
tg2 :
tqg3 :

B

SIZE - 4 bytes, ALIGNMENT - 4 bytes

Type Information Record Entry Fields

fBitfield

Flag set if bit width is specified.

Symbol Information 11-5

conti nued Flag set to indicate that the type description is continued
in another Tl Rrecord. This will happen if the type is
represented with more than six type qualifiers.

bt Basic type (see Table 11-4 and Section 11.3.2.1).

Type qualifiers (see Table 11-5 and Section 11.3.2.2).
The lower-numbered t q fields must be used first, and all
unneeded fields must be set tot gNi | (0).

Table 11-4: Basic Type (bt) Constants

Constant Value Description

bt Ni | 0 Undefined or void

bt Adr 32 1 Address (32 bits)

bt Char 2 Character

bt UChar 3 Unsigned character

bt Shor t 4 Short (16 bits)

bt UShor t 5 Unsigned short (16 bits)

bt I nt 6 Integer (32 bits)

bt Ul nt 7 Unsigned integer (32 bits)

bt Long32 8 Long (32 bits)

btULong32 9 Unsigned long (32 bits)

bt Fl oat 10 Floating point

bt Doubl e 11 Double-precision floating point

bt St ruct 12 Structure or record

bt Uni on 13 Union

bt Enum 14 Enumeration

bt Typedef 15 Defined by means of a user-defined type definition
bt Range 16 Range of values (for example, Pascal subrange)

bt Set 17 Sets (for example, Pascal)

bt Conpl ex 18 Single complex (for example, Fortran COVPLEX* 8)
bt DConpl ex 19 Double complex (for example, Fortran COVPLEX* 16)
btlIndirect 20 Indirect definition; following r ndx points to an entry in the

auxiliary symbol table that contains a Tl R (type information record)
bt Fi xedBin 21 Fixed binary (for example, COBOL)
bt Deci nal 22 Packed or unpacked decimal (for example, COBOL)
btPicture 25 Picture (for example, COBOL)
bt Voi d 26 Void
bt Pt r Mem 27 Currently unused
bt Scal edBi n 27 Scaled binary (for example, COBOL)
bt Vptr 28 Virtual function table (for example, C++)
bt ArrayDesc 28 Array descriptor (for example, Fortran, Pascal)
bt d ass 29 Class (for example, C++)

11-6 Symbol Information

Table 11-4: Basic Type (bt) Constants (cont.)

Constant Value Description
bt Long64 30 Address (64 bits)
bt Long 30 Long (64 bits)
bt ULong64 31 Unsigned long (64 bits)
bt ULong 31 Unsigned long (64 bits)
bt LongLong 32 Long long (64 bits)
bt ULongLong 33 Unsigned long long (64 bits)
bt Adr 64 34 Address (64 bits)
bt Adr 34 Address (64 bits)
bt I nt 64 35 Integer (64 bits)
bt Ul nt 64 36 Unsigned integer (64 bits)
bt LDouble 37 Long double floating point (128 bits)
btlnt8 38 Integer (8 bits)
bt Ul nt 8 39 Unsigned integer (8 bits)
bt Range_64 41 (V5.0 -) 64-bit range
bt Proc 42 (V5.0 -) Procedure or function
l(:j)t Cobol I n- 43 (not supported) COBOL index variables
ex
bt QConpl ex 46 (V5.1 -) Quad complex (for example Fortran COVPLEX* 32)
bt Bool 47 (V5.1B -) 1 byte boolean (false=0, true=1)
bt Whar _t 48 (V5.1B -) 4 byte wchar_t
bt Checksum 63 Symbol table checksum value stored in auxiliary record
bt Max 64 Number of basic type codes
Table Notes:
1. btlnt and bt Long32 are synonymous.
2. bt U nt and bt ULong32 are synonymous.
3. btLong, bt Long64, bt LongLong, and bt | nt 64 are synonymous.
4. bt ULong64, bt ULongLong, and bt Ul nt 64 are synonymous.

Table 11-5: Type Qualifier (t q) Constants

Constant Value Description

tgNi | 0 No qualifier (placeholder)

tqPtr 1 Pointer

tqgProc 2 (obsolete) Procedure or function

tgArray 3 Array

t qFar 4 32-bit pointer; used with the - xt aso emulation
t gVol 5 Volatile

t qConst 6 Constant

t qRef 7 Reference

Symbol Information

11-7

Table 11-5: Type Qualifier (t q) Constants (cont.)

Constant Value Description

tqArray_64 8 (V5.0 -) Large array

t gShar 10 (V5.0A -) Reserved

t qExpArray_64 11 (V5.0A -) Reserved

t gMax 16 Number of type qualifier codes

11.2.2.2 Relative Index Record (RNDXR)

typedef struct {
cof f _uint rfd @ 12;
cof f _uint index : 20;
} RNDXR, *pRNDXR,

SIZE - 4, ALIGNMENT - 4

Relative Index Record Fields

rfd Index into relative file descriptor table if it exists;
otherwise, index into file descriptor table.

This field may have a value of ST_RFDESCAPE, defined as
Oxf ff in the header file cnpl r s/ st support . h. This
value is used to indicate that the next auxiliary entry,
interpreted as an i sym contains the actual rfd index.

i ndex Symbol index. Used as an offset from either FDR.i synbase
or FDR.i auxbase, depending on context.

11.2.3 String Table

Objects can contain two string tables: the local string table (corresponding to
local symbols) and the external string table (corresponding to external symbols).
The local string table is present only for objects created with full debugging
information; it is removed if an object is locally stripped.

The storage format for the string tables is a list of null-terminated character
strings. It is correctly considered as one long character array, not an array of
strings. Fields in the symbolic header and file headers represent string table sizes
and offsets in bytes.

11.2.4 Symbol Type Combinations
Entries in the symbol table are primarily identified by the combination of their

symbol type (st) and storage class (sc) values. Not all combinations are valid.
Figure 11-1 indicates which combinations are currently in use.

11-8 Symbol Information

Figure 11-1: st/sc Combination Matrix

| 710 F 2 B EERIEERE 23 8L e sls s i
@ |2 == ER A ==
UJE-'J3EJ”%_' gog@.g%ggjﬁwogcggﬂ%a_g
3 g mam%:, BEJ% %g&iag:ﬁ (3 |@
S o - = 3 = e N R =
@ f=)) 3 =|= w
o = 8 o jgcl 8
st 3 3 = £
Alias
Base
Block

Constant
End
Fxternal
File
Global
Inter
Interface

Member
hodule
Namespace
il

Param - .
Froc
Rename

StaticProc
Tag
Typedef
sehodule
IUsing
YirtBase

A symbol’s type and class taken together determines interpretation of other fields
in the symbol table entry. The same combination can be used for different purposes
in different contexts. As a result, to understand the symbol entry, it also may be
necessary to access type information in the auxiliary table or the source language

information in the file descriptor.

The contents of the val ue and i ndex fields for each combination, with a brief
explanation of the symbol’s use, are described in the following list of combinations.
For many combinations, greater detail can be found in Section 11.3.2 and

Section 11.3.3.

st @ obal /scAbs

¢ The val ue field contains an absolute value.

e The i ndex field is an auxiliary table index or i ndexNi | if there is no type
information.

e This symbol is a global absolute value.

st d obal /scSDat a,

st d obal /scDat a,

st d obal /scSBss,

st d obal /scBss,

st d obal /scRDat a,

st d obal /scRConst

e The val ue field is the symbol’s address.

¢ The i ndex field is an auxiliary table index or i ndexNi | if there is no type
information.

¢ This symbol is a defined global variable.

Symbol Information 11-9

11-10

st d obal /scTl sDat a,
st d obal /scTl sBss

e The val ue field is the offset from the base of the object’s TLS region.

e The i ndex field is an auxiliary table index or i ndexNi | if there is no type
information.

e This symbol is a defined global TLS variable.

st d obal /scSCommpn,
st d obal /scCommon,
st d obal /scTl sConmon

e The val ue field is the symbol’s size in bytes.

e The i ndex field is an auxiliary table index or i ndexNi | if there is no type
information.

¢ This symbol is a common.

st d obal /scSUndef i ned,
st d obal /scUndef i ned,
st d obal /scTl sUndef i ned

e The val ue field is zero in linked objects. In relocatable objects, the val ue field

is ignored. (Some compilers store the size in bytes of the global variable in
the val ue field.)

e The i ndex field is an auxiliary table index or i ndexNi | if there is no type
information.

e This symbol is an undefined global variable.

st St ati c/scAbs
e The val ue field is an absolute value.

¢ The i ndex field is an auxiliary table index or i ndexNi | if there is no type
information.

e This symbol is an absolute value with static scope.

st St ati c/scSDat a,
st St ati c/scDat a,
st St ati c/scSBss,
st St ati c/scBss,

st St ati c/scRDat a,
st St at i c/scRConst

e The val ue field is the symbol’s address.

¢ The i ndex field is an auxiliary table index or i ndexNi | if there is no type
information.

e This symbol is a defined static variable.

st Static/scTl sDat a,
st Static/scTl sBss

e The val ue field is an offset from the base of the object’s TLS region.

e The i ndex field is an auxiliary table index or i ndexNi | if there is no type
information.

e This symbol is a defined static TLS variable.

Symbol Information

st St ati c/scConmon
e The val ue field is zero.

e The i ndex field is an auxiliary table index or i ndexNi | if there is no type
information.

e This symbol is a Fortran common block.

stStatic/sclnfo
e The val ue field is zero.
e The i ndex field is an auxiliary table index.

e This symbol is a C++ static data member.

st Par amscAbs
e The val ue field is an offset from the virtual frame pointer.
¢ The i ndex field is an auxiliary table index.

e This symbol is a parameter stored on the stack.

st Par amscRegi st er
e The val ue field is the number of the register containing the parameter.
e The i ndex field is an auxiliary table index.

e This symbol is a parameter stored in a register.

st Par amiscVar

e The val ue field is an offset from the virtual frame pointer to the parameter’s
address.

e The i ndex field is an auxiliary table index.

e This symbol is a parameter stored on the stack. One level of indirection is
required to access the parameter’s value.

st Par anmscVar Regi st er
e The val ue field is the register number containing the address of the parameter.
e The i ndex field is an auxiliary table index.

e This symbol is a parameter stored on the stack. One level of indirection is
required to access the parameter’s value.

st Par amiscl nf o
e The val ue field is zero.
e The i ndex field is an auxiliary table index.

e This symbol is a parameter of a C++ member function, function pointer
definition, or procedure with no code.

st Par amscSDat a,
st Par amscDat a,
st Par amscSBss,
st Par amscBss,
st Par amscRDat a,
st Par amlscRConst

e The val ue field is the address of the parameter.

e The i ndex field is an auxiliary table index.

Symbol Information 11-11

e This symbol is a static parameter.

Version Note

Static parameters are supported in symbol table format V3.13 and
greater.

st Par amiscUnal | ocat ed
e The val ue field is zero.
e The i ndex field is an auxiliary table index.

e This is an unallocated parameter.

st Local /scAbs
e The val ue field is an offset from the virtual frame pointer.
¢ The i ndex field is an auxiliary table index.

e This is a local variable stored on the stack.

st Local /scRegi st er
e The val ue field is the number of the register containing the variable.
e The i ndex field is an auxiliary table index.

¢ This symbol is a local variable stored in a register.

st Local /scVar

e The val ue field is an offset from the virtual frame pointer to the symbol’s
address.

e The i ndex field is an auxiliary table index.

e This symbol is a local variable stored on the stack. One level of indirection is
required to access its value.

st Local /scVar Regi st er

e The val ue field is the register number containing the address of this variable.

e The i ndex field is an auxiliary table index.

e This symbol is a local variable stored on the stack. One level of indirection is
required to access its value.

st Local /scUnal | ocat ed

e The val ue field is zero.

e The i ndex field is an auxiliary table index.

e This is an unallocated local variable.

Version Note

The use of scUnal | ocat ed is supported in symbol table format V3.13
and greater.

st Local /scText,
st Local /sclnit,
st Local /scFi ni
st Local /scSDat a,

11-12 Symbol Information

st Local /scDat a,

st Local /scSBss,

st Local /scBss,

st Local /scRDat a,
st Local /scRConst
st Local /scTI sDat a,
st Local /scTl sBss

e The val ue field is the address of the section indicated by the storage class.
e The i ndex field is i ndexNi I .

e These are special symbols inserted by the linker for shared objects. They are
found in the external symbol table and their names are the section names (for
example, . text or.init).

st Label /scAbs

e The val ue field is the symbol’s value. This may be either a numeric constant
or absolute address.

e Theindex field is i ndexNi | .
e This symbol is a linker defined absolute symbol.

st Label /scText,
st Label /sclni t,
st Label /scFi ni
st Label /scSDat a,
st Label /scDat a,
st Label /scXDat a,
st Label /scPDat a,
st Label /scSBss,
st Label /scBss,

st Label /scRDat a,
st Label /scRConst
st Label /scTI sDat a,
st Label /scTIl sBss

e The val ue field is the label’s value (an address).
e Theindex fieldis i ndexNil .

e This symbol is an allocated label. It can be associated with any raw data
section of the object file.

st Label /scUnal | ocat ed
e The val ue field is zero.
e Theindex fieldis i ndexNi | .

e This symbol is an unallocated label.

st Proc/scNi |
e The val ue field is zero.
e Theindex fieldis i ndexNil .

e This symbol can be ignored. Compilers may produce this type/class combination
for procedures that have been optimized away and that don’t require debug
information. The linker removes these symbols from the external symbol table
in linked objects.

Symbol Information 11-13

st Proc/scText
e The val ue field is the procedure’s address.
¢ This symbol can occur in the external or local symbol table:
— In the local symbol table, the i ndex field is an auxiliary table index.

— Inthe external symbol table, it is the local symbol index of the corresponding
procedure symbol in the local symbol table, unless the file is stripped of
local symbol information. If the file is locally stripped, the i ndex field is
i ndexNi | .

e This symbol is a defined procedure.

st Proc/scUndef i ned
e The val ue field is zero.
e Theindex fieldisi ndexNil .

e This symbol is an undefined procedure.

st Proc/sclnfo
e The val ue field contains a value of:
— -1 (a procedure with no code)
— -2 (a function prototype or function pointer definition)

— A non-negative index into the virtual function table for this function, for a
C++ virtual member function.

Version Note

The use of - 1 and - 2 in the val ue field is supported in symbol
table format V3.13 and greater.

e The i ndex field is an auxiliary table index.

e This symbol represents a procedure without code, a function prototype, or
a function pointer. The val ue field is used to distinguish among these
possibilities.

st Bl ock/scText
e The val ue field depends on context:

— Ifthis is the first st Bl ock/scText symbol following an st Pr oc/scText
symbol, the val ue is the byte offset from the procedure’s address to the
address of the first instruction beyond the end of the procedure’s prologue.

— Otherwise, it is the byte offset from the procedure’s address to the starting
instruction address of the block.

e The i ndex field is the local symbol index of the symbol following the matching
st End. If this is the first st Bl ock/scText following an st Proc/scText for
an alternate entry point, the index field will be set to i ndexNi | because the
symbol will not have a matching st End symbol.

Version Note

The use of st Bl ock/scText for alternate entry points is supported
in symbol table format V3.13 and greater.

e This symbol indicates the start of a block scope.

11-14 Symbol Information

st Bl ock/scl nfo

The val ue field depends on context:

— Size in bytes for a class, structure, or union.

— Size of the underlying data type for an enumerated type.
— Auxiliary table index for a variant record.

— Zero for the block scope of a procedure with no code.

The i ndex field is the local symbol index of the symbol following the matching
st End.

This symbol indicates the start of a structure, union, or enumeration definition
(in C; the C++ representation differs). It describes a variant arm if it is inside
an st Bl ock/scVari ant scope. This symbol is also used to define the block
scope of a procedure with no code.

st Bl ock/scCommmon

The val ue field is the size of the common block in bytes.

The i ndex field is the local symbol index of the symbol following the matching
st End.

This symbol is a scoping symbol for a Fortran common block. It occurs in the
context of the synthesized file used to define a common block.

st Bl ock/scVari ant

The val ue field is the local symbol index of the structure member whose value
determines which variant range is used.

The i ndex field is the local symbol index of the symbol following the matching
st End.

This symbol occurs in the context of Pascal and Ada variant records. It
indicates the start of the symbols for one variant.

st Bl ock/scFi | eDesc,
st Bl ock/scReport Desc

The val ue field is zero.

The i ndex field is the local symbol index of the symbol following the matching
st End.

This symbol occurs in COBOL only. It indicates the start of the file or report
descriptor scope.

st End/scText

The val ue field depends on the type of scope it is ending. It is:
— The size in bytes of the procedure’s text (for a procedure).

— Byte offset from a procedure’s address to the start of the epilogue (for the
outermost text block in a procedure).

— Byte offset from a procedure’s address to the first instruction address
beyond the end of the block (for a text block).

— Zero (for a file).

The i ndex field is the local symbol index of the matching st Bl ock, st Proc,
orstFile.

This symbol ends a file, procedure, or text block scope.

Symbol Information 11-15

11-16

st End/scl nfo

The val ue field is zero.

The i ndex field is the local symbol index of the matching st Bl ock or
st Nanespace.

If the matching symbol is an st Bl ock, this symbol ends a structure, union,
enumeration, C++ member function definition, procedure with no code, or the
block scope contained by a procedure with no code. If the matching symbol is
an st Nanespace, this symbol ends a namespace definition. If the matching
symbol is an st Modul e, this symbol ends a module definition. If the matching
symbol is an st UseMbdul e, this symbol ends a module use definition. If the
matching symbol is an st | nt er f ace, this symbol ends a generic interface
declaration.

st End/scConmmpbn

The val ue field is zero.
The i ndex field is the local symbol index of the matching st Bl ock.

This symbol ends a Fortran common definition.

st End/scVari ant

The val ue field is the same as that of the matching st Bl ock.
The i ndex field is the local symbol index of the matching st Bl ock.

This symbol ends a variant record block.

st End/scFi | eDesc,
st End/scReport Desc

The val ue field is zero.
The i ndex field is the local symbol index of the matching st Bl ock.
This symbol ends a file or report descriptor block.

st Menber /scl nfo

The val ue field depends on the symbol’s data type:
— The ordinal value (for an element of an enumerated type).
— Zero (for a namespace or union member).

— Bit offset from the beginning of the structure (for a C structure or C++
class member).

The i ndex field is an auxiliary table index.

This symbol describes a data structure field or the member of a namespace. It
is found inside a block defining a data structure (for example, class or struct) or
a namespace definition block.

st Menber /scFi | eDesc,
st Menber /scReport Desc

The val ue field is zero or one, depending on whether the symbol is local or
external, respectively.

The i ndex field is an auxiliary table index.

This symbol occurs in COBOL only. It is found inside a file descriptor or report
descriptor block.

Symbol Information

st Typedef /scl nfo
e The val ue field depends on the purpose of this symbol:
— Zero (for a user-defined type definition).

— The auxiliary table index of the next auxiliary entry after the start of the
class definition (for a compiler-inserted symbol). In effect, the value is the
contents of the i ndex field plus one.

e The i ndex field is an auxiliary table index.

e This symbol is a user-chosen name for a data type. It also appears as a
compiler-inserted symbol following the st Tag/scl nf o symbol for a C++ opaque
class or structure.

st Fi | e/scText
e The val ue field is zero.

¢ The i ndex field is the local symbol index of the symbol following the matching
st End.

e This symbol denotes the scoping block for a source file.

st Stati cProc/scText
e The val ue field is the procedure’s address.
e The i ndex field is an auxiliary table index.

¢ This symbol is a defined static procedure.

stStati cProc/sclnit,
st Stati cProc/scFini

e The val ue field is the procedure address.
e The i ndex field is an auxiliary table index.

e These combinations are used for the special symbols __istart and __fstart,
which are inserted by the linker.

st Const ant /scAbs
e The val ue field is the value of the constant.
e The i ndex field is an auxiliary table index.

e This symbol represents a named value (for example, Fortran PARAVETER).

st Const ant /scSDat a,
st Const ant /scDat a,
st Const ant /scSBss,
st Const ant /scBss,
st Const ant /scRDat a,
st Const ant /scRConst

¢ The val ue field is the symbol’s address.
e The i ndex field is an auxiliary table index.

e This symbol represents allocated constant data.

st Base/scl nfo
e The val ue field is the offset of the base class relative to a derived class.

e The i ndex field is an auxiliary table index.

Symbol Information 11-17

11-18

e This symbol is a C++ base class. It is found inside a block defining a data
structure (for example, class or struct).
st Vi rt Base/scl nfo

e The val ue field is an index (starting at 1) of the base class run-time description
in the virtual base class table. See Section 11.3.3.6.3.

e The i ndex field is an auxiliary table index.

e This symbol is a C++ virtual base class. It is found inside a block defining a
data structure (for example, class or struct).

st Tag/scl nfo

e The val ue field is zero.

e The i ndex field is an auxiliary table index.

e This symbol is a C++ class, structure, or union. See Section 11.3.3.6. Note that
the representation for C structures and unions (Section 11.3.3.3) is different.

stlnter/scinfo

e The val ue field is zero.

e The i ndex field is an auxiliary table index.

¢ This symbol is used in C++ to connect the definition of a member function with
its prototype in the class definition context.

st Nanespace/scl nfo

e The val ue field is zero.

e The i ndex field is the local symbol index of the symbol following the matching
st End.

e This symbol indicates the start of the symbols in a namespace definition.

Version Note

Namespace symbols are supported in symbol table format V3.13 and
greater.

st Mbdul e/scl nfo
e The val ue field is zero.

¢ The i ndex field is the local symbol index of the symbol following the matching
st End.

¢ This symbol defines a Fortran module.

Version Note

Fortran modules are supported in symbol table format V3.14 and
greater.

st Usi ng/sclnfo
e The val ue field is zero.
e The i ndex field is an auxiliary table index.

e This symbol specifies a C++ namespace (or portion thereof) that is being
imported into another scope.

Symbol Information

Version Note

Namespace USING directives are supported in symbol table format
V3.13 and greater.

st Ali as/sclnfo
e The val ue field is zero.
e The i ndex field is an auxiliary table index.

e This symbol defines an alias for a C++ namespace.

Version Note

Namespace aliases are supported in symbol table format V3.13 and
greater.

st Ext ernal /scl nfo

e The val ue field identifies source language semantics for the declaration type:
(0 = language default, 1 = "external", 2 = "extern", 3 = "static", 4 = "global",
other = best guess or "external").

e The i ndex field is an auxiliary table index.

e This symbol identifies an external symbol (by name) that is visible in a local
scope.

Version Note

Local visibility for externals is supported in symbol table format V3.14
and greater.

st UseMbdul e/scl nf o

e The val ue field is either USE_MODULE_ONLY or USE_MODULE_ALL (see
Table 11-3).

e The i ndex field is either indexNil or the local symbol index of the symbol
following the matching st End.

e This symbol identifies a Fortran module (by name) from which symbols are
imported and possibly renamed.

Version Note

Fortran modules are supported in symbol table format V3.14 and
greater.

st Renane/scl nfo

e The val ue field is a local string table index identifying the name by which a
symbol is referenced in the current scope.

e Theindex fieldisi ssNi | .

¢ This symbol identifies a symbol that is renamed in the current scope. For
example, Fortran module members that are renamed in a Fortran USE
statement.

Symbol Information 11-19

Version Note

Fortran modules are supported in symbol table format V3.14 and
greater.

stlnterfacel/sclnfo
e The val ue field is 0.

¢ The i ndex field is the local symbol index of the symbol following the matching
st End.

e This symbol identifies a generic name for a set of procedure declarations, such
as a Fortran interface declaration.

Version Note

Generic names are supported in symbol table format V3.14 and greater.

Combinations may be valid in the local symbol table, the external symbol table,
or both. Table 11-6 shows which combinations are valid in which table, based on
the symbol type value and also the storage class value where necessary. Only
combinations previously specified as valid apply where the storage class value is
shown as a wildcard value with the character '*.

Table 11-6: Valid Placement for st /sc Combinations

st /sc Combination External Symbol Table Local Symbol Table

stNil, sc* X X
st d obal , sc* X

x

st Static, sc*

x

st Par am sc*

st Local , scSCN 1 X
st Local , not sScSCN 1

st Label , sc* X

st Proc, sclnfo

X X X X

st Proc, scText X
st Proc, scUndefi ned X
st Bl ock, sc*

st End, sc*

st Menber, sc*

st Typedef, sc*

stFile, sc*

X X X X X X

st Stati cProc, scText

st Stati cProc, sclnit/scFini X
st Const ant, sc*

st Base, sc*

st Virt Base, sc*

st Tag, *

stlnter, sc*

X X X X X X

st Namespace, sc*

11-20 Symbol Information

Table 11-6: Valid Placement for st /sc Combinations (cont.)

st /sc Combination External Symbol Table Local Symbol Table

st Usi ng, sc* X
stAlias, *

st External , *
st UseMbdul e, *

st Renane, *

X X X X X

stlnterface, *

Table Notes:

1. scSCNis a section storage class: scDat a, scSDat a, scBss, scSBss,
scRConst, scRDat a, sclnit, scFi ni, scText, scXDat a, scPDat a,
scTl sDat a, scTl sBss

11.3 Symbol Information Usage

11.3.1 Scopes

From a user-program’s point of view, an identifer’s scope determines its visibility
in different parts of the program. Programming languages provide facilities

for declaring and defining names of procedures, variables and other program
components inside various scoping levels. This section briefly discusses the concept
of scope and then explains how it is represented in the symbol table. References are
made to structures in the auxiliary symbol table; see Section 11.3.2.3 for details.

Generally speaking, the four main scoping levels in a program are block scope,
procedure scope, file scope, and program scope. Most programming languages
have constructs to implement at least these scoping levels. Figure 11-2 shows
the hierarchy of these scopes.

Figure 11-2: Basic Scopes

program

N

data filel . fileN

AN

data procl --- data procl ---

7\ ~ I\

data block1 © data blocki

data data

Symbol Information 11-21

11.31.1

11-22

Names with block scope can only be referenced inside the declaring block. Blocks
are delimited by begin and end markers, the syntax of which varies among
languages.

Names with procedure scope are only recognized inside their enclosing subroutines.
For instance, the names of formal parameters and local variables declared inside a
procedure are accessible only to that procedure’s executable statements.

Names with file scope can be referenced by any instruction within the file where
they are declared. A file can be composed of procedures and data external to any
procedure. Both external data names and procedure names can have file scope
or program scope. Note that in a compilation involving only a single file or in a
compilation for a programming language with no separate-compilation facilities,
file scope and program scope are equivalent.

Names with program scope are visible everywhere in the program, even when the
executable program is built from many source and header files. The linker must
resolve these names or pass them to the dynamic loader to resolve. See Chapter 13
for more information about symbol resolution.

In the symbol table, procedure scope, file scope, and program scope correspond to
local, static, and global symbols, respectively. Block scope names are also local
symbols. Local and static symbols appear in the local symbol table, and global
symbols are in the external symbol table.

Local Symbols with External Linkage

Version Note

Local symbols with external linkage are supported in symbol table
format V3.14 and greater.

Any scope below program scope can import symbols that are defined in program
scope. For example, external declarations in C programs import program scope
symbols to file, procedure, or block scope. Source language semantics normally limit
the use of externally defined symbols to those that are declared within the local
scope, but debuggers will assume that all external symbols are visible from any
local scope when the symbol table excludes information on external declarations.

If a file descriptor’s f ul | Ext er nal s flag is set, debuggers can limit the visibility of
externally defined symbols to those with external declarations in that compilation
unit.

External declarations are recorded as local symbol table entries with symbol type
st Ext er nal and storage class scl nf 0. If the name being declared is unique to
the containing scope (shared only with other instances or copies of that scope),
then the name must be mangled in some way. The symbol is known locally by the
demangled name, but globally by the mangled name. The rule for demangling
the name must be either built into an appropriate language specific demangling
module as is done for C++ or known to debuggers on a language specific basis as is
done for the Fortran trailing underscore convention.

If there is no corresponding external symbol table entry for an external declaration,
then the local name is considered unallocated. This is not necessarily an error.

External declarations may include type information. The local symbol’s i ndex
field is interpreted as an AUX index. In addition, the symbol’s val ue field provides
a hint as to how best to regenerate the source language declaration. See the

st Ext er nal /scl nf o entry in Section 11.2.4 for details.

Symbol Information

11.3.1.2 Procedure Scope

Although procedure symbols can only be global or static (with symbol types st Pr oc
and st St ati cProc, respectively), procedure entries appear in the local symbol
table to identify the containing scope of their local data. The set of symbols
appearing in the local symbol table to describe a procedure scope and their
associated auxiliary entries is shown in Figure 11-3. Global procedures also have
entries in the external symbol table. As illustrated, the indices of these external
entries point to the scoping entries in the local symbol table.

Note

In this chapter, all diagrams of symbol table representations use arrows
to show that one entry contains an index to another entry. For external
and local symbol table entries, the index used is contained in the i ndex
field. For auxiliary symbols, the i symor RNDXR field is the index used.
Any exceptions to this general rule are noted in the diagrams.

Figure 11-3: Procedure Representation

External Symbols Local Symbols Auxiliary Entries
procedire name e 1
ztProg, scText i EE.]tPrDc, ST et] return
9 value
<parameters= type
& | block (start \ .
4 stBchk(, ngext 1) iaym A TIR
<|local variables> «.._______-\
end (block) b Type descriptions
stEnd, scText
—e| end (procedure)
ztEnd, scText
| <next symbols

A special instance of a procedure definition occurs for a procedure with no text.
This type of procedure occurs only in the local symbol table and is very similar
to the representation of other procedures. It is generally used for procedures
that have been optimized away that still need to be represented for debugging or
profiling information.

Symbol Information 11-23

Figure 11-4: Procedure with No Text

Local Symbols Auxiliary Entries
rocedure name |————
— sgPrDc,scInfD 4 return
<parameters= & value
stParam, scInfo \ type
- block (atart .
g stBchk(,scI)nfD 1y isym A TR

<nested procedures>
end (block) Type descriptions
ztEnd, scInfo

—— | end (procedure)
ztEnd, scInfo

| <next symbol>

A procedure with no code can contain only nested procedures that also have no
code associated with them. If a procedure with no code does not contain any
nested procedures, the st Bl ock/st End symbol pair can be omitted from the
representation.

The st Pr oc symbol included in this representation is distinguished from similar
st Proc symbols by its value field that is set to addressNi | (-1).

Version Note

Procedures with no code are supported in symbol table format V3.13
and greater.

11.3.1.3 File Scope

As in the case of procedures, file name entries appear in the local symbol table to
define the file’s scope. This representation is shown in Figure 11-5. Note that file
symbols appear in the local symbol table only.

Figure 11-5: File Representation

Local Symbols Auxiliary Entries

file narne
stFile, scText

procedures,
data ™""73 Type Descriptions

end (file)
stEnd, =scText

L

<next symbol>

11-24 Symbol Information

11.3.1.4 Block Scope

In general, the local symbol table denotes scoping levels with st Bl ock and st End
pairs, as shown in Figure 11-6.

All symbols contained between these two entries belong to the scope they describe.
Nested blocks are possible, and st End symbols match the most recent occurrences
of st Bl ock (or other opening symbol entries such as st Proc or st Tag).

Figure 11-6: Block Representation
Local Symbols Avpiliary Entries
begin (block)

ztBlock, scText

~odata ~~ == Type Descriptions
end (hlock)

ztEnd, =cText

<next symbol>

Block scopes occur in many languages. In C, they take the form of lexical blocks.
In C++, declarations can occur anywhere in the code. In Pascal and Ada, nested
procedures are possible, with local variables at any or all levels.

11.3.1.5 Namespaces (C++)

Version Note

Namespaces are supported in symbol table format V3.13 and greater.

A C++ namespace is a mechanism that allows the partitioning of the program
global name space. This partitioning is intended to reduce name clashing and
provide greater program manageability to C++ developers.

Symbol Information 11-25

11-26

Figure 11-7: C++ Namespace Representation

Local Symbols Auxiliary Entries

Namespace Nare
— stNamespace,scinfo¥

<type declarations> |——— Type Descriptions

::namesgace tnembersy
ztMember, scInfo

w

<static members>
ztStatic, scInfo

nested namespaces>

narmespaceend)
— | stEnd, =zcInto

7

arad

—| <next syrmbol>

1227
13t
FERE
13t
FERE
EETY

112

namespace members are defined with
<symbol definitions> | mangled names that identify their
contaitihe narnespace.

NAmespacese Narnes
stUsing, scInfo »

@
nmespace narrme
stUsing, scInfo — 1Y RNDXR
Y .
1) RNDXR

A namespace definition may exist only at the global scope or within another
namespace. The namespace representation in Figure 11-7 shows a single
contribution to a namespace. This representation may be replicated many times in
the symbol table for a single namespace. A namespace definition may be continued
within the same file or over multiple source files.

A single namespace contribution that spans multiple source files is represented as
if it were contained entirely within the source file in which it began.

Namespaces may be aliased, allowing a single namespace to be referred to by
multiple names. Namespace components may also be referenced without their
namespace qualification if they are included within a scope by a using directive

or using declaration. The representations of namespace aliases, using directives,
and using declarations are shown in Figure 11-7. Namespace definitions,
namespace component declarations, namespace aliases, using directives, and using
declarations occur only in the local symbol table. Namespace component definitions
may occur in the local or external symbol table.

Symbol Information

11.3.1.5.1 Namespace Components

The components of a namespace are represented in two parts: declarations and
definitions. Namespace components that do not require definition must be declared
in the namespace definition. Namespace components that are referenced by a using
declaration must be declared in the namespace definition. All other namespace
component declarations may be omitted from the namespace definition.

Namespace component names are mangled only as needed. Function and data
definitions have mangled name definitions in the local or external symbol table.
These entries are mangled for type-safe linkage and as a method of matching
components with the namespaces to which they belong. Names of component
declarations within a namespace definition may or may not be mangled. They are
not required to include the namespace name in their mangled form.

Empty namespace contributions can be omitted, but at least one instance of a
namespace definition must occur somewhere in the local symbol table. This
definition is required because name mangling rules do not distinguish namespace
component definitions from class member definitions.

11.3.1.5.2 Namespace Aliases

Namespace aliases can occur in namespace, file, procedure, or block scope in
the local symbol table. The index value for the st Al i as entry is an auxiliary
table index. The auxiliary entry is a RNDXR record containing the local symbol
table index of the st Nanespace symbol in the first instance of a namespace
definition within a compilation unit. For an alias of an alias, the RNDXR record
can also contain the index of another st Al i as symbol in the local symbol table.
Section 17.2.5 provides an example of a namespace alias.

The st Al i as symbol type may be used in future versions of the symbol table format
as a general purpose symbol alias representation. The semantic interpretation of
the st Al i as symbol depends on the type of the symbol it aliases.

11.3.1.5.3 Unnamed Namespace

An unnamed namespace can be declared at the global scope or within another
namespace. An unnamed namespace is unique within a compilation unit. Multiple
contributions to a unique unnamed namespace are not allowed. Unnamed
namespace contributions are included in the non-mergeable portion of a C++
header file.

Unnamed namespace components are subject to the same rules as named
namespaces for declarations and definitions.

The st Namespace symbol for an unnamed namespace has a compiler generated
name starting with __N1. This same name is used to identify the unnamed
namespace in the mangled names of components of that namespace. (See the
unnamed namespace example in Section 17.2.4.)

11.3.1.5.4 Usage of Namespaces

A C++ using directive or a using declaration is represented by a symbol of type

st Usi ng. It may occur in any scope in the local symbol table. The index value for
the st Usi ng entry is an auxiliary table index. If the st Usi ng entry represents

a using declaration for a single namespace component, the auxiliary entry is a
RNDXR record containing the local symbol table index of a namespace component
declaration. If the st Usi ng entry represents a using directive, its RNDXR auxiliary
contains the local symbol table index of the st Nanespace symbol in the first
definition of that namespace in the compilation unit.

Symbol Information 11-27

11.3.1.6

11-28

A using directive for a namespace alias is represented with a RNDXR auxiliary that
directly references the aliased namespace. This representation contains no record
of the alias referenced by the using directive.

A using directive for a global symbol is represented with a RNDXR auxiliary that
references a local symbol table st Ext er nal / scl nf 0 entry with a name matching
the global symbol as it is recorded in the external symbol table.

Version Note

Using directives for global symbols are supported in Tru64 UNIX V5.1B
and greater.

Names are not required for st Usi ng entries, but they can be set to match the
namespace or namespace component to which they refer.

Namespace components that are referenced by an st Usi ng symbol must be
declared in the namespace definition.

Section 17.2.3 provides an example of namespace definitions and uses.
Fortran Modules

Version Note

Fortran modules are supported in symbol table format V3.14 and
greater.

A Fortran 90 module provides a way of grouping symbol names and controlling
naming conflicts. The definition of a Fortran 90 module is very similar to the
definition of a C++ namespace, but the uses of these two constructs are very
different. See Section 11.3.1.5 for a description of C++ namespaces.

The compilation of a Fortran 90 module unit will result in a complete local symbol
table for the module. The module will be represented as shown in Figure 11-8
using the st Modul e and st End symbols to delimit the start and end of the module.
Declarations within the module are represented in the normal manner. The

st Mbdul e symbol type shares the same value as the st Nanmespace symbol type.
The | ang field in the containing file descriptor determines which interpretation

is valid.

Figure 11-8: Fortran 90 Module Representation

Local Symbols Auxiliary Entries

__| module name
stModule, soInfo

<gymbol definitions>|— T¥pe Descriptions

end [module)
stEnd, scInfo

<next symbols

Symbol Information

External symbol table entries for declarations contained in modules use a simple
form of name mangling. As illustrated in Section 17.3.4, the external name is
constructed by converting names to lower case and assembling them as:

$nodul e$synbol _

Modules can contain interface declarations and contained procedure definitions.
Contained procedures are defined inside the module. They are represented the
same as any other procedure in Fortran. Procedure definitions are described in
Section 11.3.1.2. Interface declarations identify procedures that can be accessed as
members of the module, but they are defined outside of the module context. The
representation of an interface declaration is illustrated in Figure 11-9. Examples
of contained procedures and interface declarations can be found in Section 17.3.5
and Section 17.3.6, respectively.

Figure 11-9: Fortran 90 Module with Interface Declaration

Local Symbols Auxiliary Entries

module name

_’ stModule,scInfo
rocedure —_)
> EI.JtPrDc, scInfo return
O walue
<parameterss type
stFParam, scInfo \

end (procedure) 1) isym 2 TIR

—| stEnd, scInfo \

| <next symbol> Type descriptions
end (module)

stEnd, seInfo

w

<next symbol>

11.3.1.6.1 Modules with Use Statements

The Fortran 90 USE statement imports symbols from a module defined in a
separate compilation unit. Variations of the statement allow importing all of a
module’s symbols or only those that are specified. The USE statement also allows
imported symbols to be renamed in the local context.

Figure 11-10 shows the representation of a USE statement that imports all symbols
from a module without renaming any of them. Note that the st UseMbdul e symbol
i ndex field isi symNi | and the val ue field is USE_MODULE_ALL.

Symbol Information 11-29

11-30

Figure 11-10: Fortran 90 Module USE (ALL) Representation

Local Symbols Auxiliary Entries

module name ; -
stUseModule, —» isymNil

scInfo
(value=1)

Module names must be unique across all compilation units, so debuggers can
resolve the st UseMbdul e entry by searching all compilation units for the definition
of a module with the same name. A debugger cannot resolve all module uses by
searching the external symbol table. It must access the definition of the exporting
module to resolve symbols that it imports from other modules. The example in
Section 17.3.4 illustrates the Fortran 90 USE statement used in a module definition
to import symbols from another module.

Figure 11-11 shows the representation of a USE statement that imports all symbols
from a module renaming some of them. Note that the st UseMbdul e symbol i ndex
field is the index of the local symbol table entry following the corresponding st End
symbol and the val ue field is USE_MODULE_ALL. Specific symbols are renamed
with st Renane entries. For these entries the i ss field is the local string table
index of the symbol name in the local context. The val ue field is the local string
table index for the symbol name as it is appears in the module definition.

Figure 11-11: Fortran 90 Module USE with Renaming

Local Symbols Auxiliary Entries

maodule name
stUseModule,
solnfo

F|(value=1)

newy name
(wvalue=0old name)
stRename, scInfo

<Imore renameass-

end (LIse module)
stEnd, scInfo

<next symbols

w

Figure 11-12 shows the representation of a USE statement that imports selected
symbols from a module. Note that the st UseMbdul e symbol i ndex field is the
index of the local symbol table entry following the corresponding st End symbol

Symbol Information

and the val ue field is USE_MODULE_ONLY. Specific symbols are imported with

st Renan®e entries. If a symbol is renamed its st Renane i ss field is the local
string table index of the symbol’s name in the local context. Otherwise, both the

i ss and val ue fields contain the same local string table index for the symbol name
as it is appears in the module definition.

Figure 11-12: Fortran 90 Module USE (ONLY) Representation

Local Symbols Auxiliary Entries

module name
stUseModul =,
scoInfo

P (value=0)

new name *
(value=old name)
stRename, scolnfo

< IMOre renamess

end (Use module)
stEnd, sclInfo

<next symbol>

b

* newr name and old name are the same
ifmodule entites are not renarned

11.3.1.6.2 Fortran Generic Interfaces

The Fortran 90 | NTERFACE statement can be used to create a single generic
interface name for a set of procedure names that are distinguished by parameter
types. The representation of generic interfaces is illustrated in Figure 11-13 and
an example is shown in Section 17.3.7.

Symbol Information 11-31

Figure 11-13: Fortran 90 Generic Interface Representation

Local Symbols Auxiliary Entries
interface name
— stInterface,
scInfo
rocedure 1 —_
- EI.]tPrDc, zeInfo refurn
) value
<parameters> type
stFParam, scInfao \
end (procedure 1) Disym A TIR
——| =tEnd,scInfo \
—b procg&we 2 Type descriptions
procedure ® —_)
5tProg, seInfo return
) value
<pararneterss type
stParam, scInfo \
end (procedurs H) yisym A TIR
3tEnd, scInfo \
Ly, PR Type descriptions
stEnd, scInfo
p| <next symbol>

11.3.1.7 Exception Handling Blocks (C++)

In C++, a special scoping mechanism is introduced to expand user-defined
exception-handling capabilities. Exception handlers are defined to "catch"
exceptions that are "thrown" by other functions. The symbol table must contain
sufficient information to recognize the scope of a handler. The compiler generates
special symbols to identify where exception handlers are valid.

11-32 Symbol Information

Figure 11-14: C++ Exception Handler Representation

Local Symbols

Auxiliary Entries

class name (stTag)
| (stBlock) < -
class name 151oloc
b b=
<other class syms> billass 4
end (block) TITIR 2) RND®R
<generated throw
~—— | e (stTag)
Tp <generated throw
tag> (5tBlock)
type signature . Ezéhar
tol=
thunk >| tgPtr
<generated throw TITIR
tag > end
——— | <next symbol>
function name 2 Note: the throw
can occur in
?the{; % ;ge;;:a:;g;h;;;;w e any function,
unction . .
taes (Static Dat j including aclass
symbo&imﬁmimmmmmmmﬁmm method in the
defining class
end (functiomn)

11.3.1.8 Fortran Common Blocks

Fortran common blocks constitute another scoping level. Fortran uses common
blocks as a way of specifying data that is global or shared between program units.
A common block is global storage that can be named, allocated, accessed, and used
by various subroutines. The block can be named or unnamed; unnamed blocks are
known as "blank commons". Internal to the symbol table, blank commons are

named BLNK .

Figure 11-15 shows the symbolic representation of Fortran common blocks.

Symbol Information 11-33

Figure 11-15: Fortran Common Block Representation

External Symbols Local Symbols Auxiliary Entries
From synthesized
BLNE .
=tGlobal, scContnoh file for the common:
- BLINE
— stFile, scaText
- BLMNE

_b stBlU_ck, scConmon {_

<memberss
TP Type Descriptions

stEnd, scCommon)

___p[BLNE_
stEnd, scText

L <next symbol>

Frotn source

file where common

15 referenced:
ELME bt=

bL3tatic, scCommoly —bp htStruct

TR 2} RNDXR

Because a Fortran common is represented as a synthesized file, it also has an entry
in the file descriptor table. Furthermore, a global symbol with the same name is
also present in the external symbol table.

An example of a Fortran common block can be found in Section 17.3.1.

11.3.1.9 Alternate Entry Points

Fortran also has a facility for creating alternate entry points in procedures. An
alternate entry point is represented using an st Pr oc/scText symbol. In the
procedure descriptor table, an alternate entry point is identified by a | nHi gh
field with a value of -1. Procedure descriptors for alternate entry points follow the
procedure descriptor for the primary entry point. In the local symbol table, an
alternate entry point has an entry inside the scope of the procedure’s primary entry.

The representation of a procedure with an alternate entry point is shown in
Figure 11-16

Version Note

The st Bl ock symbol that follows the alternate entry’s st Pr oc symbol
in Figure 11-16 is supported in symbol table format V3.13 and greater.
In symbol table formats less than V3.13 alternate entries do not have a
start block symbol, and their prologue size is unknown.

11-34 Symbol Information

11.3.2

11.3.21

Figure 11-16: Alternate Entry Point Representation

Local Symbols rain Anxiliary Entries
&= antry paint
function name —_—
— stProc, scText return
9 value
<parameters> tvpe
| block(start \ .
b stBlD(ck, E;lcText 1) isym 2 TIR
<local variables> -...______\
eniry name e Type descriptions
stProc, scText Lltermnate
<enftry's paramss> eniry point
block (start [return
f stBlD(ck, E?cText b _ value
¥ tipe
end (block) *
stEnd, scText i TIR
| end (function)) dsym)
ztEnd, scText
| <next aymbol> # ifdexil

An example of Fortran alternate entries can be found in Section 17.3.2.

Data Types in the Symbol Table

A data element’s type dictates its size and interpretation in a programming
environment. One of the symbol table’s most important tasks is to represent data
types in a compact and complete manner.

Type information is stored in the local and auxiliary symbol tables. This section
provides guidelines for understanding the type information plus specific examples
for depicting a range of types.

Basic Types

All programming languages have a set of simple types that are built into the
language and from which other data types can be derived. Examples of simple
types are integer, character, and floating point. Languages also provide constructs
for creating user-defined types based on the simple types. For example, a C++ class
can be built using any simple type or previously defined user-defined type and the
language facility for declaring classes.

Similarly, a basic type in the symbol table is a building block from which each
language constructs its type information. Basic type (bt) values directly represent
many of the simple types for supported languages; for instance, the value bt Char
indicates a character. Other bt values represent language constructs for building
aggregate types; a value of bt St r uct may be used, for example, to represent a

C structure or Pascal record.

The symbol table uses approximately forty basic type values. The interpretation of
some of these values is language dependent. See Table 114 for a list of all values.

Symbol Information 11-35

11.3.2.2

11.3.2.3

11-36

Type Qualifiers

Type qualifiers can be applied to basic types to create other data types. Examples

are "pointer to", "array of", and "function returning". Generally the number and

order of type qualifiers is unrestricted.

See Table 11-5 for a list of type qualifiers and their meanings.

Interpreting Type Descriptions in the Auxiliary Table

This section explains in detail the encoding of type descriptions in the symbol
table. To fully describe the type of a symbol, the auxiliary symbol table must be
created and referenced. Compilation with full symbolic information (- g option on
system compilers) results in the creation of this table.

To correctly decode the type information, proceed sequentially, beginning with
the symbol table entry. Several fields may be required from other symbol table
structures:

e symbol type (st)
e storage class (sc)
e index (SYMRi ndex)
e value (SYMRval ue)

e source language (FDR.I ang)

The first step is to determine whether the symbol contains an index of an auxiliary
table description.

Table 11-7: Symbols with Auxiliary Type Descriptions

Symbol Type Storage Class Conditions AUXU Index Field
st d obal Any None i ndex
stStatic Any None i ndex
st Param Any None i ndex
st Local Any Local symbol table i ndex
st Proc Any Local symbol table i ndex
st Bl ock sclnfo Inside an scVari ant block Vval ue
st Menmber sclnfo None i ndex
st Typedef sclnfo None i ndex
st Stati cProc Any Local symbol table i ndex
st Const ant Any None i ndex
st Base sclnfo None i ndex
st VirtBase sclnfo None i ndex
st Tag sclnfo None i ndex
stinter sclnfo None i ndex
st Nanmespace sclnfo None i ndex
st Usi ng sclnfo None i ndex
stAlias sclnfo None i ndex
st Ext er nal sclnfo None i ndex

If the index does represent a record in the auxiliary symbol table, the interpretation
of the first auxiliary entry (AUXU) depends on the type of the symbol:

Symbol Information

e Ifthe symbol’s type is st Proc or st St ati cProc and the symbol is a local
symbol, the indexed AUXUis an i sym(set to i ndexNi | for alternate entry
points) and the second AUXUis a Tl R. External procedure symbols do not have
descriptions in the auxiliary table.

e Ifthe symbol’s typeis stlnter,st Ali as, or st Usi ng, the indexed AUXU is an
RNDXR and the type description does not contain a Tl R

e Ifthe symbol is an st Bl ock symbol inside an scVar i ant block, the symbol
entry’s val ue field is an index into the auxiliary table. This special case is
the only one where the val ue is used as an auxiliary symbol pointer. In all
other cases, it is the i ndex field that potentially indexes the auxiliary table
type description.

e Otherwise, the indexed AUXUis a TI R

The next task is to examine the contents of the TI R The Tl R contains constants
representing the basic type of the symbol and up to six type qualifiers, labeled

t q0- t g5. If a type has more than one qualifier, they are ordered from lowest to
highest. Lower qualifiers are applied to the basic type before higher qualifiers.
All unused t q fields are set tot qNi | , and no t gNi | fields are present before or
between other type qualifiers.

In addition to the basic type and type qualifiers, the Tl R contains two flags: an
fBitfiel dflag to mark whether the size of the type is explicitly recorded, and a
cont i nued flag to indicate that the type description is continued in another Tl R.
IffBitfieldis set, the Tl Ris immediately followed by a wi dt h entry. If more
than six type qualifiers are required for the current definition, the description is
continued, and the cont i nued flag is set. If exactly six type qualifiers are needed,
all six fields are used and the cont i nued flag is cleared.

To illustrate, consider the type "array of pointers to integers". The basic type is
"integer" and has two qualifiers, "array of" and "pointer to". Each element of the
array is a "pointer to integer". Therefore, the qualifier "pointer to" must be applied
first to the basic type "integer". In this example, the qualifier "pointer to" is lower
than the qualifier "array of". The contents of the Tl R are as follows:

bt: btlnt

tqo: tqgPtr

tql: tqArray

tq2: tqNil

tq3: tgNil

tqd: tqNil

tqgq5: tgNil

continued: O

fBitfield O

The contents of the Tl R dictate how to interpret any subsequent records. The
records appear in a prescribed order:
e IfthefBitfield flagisset, aw dt h record follows the TI R

e Ifthe basic type is bt Pi ct ur e, the next four records contain integer values:
the string table index of the picture string, the length, precision and scale.

e Ifthe basic type is bt Scal edBi n, the next three records contain integer values:
a basic type, the precision and scale.

e Ifthe basic type field is bt St r uct, bt Uni on, bt Enum bt d ass, bt | ndi r ect,
bt Set , bt Typedef , bt Range, bt Range_64, bt Deci rmal , bt Fi xedBi n, or
bt Proc, the next record is an RNDXR.

e Ifthe rfd field of the RNDXR contains the value ST RFDESCAPE, the next
record is an i sym

e Ifthe basic type is bt Range, the next two records are dnLow and dnHi gh.

Symbol Information 11-37

e If the basic type is bt Range_64, the next two records are dnLow records and
the two after that are dnHi gh records.

e Ifthe basic type is bt Deci mal or bt Fi xedBi n, the next two records contain
integer values: the precision and scale.

¢ For each array type qualifier in the Tl R, the following symbols occur:
— An RNDXR, again possibly followed by an i sym

— Either one or two dnLow records (depending on whether the array is
tgArray ortgArray_64)

— Either one or two dnHi gh records (depending on whether the array is
tgArray ortgArray_64)

— Either one or two wi dt h records (depending on whether the array is
tgArray ortgArray_64)

e Ifthe conti nued flag is set, the next record is another TI R

For a type description containing more than one Tl R, the fields of all Tl R records
are interpreted in the same way. When a Tl Ris reached with the flag cleared and
any records associated with that Tl Rhave been decoded, the type description is
complete.

As an example, consider an array of structures with the f Bi t fi el d flag set. A
total of seven auxiliary records can be used to describe the type:

The Tl Rwith a basic type of bt St ruct and with t qO set to t gArr ay.

A wi dt h record. The size of the basic type.

A RNDXRrecord. A pointer to the structure definition in the local symbol table.

A RNDXRrecord. A pointer to the array index type description elsewhere in the
auxiliary table.

Ll e

o

A dnl owrecord. The lower bound of the array’s range.
A dnhi gh record. The upper bound of the array’s range.
A wi dt h record. The distance in bits between each element in the array.

If the cont i nued flag of the Tl Ris cleared, the wi dt h record corresponding to the
array qualifier is the final AUXU for this type description.

For another view of this process, see Figure 11-17. Each box represents one
auxiliary entry belonging to the symbol’s type description. Using the flowchart, an
ordered list of entries can be assembled.

11-38 Symbol Information

Figure 11-17: Auxiliary Table Interpretation

Index into
aux table

SYMR. st== — SYMPR. st== EE?:;;::
stProc or L= stUsing or 5
st3taticProc? stintes? Aling? in stBlock,
. Stilast scVatiant?

—v— v
| rndg
T
v court - - count = 07
t1
I
v
t1
v

Symbol Information

11-39

Figure 11-18: Auxiliary Table "ti"* Interpretation

t1.fBitfield
=17

width
J

bt vals |
AITAYS ||

t1.continmed
=17

Figure 11-19: Auxiliary Table "arrays" Interpretation

of
tArrays
=07

BITEYS - -

range

7 B

width

11-40 Symbol Information

Figure 11-20: Auxiliary Table "bt vals" Interpretation

tibt =
ote of #7

tibt =
one of 47

[
range
] b

tLht =
btPicture or
btEcaledBin?

tiht =
btPicture?

* htStruct, btEmum, btUiorn, btClass,
btTypedef btSet, bilndirect, btRanege,

btRange 64, btDecimal btFizedBin,
htProc

** btRange, btRange 84,
biDecunal btFmedBm

| 2

Symbol Information

11-41

Figure 11-21: Auxiliary Table Range Interpretation

J

dril.ow

Figure 11-22: Auxiliary Table RNDXR Interpretation

|

J

The final step is to decode the RNDXR records. The basic types that are followed by
RNDXR records require reference to another local or auxiliary symbol to complete
the type description. Interpret the RNDXR records as follows:

e If the basic type is bt St ruct ,bt Uni on, bt Enum bt d ass, bt Proc, or
bt Typedef, the i ndex field of the RNDXR points into the local symbol table.
The specified local symbol is the start of the definition of the structure, union,
enumeration, class, or user-defined type. For bt Pr oc, the referenced local
symbol is the start of the set of symbols defining the procedure’s signature.

11-42 Symbol Information

11.3.3

11.3.31

e If the basic type is bt Set , the RNDXR points into the auxiliary symbol table.
The specified record is the start of the description of the type of each element in
the set.

e Ifthe basic type is bt | ndi r ect , the RNDXR points into the auxiliary symbol
table. The specified auxiliary record is the start of the description of the
referenced type.

e Ifthe basic type is bt Range, the RNDXR points into the auxiliary symbol table.
The specified auxiliary record is the start of the description of the type being
subranged.

e Ifthe basic type is bt Fi xedBi n, the r f d field of the RNDXR contains a Boolean
value. If r f d is t r ue, the base is decimal; if r f d is f al se, the base is binary.
The i ndex field represents a type code.

e If the basic type is bt Deci mal , the r f d field of the RNDXR contains the value
1 for 4-bit digits (packed decimal) or 2 for 8-bit digits (zoned decimal). The
i ndex field represents a type code.

Additionally, the index of every RNDXR used as a pointer must be mapped through
the relative file descriptor table (see Section 6.3.2), if the table exists. The r f d field
of the record controls this mapping. The following algorithm can be used to locate
the symbol referenced by the relative index record:
if (RNDXR rfd == ST_RFDESCAPE)

RFD = (++AUXU).isym
el se

RFD = RNDXR. rfd
if (HDRR crfd) /* RFD table exists */

IFD = (current FDR s RFD tabl e)[RFD]

el se
|FD = RFD

if (SYMR needed)
SYMBASE = FDR[| FD] . i synBase
SYMR = SYMBASE[RNDXR. i ndex]
else if (AUXU needed)
AUXBASE = FDR[| FD] . i auxBase
AUXU = AUXBASE[RNDXR. i ndex]

Individual Type Representations

This section provides sketches of type representations in the local and auxiliary
symbol tables. The connections between the two tables is depicted for each type.
This form of representation is only possible when full symbolic information is
present.

Note that external symbols as well as local symbols reference the auxiliary table,

although the examples in this chapter use local symbols only.

Pointer Type

A pointer is a variable containing the address of another variable. A pointer
is represented by a t qPt r type qualifier modifying another type. A pointer is
represented by a single symbol with an entry in the auxiliary table, as shown
in Figure 11-23.

Note that if the pointer referenced a user-defined type, such as a class or structure,
the TI Rwould be followed by an RNDXR (and possibly an i sym.

Symbol Information 11-43

Figure 11-23: Pointer Representation

Local Symbols Auxiliary Entries

bt=tvpe
*| pointer name |—| pointed to

tgl=tgPtr

* could be external
1) TIE

The combination of type qualifiers t qFar and t gPtr are used to represent a short
(32-bit) pointer. This pointer type is used with the XTASO emulation.

11.3.3.2 Array Type

An array is a list of elements that all have the same type. Arrays may be fixed size
and allocated at compile time or dynamically sized and allocated at run time. This
section describes the fixed-size array symbol table representation. For information
on Fortran dynamic arrays, see Section 11.3.3.9. For conformant arrays in Pascal
and Ada, see Section 11.3.3.10.

An array is represented by at gArray or t gArr ay_64 type qualifier applied to
another type. This second type describes the type of all elements in the array. In
the local or external symbol table, a single entry represents an array. Figure 11-24
shows the symbol table description for an array.

11-44 Symbol Information

Figure 11-24: Array Representation

Local Symbols Auxiliary Entries
x| array name —*|bt=elem
=
qu”g’p ¢
* could be external fqArray

TITIR 2)RNDXR

For multidimensional et Upper
array, repeat (23 thru (5) bound bound
for each ditmension

3) dnlow 4) dnhigh

element] | index
_ gize type [
Note: Entry for indextype | (inbits
can be anywhere in table Blwidth 1) TIR

Note that for an array of elements of a user-defined type, such as a class or
structure, another RNDXR (and possibly an i sym would be inserted between the
TI R and the RNDXR describing the subscript type.

If an array has multiple dimensions, the symbols describing the dimension appear
in the order of innermost to outermost. For example, the following declaration
produces a Tl R with the t gAr r ay qualifier followed by the RNDXR and range
description for 0-1 followed by the entries for the dimension 0-99:

float floattable[100][2]
Some arrays may have dimensions too large to represent in the 32-bit format
shown in Figure 11-24. Such arrays are represented using a 64-bit format in which

two auxiliary entries are used for the dimension bounds and size. Figure 11-25
illustrates the 64-bit representation.

Version Note

The 64-bit representation of arrays is supported in symbol table format
V3.13 and greater.

Symbol Information 11-45

Figure 11-25: 64-Bit Array Representation

Local Symbols Auxiliary Eniries
x| array name —— [t = elem
% tg = e @
could be external tqdrray_64
1ITIR 21 RNDXR
lower lower
hound hound
L . (lowr hats) (high hits)
For multidimensional
array, repeat (2) thru (8) 3)dnLow 4 dnLow
for each dimension upper upper
bound hound

(lowr bits) {high hits)
5)dnHigh &) dnHigh

element eletnent
iz s1ze

{lowr hits) (high hits)

Ty wdth 23 width

size in bits

incles

Mote: Entry for index type type ¢
can be anywhere in table
1ITIR

11.3.3.3 Structure, Union, and Enumerated Types

This section applies to data structures in languages other than C++. For the C++
structure, union, or enumerated type representation, see Section 11.3.3.6.

Structures, unions, and enumerated types have a common representation. All
three are identified using "tags" and contain zero or more fields. In the symbol
table, the tag is the name associated with the starting st Bl ock symbol for the
structure’s set of local symbols. Note that it may be empty because the tag is
optional. Symbols for fields follow. The definition is completed by a block-end
symbol matching the block-start symbol.

Figure 11-26 contains a graphical depiction of this set of symbols.

11-46 Symbol Information

Figure 11-26: Structure Representation

Local Symbols Auxiliary Entries
k
e tag name (block) hi-
emenmberss btStruct| | @
end (block) 1JTIR 2)RNDXR
L p| <next symbol=

Type descriptions

Pl P i Pl P P P i P

P P U P P e e R

#| structwvariable

* could be external

The structure members have auxiliary table indices pointing to their type
descriptions.
Untagged structures and unions are represented with a NULL tag name.

Unnamed structures can be embedded in other structures and are represented as a
NULL-named member of the outer structure. See Section 17.1.1 for an example of

an unnamed structure.

Version Note

Unnamed member structures are supported in symbol table format
V3.13 and greater. As of Tru64 UNIX V5.1 dbx will display structures
with unnamed member structures, but neither dbx nor ladebug provide
specific access to members of unnamed member structures.

A structure can contain a field that is a pointer to itself. This field is represented by
an st Menber symbol with an auxiliary table entry that references the beginning of
the structure’s block of local symbols, as shown in Figure 11-27.

Symbol Information 11-47

11-48

Figure 11-27: Recursive Structure Representation

Local Symbols

T‘-

Auxiliary Entries

tag name (block)

o

<membersz

recursive member

end (block)

<next symbol=

*

struct variable

* could be external

bt=
btStruct ®

1NTIR 2} RNDXR

Type descriptions

NNNNNNNNNNNNNN tg0=
NNNNNNNNNNNNNN tgFtr ®
bt=

btStruct
ITIR 2)RNDXR

When a field within a structure is itself a structure, the compiler may choose to

generate the structure definitions either sequentially or embedded, as shown in
Figure 11-28.

Figure 11-28: Nested Structure Representation

Local Symbols

Auxiliary Entries

tag name (block)

o Pl P i P el P P e

P P P O P e e P

struct variabla

" bt=
<mernberss btstruct ®
w| tagname (block) E ITIR 2) RNDXR
<mermperg> —
end [block) Type descriptions
— | struct member -
end {block) btStruct ®
——| <next symbol=

1)TIR 2) RNDXR

* conld be external

The following declaration might result in the nested structure representation:

struct line {

struct point {

f

loat x, vy;

} Pl p2;

Symbol Information

11.3.3.4 Typedef Type

Most languages allow programmers to choose alternate names, or aliases, for data
types. The alias created by such a facility (such as C’s typedef) is represented as a
single local symbol entry that has a pointer to its type description in the auxiliary
table. The auxiliary entry contains a pointer to the definition of the type name, as

shown in Figure 11-29.

Figure 11-29: Typedef Representation

Local Symbols Auxiliary Entries
| typdef'ed variable
b'l': .
~~~~~~~~~~~~~~~ Typedef
type name
stTypedef, sclinfo ‘|:|‘|'|R 2) EHNDO=R
* could be external
N type
desc,
1 TIE

11.3.3.5 Function Pointer Type

Version Note

The following function pointer representation is the preferred
representation for symbol table format V3.13 and greater.

Languages such as C and C++, which allow pointers to functions, represent the
type of the function pointer using a special st Pr oc/scl nf o block describing the
parameters and return value for the function as shown in Figure 11-30.

Symbol Information 11-49



Figure 11-30: Function Pointer Representation

Local Symbols Auxiliary Entries

* fmcptr narne —} bt=htProc

tol=tgPtr L

* could be external

TR &) RNDHER

-
) procedure —_)

stProc, seInfo refurn
& value

<parameters» type
ztParam, scInfo \

end (procedure) Disym 2 TIR
stEnd, scInfo

|—P <next symbol> Type descriptions

The st Proc/scl nf o entry has its value set to - 2, which distinguishes it from
similar entries used to represent procedures with no text and C++ member
functions. The st Proc/scl nf o and st End/scl nf o entries have null names in
the function pointer representation. The parameters are optional and may or
may not be named.

Version Note

For symbol table formats less than V3.13 the preceding representation
for function pointers is not supported, and the following alternate
representation is used exclusively.

An alternate representation of function pointers is shown in Figure 11-31. This
representation describes the return type of the function pointer but not its
parameters, and it is valid for all symbol table format versions. The combination of
type qualifiers t gPt r and t gPr oc is interpreted as "pointer to function returning".
The function return type may be the base type (bt ) in the Tl R or it may be
constructed from the base type augmented by additional type qualifiers.

Figure 11-31: Function Pointer Alternate Representation

Local Symbals Auxiliary Entries

bt=return

*| funcptr name >value type
tg0=tgFrog

*could be external tql=tqPtr

1) TIR

11-50 Symbol Information



11.3.3.6 Class Type (C++)

A C++ class resembles an extended C structure. One major distinction is that class
fields (referred to as "members") can be functions as well as variables. The set of
symbols created for a class is organized as follows:

¢ The name of the class
¢ A block symbol for scoping
e Data members

e Symbols associated with member functions. Each member function is
represented by the normal set of symbols present for a function.

e Corresponding end symbols that denote the completion of the block and class.
Another characteristic of classes is that symbols are defined implicitly. For
example, all classes have an oper at or = operator-overloading function included
in the class definition and a t hi s pointer to its own type as a parameter to all

member functions. These symbols are always included explicitly in the symbol
table description.

Figure 11-32 is a graphical representation of the set of symbols for a class.

Figure 11-32: Class Representation

Local Symbols Auxiliary Entries
class narne .
stTag, seInfo Type Descriplions

block it
stBl?:?:kgbesgégnfD{
ht=
<data members> htClass

mernber functionss 1 TIR 2} RNDXR

bloclk (end)
ztEnd, scInfo return
. value
—2|  <next symbol> type
to local ‘__!} isym 2)TIR

symbol after
function definition

class instance

Class members, including member functions, have auxiliary references that
point to their type descriptions. Note that member functions are represented as
prototypes. The set of symbols defining the member function is elsewhere in the
symbol table. To locate the definition of a member function, a name lookup can be
performed using the mangled name of the member function with its class name
qualifier. See Section 13.3.3 for information on name mangling.

C++ structures, unions, and enumerated types are represented the same way as
classes. The different data structures are distinguished by basic type value.

The symbol table does not represent class member access attributes.

Examples of base and derived classes can be found in Section 17.2.1.

Symbol Information 11-51



11.3.3.6.1 Empty Class or Structure (C++)

The representation of an empty class in C++ is shown in Figure 11-33. Empty
structures in C++ are represented in a similar manner with the Tl Rbt set to
bt Struct.

Figure 11-33: Empty Class or Structure (C++)

Local Symbols Auxiliary Entries
class narme M bt .
stTag, scInfo 7| btClass
| block (heginy NTIR  2) RNDXR

il

ztBlock, sSclInft
E block (end)

ztEnd, scInfo

—| <next symbol>

Version Note

This empty class or structure representation is supported in Tru64
UNIX V5.1. Prior to Tru64 UNIX V5.1, the default compilers did not
distinguish empty classes and structures from opaque classes and
structures. See Section 11.3.3.6.2 for more details.

11.3.3.6.2 Opaque Class or Structure (C++)

Opaque classes and structures are incomplete types. They have no member
information, and they are distinguished from empty classes and structures that
have no members. The representation of an opaque class in C++ is shown in
Figure 11-34. Opaque structures in C++ are represented in a similar manner
with Tl Rbt set to bt Struct.

11-52 Symbol Information



Figure 11-34: Opaque Class or Structure (C++)

Local Symbols Auxiliary Entries
stTag hit= rid=
tagname _.ipeq|— ST_RFDESCAPE
L btClass | |1 qaw= -1

<uthamed > r
stTypedef, scInfao .] :l -l—l R 2) PLN D)‘:R

isvm=-1

(rid)

3) RNDXR

Version Note

Prior to Tru64 UNIX V5.1 the default compilers used the preceding
representation for empty classes and structures as well as opaque
classes and structures.

11.3.3.6.3 Base and Derived Classes (C++)

Hierarchical groups of classes can be designed in C++. A base class serves as

a wider classification for its derived classes, and a derived class has all of the
members and methods of the base class, plus additional members of its own. In
the symbol table, the set of symbols denoting a derived class is nearly identical to
that for a non-derived class. The derived class includes an additional st Base or
st Vi rt Base symbol that identifies its corresponding base class, and it does not
need to duplicate the definitions for the base class members. This representation is
shown in Figure 11-35.

Symbol Information 11-53



11.3.3.7

11.3.3.8

Figure 11-35: Base Class Representation

Local Symbols Auxiliary Entries

class name (stTag)

| (stBlock) i =
class name |5 ac
. bt=
base class name —3| btClass ®

{stBase) "\

<other class syms>> \ TITIR 2)RNDXR

end (block) \I i

bt=
L | <next symbol> btClass

P P P el el i P e P

~~~~~~~~~~~~~~ NTIR 2YRNDXR

derived
class instance

- b
to local symbol
stBloclk, scInfo for

hase class defimition

The representation of virtual base classes for C++ relies on the definition of a
special symbol that identifies the virtual base table. The name for this symbol is
derived from the name of the class to which it belongs. For example, the virtual
base table symbol for class C5 would be named " _bt bl _2C5" . This table contains
entries for base class run-time descriptions.

A class can include the special member _bpt r. This class member is a pointer
to the virtual base table for that class.

The val ue field for a virtual base class symbol (st Vi rt Base/scl nf 0) serves as an
index (starting at 1) into the virtual base class table.

Template Type (C++)

Templates are a C++-specific language construct allowing the parameterization

of types. C++ class templates are represented in the symbol table for each
instantiation, but not for the template itself. The set of class symbols is unchanged
from the set shown in Figure 11-32.

Interlude Type (C++)

Interludes are compiler generated functions in C++. They are represented in the
local symbol table with special names starting with the "__ INTER__ " prefix. Their
representation in the symbol table makes use of two RNDXR aux entries to identify
the related member function and the actual interlude function, both of which are
local symbol table entries.

11-54 Symbol Information

Figure 11-36: Interlude Representation

Local Symbols Auxiliary Entries

__INTER_* |———p

¢ —

1) EXNDXE 2 RNDXER

member interluds
function function
entry

11.3.3.9 Array Descriptor Type (Fortran90)

A Fortran90 array descriptor is a structure that describes an array: its location,
dimensions, bounds, sizes, and other attributes. Array descriptors are described in
detail in the Fortran 90 User Manual for Tru64 UNIX. Fortran90 includes several
types of arrays for which the dimensions or dimension bounds are determined at
run time: allocatable arrays, assumed shape arrays, and array pointers.

Two symbol table representations have been used for array descriptors. The current
representation describes the array descriptor itself. The retired representation
described attributes of the array known at compile time.

For both representations, symbols of this type point to a data location at which the
array descriptor is allocated. One of the array descriptor fields contains a pointer
to the actual array. Other fields are used to describe the attributes of the array.
Fields that describe the number of dimensions and upper and lower bounds are
filled in at run time.

By default, array descriptors are described by a structure tag representation. Most
of the array descriptor fields are represented as structure members. (Excluded
fields are not needed by debuggers.) Special tag names are used to identify array
descriptor structure definitions: $f 90$f 90 _arr ay_desc (assumed-shape array),
$f 90$f 90_pt r _desc (pointer to array) and $f 90$f 90_al | oc_desc (allocatable
array). Figure 11-37 shows the format of this representation.

Some compilers may emit other fields in addition to those shown in Figure 11-37.
A consumer’s ability to interpret additional fields depends on its knowledge of
the producing compiler.

Symbol Information 11-55

Figure 11-37: Array Descriptor Representation

Local Symbols Auxiliary Entries

x| array name | bt=
btStruct ¢

* could be external

TR 2) RNOXR

block | magic name #

member| # of dimensions

member| element length

member] pointer to array

member| element spacing \

member| upper bound

Mote that these 3 symbols
are repeated per dimension

tnetnher lower bound

Eﬁik end (magic name)

An example of the default Fortran array descriptor representation can be found
in Section 17.3.3.

Version Note

The following representation of Fortan array descriptors is supported
in symbol table formats less than V3.13. It is not supported in symbol
table format V3.13 and greater.

This retired representation of Fortran array descriptors is substantially more
compact in the local symbol table, but it provides no way to distinguish between
the different array descriptor types.

The overloaded basic type value 28 indicates an array descriptor in the Tl R, and
dimension bounds are set to [1:1] indicating their true size is unknown. The
alternate representation does not provide any information describing the contents
of the array descriptor itself, so debuggers must assume a static representation for
the descriptor and lookup the fields at their expected offsets.

Figure 11-38 shows this representation of array descriptors.

11-56 Symbol Information

Figure 11-38: Array Descriptor Representation (retired)

Local Symbols Auxiliary Entries
#| array name — bt=
btarray
Desc
*
could be external 1) TIR.
' b’r=%em
2
‘t‘q =F::| .
Tqarray

2)TIR 3)RNDXR

[Crer Lpper

MNote: entries 3-6 will be bound baund

repeated per dimension

43dnlow Sidnhigh

element] | index
size type f—
(i bits)

&) width TIR

11.3.3.10 Conformant Array Type (Pascal)

Full details are not currently available for Pascal’s conformant array
representation. A Pascal conformant array is very similar to Fortran’s assumed
shape arrays. It is an array parameter with upper and lower dimension bounds
that are determined by the input argument. A conformant array is represented by
an array descriptor. The special names used and the format of the array descriptor
differ from those used for Fortran. The DEC Pascal release notes contain additional
information on conformant arrays.

11.3.3.11 Variant Record Type (Pascal and Ada)

A variant record is an extension to the record data type, which is a Pascal or Ada
data structure akin to a C structure and is represented in the same manner in the
symbol table. The variant part of the record consists of sets of one or more fields
associated with a range of values. Only one such set is part of the record, and it is
selected based on the value of another record field. Any number of variant parts
can be embedded in a single record.

Version Note

The following variant record representation is for symbol table format
V3.13 and greater.

The local symbol table entries for the variant part of a record are contained within
a block with the storage class (sc value) scVari ant. The val ue field of the

st Bl ock entry contains the index of the local symbol entry for the member of
the record whose value determines which variant arm is used. The variant block

Symbol Information 11-57

contains multiple inner blocks, each representing a variant arm. The val ue field
of each of these block entries is an auxiliary table index. Each auxiliary table entry
starts with a count , which indicates how many range entries follow. The range
entries describe the values associated with the block.

Figure 11-39 is a graphical representation of a variant record.

Figure 11-39: Variant Record Representation

Local Symbols Aunxiliary Entries
— | stBlocl, scWVariant number
value of
9| stBlock, scnfo | ———P| ranges
<rmermberss 1) count
sthdernber, scInfo inclasx]
ht =
L1 | stEnd, scInfo btRange
or .
+p| stBlock, scInfo btRange 64
23 TTR: 3) RNDXR
<members=
sthdernber, scInfo
lowrar upper
tEnd, scInf
|| sthnd, scinlo * | bound bound
—more block/finfos—
stEnd, scVariant 4) dnLow 5) dnHigh
6) etc. repeat (2)
Lp| <nextsymbol> thru (50 "count” times
PP PR) 1) count,) TIR. ...
mermber —determines &5 above
valle range
* If btRange &4, two subrange <
dnLow and two dntigh fype
entries are used for the
boundary values TR

Version Note

The following variant record representation is for symbol table formats
less than V3.13. It is not supported in symbol table format V3.13 and
greater.

The representation of variant records depicted in Figure 11-40 does not include
Tl R auxiliaries.

11-58 Symbol Information

Figure 11-40: Variant Record Representation (retired)

Local Symbols

Auxiliary Entries

s stBlock, scInfo

— | stElocl, scVariant nurmnber
| of
+p| stBlock, scInfo &} ranges ¢
<rmembers= 1 T 2)RID
sthdember, sclnfo ; } ooun % K
index

stEnd, scInfo lowrar upper

bound bound

<meambers>

sthdember, scInfo

3pdnLow 4 dnHigh

stEnd, scInfo

5) ete.. repeat (2)
thru (47 "count” times

—more block/finfos—

stEnd, scVariant

N 13 count, 2YRNDXE ..

| <next symbol>

value

as above
subrange i
T T e T T Type
—determines range
g 11TIR

An example of a Pascal variant record can be found in Section 17.4.3.

11.3.3.12 Subrange Type (Pascal and

Ada)

A subrange data type defines a subset of the values associated with a particular
ordinal type (the "base type" of the subrange). Ordinal types in Pascal include
integers, characters, and enumerated types. The symbol table representation of a
subrange uses the bt Range or bt Range_64 type followed by an auxiliary index
identifying the base type and entries providing the bounds of the subrange. The
32-bit representation is shown in Figure 11-41 and the 64-bit representation is

shown in Figure 11-42.

Symbol Information

11-59

Figure 11-41: Subrange Representation

Local Symbols Auxiliary Entries
: bt=
=| subrange variable g btRange ®
= could be external TR 2) RNDXR

|crerer Upper
pound | | bound

3)dnlow 4] dnHigh

Maote: type description e type in

could be anywhere in
auxiliany symbal takle subrange

Figure 11-42: 64-bit Range Representation

Local Symbols Auxiliary Entries
, L] b=
=| subrange variable ¥ btRange_64 ®
1) TIE 2) ENDHE
= could be external))
lower lower
hound houtd
(low tts) | [(high hits)

DdnLow &) dnLow

upper upper
bound hound

{low bits) (tugh hits)
5)dnHigh &) dnHigh

Mote: type description
could be anvwhere in &in
auxiliary symboltable . ;}Lﬁ;range

Version Note

The 64-bit range representation is supported in symbol table format
V3.13 and greater.

An example of a Pascal subrange can be found in Section 17.4.2.

11.3.3.13 Set Type (Pascal)
A set is a data type that groups ordinal elements in an unordered list. The

arithmetic and logical operators are overloaded in Pascal; this enables them to
be used with set variables to perform classic set operations such as union and

11-60 Symbol Information

11.3.4

intersection. A special auxiliary type definition bt Set exists to identify this type.
The symbol table representation is depicted in Figure 11-43.

Figure 11-43: Set Representation

Local Symbols

*l setvariable I

Auiliary Entries

| J

®could be external

bt=
btSet

1) TIR 2) RNDXR

3 type

- ernent|

25c.

1 TIR

The element type for a set is typically a range or an enumeration. An example of a
Pascal set can be found in Section 17.4.1.

Special Debug Symbols

A variety of special symbols are used throughout the symbol table to convey call
frame information, special type semantics, or other language specific information.
These names are reserved for use by compilers and other tools that produce Tru64

UNIX object files.

Table 11-8: Special Debug Symbols

Name

Purpose

Name
__StaticLink.*
_BLNK__

MAIN
ARGNAME. | en

.| b_<ARRAY>. <di n»>
. ub_<ARRAY>. <di n»>

$f 90$f 90_array_desc
$f 90$f 90_al | oc_desc
$f 90$f 90_pt r _desc

cray pointee

poi nt er

_DECCXX_gener at ed_nane_*

this

_vptr

Purpose

(SV3.13 -) Uplevel link. See Section 8.3.4.

Fortran unnamed common block. See Section 11.3.1.8.
Fortran alias for main program unit. See Section 13.3.4.

Generated parameter for Fortran routines. It contains
the length of ARGNAME, a parameter of character type.

Lower and upper bounds of particular dimensions
of arrays - when the array has an explicit
shape, yet some bounds come from non-constant
specification expressions (array arguments in
Pascal and Fortran routines).

Variants of Fortran-90 described arrays (assumed
shape, ALLOCATABLE, and POINTER, respectively).
See Section 11.3.3.9.

Fortran-generated typedef describing the type of a
variable pointed to by a CRAY pointer.

Fortran generated typedef describing the type of
a scalar with the POINTER attribute.

DECC++ compiler-inserted name for unnamed
classes and enumerations.

Hidden parameter in C++ member functions
that is a pointer to the current instance of the
class. See Section 11.3.3.6.

Hidden C++ class member containing the virtual
function table. See example in Section 17.2.2.

Symbol Information 11-61

Table 11-8: Special Debug Symbols (cont.)

Name Purpose

__bptr Hidden C++ class member containing the virtual base
class table. See example in Section 17.2.2.

_vtbl _* Global symbols for C++ virtual function tables.
See example in Section 17.2.2.

__btbl _* Global symbols for C++ virtual base class tables.
See example in Section 17.2.2.

__control Hidden argument to C++ constructors controlling
descent (in the face of virtual base classes).

__t*__evdf Structure used to maintain a list of C++
global deconstructors.

t* _iviw C++ static procedure used for global constructors.

t*__evdw C++ static procedure used for global destructors.

__t*_thunk C++ static procedure used to provide a
defaulted argument value.

__INTER__* C++ interlude. See example in Section 17.2.2.

_N1* C++ unnamed namespaces. See example

in Section 17.2.4.

11.4 Language-Specific Symbol Information Features

1141

11.4.2

11-62

Language-specific characteristics are pervasive in the symbol table, particularly in
the local, external, and auxiliary symbol tables. See Section 6.2 and Section 11.3.2
for information on language-specific values.

The | ang field of the file descriptor entry encodes the source language of the file.
This field should be accessed prior to decoding symbolic information, especially
type descriptions. This section highlights, by language, language-specific features
represented in the symbol table. Additional information on certain features is
available elsewhere in this chapter.

Fortran77 and Fortran90

In Fortran, it is possible to create multiple entry points in subroutines. A
subroutine has one main entry point and zero or more alternate entry points,
indicated by ENTRY statements. See Section 11.3.1.9 for their representation in
the symbol table.

Fortran90 array descriptors include allocatable arrays, assumed-shape arrays,
and pointers to arrays. Their representation in the symbol table is discussed in
Section 11.3.3.9.

Modules provide another scoping level in Fortran90 programs. Their symbol table
representation is described in Section 11.3.1.6.

C++

C++ classes encapsulate functions and data inside a single structure. Classes
are represented in the symbol table using a bt 0 ass basic type and the
st Bl ock/st End scoping mechanism. See Section 11.3.3.6.

Templates provide for parameterized types. At present, no special symbol

table values are related to templates. The template itself is not represented;
rather, entries that correspond to each instantiation are generated. Template
instantiations are distinguished by mangled names based on their type signatures.

Symbol Information

11.4.3

C++ namespaces, like Fortran modules, offer an additional scope for program
identifiers.

The C++ concepts of private, protected, and public data attributes are not currently
represented in the symbol table. The C++ concept of "friend" classes and functions
are also not represented.

Pascal and Ada

Pascal conformant arrays are function parameters with array dimensions that
are determined by the arguments passed to the function at run time. See
Section 11.3.3.10.

Variant records are an extension of the record data structure. Variant records
allow different sets of fields depending on the value of a particular record member.
See Section 11.3.3.11.

Nested procedures are supported in these languages. They are represented using
standard scoping mechanisms discussed in Section 11.3.1 and uplevel references
described in Section 8.3.4.

Sets and subranges are user-defined subsets of ordinal types. Sets are unordered
groups of elements, which can be manipulated with the classic set operations.
Subranges are ordered and are used with the usual operators. See Section 11.3.3.12
and Section 11.3.3.13.

Ada subtypes of ordinal types are represented in the same manner as Pascal
subranges.

Symbol Information 11-63

12

Optimized Debugging

Version Note

The optimized debugging information described here is primarily
supported by the ladebug debugger in Tru64 UNIX V5.1 and greater.
The default compilers for Tru64 UNIX V5.1 do not generate this
information.

Information to assist debugging of optimized code can be stored in the optimization
symbol table. This information is generated by compilers, partitioned by procedure,
and is not modified at link time. It includes information on semantic events,
discontiguous scopes, inlined calls, and split lifetimes of variables.

For background information (including descriptions of the terms discussed here),
see “Debugging Optimized Code: Concepts and Implementation on DIGITAL Alpha
Systems, Brender, Nelson, and Arsenault, Digital Technical Journal, Vol 10, No 1,
December 1998”.

In general each type of optimized debugging information is stored in a PPODE
(see Section 6.3.3) for the procedure to which it applies. The data makes frequent
use of LEB and SLEB fields (see Section 1.4.6) to minimize the overall size of

the optimized debugging information. Due to the variable length nature of the
data, some records contained within the optimized debugging information sections
cannot be accessed through fixed-length structures. Variable length records will be
described in the following sections in terms of the fields they contain and the order
in which those fields occur as the data is read in sequential byte order.

12.1 New or Changed Optimized Debugging Features

No changes have been introduced to optimized debugging information.
12.2 Structures, Fields, and Values for Optimized Debugging

12.2.1 OPTRNDX

S s +
| RFD (LEB) | INDEX (LEB) |
S s +

An OPTRNDX is interpreted exactly like the RNDXR auxiliary described in
Section 11.2.2.2, except that (because of the variable length value representation)
no RFD_ESCAPE convention is needed or applies.

12.3 Optimized Debugging Usage

12.3.1 Semantic Events

Semantic events are those points in a program where the user-visible and
user-relevant semantic actions of a program actually occur. For example, for an
assignment statement, the instruction that stores into a user-declared variable is
generally the location of a semantic event. (The event temporally occurs when

Optimized Debugging 12-1

12-2

that instruction is executed.) Semantic event locations are generally divided into
these kinds:

® assignments

e control points (conditional transfers)

¢ calls (and returns, including PALcalls)
e labels

Semantic events are represented using a Per Procedure Optimization Data Entry
of type PPODE_SEM EVENT. For a given procedure there will be, at most, one
instance of this PPODE type that describes the semantic event information for the
entire procedure.

A semantic event PPODE consists of an array of Semantic Event Entries where:
¢ The length of the array is specified by the ppode_|I en field in the PPODHDR.

e Each element of the array is a PPODSE, a byte consisting of two 4-bit fields. The
type definition and macros for accessing the fields can be found in the sym h
header file.

typedef struct {
cof f_ubyte semevent; /* count:4, event:4 */
} PPODSE, *pPPODSE;

typedef PPODSE* PPODSE_ARRAY;

#def i ne PPODSE_count (ppode) ((ppode) & 0xO0f)
#def i ne PPODSE_event (ppode) (((ppode) >> 4) & 0x0f)
#def i ne PPODSE_nake(count, event)\

(((event) & 0x0f) << 4) + ((count) & 0x0f)))

The event field is a 4-bit code that indicates the event being described. These
codes are listed in Table 12-1.

The count field is a 4-bit value in the range 0 to 15 indicating the number of
executable instructions following the previous event description to which this event
applies. If more than 15 instructions separate events, then multiple event entries
that indicate the null event are used to add up to the required separation. If more
than one event applies to the same instruction, then the first event is encoded with
the appropriate count , and subsequent events are encoded using a count of 0.

Note

The encoding of this field is not identical to the encoding of the count
field of a line number entry. This count encodes the values from 0
to 15 rather than 1 to 16.

The first semantic event of each procedure must be a Label event with a count
of zero. The address in the text section for this first instruction is specified in the
procedure descriptor that points to the containing optimization section.

Typically (but not necessarily), the last semantic event entry will consist of the
value 0x3n corresponding to the last RET instruction of the routine. There is no
need to describe any out-of-line code or padding NOP instructions that may occur
at the end of a routine following the last RET so long as they contain no semantic
event locations.

Optimized Debugging

12.3.2

12.3.2.1

Table 12—-1: Semantic Event Codes

Name Value Description

PPODSE_NONE 0

PPODSE_WRI TE 1

PPODSE_CONTROL 2 Control (branch) event

PPODSE_CALL 3 Call or return event
4
5

No event (used for a count of 16 or more)

Write event

PPODSE_LABEL
PPODSE_| NST_ONLY

Label event

Instruction only event

Split Lifetime Variables

The split lifetime variable description is designed to supplement an existing symbol
description. There are several reasons why split lifetime information needs to
supplement, not entirely replace, a symbol’s description. The most important is
that the variable may be split in a compilation unit that is independent from the
compilation unit that declares the variable. For example, consider a global variable.
It is declared once, but there are potentially many independent compilation units
that manipulate the variable. Because each compilation unit is independent, it is
not possible to replace the global definition, because each compilation would have
to know about the others in order to give a complete replacement definition.

The split lifetime description can be skipped by consumers who choose to ignore
it. Those consumers will have some understanding of the variable (its name,
type, and scope in which it appears), though less-accurate understanding of the
symbol’s location(s).

In addition to LEB encoding of integers (see Section 1.4.6), split lifetime
information makes use of another key building block representation. A pointer
into the local symbol table is represented as an OPTRNDX (see Section 12.2.1). An
OPTRNDX consists of a relative file descriptor (RFD) index followed by a symbol
index within the given file (INDEX). Both the RFD and INDEX components are
represented as LEB integers.

Split lifetime variable information is represented using a Per Procedure
Optimization Data Entry of type PPODE_SPLI T. For a given procedure there will
be, at most, one instance of this PPODE type that describes all of the split lifetime
variable information for a procedure.

The PPODE_SPLI T data consists of a sequence of split lifetime descriptions. Note
that the end of the sequence is implied by the ppode_I en field of the PPODHDR.

The split lifetime description for each variable consists of:

1. A target variable identifier
2. A child description scheme code

3. A counted sequence of child descriptions

Target Variable Identifier

A target variable identifier is a byte consisting of two 4-bit codes followed by
either a null terminated string or an OPTRNDX. The type definition and macros for

accessing the fields can be found in the sym h header file.
typedef struct {

cof f _ubyte target; /* type:4, schene:4 */
} PPODE_SPLIT_DESC, *pPPCDE_SPLI T_DESC;

#def i ne PPODE_SPLI T_DESC_t ype(ppode) ((ppode) & 0x0f)
#def i ne PPODE_SPLI T_DESC _schene(ppode) (((ppode) >> 4) & 0x0f)

Optimized Debugging 12-3

12.3.2.2

#def i ne PPODE_SPLI T_DESC nmake(type, schene) \
(((event) & OxO0f) << 4) + ((count) & 0x0f)))

The t ype field indicates whether the target variable is found in the local or
external symbol table. This will determine the manner in which the target variable
is identified. Values for the t ype field can be found in Table 12-2.

The schene field indicates how tools should interpret the target variable’s default
location and its child descriptions. Values for the scheme field can be found in
Table 12-3. A description of how this field is used can be found in Section 12.3.2.2.

For target variables in the external symbol table, the symbol table entry is
identified by name. The name is encoded as a null terminated character string.
(For C++, these names are the mangled form.)

For target variables in the local symbol table, the symbol table entry is identified
using an OPTRNDX (see Section 12.2.1).

Table 12—2: Split Lifetime Target Type Codes

Name Value Description
PPODE_SPLI T_TYPE_EXT 1 Target is in external symbol table
PPODE_SPLI T_TYPE_LCL 2 Target is in local symbol table

Child Description Scheme

There are three schemes used to identify split lifetime variable locations: the
normal scheme, the normal but promoted scheme, and the duplicate scheme.

Normal Scheme

Normally each separate lifetime of a split lifetime variable may be allocated to
a different location in memory (different registers and/or on the stack). In this
scheme, each child description includes location information.

If there is a default location that is valid whenever none of the split lifetime
children apply, that location is encoded directly in the target variable. This is
typically the case for static and global variables.

If there is no default location, the storage class of the target variable is set to
scUnal | ocat ed.

Normal But Promoted Scheme

This scheme is identical to the normal scheme, except for the interpretation of the
default location. Tools should assume that there is no default location, regardless
of the target variable’s storage class. Prior to the introduction of split lifetime
variable information, the default compilers for Tru64 UNIX set the location

of a split lifetime variable to the location of its children when they are all the
same. This practice is continued to allow debuggers that do not read split lifetime
information to access split lifetime variables with varying degrees of accuracy.

Duplicate Scheme

There are two cases where the duplicate scheme is used:

e When a Fortran subprogram with alternate entry points has a parameter that
is passed in more than one entry, the local symbol table for the procedure will
contain duplicate symbol table entries for the procedure’s parameters.

e More generally, any time that two user variables are allocated to exactly the
same storage locations.

12-4 Optimized Debugging

12.3.2.3

The entry that occurs first in the local symbol table will be the target of the
appropriate normal split lifetime description. Subsequent symbols that share the
identical split lifetime description, use a child description that consists of a single
OPTRNDX that points to the first symbol table entry of the set.

Table 12—3: Split Lifetime Target Scheme Codes

Name Value Description

PPCDE_SPLI T_SCHEME DEF 1 Default or normal scheme
PPCDE_SPLI T_SCHEME_DEF_PROMOTED 2 Normal but promoted scheme
PPCDE_SPLI T_SCHEME_DUP 3 Duplicate scheme

Child Descriptions

Child descriptions (that are not a duplicate of some other variable) are represented
as a count of the number of children and a description of each child. The count is a
LEB integer. Each child is a triplet composed of:

¢ A location
¢ The PC range for which the given location is valid

e The list of definition points that potentially assign a value to the split child

The child’s location is represented as a sequence of three values:
e The symbol type (see Table 11-1), represented as a LEB integer
e The storage class (see Table 11-2), represented as a LEB integer

¢ The value, represented as an SLEB integer, that would otherwise be used
to represent a variable allocated in that same location in a normal symbol
table entry

The child’s PC range consists of an SLEB/LEB pair of values that represent
instruction counts (not bytes).

For the first child description of a split lifetime variable, the first (SLEB) value
gives the beginning of the range relative to the base address of the containing
procedure as determined from the appropriate procedure descriptor. For
subsequent children, the beginning of the range is relative to the instruction
following the highest instruction specified in the previous range.

The second (LEB) value of each pair gives the number of instructions that are
included in the range.

The child’s definition points are represented as a LEB integer giving the number of
definition points followed by an SLEB integer for each definition point giving its
instruction count delta. For the child’s first definition point, the SLEB value gives
the address of an instruction relative to the instruction preceding the beginning

of the range of instructions for this child. For subsequent definition points, the
SLEB value gives the address of an instruction relative to the previous definition
point address.

Object consumers may not make assumptions about the order in which child
descriptions appear. Consumers may not make assumptions about the address
ranges of child descriptions. In particular, the address ranges of two or more
split children may overlap. (If this occurs, then more than one split child of the
same variable is active within the overlapping range.) There is no significance to
the order of child descriptions.

Optimized Debugging 12-5

12.3.2.4 Split Lifetime Variable Example

Suppose that a Fortran parameter Nis passed by reference in register R17, to a
routine whose base address is 0x120001800. Suppose further that there are three
split children as follows:

from PC 0x120001818 to PC 0x120001818

N is a VarRegister paraneter in register 0x11
from PC 0x12000181c to PC 0x12000181c

N is a VarRegister paraneter in register 0x00
from PC 0x120001838 to PC 0x120001840

N is a VarRegister paraneter in register 0x00

This variable would be represented in PPODE_SPLI T optimization data as follows:

.byte 2+174 ! Local sym normal schene
.byte LEB(rfd_of_N), LEB(index_of_N) ! OPTRNDX for variable N
.byte LEB(3) I 3 split children

.byte LEB(stLocal),
LEB(scVar Regi ster),

SLEB(0x11) ! Var reg 17
.byte SLEB(24), LEB(1) ! Range
.byte LEB(1), SLEB(-5) ! 1 definition at entry

.byte LEB(stLocal),
LEB(scVar Regi ster),

SLEB(0x00) ! Var reg O
.byte SLEB(0), LEB(1) ! Range
.byte LEB(1), SLEB(-6) ! 1 definition at entry

.byte LEB(stLocal),
LEB(scVar Regi ster),

SLEB(0x00) ! Var reg O
.byte SLEB(24), LEB(2) ! Range
.byte LEB(1), SLEB(O) I 1 definition at
!

precedi ng instruction

12.3.3 Discontiguous Scopes

A discontiguous scope is a scope whose set of addresses cannot be represented as a
single contiguous range of address values. Discontiguous scopes arise frequently in
the context of optimized code, including notably inlining; however, it also can occur
even in non-optimized code (compiled -O0). Discontiguous scopes may also result
from the use of post-link optimization tools such as omand spi ke.

The single contiguous range of addresses described by a pair of st Begi n/st End
symbol table entries is artificially normalized in two ways that can misrepresent
the actual scope:

1. Iftwo addresses are in the same scope, then all intermediate addresses are
considered to be contained in that same scope -- even if they are not.

2. Some addresses, notably for out-of-line code sequences, are not considered to
be part of any scope (other than the outermost scope for a complete routine.)

Together these normalizations imply that a scope may both contain addresses
that it should not as well as not contain addresses that it should. In the absence
of the ability to represent discontiguous scopes, these normalizations are helpful
and desirable to support reasonable debugging of non-optimized code. However, for
optimized code, they can lead to misleading scope descriptions.

For compatibility with debuggers that do not read this information, discontiguous
scope information is intended to replace, or supersede, the range described by the
st Begi n/st End pair of symbol table entries.

Discontiguous scope information is represented using a Per Procedure Optimization
Data Entry of type PPODE_DI SCONTI G_SCOPE. For a given procedure there will be,
at most, one instance of this PPODE type that describes all of the discontiguous
scope information for a procedure. Note, however, that not every scope in a
procedure necessarily has a discontiguous range just because some do. If the
range of a scope is correctly described by a single contiguous range using the

12-6 Optimized Debugging

st Begi n/st End pair of symbol table entries, then a redundant description for that
scope is not required in the discontiguous scope information.

The PPODE_DI SCONTI G_SCOPE optimization data consists of a sequence of
discontiguous lifetime descriptions. Note that the end of the sequence is implied by
the ppode_lI en field of the PPODHDR.

Each discontiguous lifetime description consists of a target scope identifier and a
counted sequence of address ranges. The target scope identifier consists of an
OPTRNDX (see Section 12.2.1) that points to the applicable scope. This is followed
by a LEB integer representing the count of address ranges.

Each address range consists of an SLEB/LEB pair of values, that represent
instruction counts (not bytes).

For the first range of a discontiguous scope, the first (SLEB) value gives the
beginning of the range relative to the beginning address of the target scope. (This
beginning address may not be exact, but it will usually be close.) For subsequent
ranges, the beginning of the range is relative to the second instruction following
the highest instruction specified in the previous range.

The second (LEB) value of each pair gives the number of instructions that are
included in the range.

Consumers may not make any assumptions about the order in which address
ranges occur.

Optimized Debugging 12-7

13

Symbol Resolution

Among the linker’s chief tasks is symbol resolution. Because most compilations
involve multiple source files and virtually all programs rely on system libraries, a
process is necessary to resolve conflicting uses of global symbol names. The linker
must decide which symbol is referenced by a given name. This section highlights
the major issues involved in that decision. Related information is contained in
Section 14.3.4 and the Programmer’s Guide.

Symbol table entries provide information relevant to performing symbol resolution.
External symbols with a storage class of sc(S) Undef i ned, sc(S) Common, or
scTl sConmon must be resolved before they are referenced. By default, the linker
will not mark an object file with unresolved symbols as executable. However, linker
options give programmers a fair measure of control over its symbol resolution
behavior. See | d(1) for more information.

13.1 New or Changed Symbol Resolution Features

Tru64 UNIX V5.1B includes the following new or changed features:

e The EXTR alignment field can be used to record the alignment for all symbol
definitions, not just the required alignment for linker-allocated commons (see
Section 13.2.1 and Section 2.3.5).

e Name mangling is described for non-mergeable C++ header files. (see
Section 13.3.3).

¢ Identification of linker-defined symbols in the external symbol table (see
Section 13.2.1)

Tru64 UNIX V5.1 includes the following new or changed features:

e Alignment for common storage class symbols (see Section 13.2.1 and
Section 2.3.5)

13.2 Structures, Fields, and Values for Symbol Resolution

13.2.1

Unless otherwise specified, all structures described in this section are declared in
the header file sym h, and all constants are defined in the header file syntonst . h.

External Symbol Entry (EXTR)

typedef struct {

SYMR asym

cof f _uint jmtbl : 1

cof f _uint cobol _main : 1;

cof f _uint weakext : 1;

cof f _uint al i gnment : 4; (V5.1 -)
cof f _uint reserved2: 2;

cof f _uint linkerdef: 1 (V5.1B -)
cof f _uint reserved : 22;

cof f _int ifd;

} EXTR *pEXTR

SIZE - 24 bytes, ALIGNMENT - 8 bytes

Symbol Resolution 13-1

13-2

External Symbol Table Entry Fields

asym

asym val ue

asymi ss

asym st

asym sc

asym reserved

asym i ndex

j npt bl

cobol _main

weakext

al i gnnent

reserved?2

| i nker def

Symbol Resolution

External symbol table entry. This structure has the same
format as a local symbol entry. The field interpretations
differ as described in the following entries.

Contains the symbol address for most defined symbols. See
Section 11.2.4 for details.

Byte offset in external string table to symbol name. Set to
i ssNi | (-1) if there is no name for this symbol.

Symbol type. See Table 11-1 for possible values.
Storage class. See Table 11-2 for possible values.
Must be zero.

Contains either an index into the auxiliary symbol table for
a type description or an index into the local symbol table
pointing to a related symbol.

The index field may have a value of i ndexNi | , which is
defined as (| ong) Oxf f f f f. This value is used to indicate
that the index is not a valid reference.

Unused.

Flag set to indicate that the symbol is a COBOL main
procedure.

Flag set to identify the symbol as a weak external. See
Section 14.3.4.2 for more details on weak symbols.

Power of two byte alignment biased by 273 (8). Supported
values range from 0 through 13 yielding a minimum
alignment of 8 bytes and a maximum alignment of 64K
bytes. For unallocated common symbols this value specifies
a requested alignment. For defined data and text symbols
a non-zero value records the symbol’s actual alignment. A
zero value indicates that the alignment for a data or text
symbol is unspecified, but size and address values can be
used to determine a sufficient alignment. For symbols
with storage class scUndef i ned or scSUndef i ned this
field is not used.

Version Note

The al i gnnent field is supported on Tru64
UNIX V5.1 and greater.

Must be zero.

Identifies linker-defined symbols.

Version Note

The | i nker def field is supported on Tru64
UNIX V5.1B and greater.

reserved Must be zero.

ifd Index of the file descriptor where the symbol is defined.
Set toi fdNi | (-1) for undefined symbols and for some
compiler system symbols.

13.3 Symbol Resolution Usage

13.3.1

13.3.2

Library Search

Symbols referenced, but not defined in the main executable of an application
must be matched with definitions in linked-in libraries. The linker combines
objects, archives, and shared libraries while attempting to resolve all references to
undefined symbols. The Programmer’s Guide covers related topics in detail, such
as how to specify libraries during compilation and the search order of libraries.

In general, main executable objects and shared libraries are searched before
archive libraries. If no undefined external symbols remain, archive libraries in the
library list do not have to be searched. Archive members are only loaded to resolve
references to undefined symbols. Archives are not used to find "better" common
definitions (see Section 13.3.2) or higher-precedence symbol definitions. However,
precedence rules do apply for any symbol definitions that occur in archive members
which satisfy references to undefined symbols.

Resolution of Symbols with Common Storage Class

Symbols with common storage class are a special category of global symbols that
have a size but no allocated storage. Symbols with common storage class should
not be confused with Fortran common symbols, which are not represented by a
single symbol table entry. (See Section 11.3.1.8 for a description of Fortran common
symbols.) Common storage classes are scConmon, sc SCommon, and scTl sConmon.

The symbol definition model used by Tru64 UNIX allows an unlimited number
of common storage class symbols with the same name. Ultimately, the "best" of
these must be selected (by the linker or the loader) during symbol resolution. The
criteria used to select the best symbol definition include the symbol’s allocation
status and size.

The symbol table does not provide an "allocated common" storage class. Common
storage class symbols adopt a new storage class when they are allocated. Typically,
their new storage class is ScBss or scSBss or scTl sBss. On the other hand, the
dynamic symbol table does explicitly distinguish common storage class symbols
that have been allocated. See Section 14.3.4 for more information on dynamic
symbol resolution.

A symbol reference is resolved according to the following precedence rules:

1. Find a symbol definition that does not have a common storage class and is not
identified as an allocated common in the dynamic symbol table.
Find the largest allocated common identified in the dynamic symbol table.

Find the largest common storage class symbol and allocate it. This step will be
skipped when the linker produces a relocatable object file.

Symbol Resolution 13-3

13.3.3

13.3.4

Precedence is given to symbol definitions with storage allocation to minimize load
time common allocation and redundant storage allocations in shared objects. The
loader is capable of allocating space for common storage class symbols, but this
should only be necessary when a program references an allocated common symbol
in a shared library that is later removed from that shared library.

Note that Fortran common block representations use common storage class
symbols. Another very frequent occurrence of a common storage class symbol is a
C-language global variable that does not have an initializer in its declaration.

Mangling and Demangling

Another issue related to symbol resolution is the need to "mangle" user-level
identifiers. For example, C++ allows function overloading, prototyping, and the
use of templates—all of which can result in the occurrence of the same names for
different entities. The solution employed by the symbol table is to use mangled
names that derive from the symbol’s type signature.

Object file consumers, such as debuggers and object dumpers, need to "demangle"
the identifiers so they can be output in a form that is recognizable to the user. For
linking and loading, the mangled names are used for symbol resolution.

One highly visible mangled name that appears in C++ programs is the name of the
unmergeable portion of a file header. The C++ compiler reduces the size of a linked
image’s symbol table, by splitting header files into mergeable and non-mergeable
entries in the file descriptor table. The mergeable entry retains its on-disk name,
but the name of the non-mergeable entry is mangled by appending the string

~al t ~deccxx_XXXXXXXX to the name. The eight X’s represent the CRC encoding
of the date and time when the program was compiled. See Section 6.3.2 for more
information on file merging.

The encoding of C++ names is described in the manual Using DEC C++ for Tru64
UNIX Systems.

Other compilers may write symbol names that are modified by prepending or
appending special characters such as dollar sign ($) or underscore (_) or by
prepending qualifier strings such as file names or namespace names. Uppercasing
of names is also common for certain languages such as Fortran. All of these
transformations fall into the general category of mangled names. Refer to the
release notes for specific compilers for additional information.

Mixed Language Resolution

Compilation of a program involving multiple source languages introduces
additional symbol resolution issues. One important task is resolving the main
program entry point because conflicting "main" symbols may be present in the
different files. For C and C++, the symbol "main" is the main program entry point,
but for other languages, "main" will either be an alias for the main program or an
interlude. DEC Fortran and DEC COBOL provide interludes that perform some
language specific initializations and then call the real main program entry point.
For DEC Fortran the main program is "MAIN__" and for DEC COBOL the main
program is "__cobol_main". DEC Pascal provides a "main" symbol that aliases the
actual main program symbol.

The symbols "MAIN__" and "__cobol_main" can both be present in a mixed language
program, and either, neither, or both can be used by the program. Debuggers can
set a breakpoint in the user’s main program by applying some precedence for
selecting the most appropriate symbol. For a mixed language program, there is a
slight chance that "MAIN_ " or "__cobol_main" will be present but never called.

13-4 Symbol Resolution

13.3.5 TLS Symbols

TLS (Thread Local Storage) symbols, like non-TLS symbols, can be undefined
or common. Unresolved TLS symbols are identified by the storage class

scTl sUndef i ned, and TLS commons have the storage class scTl sCommon. The
symbol resolution process for TLS names is similar, but separate; TLS symbols
cannot be resolved to non-TLS symbols or vice versa.

TLS common symbols are resolved in the same manner as other common storage
class symbols (see Section 13.3.2), except that, again, only TLS symbols are
candidates for resolution.

Another rule special to TLS is that symbol definitions for TLS common and
undefined symbols cannot be imported from shared libraries.

Symbol Resolution 13-5

14

Dynamic Loading Information

The dynamic linker/loader (commonly referred to as the loader) is responsible for
creating a dynamic executable’s process image and placing it into system memory
so that it can execute. The loader’s functions include finding and mapping shared
libraries, completing symbol resolution, and finalizing program addresses.

To accomplish these functions, the loader requires information on external symbols
and shared libraries. The linker prepares this dynamic loading information for
shared objects only. The dynamic loader then uses this information to create

and map the process image. The dynamic information consists of the sections
highlighted in Figure 14-1.

Figure 14-1: Dynamic Object File Sections

File Header
a.out Header dynamic headel
Section Headers liblist shared libraries
Crwnamic Sections
Row Data Sections rel.dyn relocations
Relocations .conflict mutiplyefined
S}Tﬂb@l Table MSYM hash values
Comment Section dynstr string table
dynsym symbol table
hash hash table
_got address table

These sections are mapped with the text segment, except for the . got section,
which contains the GOT (Global Offset Table). The GOT is part of the data segment
because it must be written into when addresses are updated.

The function of each dynamic section can be summarized as follows:
e The . dynam c section serves as a header for the dynamic information.
e The . dynsymsection contains the dynamic symbol table.

e The . dynstr section contains the names of dynamic symbols and shared
library dependencies.

e The . hash section holds a hash table to provide quick access into the dynamic
symbol table.

e The . msymtable contains supplemental symbolic information, including
pre-computed hash values and dynamic relocation indices.

Dynamic Loading Information 14-1

e The.liblist section stores dependency information.

e The.conflict section contains a list of multiply-defined symbol names that
must be resolved at load time.

e The.rel. dyn section contains dynamic relocation entries.
e The . got section contains one or more tables of 64-bit run-time addresses.
This chapter covers the dynamic sections and related topics. The actions of the

system dynamic loader are explained in detail. Related material is available in the
Programmer’s Guide and | oader (5).

14.1 New or Changed Dynamic Loading Information Features

Tru64 UNIX V5.1B supports a new dynamic flag to mark shared libraries that
cannot be dlopened. See RHF_NO _DLOPEN in Table 14-2 for details.

Tru64 UNIX V5.0 supports depth-first symbol resolution order for individual
shared objects. See DT_SYMBCLI Cin Section 14.2.1 for details.

14.2 Structures, Fields, and Values for Dynamic Loading

14.2.1

14-2

Information

All structures and macros are declared in the header file cof f _dyn. h unless
otherwise indicated.

Dynamic Header Entry

typedef struct {

cof f _int d_tag;
cof f _uint reserved;
uni on {

cof f _uint d_val;
cof f _addr d_ptr;
} d_un;
} Coff_Dyn;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

Dynamic Header Entry Fields

d_tag Indicates how the d_un field is to be interpreted.
reserved Must be zero.

d_val Represents integer values.

d_ptr Represents virtual addresses. Virtual addresses stored in

this field may not match the memory virtual addresses
during execution. The dynamic loader computes actual
addresses based on the virtual address from the file and the
memory base address. Object files do not contain relocation
entries to correct addresses in the dynamic section.

The d_t ag requirements for dynamic executable files and shared library files are
summarized in Table 14-1. "mandatory" indicates that the dynamic linking array
must contain an entry of that type; "optional" indicates that an entry for the tag
may exist but is not required.

Dynamic Loading Information

Table 14-1: Dynamic Array Tags (d_t ag)

Name Value d_un Executable Shared Library
DT_NULL 0 ignored mandatory mandatory
DT_NEEDED 1 d_val optional optional
DT_PLTGOT 3 d_ptr optional optional
DT_HASH 4 d_ptr mandatory mandatory
DT_STRTAB 5 d_ptr mandatory mandatory
DT_SYMIAB 6 d_ptr mandatory mandatory
DT_STRSZ 10 d_val optional optional
DT_SYMENT 11 d_val optional optional
DT_INT 12 d_ptr optional optional
DT_FI NI 13 d_ptr optional optional
DT_SONAMVE 14 d_val ignored mandatory
DT_RPATH 15 d_val optional ignored
DT_SsymsQLI C 16 ignored optional optional
DT_REL 17 d_ptr mandatory mandatory
DT_RELSZ 18 d_val mandatory mandatory
DT_RELENT 19 d_val optional optional
DT_RLD_VERSI ON 0x70000001 d_val mandatory mandatory
DT_TI ME_STAWP 0x70000002 d_val optional optional
DT_I CHECKSUM 0x70000003 d_val optional optional
DT_| VERSI ON 0x70000004 d_val optional optional
DT_FLAGS 0x70000005 d_val optional optional
DT_BASE_ADDRESS 0x70000006 d_ptr optional optional
DT_MsSYM 0x70000007 d_ptr optional optional
DT_CONFLI CT 0x70000008 d_ptr optional optional
DT_LI BLI ST 0x70000009 d_ptr optional optional
DT_LOCAL_GOTNO 0x7000000A d_val mandatory mandatory
DT_CONFLI CTNO 0x7000000B d_val optional optional
DT_LI BLI STNO 0x70000010 d_val optional optional
DT_SYMIABNO 0x70000011 d_val mandatory mandatory
DT_UNREFEXTNO 0x70000012 d_val optional optional
DT_GOTSYM 0x70000013 d_val mandatory mandatory
DT_H PAGENO 0x70000014 d_val optional optional
DT_SO_SUFFI X 0x70000017 d_val optional optional

The uses of the various dynamic array tags are as follows:

DT_NULL

DT_NEEDED

Marks the end of the array.

Contains the string table offset of a null-terminated string
that is the name of a needed library. The offset is an index
into the table indicated in the DT_STRTAB entry. The
dynamic array can contain multiple entries of this type.

The order of these entries is significant.

Dynamic Loading Information 14-3

DT_HASH

DT_STRTAB

DT_SYMIAB

DT_STRSZ

DT_SYMENT

DT_INIT

DT_FI NI

DT_SONAME

DT_RPATH

DT_SYMBCQLI C

DT_REL

DT_RELSZ

DT_RELENT

DT_RLD_VERSI ON

14-4 Dynamic Loading Information

Contains the quickstart address of the symbol hash table.
Contains the quickstart address of the string table.

Contains the quickstart address of the symbol table with
Cof f _Symentries.

Contains the size of the string table (in bytes).
Contains the size of a symbol table entry (in bytes).

Contains the quickstart address of the initialization
function.

Contains the quickstart address of the termination
function.

Contains the string table offset of a null-terminated string
that gives the name of the shared library file. The offset is
an index into the table indicated in the DT_STRTAB entry.

Contains the string table offset of a null-terminated library
search path string. The offset is an index into the table
indicated in the DT_STRTAB entry.

The presence of this entry indicates that symbol references
should be resolved using a depth-ring search of the shared
object’s dependencies. See Section 14.3.4.3 for a details on
shared object search order.

This dynamic entry is for information only. The search
order is controlled by the DT_FLAGS setting that includes
the RHF_RI NG_SEARCH and RHF_DEPTH_FI RST flags when
DT_SYMBCLI Cis added to the dynamic section.

Version Note

DT_SYMBCLI Cis supported in Tru64 UNIX
V5.0 and greater.

Contains the address of the dynamic relocation table. If
this entry is present, the dynamic structure must contain
the DT_RELSZ entry.

Contains the size (in bytes) of the dynamic relocation table
pointed to by the DT_REL entry.

Contains the size (in bytes) of a DT_REL entry.

Contains the version number of the run-time linker
interface. The version is:

e 1 for executable objects that have a single GOT
e 2 for executable objects that have multiple GOTs

DT_TI ME_STAWP

DT_| CHECKSUM

DT_I VERSI ON

DT_FLAGS

DT_BASE_ADDRESS

DT_CONFLI CT

DT_LI BLI ST

DT_LOCAL_GOTNO

DT_CONFLI CTNO

DT_LI BLI STNO

DT_SYMIABNO

DT_UNREFEXTNO

DT_GOTSYM

DT_H PAGENO

DT_SO_SUFFI X

e 3 only for objects built on Tru64 UNIX V2.x

Contains a 32-bit time stamp.

Contains a checksum value computed from the names and
other attributes of all symbols exported by the library.

Contains the string table offset of a series of colon-separated
versions. An index value of zero means no version string
was specified.

Contains a set of 1-bit flags. See Table 14-2 for a list of
supported flag values.

Contains the quickstart base address of the object.
Contains the quickstart address of the . confli ct section.
Contains the quickstart address of the . | i bl i st section.

Contains the number of local GOT entries. The dynamic
array contains one of these entries for each GOT.

Contains the number of entries in the . confl i ct section.
Contains the number of entries in the . | i bl i st section.
Indicates the number of entries in the . dynsymsection.

Holds the index to the first dynamic symbol table entry
that is an external symbol not referenced within the object.

Holds the index to the first dynamic symbol table entry
that corresponds to an entry in the global offset table. The
dynamic array contains one of these entries for each GOT.

Not used by the default system loader. If present, must
contain the value 0.

Contains a shared library suffix that the loader appends
to library names when searching for dependencies. This
tag is used, for example, with Atom tools. Instrumented
applications may be dependent on instrumented shared
libraries identified by a tool-specific suffix.

All other tag values are reserved. Entries can appear in any order, except for the
DT_NULL entry at the end of the array and the relative order of the DT_NEEDED

entries.

Dynamic Loading Information 14-5

Table 14-2: DT _FLAGS Flags

Flag Value Meaning

RHF_QUI CKSTART 0x00000001 Object may be quickstarted by loader

RHF_NOTPOT 0x00000002 Hash size not a power of two

RHF_NO_LI BRARY_RE- 0x00000004 Use default system libraries only

PLACEMENT

RHF_NO_MOVE 0x00000008 Do not relocate

RHF_NO_DLOPEN 0x02000000 (V5.1B -)Identifies objects that cannot
be dynamically loaded

RHF_TLS 0x04000000 Identifies objects that use TLS

RHF_BI ND_NOW 0x08000000 Identifies objects that must be loaded
with immediate binding

RHF_RI NG_SEARCH 0x10000000 Symbol resolution same as DT_SYMBOLI C.

This flag is only meaningful when combined
with RHF_DEPTH_FI RST

RHF_DEPTH_FI RST 0x20000000 Depth-first symbol resolution

RHF_USE_31BI T_ADDRESSES = 0x40000000 TASO (Truncated Address Support
Option) objects

14.2.2 Dynamic Symbol Entry

typedef struct {

cof f _uint st _nane;
cof f _uint reserved;
cof f _addr st _val ue;
cof f _uint st _si ze;
cof f _ubyte st_info;
cof f _ubyte st _ot her;
cof f _ushort st _shndx;
} Coff_Sym

SIZE - 24 bytes, ALIGNMENT - 8 bytes

See Section 14.3.3 for related information.

Dynamic Symbol Entry Fields

st _nane Contains the offset of the symbol’s name in the dynamic
string section.

reserved Must be zero.

st _val ue Contains the quickstart address if the symbol is defined
within the object. Contains 0 for undefined external
symbols, the alignment value for commons, or any
arbitrary value for absolute symbols.

For undefined external conflict symbols (see

Section 14.3.6.2) this field will contain the quickstart
address of the symbol in the first shared library in which
the linker found a definition of the symbol.

st _size Identifies the size of symbols with common storage
allocation; otherwise, contains the value zero. For
STB_DUPLI CATE symbols (see Table 14—4). The size field
holds the index of the primary symbol.

14-6 Dynamic Loading Information

14.2.3

st_info

st _ot her

st _shndx

Identifies the symbol’s binding and type. The macros
COFF_ST_BI ND and COFF_ST_TYPE are used to access
the individual values. See Table 14-3 and Table 14—4 for
the possible values.

Currently has a value of zero and no defined meaning.

Identifies the symbol’s dynamic storage class. See
Table 14-5 for the possible values.

Table 14-3: Dynamic Symbol Type (st _i nf 0) Constants

Name Value

Description

STT_NOTYPE 0
STT OBJECT 1
STT_FUNC 2
STT _SECTION 3
STT_FILE 4

Indicates that the symbol has no type or its type is unknown.
Indicates that the symbol is a data object.

Indicates that the symbol is a function.

Indicates that the symbol is associated with a program section.

Indicates that the symbol is the name of a source file.

Table 14-4: Dynamic Symbol Binding (st _i nf o) Constants

Name Value Description

STB_LOCAL 0

STB_GLOBAL 1
STB_WEAK 2
STB_DUPLI CATE 13

Indicates that the symbol is local to the object (or
designated as hidden).

Indicates that the symbol is visible to other objects.
Indicates that the symbol is a weak global symbol.

Indicates the symbol is a duplicate. (Used for objects
that have multiple GOTs.)

Table 14-5: Dynamic Section Index (st _shndx) Constants

Name Value Description

SHN_UNDEF 0x0000 Indicates that the symbol is undefined.

SHN_ACOMMON Oxff00 Indicates that the symbol has common storage (allocated).
SHN_TEXT Ooxffo1l Indicates that the symbol is in a text segment.

SHN_DATA O0xff02 Indicates that the symbol is in a data segment.

SHN_ABS Oxfffl Indicates that the symbol has an absolute value.
SHN_COMVON oxfff2 Indicates that the symbol has common storage (unallocated).

Dynamic Relocation Entry

typedef struct {

cof f _addr r_of fset;

cof f _uint r_info;

cof f _uint reserved;
} Coff_Rel;

SIZE - 16 bytes, ALIGNMENT - 8 bytes

See Section 14.3.5 for related information.

Dynamic Loading Information

14-7

Dynamic Relocation Entry Fields

r_offset

r_info

reserved

14.2.4 Msym Table Entry

typedef struct {

Indicates the quickstart address within the object that
contains the value requiring relocation.

Indicates the relocation type and the index of the dynamic
symbol that is referenced. The macros COFF_R_SYM

and COFF_R_TYPE access the individual attributes. The
relocation type must be R_REFQUAD, R_REFLONG or
R_NULL.

Must be zero.

cof f _uint ms_hash_val ue;

cof f _uint ms_info;
} Cof f _Msym

SIZE - 8 bytes, ALIGNMENT - 4 bytes

See Section 14.3.3.4 for

Msym Table Entry Fields

ns_hash_val ue

ns_info

14.2.5 Library List Entry

typedef struct {

related information.

Contains the hash value computed from the name of the
corresponding dynamic symbol.

Contains both the dynamic relocation index and the
symbol flags field. The macros COFF_M5_REL | NDEX and
COFF_MS_FLAGS are used to access the individual values.
The dynamic relocation index identifies the first entry in
the . r el . dyn section that references the dynamic symbol
corresponding to this msym entry. If the index is 0, no
dynamic relocations are associated with the symbol. The
symbol flags field is reserved for future use and should
be zero.

cof f _uint |_nane;
coff_uint |_tine_stanp;
cof f _uint |_checksum
cof f _uint |_version;
coff _uint |_flags;

} Coff_Lib;

SIZE - 20 bytes, ALIGNMENT - 4 bytes

See Section 14.3.2 for related information.

Library List Entry Fields

| _nane

14-8 Dynamic Loading Information

Records the name of a shared library dependency. The
value is a string table index. This name can be a full
pathname, relative pathname, or file name.

14.2.6

14.2.7

| _time_stanp Records the time stamp of a shared library dependency.
The value can be combined with the | _checksumvalue
and the | _ver si on string to form a unique identifier
for this shared library file.

| _checksum Records the checksum of a shared library dependency.

| _version Records the interface version of a shared library
dependency. The value is a string table index.

| _flags Specifies a set of 1-bit flags. The | _f| ags field can have
one or more of the flags described in Table 14-6.

Table 14-6: Library List Flags
Name Value Description
LL_EXACT_MATCH 0x01 Requires that the run-time dynamic shared

library file match exactly the shared library
file used at static link time.

LL_| GNORE | NT_VER 0x02 Ignores any version incompatibility between
the dynamic shared library file and the shared
library file used at link time.

LL_USE_SO_SUFFI X 0x04 Marks shared library dependencies that should be
loaded with a suffix appended to the name. The
DT_SO _SUFFI X entry in the . dynam ¢ section
records the name of this suffix. This is used
by object instrumentation tools to distinguish
instrumented shared libraries.

LL_NO_LGAD 0x08 Marks entries for shared libraries that are not
loaded as direct dependencies of an object. Object
instrumentation tools may use LL_NO _LQAD
entries to set the LL_USE_SO SUFFI X for
dynamically loaded shared libraries or for indirect
shared library dependencies.

If neither LL_EXACT_MATCHnor LL_| GNORE_| NT_VER bits are set, the dynamic
loader requires that the version of the dynamic shared library match at least one of
the colon-separated version strings indexed by the | _ver si on string table index.

Conflict Entry

typedef struct {
cof f _uint c_i ndex;
} Coff_Conflict;
SIZE - 4 bytes, ALIGNMENT - 4 bytes

The conflict entry is an index into the dynamic symbols (. dynsym section. See
Section 14.3.6.2 for related information.

GOT Entry

typedef struct {
cof f _addr g_i ndex;
} Coff_Got;

SIZE - 8 bytes, ALIGNMENT - 8 bytes

Dynamic Loading Information 14-9

14.2.8

14.2.9

The GOT entry is a 64-bit address. Most GOT entries map to dynamic symbols.
See Section 14.3.3 for details.

Hash Table Entry

The hash table is implemented as an array of 32-bit values. The structure is
declared internal to system utilities.

See Section 14.3.3.5 for more information.

Dynamic String Table

The dynamic string table consists of null-terminated character strings. The strings
are of varying length and separated only by a single character. Offsets into the
dynamic string table give the number of bytes from the beginning of the string
space to the beginning of the name in question.

Offset 0 in the dynamic string table is reserved for the null string.

14.3 Dynamic Loading Information Usage

14.3.1

14-10

Shared Object Identification

A shared object is either a dynamic executable or a shared library. The file header
flags indicate whether the object is a shared object and, if so, what type of shared
object it is. The layout of the object is also stated in the file header. Normally
shared objects use a ZMAG Cimage layout (see Section 2.3.2.3).

Additional information on the shared object is located in the dynamic header
(. dynami ¢ section). When the dynamic loader is invoked by the kernel’s exec()
routine, this header information is read.

The kernel and loader take the following steps upon receiving a user command to
execute a dynamic executable:

User enters command.

Shell calls exec() in kernel.

exec() opens the file and reads the file header.

If the file is a dynamic executable, exec() calls/ sbi n/| oader.

The loader then:

AN e

a. Reads file header and dynamic header information.
Maps the executable into memory.

c. Locates each shared library dependency, maps it into memory, and
relocates it if necessary.

d. Resolves symbols for all shared objects.
e. Sets the heap address.

Transfers control to program entry point.
6. The program entry point (__start in crt 0. 0) then:

a. Calls special symbol __i st art which invokes the loader routine to run
INIT routines

b. Callsnain() with __Argc, __Argv,__environ and _auxv.

Dynamic Loading Information

14.3.2

14321

Shared Library Dependencies

Dynamic executables usually rely on shared libraries. At load time, these shared
libraries must be located, validated, and mapped with the process image.

If an executable object refers to a symbol whose definition resides in a shared
library, the executable is dependent on that library. This relationship is described
as a direct dependency. A shared library dependency also exists if a library is
used by any previously identified dependency. This is an indirect dependency

for the executable.

In the example shown in Figure 14-2, | i bA, | i bB, and | i bcool are all shared
library dependencies for a. out . The library | i bA is a direct dependency, and
the others are indirect dependencies.

Figure 14-2: Shared Library Dependencies

a.out
b 4
libd.50
- x_
libB 50 libcool so

Although the possibility of duplicate dependencies exists, as in the preceding
example, each library is mapped only once with the image. The linker also prevents
recursive inclusion, which could occur in a case of cyclic dependencies.

Identification

A shared object’s dependencies are stored in its . | i bl i st entries and in
DT_NEEDED entries in the . dynami ¢ section. The linker records this information
as dependencies are encountered.

The library list (. I i bl i st section) has name, timestamp, checksum, and version
information for every entry, along with a flags field. Taken together, the timestamp
and checksum value and the version string form a unique identifier for a shared
library. An entry is created for each shared library dependency.

A DT_NEEDED tag in the dynamic header also indicates a shared library
dependency. The value of the entry is the string table offset for the needed library’s
name. Note that this representation of the dependency information is redundant
with that contained in the library list. The loader relies on the library list only.
The DT_NEEDED entries are maintained for historical reasons.

As an example, an object linked against | i bc has the following dependency
information:

% DYNAM C SECTI ON¥**

LI BLISTNO 1.

LIBLIST: 0x0000000120000690

NEEDED: l'ibc. so

*%% | BRARY LI ST SECTI ON¥**

Nane Ti me- St anp CheckSum Fl ags Version

a. out
libc.so May 19 22:18:46 1996 Oxf937323b 0 osf.1

Dynamic Loading Information 14-11

14.3.2.2

14-12

A shared library’s checksum is computed by the linker when the library is created
or updated, and the value is written into the dynamic header. When an application
is linked against the library, the linker copies the library’s current checksum into
its entry in the application’s . | i bl i st.

The checksum computation is a summation of the names of dynamic symbols that
meet the following criteria:

e Defined

e Not local

¢ Not hidden

e Not duplicate

Common storage class symbol names are included, along with their size. Weak
symbols are included, but the calculation for weak symbols differs from that used
for non-weak symbols.

For a single symbol, the checksum is computed using this algorithm :

if (SYMBOL.st_shndx == SHN COMMON || SYMBOL.st_shndx == SHN ACOWDN)
CHECKSUM = SYMBOL. st _si ze

el se
CHECKSUM = 0

for (# of characters in synbol nane)
CHECKSUM = (CHECKSUM << 5) + character_val ue

if (weak synbol)
CHECKSUM = (CHECKSUM << 5) + CHECKSUM + 1

A change in the number of weak symbols or a change in the size of a common
storage class symbol is therefore reflected in the checksum. However, the checksum
calculation is insensitive to symbol reordering.

The checksums for all symbols included are summed to produce the shared object’s
checksum.

Searching

After loading an executable, the loader loads the executable’s shared library
dependencies. The loader searches for shared libraries that match the names
contained in the executable’s . | i bl i st entries. Subject to the search guidelines
described in this section, the loader will load the first matching shared library that
it finds for each dependency.

Certain directories are searched by default, in the following order:

1. /usr/shlib

2. Jusr/ccs/lib

3. lusr/lib/cnplrs/cc

4. Jusr/lib

5. Jusr/locall/lib

6. /var/shlib

The loader’s search path can be altered by several methods:
e -sonane linker option

e -rpath linker option

e environment variables

The - sonane option is used to set internal shared library names. The default
soname is the output file name of the library when it is built. The linker uses

Dynamic Loading Information

14.3.2.3

an soname value to record shared library dependencies in the library list.
Dependencies containing pathnames are located without prepending search
directories to their paths. A pathname is identified by the presence of one or more
slashes in the string.

The RPATH is included in a shared object’s . dynami ¢ section under an entry
tagged DT_RPATH. It is a colon-separated list of shared library search directories.
The RPATH is set using the - r pat h linker option. The loader will search RPATH
directories prior to searching LD LI BRARY_PATH and default directories.

The environment variables that impact the search order are LD LI BRARY_PATH
and RLD ROOT. LD LI BRARY_PATH has the same format as RPATH.

No root directories are prepended to the LD LI BRARY_PATH directories.

LD LI BRARY_PATH can also be set by a program before it calls dl open().

The _RLD_ROOT environnment variable is a colon-separated list of "root" directories
that are prepended to other search directories. It modifies RPATH and the default
search directories.

The precedence (highest to lowest) of search directories used by the loader is as
follows:

1. soname (if it includes a path)

2. _RLD ROCT + RPATH

3. LD _LI BRARY_PATH

4. _RLD ROOT + default search directories

When using non-system libraries, it is often necessary to specify the search path
rather than relying on the defaults. Here is one example:

$ 1d -shared -o ny.so nylib.o -lc

$ cc -o hello hello.c ny.so

$ hello

7526: hell o: /sbin/loader: Fatal Error: cannot map ny.so

$ LD_LI BRARY_PATH=.

$ export LD_LI BRARY_PATH

$ hello
Hel l o, Worl d!

Validation

One of the loader’s jobs is to ensure that correct shared libraries are available

to the program. Shared library versioning is used to distinguish incompatible
versions of shared libraries. The loader tests for matching versions when shared
library dependencies are loaded. If the application is found to be incompatible with
a needed shared library, the program may have to be recoded or relinked. Causes
of binary incompatibility include altered global data definitions and changes to
documented interfaces.

Each shared library is built with a version identifier. This identifier is recorded in
the . dynam c section with the tag DT_| VERSI ON. Each entry in the dependency
information (. | i bl i st section) also records the version identifier of a shared
library dependency. The - set _ver si on linker option is used to provide the version
identifier. Without this option, the linker will build a shared library with a null
version. Version identifiers can be any ASCII string.

Version checking can also be controlled by the user. The linker option

- exact _ver si on leads to more rigorous version testing by the loader. When this
option is in effect, timestamps and checksums are checked in addition to version
numbers. The linker-recorded dependency information for the timestamp and
checksum must precisely match the load-time values for all shared libraries.
Normally, a mismatch leads to additional symbol resolution work instead of a
rejected object.

Dynamic Loading Information 14-13

Version checking can be disabled through use of the loader environment variable
_RLD _ARGS. Setting this variable to -i gnore_al | _ver si ons disables version
testing for all shared library dependencies. Setting it to - i gnor e_ver si on with a
library name parameter turns off version checking for that specific dependency.

By default, versions are checked, but not checksums or timestamps. If version
testing fails, the loader searches for the matching version of the shared library.

The version identifiers are used to locate version-specific libraries. The loader
looks for these libraries in:

1. dirnane/version_id

2. lusr/shlib/version_id

where di r nane is the first directory where a library with a matching name but
non-matching version is found.

For example, if an application needs version 1 of a shared library but the loader
first encounters version 2, it continues looking for the correct version.

14.3.2.3.1 Backward Compatibility

When shared libraries are modified and new versions built, the older versions
are frequently retained to support previously linked applications. Maintaining
multiple versions of the library helps ensure backward compatibility for existing
applications even after binary-incompatible changes have been made.

Backward-compatible shared libraries can be:
e Complete independent shared libraries

e Partial shared libraries that import missing symbols from other versions of the
same shared libraries

The advantage of partial shared libraries is that they require less disk space; a
disadvantage is that they require more swap space.

The linker’s - L option can be used to link with backward-compatible shared
libraries. Warnings are generated when a shared library is linked with
dependencies on different versions of the same shared library. However, the linker
tests direct dependencies only. The option -t ransi ti ve_I i nk should be used to
uncover all multiple-version dependencies.

Multiple versions of the same shared library can only be loaded to support partial
shared library dependencies. Otherwise, dependencies on multiple versions of a
library are invalid.

Figure 14-3 shows examples of valid uses of multiple versions.

14-14 Dynamic Loading Information

Figure 14-3: Valid Shared Library with Multiple Versions

Example 1

app_1

L

libc.so (osfl1.0)

-

libc.so (osf2.0)

Example 2

app_2

libc_rso{osf1.0) libc.so [osf1.0)

l

libc_rso [osf2.0)

r

libc.so (osf2.0)

Figure 14-4 shows examples of invalid uses of multiple versions.

Figure 14—4: Invalid Shared Library with Multiple Versions

Example 1
app_3
layered! so layeredz so
libc.so (osf1.0) libc.so (0sf2.0)
Example 2
app_4
layeredl so i libc.so (0sf1.0)
libc.so (osf2.0)

14.3.2.4 Loading

The executable object is placed in memory first, at the segment base addresses
designated by the linker and recorded in the a. out header. These addresses are

Dynamic Loading Information 14-15

never changed during the lifetime of the executable’s image. After the executable
file’s segments have been mapped into memory, shared library dependencies are
loaded. Shared library dependencies are mapped recursively.

The linker chooses quickstart addresses for the text and data regions of shared
libraries. The loader attempts to map shared libraries to their quickstart addresses.
If this attempt fails because another library has already been mapped to the same
address range, the library is relocated to a different address. Note that this problem
could be caused by a library mapped by another process. The system tries to map
no more than one shared library at a particular virtual address range, system-wide.

Additional dependencies, not present in the library list, can be dynamically loaded
using a dl open() call. Again, the loader will attempt to load the library at its
quickstart addresses and will relocate it if necessary.

When a shared library is relocated, its text and data segments must move the same
distance in memory. By fixing the distance between these segments at link time,
the number of dynamic relocations is minimized and restricted to the data segment.

14.3.2.4.1 Dynamic Loading and Unloading

14.3.3

14-16

Dependencies can be loaded and unloaded during execution by using the dl open()
and dl cl ose() system functions.

The dl open() routine accepts a library name and loads the library and its
dependencies. The loader resolves all symbols in all shared objects while processing
a dl open() call. If the library was previously loaded, dl open() re-resolves
global symbols and returns a handle without loading any new objects.

The loader maintains a count of references made to all shared objects that have
been loaded. For example, if | i bm so is dependent upon | i bc. so, | i bc’s
reference count is incremented when the libraries are loaded. This reference
counting is part of an effort to ensure that a library is never unloaded prematurely.
As an additional precaution to avoid unloading a library that is still needed, the
number of existing dl open() handles is tracked by the loader. This dl open()
count is incremented each time a dl open() call is made for a particular object.

The dl cl ose() routine unloads a shared library and its dependencies. It accepts
a handle that was returned by dl open().

The dl cl ose() routine will not unload shared libraries that are still in use. Both
the dl open() count and the reference count are checked and should be zero before
a library is unloaded.

The dl cl ose() routine cannot unload an executable. It is designed for shared
libraries only. It also cannot unload a shared library that was not dynamically
loaded by dl open().

Objects with TLS data can be dynamically loaded or unloaded during process
execution. A new TLS region is allocated for all existing threads when an object
with TLS data is loaded. Similarly, the TLS region will be deallocated for all
threads when the object is unloaded.

Dynamic Symbol Information
The dynamic symbol table is created at link time for shared objects. Its primary

purpose is to enable dynamic symbol resolution. Run-time address information for
dynamic symbols is contained in the GOT section (. got).

Dynamic Loading Information

14.3.3.1

14.3.3.2

The dynamic symbol section (. dynsym provides information on globally scoped
symbols that are defined or used by the object. This section consists of a table of
dynamic symbol entries. The entries are ordered as follows:

A single null entry

Symbols local to the object

Unreferenced global symbols

Referenced global symbols (corresponding to GOT entries)

A e

Relocations-referenced global symbols (corresponding to special final GOT)

Local symbols are global in scope but are not exported to other objects. The local
portion of the dynamic symbol table contains system symbols representing the
sections of the object: . t ext, . dat a, and other linker-defined symbols. Typically,
they do not have GOT entries.

Unreferenced globals are symbols that can be exported but are not referenced by the
defining object. They are present in the dynamic symbol table so that other shared
objects can import and use them. Unreferenced globals do not have GOT entries.

Referenced globals are exported and are used internally. Dynamic symbols in
this category have global GOT entries.

Global symbols that are referenced only by the object’s dynamic relocation entries
are grouped at the end of the dynamic symbol table, corresponding to a special final
GOT. These symbols require GOT entries to record their run-time addresses used
in processing dynamic relocations. This special GOT is only used by the loader and
is never directly referenced by the program itself.

All linker-defined TLS symbols (see Section 2.3.7) have dynamic symbol entries.

Note that the dynamic symbol table itself is never relocated; it contains only
link-time addresses (in the st _val ue field).

Finding Symbol Addresses

Dynamic symbol addresses are found by the dl syn() routine. The routine
searches for the symbol name beginning in the object associated with the handle.
By default, the search is breadth-first. The search is depth-first for objects that
were built with the linker’s - B synbol i ¢ option and for objects that were loaded
with neither the RTLD_LOCAL nor RTLD GLOBAL dl open() flag. If the handle is
null, the routine performs a depth-first search beginning at the main executable.

It is important to use the dl syn() interface for symbol look-up to avoid using an
outdated address. This problem can be caused by an improper compiler assumption
that a symbol’s address will not change after load time. A symbol’s address may be
cached as an optimization and not reloaded thereafter. However, that address may
be changed during execution as the result of dynamic loading and unloading.

Scope and Binding

The concept of scope in the dynamic symbol table differs somewhat from the
concept of scope in the debug symbol table because the dynamic symbol table
contains only global user-program symbols. The terms "local" and "external" thus
have different meanings in this context.

The two scoping levels for symbols in the dynamic symbol table are object scope and
process scope. A symbol with object scope is local to the shared object and can only
be referenced in the library or executable where it is defined. A symbol with process
scope is visible to all program components, and may be referenced anywhere. A

Dynamic Loading Information 14-17

14.3.3.3

14-18

symbol with process scope can also be preempted by a higher-precedence definition
in another shared object.

Note that the distinction between object scope and process scope does not
correspond directly to the local/global symbol division in the dynamic symbol table.
All symbols in the local part of the table have object scope, but global dynamic
symbols can be internal to the object as well. Another factor, called binding, comes
into play.

The possible bind values in the dynamic symbol table are local, global, weak, and
duplicate. These values are encoded in the st _i nf o field of the dynamic symbol
entry. (See Section 14.2.2 for details.)

Users are able to designate global symbols as "hidden". In the dynamic symbol
table, hidden symbols have a local binding. This representation ensures that

they will not be exported from the object and will not preempt any other symbol
definition. Also, internal references to hidden symbols will not be preempted. The
linker’s "- hi dden_synbol synbol " option can be used to specify a hidden symbol.

Weak symbols are also a special-case category of global symbols that have the
same scope as globals but a lower precedence for symbol resolution conflicts. See
Section 14.3.4.2 for details.

Multiple GOT Representation

The GOT contains address information for all referenced external symbols in the
dynamic symbol table. Observe that the GOT is the source of final, run-time
addresses, whereas the symbol table contains only link-time addresses. To access
a dynamic symbol, the GOT must be referenced. To associate GOT entries with
dynamic symbol table entries, the symbol table and GOT are aligned as shown in
Figure 14-5.

Figure 14-5: Dynamic Symbol Table and Multiple-GOT

dynsym
reserved
ot locals
GOTO0 [Tazy texd_resolve Treteronced [€ DT_UNREFEXTNO
|obals
DT_LOCAL ZOTHO[0]—) locals e DT _GOTSTM[0]
globals —p| referenced
globhals (GOTO)
GOT1 lazy_text_resolve 4—DT_GOTS¥M[1]
N locals referenced
DT_LOCAT_GOTHNO[1] ‘/* globals (GOTT)
globals 4—DT GOTSTM[?Z]
referenced
| tend [
GOTE a7 _le _Iresove globals (GOT2)
DT_LOCAL_GOTNO[Z] —p DeoE ‘_/*' —DT_GOTSYM[3]
globals referenced
o1 globals (GOT3) 1—|
DT_LOCAL_COTNG[3] —p lazy_text_resolve ‘/,
labals Iote: dynamic symbols
9 11 corresponding to final
ma}ﬁpings GQT are referenced in
.dynrel only

Note that the GOT also contains entries that do not correspond to dynamic
symbols. These are placed at the top of each GOT table.

The maximum number of entries in a GOT is 8189. A single GOT may be sufficient
to represent all necessary addresses for an object, but one or more additional GOTs
are sometimes required, as illustrated in Figure 14-5. One GOT table can contain

entries from multiple input objects, but a single object’s entries cannot be split

Dynamic Loading Information

14.3.3.4

between two tables. The linker also builds a separate, final GOT for relocatable
global symbols, referenced only in the dynamic relocation section. These constraints
generally result in some unused GOT entries at the bottom of each table.

The loader recognizes a multiple-GOT object by examining the dynamic header.
A DT_GOTSYMentry exists in the dynamic header for each GOT. This entry holds
the index of the first dynamic symbol table entry corresponding to a GOT entry.
A DT_LOCAL_GOTNOentry exists for each GOT as well. This entry contains the
index of the first global entry in that GOT. The number of DT_GOTSYMentries and
DT_LOCAL_GOTNO entries in the dynamic header should match. They are also
expected to occur in ascending numerical order.

The first (zero-indexed) entry for every GOT in a multiple-GOT object points to the
loader’s | azy_t ext _resol ve() entry point. In the final GOT (consisting of
relocatable symbols), it is present even though it is unused.

Multiple-GOT objects may contain duplicate symbols. A symbol appears only once
per GOT, but it can be duplicated in other GOTs. All duplicate symbols, marked
in the symbol table as STB_DUPLI CATE, have an associated primary symbol. The
primary symbol is simply the first instance of a duplicate symbol. The st _si ze
field for a duplicate symbol is the dynamic symbol table index of the primary
symbol. When a symbol is resolved in a multiple-GOT situation, all duplicates
must be found and resolved as well.

To further illustrate the relationship of GOT entries to dynamic symbol table
entries, a program example is given in Section 18.3 that converts a GOT address to
a dynamic symbol table entry.

Msym Table

The msym table, which is stored in the . nTsymsection of a shared object file, maps
dynamic symbol hash values to the first of any dynamic relocations for that symbol.
This optional section is included for performance reasons by building shared objects
with the linker’s - meymoption.

An entry in the msym table contains a hash value and an information field. The
information field can be masked to obtain a dynamic relocation index and a flags
field. The size of the msym table is the same as the size of the dynamic symbol
table; the two tables line up directly and have matching indices.

The msym table is referenced repeatedly when an object is opened. The loader
resolves symbols by searching all shared objects for matching definitions. The
search requires a hash value computed from the symbol name. The msym table
provides precomputed hash values for symbols to avoid the costly hash computation
at load time.

Dynamic Loading Information 14-19

Figure 14—6: Msym Table

Object 1 (current) Ohject 2 (searched)
dynsym 5 hash
hash | dvnamic
11+ value synbol
index
JANETm dynsym

If the . msymsection is not present in a shared object, the loader will create the
table each time that the object is loaded. For this reason, it is often preferable to
specify the . neymsection’s inclusion when building shared objects.

14.3.3.5 Hash Table

A hash table, stored in the . hash section of a shared object file, provides fast
access to symbol entries in the dynamic symbol section. The table is implemented
as an array of 32-bit integers.

The hash table has the format shown in Figure 14-7.

Figure 14-7: Hash Table

nbucket

nchain
bucket[d]

bucket
[nbucket - 1]
chain[(]

chain[nchain-1]

The entries in the hash table contain the following information:
e The nbucket entry indicates the number of entries in the bucket array.
¢ The nchai n entry indicates the number of entries in the chai n array.

e The bucket and chai n arrays both hold dynamic symbol table indices, and
the entries in chai n parallel the dynamic symbol table. The value of nchai n
is equal to the number of symbol table entries. Symbol table indices can be
used to select chai n entries.

The hashing function accepts a symbol name and returns the hash value, which
can be used to compute a bucket index. If the hashing function returns the

14-20 Dynamic Loading Information

14.3.4

value X for a name, X%nbucket is the bucket index. The hash table entry
bucket [X%mbucket] gives an index, Y, into the dynamic symbol table.

The loader must determine whether the indexed symbol is the correct one. It checks
the corresponding dynamic symbol’s hash value in the msym table and its name.

If the symbol table entry indicated is not the correct one, the hash table entry
chai n[Y] indicates the next symbol table entry for a dynamic symbol with the
same hash value. The indexed symbol is again checked by the loader. If it is
incorrect, the same index is used in the chai n array to try the next symbol that
has the same hash value. The chai n links can be followed in this manner until
the correct symbol table entry is located or until the chai n entry contains the
value STN_UNDEF.

As an example, assume that a symbol with the hash value 12 is sought. If

there are ten buckets, the calculation 12 % 10 gives the bucket index 2, which
signifies the third bucket. A bucket index translates into a hash table index

as bucket [i] =hash[i +2] . If that bucket contains a 3, the dynamic symbol
table entry with an index of 3 is checked. If the symbol is incorrect, the hash
table entry chai n[3] is accessed to get the next possible symbol index. A chain
index translates into a hash table index as chai n[i] =hash[nbucket +2+i] . If
chai n[3] is 7, the dynamic symbol table entry with an index of 7 is checked. If it
is the correct symbol, the search is successful and halts.

The structures used in this example are shown in Figure 14-8.

Figure 14-8: Hashing Example

Jhash
nbucket 10
nchain =
bucket[0]
bucket[2] 3
buckets
[3] - [9] Aynsym
chain[(0] 4]
chainf3] 7 — 3 Mo
YES!
chain[3-1] ')

Dynamic Symbol Resolution

The dynamic loader must perform symbol resolution for unresolved symbols that
remain after link time. A post-link unresolved symbol is one that was not defined
in a shared object or in any of the shared object’s shared library dependencies
searched by the linker. If a dependency is changed before execution or additional
libraries are dynamically loaded, the loader will attempt to resolve the symbol.

Dynamic Loading Information 14-21

14.34.1

14-22

The linker accepts unresolved symbols when linking shared objects and records
them in the dynamic symbol (. dynsym section. The loader recognizes an
unresolved symbol by a symbol type of undefined (st _shndx == SHN_UNDEF) and
a symbol value of zero (st _val ue == 0) in the dynamic symbol table. For such
symbols, the GOT value distinguishes imported symbols from symbols that are
unresolved across all shared objects.

Table 6-7 gives a rough idea of different categories of symbols and how they are
represented in the dynamic symbol table. Run-time addresses are stored in the
GOT. They can be pre-computed by the linker and adjusted at load time.

Table 14—7: Dynamic Symbol Categories

Description Type Section Value GOT
defined item STT_CBJECT, SHN_TEXT, address address
STT_FUNC SHN_DATA,
SHN_ACOMVON

imported function STT_FUNC SHN_UNDEF 0 address (in defining
object)

imported data STT_OBJECT SHN_UNDEF 0 address (in defining
object)

common STT_OBJECT SHN_COMMON alignment address of allocated
common (in defining
object)

unresolved STT_FUNC SHN_UNDEF 0 lazy text stub address

function

unresolved data ~ STT_OBJECT SHN_UNDEF 0 0

The loader performs symbol resolution during initial load of a program. The amount
of symbol resolution work required by a program varies (see Section 14.3.4.6).

The loader can also perform dynamic symbol resolution for particular symbols
during program execution. If new dependencies are added or existing dependencies
are rearranged, externally visible symbols (those with process scope) may be
bound to a new address. Rebinding after a dl open() or dl cl ose() call is only
performed for symbol references in shared libraries that were not loaded with a

dl open() flag of RTLD_LOCAL or RTLD GLOBAL.

Unresolved text symbols can be resolved at run time instead of load time (see
Section 14.3.4.5).

Symbol Preemption and Namespace Pollution

A namespace is a scope within which symbol names should all be unique. In a
namespace, a given name is bound to a single item, wherever it may be used. This
generic use of the term "namespace" is distinct from the C++ namespace construct,
which is discussed in Section 11.3.1.5.

Dynamic executables running on Tru64 UNIX share a namespace with their shared
library dependencies. This policy is implemented with symbol preemption. Symbol
preemption, also referred to as "hooking", is a mechanism by which all references
to a multiply-defined symbol are resolved to the same instance of the symbol.

Advantages of symbol preemption include:
e All shared objects use one global namespace.
¢ Dynamic and static executables behave more consistently.

e Applications can replace library routines to debug, improve, or customize them.

Dynamic Loading Information

14.3.4.2

Disadvantages include extra load time for symbol resolution and potential
problems resulting from namespace pollution.

Namespace pollution can occur during the use of shared libraries. A library routine
may malfunction if it calls or accesses a global symbol that is redefined by another
shared library or application. Figure 14-9 presents an example of this situation.

Figure 14-9: Namespace Pollution

a.ouf

int open=0;
main()
FILE *fd;
if (fd=fopen("fnames","rw")
open=1;

libe
fopen() {

tl:;fjen(...),'
=

Namespace pollution is partly covered by ANSI standards. Namespace conflicts
that occur between | i bc and ANSI-compliant programs must not affect the
behavior of ANSI-defined functions implemented in | i bc.

The identifiers reserved for use by the library are:
e Names beginning with underscores
¢ ANSI-defined symbols (f open(), mal | oc(), and so forth)

All other names are available to user programs. User versions of non-reserved
identifiers preempt library versions.

Historically, system libraries have used many unreserved symbol names. To
achieve compliance with the ANSI standard, global symbols have undergone

a name change. Documented interfaces have been retained as weak symbols
(see Section 14.3.4.2). Their strong counterparts have names that are formed by
prepending two underscores to the corresponding weak symbol’s name.

Hidden symbols do not cause namespace pollution problems and cannot be
preempted because they are not exported from the shared object where they are
defined.

The linker options - hi dden_synbol and - exported_synbol turn the
hidden attribute on or off for a given symbol name. The options - hi dden and
-non_hi dden turn the hidden attribute on or off for all subsequent symbols.

TLS data symbols have the same name scope as hidden symbols. The names are
not shared among multiple threads.

Weak Symbols

Weak symbols are global symbols that have a lower precedence in symbol resolution
than other globals. Strong symbols are any symbols that are not marked as weak.

Dynamic Loading Information 14-23

Weak symbols can be used as aliases for other weak or strong symbols. This
technique can be useful when it is desirable to provide both a low-precedence name
and a high-precedence name for the same data item or procedure. When the weak
symbol is referenced, its strong counterpart is the one actually used.

This aliasing approach employing weak symbols is used in | i bc. so to avoid
namespace pollution problems. In the example in Figure 14-10, the strong symbol
definition in the application takes precedence over the weak library definition, and
the program functions properly.

Figure 14-10: Weak Symbol Resolution (1)

gt

int open=0;

main() {
FILE *fd;
if (fd=fopen"fname","rw'"))

open=1;

lite
fopen() {
_open(.);

1
#pragme waak open=__open

—open() {
}

14-24 Dynamic Loading Information

14.3.4.3

Figure 14-11: Weak Symbol Resolution (II)

gt

main() {
FILE *fd.

fd = open(" myfile" O);

libe
fopen(y {
_open(..); 8

1
#pragme waak open=__open

—open() {
}

If no non-weak open symbols were defined, references to open would bind to the
weak symbol definition in | i bc. so, as shown in Figure 14-11.

Weak symbols can also be used to prevent multiple symbol definition errors or
warnings when linking. Neither the linker nor loader require a weak symbol to be
aliased to a strong symbol, but the loader will attempt to find a matching strong
symbol for any weak symbol it is attempting to resolve.

To find a weak symbol’s strong counterpart, the loader follows these steps:

1. Use hash lookup to find __nane

2. If__name is not found or not a match, test each dynamic symbol for matching
attributes

3. Ifa strong matching symbol is found check for a preempting symbol definition
in another shared object

Matching symbols will have the same st _val ue, COFF_ST_TYPE(st _i nf 0) and
st _shndx.

A weak symbol is identified in the dynamic symbol table by a STB_WEAK bind
value. In the external symbol table, a weak symbol has its weak_ext flag set
in the EXTR entry.

Users can specify weak symbols using the . weakext assembler directive or the C
#pragma weak preprocessor directive.

Search Order

The dynamic symbol resolution policy, or symbol search order, defines the order
in which the loader searches for symbol definitions in a dynamic executable, its

Dynamic Loading Information 14-25

14.3.4.4

14-26

shared library dependencies, and shared libraries added to the process image
by dl open().

Default search order is a breadth-first, left-to-right traversal of the shared library
dependency graph.

Figure 14-12: Symbol Resolution Search Order

gt
lib& libE
litD libE
A
* libc.so

The search order in Figure 14-12is: a.out libA [ibB libc.so libD IibE

Objects loaded dynamically by dl open() are appended to the search order
established at load time. However, dl open() options will determine whether a
dynamically loaded object’s symbols are visible to objects that do not include it in
their dependency lists. See dl open(3) for details.

Alternate search orders can be specified using linker or loader options. The - B
synbol i ¢ linker option marks an object to be loaded with "depth ring" search
order. This search order consists of a two-step process:

1. Depth-first search the referencing object and its dependencies

2. Depth-first search from the main executable

Using the depth ring search policy and the dependency graph from Figure 14-12,
the search order is:

From Search Order

a. out a.out libAlibDIlibc.so libB libE
I'i bA libAlibD libc.so a.out libB libE
l'i bB libB libE libc.so a.out libA libD
l'i bD libD libc.so a.out libA libB IlibE
l'i bE libE libc.so a.out libAlibDlibB
libc.so libc.so a.out libAlibDIlibB IibE
Precedence

The highest-to-lowest precedence order for dynamic symbol resolution is:

Strong text or data
Strong largest allocated common
Weak data

Weak largest allocated common

Ll e

Dynamic Loading Information

14.3.4.5

14.3.4.6

5. Largest common

6. Weak text

In case (5), the loader allocates the common symbol. This situation only arises when
an object containing an allocated common of the same name has been changed
between link time and load time or is dynamically unloaded during run time. The

linker will always allocate a common storage class symbol, but if there are multiple
occurrences of that symbol, the others are retained as unallocated commons.

When symbols have equal precedence, the loader relies on the search order to
choose the correct definition for the symbol.

Lazy Text Resolution

Lazy text resolution allows programs to execute without resolving text symbols
that are never referenced.

Programs with unresolved text symbols are linked with stub routines. When

a program or library calls a stub routine, the stub calls the loader’s lazy text
resolution entry point with a dynamic symbol index as an argument. The loader
then resolves the text symbol. Subsequent calls will use the true address, which
has replaced the stub in the appropriate GOT entry.

The dynamic symbol table does not contain any explicit information that indicates
whether a text symbol has a stub associated with it. The loader looks for the
following clues instead:

e Symbol’s st _shndx is SHN_UNDEF
e Symbol’s st _val ue is zero

e Symbol’s GOT entry is not 0 and is in text segment’s address range

The environment variable LD Bl ND_NOWcontrols the loader’s text resolution mode.
If the variable has a non-null value, the bind mode is immediate. If the value is
null, the bind mode is deferred. Immediate binding requires all symbols to be
resolved at load time. Deferred binding allows text symbols to be resolved at run
time using lazy text evaluation. The default is deferred binding.

See Section 3.3.3 for related information.

Levels of Resolution

Conditions may exist that cause the loader to do more symbol resolution work for
some programs than for others. The amount of symbol resolution work that is
necessary can have a significant impact on a program’s start-up time.

Descriptions of the possible levels of dynamic symbol resolution follow.

Quickstart Resolution

Minimal symbol resolution. For details on quickstart, see Section 14.3.6.

Timestamp Resolution

Moderate symbol resolution. This is used when any of the following are true:

¢ The executable or one of its dependencies has indirect dependencies that it
was not linked with.

¢ The executable or one of its dependencies has unresolved text symbols that are
used in dynamic relocations.

e A shared library dependency was rebuilt so that the timestamp no longer
matches the dependency information in the executable.

Dynamic Loading Information 14-27

14.3.5

14.3.6

14-28

Checksum Resolution

Extensive symbol resolution. This is used when a shared library dependency has
been rebuilt and its checksum no longer matches the dependency information in
the executable. The checksum changes if any of the following conditions are met:

e Global symbols are added
¢ Global symbols are deleted
e Global symbols change from strong to weak or vice versa

e Common storage class symbols’ sizes change.

Immediate Binding Resolution

Re-resolve symbols marked SHN_UNDEF for immediate binding. This is used by
dl open() to apply immediate binding symbol resolution to shared objects that
were previously resolved with deferred binding.

Dynamic Relocation

The dynamic relocation section describes all locations that must be adjusted within
the object if an object is loaded at an address other than its linked base address.

Although an object may have multiple relocation sections, the linker concatenates
all relocation information present in its input objects. The dynamic loader is thus
faced with a single relocation table. This dynamic relocation table is stored in the
. rel . dyn section and is ordered by the corresponding dynamic symbol index.

Offset 0 in the dynamic relocation table is reserved for a null entry with all fields
zeroed.

All dynamic relocations must be of the type R_REFQUAD or R_REFLONG. This
simplifies the dynamic relocation process. These two relocation types are sufficient
to represent all information that is necessary to accomplish dynamic relocations.
Dynamic relocation entries must only apply to addresses in an object’s data
segment. The object’s text segment must not contain any relocatable addresses.

Relocation entries are updated during dynamic symbol resolution. When a dynamic
symbol’s value changes, any dynamic relocations associated with that symbol must
be updated. To update the entries, the relocation value is computed by subtracting
the old value of the from the new value. This value is then added to the contents
of the relocation targets. The old value of a dynamic symbol is always stored in

a GOT entry. The new value of a dynamic symbol is stored in that GOT entry
after dynamic relocations are processed.

Relocation types other than R_REFQUAD and R_REFLONG are not allowed for
dynamic relocations because no other relocation types apply to absolute addresses
stored in data. Most relocation types apply to values that need to be computed at
link time and do not change at run time.

A dynamic executable or shared library may also contain preserved normal
relocation sections. If normal relocation entries are present, the loader ignores
them.

Quickstart

Quickstart is a loading technique that uses predetermined addresses to run a
program that depends on shared libraries. It is particularly useful for applications
that rely on shared libraries that change infrequently.

The linker chooses quickstart addresses for all shared library dependencies when
a dynamic executable is linked. These addresses are stored in the registry file

Dynamic Loading Information

14.3.6.1

14.3.6.2

normally named so_| ocat i ons. For details on the shared library registry file,
refer to the Programmer’s Guide.

Any modification to a shared library impairs quickstarting of applications that
depend on that library. If a shared library dependency has changed, it may
be possible to use the fi xso utility to update the application and thus enable
quickstart to succeed.

To verify that an application is quickstarted, use the - qui ckst art _onl y loader
option. For example:
% setenv _RLD ARGS -qui ckstart_only

% a. out
1834:a.out: /shin/loader: Fatal Error: quickstart requirenents not net

Additional information on quickstart is available in the Programmer’s Guide.

Quickstart Levels

Not all shared objects can be successfully quickstarted. If an executable cannot

be quickstarted, it still runs, but start up is slower. Quickstarting is possible for
programs requiring minimal symbol resolution at load time. A dynamic executable
is quickstarted if:

e The object’s mapped virtual address matches the quickstart address chosen
by the linker.

e The object’s dependencies have not been modified incompatibly since the object
was linked.

e The object’s indirect dependencies are all included as direct dependencies.

¢ The object’s dependencies also meet quickstart criteria.

Each quickstart requirement that is not met by a dynamic executable and its
dependencies leads to additional symbol resolution work.

e [If all quickstart requirements are met, only undefined and multiply defined
symbols need to be resolved.

e Ifthe mapped address differs from the quickstart address, addresses of defined
symbols must be adjusted.

e If the timestamp has been changed, external (imported) symbols must be
resolved.

e If the checksum has been changed, all symbols must be resolved.
At this point, the timesaving advantage of quickstarting has disappeared.

For quickstart purposes, a link-time shared library matches its associated
load-time shared library if the timestamp and checksum are unchanged. If they
have been changed, using the fi xso tool may remedy the situation and enable
quickstart to succeed.

Conflict Table

The conflict table, stored in the . conf |l i ct section, contains a list of symbols that
are multiply defined and must be resolved by the loader. The conflict table is used
only when full quickstarting is possible. If any changes preventing quickstart have
occurred, the loader resorts to other methods of symbol resolution.

The linker records conflicts in a shared object’s . conf | i ct section if a second
definition is found for a previously-defined symbol. Common storage class symbols
are not considered conflicts unless they are allocated in more than one shared
object.

Dynamic Loading Information 14-29

14.3.6.3

14-30

Weak symbols aliased to a newly resolved conflict entry are also treated as
conflicts. This means the loader does not have to search for weak symbols matching
conflict symbols. The weak symbols are added to the conflict list for the first
shared library that defined the symbol in question as well as the library where the
conflicting definition was found.

Figure 14-13 shows a simple example of the use of conflict entries.

Figure 14-13: Conflict Entry Example

aout

liba so

main {
a_sort(); a_sort()q
K .
a_error(),
a_errorid }
'
a_error({exit(1);}
cotflict:
a_error

In this example, the a. out executable has been linked with liba.so, and a single
conflict has been recorded for the symbol a_error (). The conflict is recorded in
the executable file at link time because both the executable and shared library
define the symbol. At run time, any calls toa_error () from a_sort () will be
preempted by the definition of a_error () in the a. out executable. Without
the conflict entry, the call to a_error () would not be preempted properly when
a. out is quickstarted.

Repairing Quickstart

The f i xso utility updates shared libraries to permit quickstarting of applications
that utilize them, even if the libraries have changed since the executable was
originally linked against them. Given a shared object as input, it updates the object
and its dependencies to make them meet quickstart criteria. The library changes
handled by f i xso are timestamp and checksum discrepancies.

The f i xso utility creates a breadth-first list of the object’s dependencies. It then
handles conflicts present in the conflict table. Next, f i xso resolves globals,
updating global symbol values, dynamic relocation entries, and GOT entries where
necessary. Lastly, if these actions are successful, f i xso resets the timestamp and
checksum of its target object.

When a dependency is discovered during processing, f i XS0 automatically opens
the associated object and adds it to the object list if possible. The dependency will
be found and opened if it is located in the default library search path, the path
indicated by the LD LI BRARY_PATH environment variable, or the path specified in
the command line. Otherwise, it may be necessary to run the f i xso program on
the library separately, before fixing the target object.

Some changes made to shared libraries cannot be reconciled by fi xso. The fi xso
utility does not support:

¢ Increases in size required in the conflict list (new conflicts)

Dynamic Loading Information

Movement of the library in memory
Discrepancies in interface versions
Changes to a library’s path

Discrepancies in soname values

Dynamic Loading Information 14-31

15

Comment Section

The Tru64 UNIX object file format supports a mechanism for storing information
that is not part of a program’s code or data and is not loaded into memory during
execution. The comment section (. conment) is used for this purpose. Typically,
this section contains information that describes an object but is not required for the
correct operation of the object. Any kind of object file can have a comment section.

Version Note

Prior to Tru64 UNIX V5.0 the system linker ignores comment sections
in input objects.

15.1 New and Changed Comment Section Features

Tru64 UNIX V5.1 introduces the following new features for comment sections:

e New comment subsection types (see Table 15-1)

Version 3.13 of the object file format introduces the following new features for
comment sections:

e New comment subsection types (see Table 15-1)
e Tag descriptors for describing comment subsections (see Section 15.3.4.1)

e Toolversion information for tool specific versioning of object files (see
Section 15.3.4.2)

15.2 Structures, Fields, and Values of the Comment Section

15.2.1

All declarations described in this section are found in the header file
scnconment . h.

Subsection Headers

The comment section begins with a set of header structures, each describing
a separate subsection.

typedef struct {

cof f _uint cm tag;
cof f _uint cmlen;
cof f _ul ong cmval ;

} CVHDR,

SIZE - 16 bytes, ALIGNMENT - 8 bytes

Subsection Header (CVHDR) Fields

cmtag Identifies the type of data in this subsection of the
. conment section. This value may be recognized by system
tools. If it is not recognized, generic processing occurs, as
described in Section 15.3.3. Refer to Table 15-1 for a list of
system-defined comment tags.

cmlen Specifies the unpadded length (in bytes) of this subsection’s
data. If cm | en is zero, the data is stored in the cm val

Comment Section 15-1

cmval

field. The padded length is this value rounded up to the
nearest 16-byte boundary.

Provides either a pointer to this subsection’s data or the
data itself. If cm | en is nonzero, cm val is a relative file
offset to the start of the data from the beginning of the

. comrent section. If cm | en is zero, this field contains all
data for that subsection. In the latter case, the size of the
data is considered to be the size of the field (8 bytes).

Table 15-1: Comment Section Tag Values

Tag Value Description

CM_END 0 Last subsection header. Must be present.

CM_CMSTAMP 3 First subsection header. The cm val field contains
a version stamp that identifies the version of the
comment section format. The current definition
of CM_VERSI ON is 0. Must be present.

CM_COMPACT_RLC 4 Compact relocation data. See Section 5.3.1
for details.

CM_STRSPACE 5 (V5.0 -) Generic string space.

CM_TAGDESC 6 (V5.0 -) Subsection containing flags that tell
tools how to process unfamiliar subsections. See
Section 15.2.2 and Section 15.3.4.1.

CM_I DENT 7 (V5.0 -) Identification strings extracted
from compiled source and header files.
Reserved for system use.

CM_TOCOLVER 8 (V5.0 -) Tool-specific version information.
See Section 15.3.4.2.

CM_I'l _CHECKSUMS 9 (V5.1 -) Checksum data for Atom incremental
instrumentation. Reserved for use by Atom tool.

CM_I I _ATOVARGS 10 (V5.1 -) Atom argument data for incremental
instrumentation. Reserved for use by Atom tool.

CM_I' I _TOOLARGS 11 (V5.1 -) Atom tool argument string for incremental
instrumentation. Reserved for use by Atom tool.

CM_I'I _ANALADDRS 12 (V5.1 -) Analysis address information for
Atom incremental instrumentation. Reserved
for use by Atom tool.

CM I1_0BJID 14 (V5.1 -) Object identification number for
Atom incremental instrumentation. Reserved
for use by Atom tool.

CM _LI NKERDEF 15 (V5.1 -) Relocation information for linker-defined
symbols. See Section 5.3.2

CM_LOUSER 0x80000000 Beginning of user tag value range (inclusive).

CM_HI USER Oxffffffff End of user tag value range (inclusive).

15.2.2 Tag Descriptor Entry

Tag descriptors are used to specify behavior for tools that modify object files and
potentially affect the accuracy of comment subsection data. They are especially

useful as processing guidelines for tools that do not understand certain subsections.
Tools which have specific knowledge of certain comment subsection types can ignore
the tag descriptor settings for subsection type. The tag descriptors are stored in the
raw data of the CM TAGDESC subsection. See Section 15.3.4.1 for more information.

15-2 Comment Section

15221

typedef struct {

cof f _uint tag;
cmflags_t flags;
} cmtd_t;

SIZE - 8 bytes, ALIGNMENT - 4 bytes

Tag Descriptor Fields

tag Tag value of subsection being described.
flags Flag settings. See Section 15.2.2.1.

Comment Section Flags

typedef struct {

cof f _uint cnf_strip 1 3;
cof f _uint cnf _conbi ne :5;
cof f _uint cnf_nodify :4;
cof f _uint reserved 1 20;

} cmflags_t;

SIZE - 4 bytes, ALIGNMENT - 4 bytes

Comment Section Flags Fields

cnf_strip Tells tools that perform stripping operations whether to
strip comment section data.

cnf _conbi ne Tells tools how to combine multiple input subsections of
the same.
cnf_nodify Tells tools that modify single object files how to rewrite the

input comment section in the output object.

Table 15-2: Strip Flags

Name Value Description
CMFS_KEEP 0x0 Do not remove this subsection when performing
stripping operations.
CMFS_STRI P 0x1 Remove this subsection if stripping the entire symbol table.
CMFS_LSTRI P 0x2 Remove this subsection if stripping local symbolic information

or if fully stripping the symbol table.

Table 15-3: Combine Flags
Name Value Description

CMFC_APPEND 0x0 Concatenate multiple instances of input subsection data.
CMFC_CHOOSE 0x1 Choose one instance of input subsection data (randomly).
CMFC_DELETE 0x2 Do not output this subsection.

CMFC_ERRMULT 0x3 Raise an error if multiple instances of this subsection
are encountered as input.

CMFC_ERRCR 0x4 Raise an error if a subsection of this type is
encountered as input.

Comment Section 15-3

Table 15-4: Modify Flags

Name Value Description

CMFM_COPY 0x0 Copy this subsection’s data unchanged from the input
object to the output object.

CMFM_DELETE 0x1 Do not output a subsection of this type.

CMFM_ERRCR 0x2 Raise an error if a subsection of this type is

encountered as input.

15.3 Comment Section Usage

15.3.1 Comment Section Formatting Requirements

The comment section is divided between subsection header structures and an
unstructured raw data area. The subsection headers contain tags that identify the
data stored in the subsequent raw data area. Each header describes a different
subsection. The raw data for all subsections follows the last header, as shown in
Figure 15-1.

Figure 15-1: Comment Section Data Organization

SCNHDR.
senpir —> CM_ CMSTAMP cm_val
offsets
<TAG>
CMHDR <TAG>
structures “TAG
CM_END A
Taw
data
area

Begin and end marker tags are used to denote the boundaries of the structured
portion of the comment section. The begin marker is CM CMSTAMP, which contains
a comments section version stamp, and the end marker is CM_END. If either of these
headers is missing or the version indicated by the value of CM_CMSTAMP is invalid,
the comment section is considered invalid.

The ordering of the subsection headers and their corresponding raw data do not
need to match. Nor is the density of the raw data area guaranteed. However,
all subsection headers must be contiguous: no other data can be placed between
them. Furthermore, a one-to-one relationship must exist between the subsection
headers that point into the raw data and the data itself. Subsection raw data
must not overlap.

15-4 Comment Section

15.3.2

15.3.3

The interpretation of the cm val field depends on the cm | en field. When cm | en
is zero, cm val contains arbitrary data whose interpretation depends on the value
in the cm t ag field. When cm | en is non-zero, cm val contains a relative file
offset from the start of the comment section into the raw data area.

The start of data allocated in the raw data area must be octaword (16-byte) aligned
for each subsection. Zero-byte padding is inserted at the end of each data item as
necessary to maintain this alignment. The value stored in cm | en represents the
actual length of the data, not the padded length. Tools manipulating this data must
calculate the padded length.

Comment Section Contents

The comment section can contain various types of information. Each type of
information is stored in its own subsection of the comment section. Each subsection
must have a unique tag value within the section.

The comment section can include supplemental descriptive information about the
object file. For instance, the tag CM | DENT points to one or more ASCII strings in
the raw data area that serve to identify the module. Use of this tag is reserved for
compilation system object producers such as compilers and assemblers.

User-defined comment subsections are also possible. The CM_LOUSER and
CM_HI USER tags delimit the user-defined range of tag values. Potential uses
include product version information and miscellaneous information targeted for
specific consumers.

Although no restrictions are put on the type or amount of information that can be
placed in the comment section, it is important to be aware that users have the
capability to remove the section entirely (by using the command ostrip-c) and
that object file consumers may ignore its presence.

The minimal valid comment section consists of a CM_CMSTAMP header and a CM_END
header. Because no structure field in the object file format holds the number of
subsections in the comment section, the presence of the CM_END header is crucial.
Without it, a consumer cannot determine the number of subsections present.

Comment Section Processing

Many tools that handle objects read or write the comment section. Some tools,
such as the linker and nts, perform special processing of comment section data.
Others may be interested in extracting certain subsections. Most object-handling
tools provided on the system access the comment section to check for tool-specific
version information (see Section 15.3.4.2).

The linker is both a consumer and producer of the comment section. As with other
object file sections, the linker must combine multiple input comment sections to
form a single output section. When comment sections are encountered in input
object files, the linker reads subsection headers and merges the raw data according
to its own defaults and the flag settings of any tag descriptors that are present.

The nts utility provides comment section manipulation facilities. This tool allows
users to add, modify, delete, or print the comment section from the command line.
The nts tool can only process objects that already have a . corment section header,
but actual . comment section data is not required. Compilers and assemblers
frequently write object files which have zero-sized . conment sections.

The operations performed by nts do not affect the object’s suitability for linking or
execution. See nts(1) for more details.

Stripping tools, such as st ri p and ostri p, also process the comment section. They
read the tag descriptors to determine what subsections to remove. The cnf _strip

Comment Section 15-5

15.3.4

15.34.1

field of the tag descriptor specifies the stripping behavior. If the cnf _stri p field is
set to CMFS_STRI P that subsection will be removed if an object is fully stripped. If
the cnf _stri p field is set to CMFS_LSTRI P for a particular subsection type, that
subsection will be removed if an object is fully stripped or locally stripped.

Special Comment Subsections

Comment subsections can have particular structures or semantics that a consumer
must know to be able to read and process them correctly. Two system-defined
subsections with special formatting and processing rules are the tag descriptors
(CM_TAGDESC) and the tool-specific version information (CM_TOOLVER).

Another special subsection contains compact relocation data (CM_COVPACT_RLC).
This topic is covered in Section 5.3.1.

Tag Descriptors (CM_TAGDESC)

Version Note

Tag descriptors are supported in object format V3.13 and greater.

The tag descriptor subsection contains a table of tags and their corresponding flag
settings. This information tells tools how to handle unfamiliar subsections. The
CM _TAGDESC subsection may not be present, and if present, it may not contain
entries for subsections that are present. Also, a tag descriptor may be present for a
subsection that is not found in the object.

A list of possible tag descriptor flag settings can be found in Section 15.2.2.1. Flag
settings are divided into three categories based on the categories of object tools that
need to modify the comment section:

1. Tools that strip object files
2. Tools that combine multiple instances of comment section data

3. Tools that modify and rewrite single object files

The default flag settings for user subsections that do not have tag descriptors are
CMFS_KEEP, CMFC_APPEND, and CMFM_COPY. Tools that strip or rewrite objects
should not modify subsection data for comment subsections marked with these
default flag settings. A tool that combines multiple instances of subsection data,
should concatenate the subsection raw data for same-type input subsections
marked with the default flag settings.

A tool can ignore the tag descriptor flags and default flag settings for a subsection
if it recognizes the subsection type and understands how to process its data.

Some of the system tags have different defaults. These are shown in Table 15-5.
However, tag descriptors in the CM_TAGDESC subsection can be used to override the
default settings for system tag values as well as user tag values.

Table 15-5: Default System Tag Flags

Tag Default Flag Settings

CM END CMFS_KEEP, CMFC_CHOOSE, CMFM_COPY

CM CVSTAMP CMFS_KEEP, CMFC_CHOOSE, CMFM _COPY
CM COVPACT _RLC CMFS_STRI P, CMFC_DELETE, CMFM DELETE
CM STRSPACE CMFS_KEEP, CMFC_APPEND, CMFM _COPY
CM TAGDESC CMFS_KEEP, CMFC_CHOOSE, CMFM _COPY
CM | DENT CMFS_KEEP, CMFC_APPEND, CMFM _COPY

15-6 Comment Section

15.34.2

Table 15-5: Default System Tag Flags (cont.)

Tag Default Flag Settings

CM TOOLVER CMFS_KEEP, CMFC_CHOOSE, CMFM _COPY
CM || _CHECKSUNVG CMFS_STRI P, CMFC_ERROR, CMFM _COPY
CM |1 _ATOVARGS CMFS_STRI P, CMFC_ERROR, CMFM _COPY
CM |1 _TOOLARGS CMFS_STRI P, CMFC_ERROR, CMFM _COPY
CM || _ANALADDRS CMFS_STRI P, CMFC_ERROR, CMFM _COPY
CMI1_OBJID CMFS_STRI P, CMFC_ERROR, CMFM _COPY
CM LI NKERDEF CMFS_STRI P, CMFC_ERROR, CMFM DELETE

Because the size of a tag descriptor entry is fixed, a consumer can determine the
number of entries by dividing the size of the subsection by the size of a single tag
descriptor (see Section 15.2.2). If cm | en is set to zero, a single tag descriptor

is stored as immediate data.

Tool Version Information (CM_TOCLVER)

Version Note

Tool versions are supported in object format V3.13 and greater.

The CM TOOLVER subsection contains tool-specific version entries for system tools
that process object files. If present, this subsection may have any number of entries.
This subsection can also be used to record version information for non-system tools.

Each tool version entry consists of three parts:

1. Tool name (null-terminated character string)
2. Tool version number (unsigned 8-byte unaligned numeric value)

3. Printable version string (null-terminated character string)

The number of tool version entries cannot be determined from the subsection
header because the entries vary in length. The data must be read until the entry
sought is found or until the end of the subsection’s data is reached.

The encoding of the tool version number is generally tool dependent. The only
requirement is that the value, viewed as an unsigned long, must be monotonically
increasing with time.

Typically, an object file consumer uses the tool version information to verify its
ability to handle an input object file. The consumer uses an API (see | i bst
reference pages) to look for a tool version entry with a tool name matching its own
(part one of the entry). If found, the version number (part two of the entry) must
not exceed the version number of the tool. Otherwise, the tool will print a message
instructing the user to obtain the newer version of the tool, using the printable
version string (part three of the entry). This mechanism can be used as a warning
to customers of a necessary upgrade to a newer release of a product, for instance.

As an example, a compiler might produce object files with new symbol table
information that causes an old version of the ladebug debugger to produce a fatal
error. To provide more user-friendly behavior for old versions of the debugger, the
compiler outputs a tool version entry:

1. '"ladebug"
2. 2
3. "5.0A-BL5"

Comment Section 15-7

This entry occupies 25 bytes. The debugger recognizes its name in the entry and
compares the version number "2" with the version number it was built with. (Note
that the version number is most likely meaningless to an end user of the debugger.)
In this case, assume that the installed debugger’s version number is "1". The
message "Please obtain version 5.0A-BL5" is output to the user.

Note that the numeric tool version number can be unaligned. This is an exception
to the general rule requiring alignment of numeric data.

15-8 Comment Section

16

Archives

An archive is a collection of files stored and treated as a single entity. They

are used most commonly to implement libraries of relocatable objects. These
libraries simplify linking in a program development environment by allowing the
manipulation of one archive file instead of dozens or hundreds of object files.

This chapter covers the archive file format and usage. The archiver is the tool used
to create and manage archives. See ar (1) for more information on its facilities.

16.1 New and Changed Archive Features

Tru64 UNIX V5.0 introduces archive support for extended user and group ids (see
ar_ui d and ar _gi d in Section 16.2.2)

16.2 Structures, Fields, and Values for Archives

All declarations in this section are from the header file ar . h.

See Section 16.3.1 for more information on the organization of object file contents.

16.2.1 Archive Magic String

The archive magic string identifies a file as an archive.

#define ARMAG "!<arch>\n"
#defi ne SARVAG 8

16.2.2 Archive Header

struct ar_hdr {

char ar _nane[16] ;
char ar_date[12];
char ar_ui d[6] ;
char ar_gi d[6] ;
char ar_node[8] ;
char ar_si ze[10] ;
char ar_fmag[2] ;
} AR_HDR;

SIZE - 60 bytes, ALIGNMENT - 1 byte

Archive Header Fields

ar_nane File member name, blank-terminated if the length of the
name is less than 16 bytes.

File member names that are 16 characters or longer are
stored in the special file member called the file member
name table. In that case, this field contains / of f set
where of f set indicates the byte offset of the file name
within the table. The offset is a decimal number.

The prefix ARSYMPREF, defined as the 16-byte
blank-terminated character string 64ELEL ,
is stored in this field for the special file member called
the symbol definitions (symdef) file and is used to
identify that file. The ar tool marks an out of date

Archives 16-1

symdef file by changing the last L in the name to an X

The blank-terminated name // is stored in this field to
identify the file member name table.

ar_date File member date (decimal).

ar _uid File member user id (decimal).

For a file with a user id greater than USHRT_MAX (65535U),
this field will contain / / val ue where val ue is a 4-byte
unsigned integer.

Version Note

Large user ids are supported in Tru64 UNIX
V5.0 and greater.

ar_gid File member group id (decimal).

For a file with a group id greater than USHRT_MAX
(65535U), this field will contain / / val ue where val ue is
a 4-byte unsigned integer.

Version Note

Large group ids are supported in Tru64 UNIX
V5.0 and greater.

ar_node File member mode (octal).

ar_si ze File member size (decimal). Sizes reflect padding for
the symdef file and the file name table, but not for file
member contents. File members always start on even
byte boundaries. Therefore, if the ar _si ze field indicates
an odd length, it should be rounded up to the next even
number.

ar_f mag Archive magic string. The possible values are shown
in Table 16-1.

Table 16—1: Archive Magic Strings

Symbol Value Meaning

ARFMAG ""\n" File member. May be a special file member or any type
of file other than a compressed object file.

ARFZMAG "Z\n" Compressed object file member.

General Note:

Archive header fields are stored as character strings and must be converted to
numeric types.

16-2 Archives

16.2.3 Hash Table (r anl i b) Structure

This structure is found only inside the special file member called the "symdef file".
See Section 16.3.2 for related information.

struct ranlib {
uni on {
int ran_strx;
} ran_un;
int ran_of f;

}
SIZE - 8 bytes, ALIGNMENT - 4 bytes

Ranlib Structure Fields
ran_strx Symdef string table index for this symbol’s name.

ran_of f Byte offset from the beginning of the archive file to the
archive header of the member that defines this symbol.

General Note:

The r an_un union of this structure has only one field, as shown, for historical
reasons.

16.3 Archive Implementation

16.3.1 Archive File Format

The first SARMAG (8) bytes in an archive file identify it as an archive. To verify that
a file is an archive, these bytes should be compared with the archive magic string,
defined as ARMAGin the header file ar . h.

An archive file consists of the magic string followed by multiple file members, each
of which is preceded by an archive file member header. File members can be object
files, compressed object files, text files, or files of any other type, and an archive
can contain a mix of file types. A file member can also be one of two special file
members: the symbol definition (or symdef file) or the file member name table.
Figure 161 illustrates this file layout.

Archives 16-3

Figure 16-1: Archive File Organization

Archive magic string

Archive File Header ar_hdr

Symbol Definttions ("symdet™) file

Archive File Header ar_hdr

Long File Member MNarme Table

Archive File Header ar_hdr

File Member Contents (.o file or text file)

Archive File Header ar_hdr

File WMember Contents (.o file or text file)

The symdef file, if present, is the first file member of an archive. Section 16.3.2
for details on the symdef file.

The file member name table consists of file member names that are too long to fit
into the 16-byte name field of the archive header. If no file member names are 16
characters or longer, this table is not created. If the table is needed, it is either the
first file member or the second (following the symdef file.

The member header for the file name table might look like this:

struct arhdr {
ar _name
ar_date
ar_uid
ar_gid
ar _node
ar_si ze
ar_fmg

"l

" 871488454
"0 ",
"0

"0

"54

"\n";

}

Names in the file member name table are separated by a slash (/) and a linefeed
(\ n). For example, the contents of the file name table for an archive with three
long object file names might look like this:

st_cnrl c_basic. o/

st_cnrlc_print.o/
st _obj ect _type. o/

The file member header for a file member whose name is stored in the file name
table (in this case, the object st _cnt| ¢c_pri nt. o) might look like this:

struct arhdr {

ar_nanme = "/18
ar_date = "871414955
ar_uid = "9442
ar_gid ="0 ;
ar_node = "100600
ar_size = "47296
ar_fmag = "'\n";

16-4 Archives

16.3.2 Symdef File Implementation

The symdef file contains external symbol information for all object file members
within an archive. When present, the symdef file is the first file member of the
archive. The member header for an up-to-date symdef file might look as follows:

struct arhdr {

ar _name o
ar_date = "871488454
ar_uid = "0
ar_gid = "0

ar _node "0
ar_si ze " 8238
ar_fmg "'\n";

64ELEL_

}

The symdef file is present if at least one archive file member is an object file. The
linker uses it when searching for symbol definitions, as long as the file is up to date.
Whenever an archive is modified, the symdef file must be updated or its member
name must be changed to reflect the fact that it is outdated (see Section 16.2.2).

The symdef file consists of a hash table and a string table. The contents of the
symdef file are as follows:

1. hash table size: 4 bytes indicating the number of r anl i b structures in the
hash table

2. hash table: array of r anl i b structures

3. string table size: 4 bytes indicating the size, in bytes, of the symdef string table

4. string table: string space containing symbol names

At a minimum, the symdef file should contain the sizes of the hash and string
tables, even if the tables are empty.

The hash table contains a r anl i b structure for each externally visible symbol
defined in any of the archive file members. The total size of the hash table is two
times the number of symbols rounded to the next highest power of two. Each
symbol has a private hash chain that is used for symbol lookup, as shown in
Figure 16-2.

Archives 16-5

Figure 16—-2: Symdef File Hash Table

symbol

natne

hash

function
hash valus rehash value
l size of
3 each jump
)
HASH TABLE

The hash function produces two values for any name it is given: a hash value and a
rehash value. The hash value is used for the first lookup. If the symbol found is not
the right one, the rehash value is used for chaining. The chain is followed until the
correct symbol is found or until the search returns to the symbol where it began.

The linker uses the hash structure field r an_of f to locate a symbol’s definition in
the archive. This field contains the byte offset from the beginning of the archive
file to the file member header of the member containing the symbol’s definition.

Note that symbols appear only once in the symdef file hash table, regardless of
how many file members define them.

16.4 Archive Usage

16.4.1 Role As Libraries

One important use of archives is to serve as static libraries that programs can link
against. Such archives contain a collection of relocatable object files that can be
selectively included in an executable image as required. Archive libraries are

the only libraries used in creating static executables. They can also be used in
conjunction with shared libraries in dynamic executables.

The linker searches archive libraries during symbol resolution. See the
Programmer’s Guide or | d(1) for more information.

16—-6 Archives

16.4.2 Portability

The archive file format is designed to meet current UNIX standards in order to
assure portability with other UNIX systems.

The format of compressed object files within archives is specific to Tru64 UNIX.
See Section 1.4.3 for details.

Archives 16-7

17

Symbol Table Examples

This chapter contains sample programs that illustrate the symbol table
representations of various language constructs. The examples are organized by
source language and each consists of a program listing and the partial symbol
table contents for that program. The system symbol table dumpers st dunp(1) and
odunp(1) were used to produce the output.

171 C

17.1.1 Unnamed Structure

See Section 11.3.3.3 for related information.

Source Listing

struct S1 {
int abc;
struct {int x; signed int y; unsigned int z;};
int rst;

} sy

Symbol Table Contents

File 0 Local Synbols:

0. (0)(0) unnane.c File Text synref 12
1. (1)(Oxc) Bl ock I nfo synref 6
2. (2)(0) x Menber I nfo [3] int
3. (2)(0x20) vy Menber I nfo [3] int
4. (2)(0x40) z Menber I nfo [4] unsigned int
5. (1)(0) End I nfo synref 1
6. (1)(0x14) S1 Bl ock I nfo synref 11
7. (2)(0) abc Menber I nfo [3] int
8. (2)(0x20) Menber I nfo [5] struct(file 0,index 1)
9. (2)(0x80) rst Menber I nfo [3] int
10. (1) (0) S1 End I nfo synref 6
11. (0)(0) unnane.c End Text synref 0

Ext ernal s Tabl e:

0. (file 0)(0x14) s1 d obal Conmon [7] struct(file O,index 6)

17.2 C++

17.2.1 Base and Derived Classes

See Section 11.3.3.6 for related information.

Source Listing
#i ncl ude <i ostream h>

cl ass enpl oyee {
char *nane;
short age;
short deparnent;
int salary;

public:
static int stest;

enpl oyee *next;
void print() const;

Symbol Table Examples 17-1

cl ass manager public enpl oyee {
enpl oyee enp;
enpl oyee *group;
short |evel;

public:

void print() const;

b

voi d enpl oyee: :print() const

{
}

cout << "nane is " << nane << '\n’;

voi d manager::print() const
{
}

void f()
{

enpl oyee: :print();

manager ni, n2;
enpl oyee el, e2;
enpl oyee *elist;

elist=&ml;
ml. next =&e1l;
el. next =&n?;
2. next =&e2;
e2. next =0;

Symbol Table Contents

File 0 Local Synbols:
0. (0)(0) bs6. cxx File Text
1. (1)¢(0) manager Tag I nfo
2. (1) (0x40) manager Bl ock I nfo
3. (2)(0xc0) enp Menber I nfo
4. (2)(0x180) group Menber I nfo
5. (2)(0x1c0) Ievel Menber Info
6. (2)(0) manager::print(void) const
Proc I nfo
7. (3)(0) this Par am I nfo
8. (2)(0) manager::print(void) const
End I nfo
9. (2)(0) enpl oyee Base O ass Info
10. (1) (0) manager End I nfo
11. (1) (0) enpl oyee Tag I nfo
12. (1) (0x18) enpl oyee Bl ock Info
13. (2)(0) nane Menber I nfo
14. (2)(0x40) age Menber I nfo
15. (2)(0x50) department Menber I nfo
16. (2)(0x60) salary Menber Info
17. (2)(0) enpl oyee: : st est
Static I nfo
18. (2)(0x80) next Menber Info
19. (2)(0) enpl oyee: : print(void) const
Proc I nfo
20. (3)(0) this Par am I nfo

21. (2)(0) enpl oyee: : print(void) const

End I nfo
22. (1)(0) enpl oyee End I nfo
23. (1)(0x9c) f(void) Proc Text
24. (2)(0x4) Bl ock Text
25. (3)(-64) nL Local Abs
26. (3)(-128) n2 Local Abs
27. (3)(-152) el Local Abs
28. (3)(-176) e2 Local Abs
29. (3)(0Ox1l) elist Local Regi ster
30. (2)(0x24) End Text
31. (1)(0x2c) f(void) End Text
32. (1)(0) enpl oyee: : print(void) const

Proc Text
33. (2)(0x28) this Par am Abs

Symbol Table Examples

synref 51

[4] class(file 0,index 2)
synref 11

[6] class(file O,index 12)
[8] class*(file 0O,index 12)
[10] short

[11] endref 9, void
[13] class Const *(file O,
i ndex 2)

synref 6

[6] class(file O,index 12)
synref 2

[6] class(file 0,index 12)
synref 23

[15] char*

[10] short

[10] short

[3] int

3] int
class*(file 0,index 12)

[16] endref 22, void
[18] class Const *(file O,
i ndex 12)

synref 19

synref 12

[39] endref 32, void

synref 31

[4] class(file 0,index 2)
[4] class(file 0,index 2)
[6] class(file O,index 12)
[6] class(file O,index 12)
[8] class*(file 0O,index 12)
synref 24

synref 23

[41] endref 37, void
[21] class Const * Const
(file 0,index 12)

34. (2)(0x14) Bl ock Text
35. (2)(0x6c) End Text
36. (1) (0x74) enployee::print(void) const
End Text
37. (1)(0x74) manager::print(void) const
Proc Text
38. (2)(0x28) this Par am Abs
39. (2)(0x14) Bl ock Text
40. (2)(0x1c) End Text
41. (1)(0x28) nmnager::print(void) const
End Text
42. (0)(0) bs6. cxx End Text

17.2.2 Virtual Function Tables and Interludes

Source Listing
cl ass Basel {

public:
virtual int virtual _memfunc() { return 1; }
s
class Base2 : virtual public Basel {
public:
virtual int virtual _memfunc() { return 2; }
s
class Base3 : public Base2 {
public:
virtual int virtual _memfunc() { return 3; }

I

int foo(Basel *bl) {
return bl->virtual _nemfunc();

}

int main() {
Basel *bil;
Base2 *b2;
Base3 *b3;

int i,j,k;
i foo(bl);
j foo(b2);
k foo(b3);
return O;

Symbol Table Contents

File 0 Local Synbols:
0. (0)(0) intrlde.cxx File Text
1. (1)¢(0) Basel Tag I nfo
2. (1)(0x8) Basel Bl ock I nfo
3. (2)(0) _ vptr Menber I nfo
4. (2)(0x1) Basel::virtual _nem func(void)
Proc I nfo
5. (3)(0) this Par am I nfo
6. (2)(0) Basel::virtual _nem func(void)
End I nfo
7. (D 0) Basel End I nfo
8. (1)(0) Base2 Tag I nfo
9. (1)(0x18) Base2 Bl ock Info
10. (2)(0) _ vptr Menber Info
11. (2)(0x40) __bptr Menber I nfo

12. (2)(Ox1) Base2::virtual _mem func(void)

Proc I nfo
13. (3)(0) this Par am I nfo
14. (2)(0) Base2::virtual _nem func(void)
End I nfo
15. (2)(0) Basel Virtual Base C ass
I nfo
16. (1) (0) Base2 End Info

synref 36
synref 34

synref 32

[43]
[23]

endref 42, void

cl ass Const * Const
(file 0,index 2)
synref 41

synref 39

synref 37
synref 0

synref 42

[4] class(file 0,index 2)
synref 8

[6] Virtual func table*
Array [(file O, aux 3)0-0:64]

[11] endref 7, int

[13] class*(file 0,index 2)
synref 4

synref 2

[15] class(file O,index 9)
synref 17

[6] Virtual func table*
Array [(file O, aux 3)0-0:64]
[6] Virtual func table*

Array [(file O, aux 3)0-0:64]

[17] endref 15, int

[19] class*(file O,index 9)
synref 12

[4] class(file 0,index 2)

synref 9

Symbol Table Examples

17-3

17. (1) (0) Base3 Tag I nfo
18. (1) (0x18) Base3 Bl ock I nfo
19. (2)(0) _ vptr Menber I nfo
20. (2)(0x40) _ bptr Menber Info
21. (2)(0x1l) Base3::virtual _nmem func(void)
Proc I nfo
22. (3)(0) this Par am I nfo
23. (2)(0) Base3::virtual _nmem func(void)
End I nfo
24. (2)(0) Base2 Base O ass Info
25. (1)(0) Base3 End Info
26. (1)(0) foo(Basel*) Proc Text
27. (2)(0x20) b1l Par am Abs
28. (2)(0Oxc) Bl ock Text
29. (2)(0x30) End Text
30. (1)(0x3c) foo(Basel*) End Text
31. (1)(0x3c) main Proc Text
32. (2)(0x8) Bl ock Text
33. (3)(-24) b1 Local Abs
34. (3)(-32) b2 Local Abs
35. (3)(-40) b3 Local Abs
36. (3)(-48) i Local Abs
37. (3)(-52) j Local Abs
38. (3)(-56) k Local Abs
39. (2)(0x80) End Text
40. (1)(0x8c) main End Text
41. (0)(0) intrlde.cxx End Text

17.2.3 Namespace Definitions and Uses

[21] class(file O,index 18)
synref 26

[6] Virtual func table*
Array [(file O, aux 3)0-0:64]
[6] Virtual func table*
Array [(file O, aux 3)0-0:64]

[23]
[25]

endref 24, int
class*(file 0,index 18)

synref 21

[15] class(file O,index 9)
synref 18

[27] endref 31, int

[13] class*(file O,index 2)
synref 30
synref 28
synref 26

[29] endref 41,
synref 40

[13] class*(file O,index 2)
[19] class*(file 0,index 9)
[25] class*(file O,index 18)
[3] int

[3] int

[3] int

synref 32

synref 31

synref 0

int

See Section 11.3.1.5 for related information.

Source Listing
nsl. h:

nanespace nsl {

class Cobj {};
extern int il;
}
ns2. h:

nanespace nsl {
int x1(void);
}

ns. C

#i ncl ude "ns1.h"
#i ncl ude "ns2.h"

nanespace nsl {
extern int part3;
}

int
int
int

nsl::i1 = 1000;
nsl::part3 = 3;
nsl::x1(void) {

usi ng nanespace nsl;
return i 1*10;

Symbol Table Contents

File 0 Local Synbols:
0. (0)(0) ns.C File
1. (1)¢(0) nsl::x1(void) Proc
2. (2)(0 Usi ng
3. (2)(0x8) Bl ock
4. (2)(0x14) End
5. (1)(0x18) nsl1::x1(void) End
6. (0)(0) ns.C End
File 1 Local Synbols:
0. (0)(0) nsl.h File

17-4 Symbol Table Examples

Text
Text
I nfo
Text
Text
Text
Text

Text

synref 7
[4] endref 6, int
[6] synref(file 1,
synref 5
synref 3
synref 1
synref 0

i ndex 1)

synref 8

1. (1)¢(0) nsi Nanespace | nfo synref 7

2. (2)(0) nsl::x1(void) Proc I nfo [2] endref 4, int
3. (2)(0) nsl::x1(void) End I nfo synref 2

4. (2)(0) i1l Menber I nfo [4] int

5. (2)(0) part3 Menber I nfo [4] int

6. (1)(0) nsl End I nfo synref 1

7. (0)(0) nsl.h End Text synref 0

External s Tabl e:

0. (file 0)(0x50) nsl::i1l d obal SDat a [3] int
1. (file 0)(0x58) nsl::part3 d obal Sdat a [3] int
2. (file 0)(0) nsl::x1(void) Proc Text synref 1

17.2.4 Unnamed Namespaces

See Section 11.3.1.5.3 for related information.

Source Listing
uns. C
nanespace {

int usvl;

int usv2;

}
int privat(void) {
return usvl + usv2;
}
Symbol Table Contents

File 0 Local Synbols:

0. (0)(0) uns.C File Info synmref 13
1. (1)(0) Nanespace Info synref 5
2. (2)(0) <unnaned nanespace>::usvl Menber Info [3] int
3. (2)(0) <unnaned nanespace>::usv2 Menber Info [3] int
4. (1)(0) End Info synmref 1
5. (1)(0) Usi ng Info [4] synref(file 0, index 1)
6. (1) (0x50) <unnaned nanespace>::usvl Static SBss [3] int
7. (1)(0x54) <unnaned nanespace>::usv2 Static SBss [3] int
8. (1)(0) privat(void) Proc Text [5] endref 12, int
9. (2)(0x8) Bl ock Text synref 11
10. (2)(0x1lc) End Text synref 9
11. (1) (0x20) End Text synref 8
12. (0)(0) End Text synref 0O

17.2.5 Namespace Aliases

See Section 11.3.1.5.2 for related information.

Source Listing
alias.C
nanespace | ong_nanespace_nane {

extern int nnem
}
int get_nnmen(void) {
nanespace nknm = | ong_nanespace_nane;

nanespace nknn2 = nknm
return nknm : nnmem

Symbol Table Contents

File 0 Local Synbols

0. (0)(0) alias.C File Text synref 11

1. (1)¢(0) Il ong_nanespace_nane Nanespace |nfo synref 4

2. (2)(0) nmem Menber I nfo [3] int

3. (D 0) | ong_nanespace_nane End I nfo synref 1

4. (1)(0) get_nmen(voi d) Proc Text [4] endref 10, int
5. (2)(0x8) Bl ock Text synref 9

Symbol Table Examples 17-5

6 (2)(0) nknm Alias
7 (2)(0) nknnR Alias
8. (2)(0x10) End
9. (1)(0x14) get_nnen(void) End
10. (0)(0) alias.C End

External s Tabl e

0. (file 0)(0x4) |ong_nanespace_nane::nnmem G obal
Proc Text

1. (file 0)(0) get_nnen(void)

17.2.6 Exception-Handling

See Section 3.3.8 for related information.

Source Listing
#i ncl ude <i ostream h>

class Vector {
int *p;
int sz;

public:
enum { max=1000 };

Vector (int);

class Range { };
class Size { };

int operator[](int i);
}; 11 Vector

Vector::Vector(int i) {
if (i>max) throw Size();
p=new int[i];
if (p) sz=i;
el se sz=0;

}

int Vector::operator[](int i) {
if (0<=i && i<sz) return p[i];
t hrow Range();

I nfo [5] symref(file 0,index 1)
I nfo [6] symref(file 0,index 6)
Text synref 5
Text synref 4
Text synref 0

Undefined [3]int

synref 4

}
void f() {
int i;
try {
cout <<"si ze?";
cin>>i;
Vector v(i);
cout <<v[i]<<"\n";
}
catch (Vector::Range) {
cout << "bad news; outta here...\n";
}
catch (Vector::Size) {
cout<< "can't initialize to that size...\n";
}
Yy Irof
mai n() {
f0);
}

Symbol Table Contents

File 0 Local Synbols:

0. (0)(0) exc.cxx File Text
1. (1)(0) _ throw descriptor
Tag I nfo

2. (1)(0x5) Typdef I nfo

17-6 Symbol Table Examples

synref 59

[4] struct(extended file -1,indexNl)
[4] struct(extended file -1,indexNl)

30.

A~~~ —~

~~—~

NN AN NS S~~~

—~ A~~~ —~

~e~~ e~ —~

1) (0) Vector Tag I nfo
1) (0x10) Vector Bl ock Info
2)(0) p Menber I nfo
2) (0x40) sz Menber I nfo
2)(0) _DECCXX_gener at ed_nane_121c225d
Tag I nfo
2) (0x4) _DECCXX_generated_name_121c¢225d
Bl ock I nfo
3) (0x3e8) max Menber Info
2)(0) _DECCXX_gener at ed_nane_121c225d
End I nfo
2)(0) Vector::Vector(int)
Proc I nfo
3)(0) this Par am I nfo
3)(0) i Par am I nfo
2)(0) Vector::Vector(int)
End I nfo
2)(0) Range Tag I nfo
2)(0x1l) Range Bl ock I nfo
2)(0) Range End I nfo
2)(0) Size Tag I nfo
2)(0x1) Size Bl ock I nfo
2)(0) Size End I nfo
2)(0) Vector::operator [](int)
Proc I nfo
3)(0) this Par am I nfo
3)(0) i Par am I nfo
2)(0) Vector::operator [](int)
End I nfo
1) (0) Vector End I nfo
1)(-2) Proc I nfo
2)(0) Par am I nfo
1) (0) End I nfo
1) (0x400) _ throw Ql6Vect or4Si ze
Static RDat a

1) (0x420) _ throw Ql6Vect or 5Range

Static RDat
1) (0x1e0) f(void) Proc Text
2) (0x18) Bl ock Text
3)(-24) i Local Abs
3)(-40) __current_context

Local Abs
3) (0x2c) Bl ock Text
4) (0x2c) Bl ock Text
5)(-16) v Local Abs
4) (0x9c) End Text
3) (0x9c) End Text
2) (0x19c) End Text
1) (0x1la4) f(void) End Text
1) (0x384) nmin Proc Text
2) (0x10) Bl ock Text
2) (0x18) End Text
1) (0x24) nmin End Text
1) (0x34) Vector::Vector(int)

Proc Text
2)(0x9) this Par am Regi
2) (0x10) i Par am Abs
2) (0x1c) Bl ock Text
2) (0x88) End Text
1) (0xf0) Vector::Vector(int)

End Text
1) (0x124) Vector::operator [](int)

Proc Text
2)(0x20) this Par am Abs
2)(0x9) i Par am Regi
2) (0x1c) Bl ock Text
2) (0x54) End Text
1) (Oxbc) Vector::operator [](int)

End Text
0) (0) exc.cxx End Text

a

ster

ster

[16] class(file O,index 4)
synref 26

[18] int*

[3] int

[19] enun{file 0O,index 8)
synref 11

[2] btNil

synref 8

[21] endref 15,
(file 0,index 4)
[24] class*(file 0O,index 4)
[3] int

cl ass Reference

synref 11
[26] class(file O,index 16)
synref 18
synref 16
[28] class(file O,index 19)
synref 21
synref 19

endref 25, int
class*(file 0,index 4)
int

[30]
[24]
[3]

synref 21
synref 4

[39] endref 29,
(file 2,index 2)
[35] class Reference (file 2,index 2)
synref 26

cl ass Reference

[9] struct Const Array [(file O,
aux 3)0-1:128] (file 0,index 2)

[9] struct Const Array [(file O,
aux 3)0-1:128] (file 0,index 2)
[64] endref 42, void

synref 41

[3] int

i ndexNi |

synref 40

synref 39

[16] class(file O,index 4)
synref 36
synref 35
synref 32
synref 31

[66] endref 46,
synref 45
synref 43
synref 42

int

[68] endref 52,
(file 0,index 4)
[46] class* Const (file 0,index 4)
[3] int
synref 51
synref 49

cl ass Reference

synref 46

[71]
[46]
[3]
synr ef
synr ef

endref 58, int

class* Const (file 0,index 4)
int

57

55

synref 52
synref 0

Symbol Table Examples

17-7

17.3 Fortran

17.3.1 Common Data

See Section 11.3.1.8 for related information.

Source Listing
comm f:

C nmin program

I NTEGER | ND, CLASS(10)

REAL MARKS(50)

COMVON CLASS, MARKS, | ND

CALL EVAL(5)
STOP
END

SUBRQUTI NE EVAL(PERF)
I NTEGER PERF, JOB(10), PAR

REAL GRADES(50)

COMVON JOB, GRADES, PAR

RETURN
END

Symbol Table Contents

File 0 Local Synbols:
0. (0)(0) comm f File Text synref 13
1. ()¢ 0) mai n$comm_ Proc Text [4] endref 6, b
2. (2)(0x2c) Bl ock Text synref 5
3. (3)(0) _BLNK__ Static Conmon [18] struct(file
4. (2)(0x64) End Text synref 2
5. (1) (0x64) mai n$conm_End Text synref 1
6. (1)(0x64) eval _ Proc Text [20] endref 12,
7. (2)(O0x1) PERF Par am Var Regi ster [3] 32-bit long
8. (2)(0x8) Bl ock Text synref 11
9. (3)(0) _BLNK__ Static Conmon [22] struct(file
10. (2)(Oxc) End Text synref 8
11. (1) (0x14) eval _ End Text synref 6
12. (0)(0) comm f End Text synref 0
File 1 Local Synbols:
0. (0)(0) _BLNK _ File Text synref 7
1. (1)(0xf4) _BLNK _ Bl ock Conmon synref 6
2. (2)(0) CLASS Menber I nfo [4] 32-bit long
Array [(file O,
3. (2)(0x140) MARKS Menber Info [9] float
Array [(file O,
4. (2)(0x780) IND Menber Info [14] 32-bit long
5. (1)(0) End Conmon synref 1
6. (0)(0) _BLNK _ End Text synref 0
File 2 Local Synbols:
0. (0)(0) _BLNK _ File Text synref 7
1. (1)(0xf4) _BLNK _ Bl ock Conmon synref 6
2. (2)(0) JOB Menber I nfo [4] 32-bit long
Array [(file O,
3. (2)(0x140) GRADES Menber I nfo [9] float
Array [(file O,
4. (2)(0x780) PAR Menber I nfo [14] 32-bit long
5. (1)(0) End Conmon synref 1
6. (0)(0) _BLNK _ End Text synref 0
External s table:
0. (file 0) (0) MAIN Proc Text synref 1
1. (file 0) (0xf4) _BLNK _ d obal Conmon i ndexNi |
2. (file 0) (0) mai n$comm_ Proc Text synref 1
3. (file 0) (0x64) eval _ Proc Text synref 6
4. (file 0) (0) for_set_reentrancy
Proc Undefined indexN I
5. (file 0) (0) for_stop_core
Proc Undefined indexN I
6. (file 0) (0) _fpdata d obal Undefined indexNl

17-8 Symbol Table Examples

F| LE DESCRI PTOR TABLE

tNil

1,index 1)

bt Ni |

2,index 1)

aux 6)1-10: 4]

aux 6) 1-50: 4]

aux 6)1-10: 4]

aux 6) 1-50: 4]

fil enane

cbLine --------
I nOF f set sym
conmm o:
conm f
0 0
5 13
_BLNK__
0 13
0 7
_BLNK__
0 20
0 7

addr ess vstanp -

——————— i Base/ count---------
line pd string
0x0000000000000000 0x030d
0 0 0

32 2 38
0x0000000000000000 0x030d
0 2 38

0 0 33
0x0000000000000000 0x030d
0 2 71

0 0 32

17.3.2 Alternate Entry Points

See Section 11.3.1.9 for related information.

Source Listing
aent.f:

program entryp

the nain routine"

print *, "In entryp
call anentry()

call anentryl(2,3)
call asubr()

print *, "exiting..."
end

subroutine asubr

real *4 areal /1.2345E-6/
print *, "In asubr”
return

entry anentry
print *,
return

“In anentry"

entry anentryl(a,b)

a=1
b =2
print *,
return

"I'n anentryl"

entry anentry2(b, a)

print *,
return

entry anentry3
return

end

"I'n anentry2"

Symbol Table Contents

File 0 Local Synbols:
0. (0)(0) aent.f
1. (1)¢(0) entryp_
2. (2)(0x2c)
3. (2)(0xdo)
4. (1)(Oxdc) entryp_
5. (1)(Oxdc) asubr_
6. (2)(0Ox1lc)
7. (3)(0x400) AREAL
8. (3)(0x144) anentry_
9. (4)(0Ox1lc)
10. (3)(0Oxlac) anentryl_
11. (4)(-104) A
12. (4)(-112) B
13. (4)(0x24)
14. (3)(0x238) anentry2_
15. (4)(-112) B
16. (4)(-104) A
17. (4)(0x24)
18. (3)(0x2a8) anentry3_

File
Proc
Bl ock
End
End
Proc
Bl ock
Static
Proc
Bl ock
Proc
Par am
Par am
Bl ock
Proc
Par am
Par am
Bl ock
Proc

Text
Text
Text
Text
Text
Text
Text
Dat a
Text
Text
Text
Var

Var

Text
Text
Var

Var

Text
Text

g sex lang fl ags
opt aux rfd

0 el Fortran readin
0 0 0
0 24 0

0 el Fortran nerge
0 24 0
0 15 0

0 el Fortran nerge
0 39 0
0 15 0

synref 23

[4] endref 5, btN |

synref 4

synref 2

synref 1

[6] endref 22, btN |
synref 21

[8] float

[9] endref -1, btN |
synref (indexNil)

[11] endref -1, btN |
[8] float

[8] float

synref (indexNil)
[13] endref -1, btN |
[8] float

[8] float

synref (indexNil)
[15] endref -1, btN |l

Symbol Table Examples

17-9

19. (4)(Oxlc) Bl ock Text synref (indexNil)
20. (2)(0x1ifc) End Text synref 6
21. (1)(0x20c) asubr_ End Text synref 5
22. (0)(0) aent.f End Text synref 0
External s table:
0. (file 0) (0) MAIN__ Proc Text synref 1
1. (file 0) (0) entryp_ Proc Text synref 1
2. (file 0) (Oxdc) asubr_ Proc Text synref 5
3. (file 0) (Oxlac) anentryl_ Proc Text synref 10
4. (file 0) (0x144) anentry_ Proc Text synref 8
5. (file 0) (0) for_set_reentrancy
Proc Undefined indexN I
6. (file 0) (0) for_wite_seq_lis
Proc Undefined indexN I
7. (file 0) (0x238) anentry2_ Proc Text synref 14
8. (file 0) (0x2a8) anentry3_ Proc Text synref 18
9. (file 0) (0) _fpdata d obal Undefined indexNl
*** PROCEDURE DESCRI PTOR TABLE***
nane
address isymiline InLow I nH gh regmask regoff fpoff fp
flags gpro I nOf iopt fregmask frgoff Icloff pc
aent. o:
aent . f [0 for 6]
entryp_
0x0000 1 0 1 9 0x04000000 -96 96 30
GPUSE NOSTK 8 0 -1 0x00000000 0 0 26
asubr _
0x00dc 5 55 11 33 0x04000200 -176 176 30
GPUSE NOSTK 8 8 -1 0x00000000 0 0 26
anentry_
0x0144 8 81 16 -1 0x04000200 -176 176 30
GPUSE NOSTK 8 12 -1 0x00000000 0 0 26
anentryl_
0x0lac 10 107 20 -1 0x04000200 -176 176 30
GPUSE NOSTK 8 16 -1 0x00000000 0 0 26
anentry2_
0x0238 14 142 26 -1 0x04000200 -176 176 30
GPUSE NOSTK 8 22 -1 0x00000000 0 0 26
anentry3_
0x02a8 18 170 30 -1 0x04000200 -176 176 30
GPUSE NOSTK 8 26 -1 0x00000000 0 0 26
17.3.3 Array Descriptors
See Section 11.3.3.9 for related information.
Source Listing
arraydescs. f:
! -*- Fortran -*-
integer, allocatable, dinension(:,:) :: alloc_int_2d
real, pointer, dinmension(:) :: pointer_real _1d
al l ocate(all oc_int_2d(10, 20))
call zow e(alloc_int_2d)
end
contai ns
subroutine zow e(assuned_i nt_2d)
integer, dinension(:,:) :: assuned_int_2d
print *, assuned_int_2d
return
end subroutine
Symbol Table Contents
File 0 Local Synbols:
0. (0)(0) arraydescs.f
File Text synref 43

17-10 Symbol Table Examples

1. ()¢ 0) mai n$arraydescs_

Proc Text [4] endref 26, btN|
2. (2)(0x40) $f90$f90_array_desc

Bl ock I nfo synref 10
3. (3)(0) dim Menber I nfo [6] 8-bit int
4. (3)(0x40) elenent_length

Menber I nfo [3] 32-bit long
5. (3)(0x80) ptr Menber I nfo [8] float*
6. (3)(0x140) iesl Menber I nfo [3] 32-bit long
7. (3)(0x180) ubl Menber I nfo [3] 32-bit long
8. (3)(0x1c0) Ibl Menber I nfo [3] 32-bit long
9. (2)(0) $f90$f 90_array_desc

End I nfo synref 2
10. (2)(0x58) $f90$f90_array_desc

Bl ock I nfo synref 21
11. (3)(0) dim Menber I nfo [6] 8-bit int
12. (3)(0x40) elenent_length

Menber I nfo [3] 32-bit long
13. (3)(O0x80) ptr Menber I nfo [11] 32-bit |ong*
14. (3)(0x140) iesl Menber Info [3] 32-bit long
15. (3)(0x180) ubl Menber Info [3] 32-bit long
16. (3)(0x1cO0) Ib1l Menber Info [3] 32-bit long
17. (3)(0x200) ies2 Menber Info [3] 32-bit long
18. (3) (0x240) ub2 Menber Info [3] 32-bit long
19. (3)(0x280) Ib2 Menber I nfo [3] 32-bit long
20. (2)(0) $f90$f 90_array_desc

End I nfo synref 10
21. (2)(0x24) Bl ock Text synref 25
22. (3)(0x480) PO NTER_REAL_1D

Static Bss [8] struct(extended file 0,index 2)
23. (3)(0x3f0) ALLOC_INT_2D

Static Dat a [12] struct(file 0,index 10)
24. (2)(0x168) End Text synref 21
25. (1)(0x174) mai n$arraydescs_

End Text synref 1
26. (1)(0x174) zow e_ Proc Text [14] endref 42, btN |
27. (2)(O0x58) $f90%f90_array_desc

Bl ock I nfo synref 38
28. (3)(0) dim Menber I nfo [6] 8-bit int
29. (3)(0x40) elenment_length

Menber I nfo [3] 32-bit long
30. (3)(0x80) ptr Menber I nfo [11] 32-bit Iong*
31. (3)(0x140) iesl Menber I nfo [3] 32-bit long
32. (3)(0x180) ubl Menber Info [3] 32-bit long
33. (3)(0x1c0) Ibl Menber Info [3] 32-bit long
34. (3)(0x200) ies2 Menber Info [3] 32-bit long
35. (3)(0x240) ub2 Menber I nfo [3] 32-bit long
36. (3)(0x280) Ib2 Menber I nfo [3] 32-bit long
37. (2)(0) $f90$f 90_array_desc

End Info synref 27
38. (2)(0x9) ASSUMED_I| NT_2D

Par am Var Regi ster [16] struct(file 0,index 27)
39. (2)(0x78) Bl ock Text synref 41
40. (2)(0x214) End Text synref 39
41. (1) (0x240) zow e_ End Text synref 26
42. (0)(0) arraydescs.f

End Text synref 0

17.3.4 Fortran Modules

See Section 11.3.1.6 for related information.

Source Listing
a. f90:

nodul e A
data Pl /3.14159/
integer TEN
data TEN 10/
end
b. f90:

nodul e B

use A, ONLY: BASE PI => PI, TEN

Symbol Table Examples 17-11

data TWOPI /6.28318/
end
prog. f 90:
progr am PROG

use A
use B, TWOPI 2 => TWOPI

X
Y

TWOPI 2 / PI
Pl / BASE_PI

end

Symbol Table Contents

File 20 Local Synbols:

0. (0)(0) a.f90 File Text
1. (1)¢(0) A Modul e I nfo
2. (2)(140000010) PI Static Dat a
3. (2)(140000014) TEN Static Dat a
4. (1)(0) A End I nfo
5. (0)(0) a.f90 End Text
File 21 Local Synbols:
0. (0)(0) b.f90 File Text
1. (1)(0) B Modul e I nfo
2. (2)(0) A UseMbdul e Info
3. (3)(Pl) BASE_PI Renane I nfo
4. (3)(TEN) TEN Renane I nfo
5. (2)(0) A End I nfo
6. (2)(140000018) TWOPI Static Dat a
7. (D 0) B End I nfo
8. (0)(0) b.f90 End Text
File 22 Local Synbols:
0. (0)(0) prog.f90 File Text
1. (1)(120001870) prog_ Proc Text
2. (2)(24) Bl ock Text
3. (3)(1) A UseMbdul e Info
4. (3)(1) B UseMbdul e Info
5. (4)(TWOPI) TWOPI 2 Renane I nfo
6. (3)(0) B End I nfo
7. (3)(140000210) X Static Bss
8. (3)(140000214) Y Static Bss
9. (2)(60) End Text
10. (1) (6c) prog_ End Text
11. (0)(0) prog.f90 File Text

External s table:

29. (file 22) (120001870) prog_ Proc Text
37. (file 20) (140000010) api _ d obal Dat a
38. (file 20) (140000014) Saten_ d obal Dat a

39. (file 21) (140000018) btwopi _ d obal Dat a

17.3.5 Contained Procedures in Fortran Modules

17-12

See Section 11.3.1.6 for related information.

Source Listing
contain. f90:

nodul e C

cont ai ns
subroutine BAR
print *, 1

end subroutine

end

Symbol Table Examples

synref 6
synref 5
[3] float
[4] 32-bit long
synref 1
synref 0

synref 9
synref 8
synref 6
i symNi|

i symNi|

synref 2
[2] float
synref 1
synref 0

synref 12
[2] endref 11,
synref 10
i symNi |
synref 7
i symNi|
synref 4
[4] float
[4] float
synref 2
synref 1
synref 0

synref 1

[4] float
[3] 32-bit
[2] float

bt Ni |

I ong

17.3.6

17.3.7

Symbol Table Contents

F

[0

N~~~ 0O

0(0
ne 0
2)(0
3) (0x10)
3) (0x4c)
2) (0x58)
ne 0
0(0

NookrwNERO

Externals table

0. (file 0) (

Local Synbol s:

contain.f90 File

C Modul e

bar _ Proc
Bl ock
End

bar _ End

C End

contain.f90 End

0) cbar _ Proc

Text
I nfo
Text
Text
Text
Text
I nfo
Text

Text

synref 8

synref 7

[4] endref 6, btN |
synr ef
synr ef
synr ef
synr ef
synr ef

oORrNWO

synref 1

Interface Declarations in Fortran Modules

See Section 11.3.1.6 for related information.

Source Listing
i face. f90

nodul e A

real F

interface
subroutine FOO(A)

end

subroutine

end interface

end nodul e

Symbol Table Contents

F

@

N~~~ 0

0(0
ne 0
2)(0
2)(-2
3¢ 0
2)(0
ne 0
0 0

NookrwnNERO

Externals table

0. (file 0) (

Local Synbol s:

iface.f90 File
A Modul e
F Static
foo_ Proc
A Par am
foo_ End

A End

iface.f90 End

0) asf_

d obal

Text

I nfo

Bss

I nfo

Var Regi st er
I nfo

I nfo

Text

Bss

Generic Interfaces in Fortran Modules

synref 8

synref 7

[3] float

[4] endref 6, btN |
[6] float

synref 3

synref 1

synref 0

[3] float

See Section 11.3.1.6.2 for related information.

Source Listing
gen. f90

nodul e GEN

interface SUB
subroutine SUBL(I)

end

subroutine

subroutine SUB2(R)

end

subroutine

end interface

end nodul e

Symbol Table Contents

File
0 0
e 0
(0
3)(-2
4H4(0
3y 0

ohwNEO
~ e~~~ —~ O

Local Synbol s:

gen. f 90 File

GEN Modul e
sub_ Interface
subl_ Proc

| Param
subl_ End

Text
I nfo
I nfo
I nfo
Var Regi st er
I nfo

synref 12

synref 11

synref 10

[4] endref 6, btN |
[6] integer*4
synref 3

Symbol Table Examples

17-13

6. (3)(-2) sub2_ Proc I nfo [71 endref 9, btN |
7. (4)(0) R Par am Var Regi ster [9] float
8. (3)(0) sub2_ End I nfo synref 6
9. (2)(0) sub_ End I nfo synref 2
10. (1) (0) GEN End I nfo synref 1
11. (0)(0) gen.f90 End Text synref 0
17.4 Pascal
17.4.1 Sets
See Section 11.3.3.13 for related information.
Source Listing
program set s(i nput, out put);
type digitset=set of 0..9;
var odds, evens: di gi tset;
begi n
odds: =[1, 3,5,7,9];
evens: =[0, 2, 4, 6, 8] ;
end.
Symbol Table Contents
File 0 Local Synbols:
0. (0)(0) set.p File Text synref 10
1. (1)(0x50) $dat Static SBss i ndexNi |
2. (D¢ 0) main Proc Text [8] endref 9, btN I
3. (2)(0x4) Bl ock Text synref 8
4. (3)(0) digitset Typdef I nfo [16] set of range int (0..9)
5. (3)(-8) odds Local Abs [16] set of range int (0..9)
6. (3)(-16) evens Local Abs [16] set of range int (0..9)
7. (2)(0x1lc) End Text synref 3
8. (1)(0x24) main End Text synref 2
9. (0)(0) set.p End Text synref 0
17.4.2 Subranges

See Section 11.3.3.12 for related information.

Source Listing
subr ange. p:

program year s(i nput, out put);
type century=0..99;

var year:century;

begi n

readl n(year);

end.

Symbol Table Contents

File 0 Local Synbols:

0. (0)(0) subrange.p File
1. (1)(0xcO0) $dat Static
2. (D¢ 0) main Proc
3. (2)(0x10) Bl ock
4. (3)(0) century Typdef
5. (3)(-8) year Local
6. (2)(0x68) End

7. (1)(0x74) main End

8. (0)(0) subrange.p End

17-14 Symbol Table Examples

Text
SBss
Text
Text
I nfo
Abs

Text
Text
Text

synref 9

i ndexNi |

[8] endref 8, btN |
synref 7

[10] range0..99 of(file O,
[10] range0..99 of(file O,
synref 3

synref 2

synref 0

i ndex 2):
i ndex 2):

8
8

17.4.3 Variant Records

See Section 11.3.3.11 for related information.

Source Listing
variant. p:

program vari ant (i nput, out put);

type enpl oyeetype=(h, s, m;
enpl oyeer ecor d=record
id:integer;
case status: enployeetype of
h: (rate:real;
hours:integer;);
s: (salary:real);
m (profit:real);
end; { record }

var enpl oyees: array[1..100] of enpl oyeerecord;
begi n

enpl oyees[1] .id: =1;
enpl oyees[1] . profit: =0. 06;

end.

Symbol Table Contents

File 0 Local Synbols

0. (0)(0) variant.p File Text synref 28
1. (1)(0) VARI ANT StaticProc Text [2] endref 27, btN |
2. (2)(0) EMPLOYEETYPE
Bl ock I nfo synref 7
3. (3)(0) H Menber Info [0] btNil
4. (3)(0x1) S Menber Info [0] btNil
5. (3)(0x2) M Menber Info [0] btNil
6. (2)(0) EMPLOYEETYPE
End I nfo synref 2
7 (2)(0x10) EMPLOYEERECORD
Bl ock I nfo synref 23
8 (3)(0) ID Menber I nfo [1] int
9 (3)(0x20) STATUS Menber Info [5] enum(file 1,index 2)
10. (3)(0x9) Bl ock Vari ant synref 22
11. (4)(0Oxc) Bl ock I nfo synref 15
12. (5) (0x40) RATE Menber I nfo [11] fl oat
13. (5) (0x60) HOURS Menber Info [1] int
14 (4)(0) End Info synref 11
15. (4)(0x11) Bl ock I nfo synref 18
16. (5)(0x40) SALARY Menber Info [11] fl oat
17. (4)(0) End I nfo synref 15
18. (4)(0x16) Bl ock I nfo synref 21
19. (5)(0x40) PROFIT Menber Info [11] fl oat
20. (4)(0) End Info synref 18
21. (3)(0x9) End Var i ant synref 10
22. (2)(0) EMPLOYEERECORD
End I nfo synref 7
23. (2)(0x18) Bl ock Text synref 26
24. (3)(-1600) EMPLOYEES Local Abs [32] Array [file 1,aux 27)1-100:128] of
struct (file 1,index 7)
25. (2)(0x30) End Text synref 23
26. (1) (0x40) VARI ANT End Text synref 1
27. (0)(0) variant.p End Text synref 0

Symbol Table Examples

17-15

18

Programming Examples

This chapter provides complete examples of programs that access object file and
symbol table structures. These examples are meant to reinforce the descriptions
of these structures and their use. In many cases APIs exist that could be used to
simplify these examples. Use of these APIs is strongly encouraged, but they are not
employed in these programming examples, because they would hide the details of
the structure access and data interpretation.

18.1 Packed Line Numbers

This example illustrates the use of structures described in Section 7.3.1.1. The
following program will read packed line numbers and display them in expanded
form.

Source Listing
readline.c:

/* Expand packed line nunbers and display ranges of addresses

* and line nunbers. For sinplicity, file and procedure nanes are
* omitted.

*/

#i ncl ude <fil ehdr.h>
#i ncl ude <scnhdr. h>
#i ncl ude <sym h>

#i ncl ude <stdio. h>

mai n(int argc, char **argv){

FI LE *fd; /* fopen handle */

FI LHDR fhead; /* object file header */
HDRR hdrr; /* synbol table header */
unsi gned char *pline; /* buffer for packed lines */
FDR *fdr; /* buffer for FDRs */

PDR *pdr; /* buffer for PDRs */

if (argc < 2) {
printf("Usage: readline <OBJECT>\n");
exit(1);

}

/* Open file argument */

if ((fd = fopen(argv[1], "r")) == (FILE *)NULL) {
printf("Bad file %!\n", argv[1]);
exit(1);

}

/* Read file header and test magic id */

if (fread(& head, FILHSZ, 1, fd) != 1) {
printf("fread fil header!\n");
exit(1);
} else if (fhead.f_magic != ALPHAMAG C) {
if (fhead.f_nagic == ALPHAUMAG C)
printf("Conpressed object not supported\n");
el se
printf("% is not an object file\n", argv[1]);
exit(1);
}

/* Read synbolic header */
if (fhead.f_synptr == 0) {

printf("no syns!\n");
exit(1);

Programming Examples 18-1

fseek(fd, fhead.f_synptr, 0);

if (fread(&hdrr, sizeof (HDRR), 1, fd) !=1) {
printf("synheader read failed!\n");
exit(1);

}

/* Test for FDRs, PDRs, and packed line nunbers */

if (Yhdrr.ifdvax) {
printf("No file descriptors!\n");
exit(1);

} else if (!'hdrr.ipdvax) {
printf("No procedure descriptors!\n");
exit(1);

} else if (hdrr.cbLine == 0) {
printf("No lines!\n");
exit(1);

}

/* Read FDRs */

fseek(fd, hdrr.cbFdOffset, 0);

if (!(fdr = (FDR *)mal loc(hdrr.ifdMax * sizeof (FDR)))) {
printf("FDR nalloc failed\n");
exit(1);

}

if (fread(fdr, sizeof(FDR), hdrr.ifdMax, fd) !'= hdrr.ifdMax) {
printf("FDR read failed\n");
exit(1);

}

/* Read PDRs */

fseek(fd, hdrr.cbPdOfifset, 0);

if (!(pdr = (PDR *)nalloc(hdrr.ipdMax * sizeof (PDR)))) {
printf("PDR nalloc failed\n");
exit(1);

}

if (fread(pdr, sizeof (PDR), hdrr.ipdMax, fd) != hdrr.ipdMax) {
printf("PDR read failed\n");
exit(1);

}

/* Read packed lines */

fseek(fd, hdrr.cbLineCfset, 0);

if (!(pline = (unsigned char *)malloc(hdrr.cbLine))) {
printf("pline nalloc failed\n");
exit(1);

}

if (fread(pline, 1, hdrr.cbLine, fd) !'= hdrr.cbLine) {
printf("pline read failed\n");
exit(1);

}

/* Dunp expanded packed |ines */

expand_l i nes(fdr, hdrr.ifdMax, pdr, pline);
}

expand_l i nes(FDR *fdr, int ifdnax, /* FDRs and count */
PDR *pdr, /* PDRs */
unsi gned char *pline) { /* Packed lines */
int ifd;
/* lterate through FDRs */
for (ifd =0; ifd < ifdmax; ifd++) {
/* Ignore FDRs wi thout |ine nunbers */

if (fdr[ifd].cbLine == 0)
conti nue;

printf("File %:\n", ifd);
/* Dunp expanded lines for this FDR */
expand_file_lines(&dr[ifd],

&pdr[fdr[ifd].ipdFirst],
fdr[ifd].cpd,

18-2 Programming Examples

&l ine[fdr[ifd].cbLineOfset],
fdr[ifd].cbLine);

proc_pline_count (FDR *fdr, /* FDR */
PDR *pdr, /* First PDR for FDR */
int ipd) { /* Index of current PDR */

int nextipd; /* Index of next PDR with |ine nunbers */
int i; /* Index to iterate through PDRs */

/* Return the nunber of packed line entries for a PDR
To sinplify processing, a procedure with alternate
entries is treated as a set of contiguous procedures.
In this programthe calling procedure does not need
to know that the packed lines associated with the
alternate entry actually belong to the containing
procedure.

* % k% ok Rk

-

/* Test for no lines */

if (pdrlipd].iline == ilineNl)
return(0);

nextipd = -1; /* Next PDR not found yet. */
/* lterate through all PDRs for this FDR */
for (i=0; i < fdr->cpd; i++) {

/* Find PDRs with packed line offsets the sane or
* greater than the current PDR s.
*/

if (i '=ipd &
pdr[i].iline !=ilineN| &&
pdr[i].cbLineCffset >= pdr[ipd].cbLineOfset) {

/* Save PDR index of closest offset found so far.
* Do not assune the PDRs are arranged with

* ascendi ng packed line offsets.

*/

if (nextipd == -1 ||
pdr[i].cbLineCf fset < pdr[nextipd].cbLineOfset)
nextipd = i;

}
if (nextipd == -1)

/* Current PDRis the last one in the file with line

* nunbers. Use the file' s packed line count to conpute
* the PDRs packed line count.

*/

return (fdr->cbLine - pdr[ipd].cbLineOfset);
el se

return (pdr[nextipd].cbLineCfset - pdr[ipd].cbLineCfset);

expand_file_lines(FDR *fdr, /* FDR */
PDR *pdr, /* First PDR for FDR */
int npdr, /* PDR count for FDR */
unsi gned char *pline, /* First packed line for FDR */
int numine) { /* Packed line count for FDR */

int ipd, /* PDR index */

int pli, next_pli; /* Packed line index */

int plcount; /* Packed line count for PDR */

long curline; /* Current source line nunber */

long start_address; /* First address for curline */

| ong end_address; /* First address of next source line */

/* lterate through procedures and alternate entries */

Programming Examples

18-3

for (ipd=0;

ipd < npdr; ipd++) {

/* 1gnore procedures without lin
if (pdr[ipd].iline == ilineNl)
conti nue;

e nunbers */

/* Identify Procedure or Alternate entry */

if (pdr[ipd].InHigh !=-1) {
, ipd);

prin
} else {
prin

}

start_ad
curline

tf(" Proc %d:\n"

tf(" At Ent %

dress = pdr[ipd].
= pdr[ipd].InLow,

\n",

adr ;

ip

d);

/* 1st address of proc */
/* 1st line nunber of proc */

/* Conpute packed line count for this PDR */

pl count = proc_pline_count(fdr,

pli = pdr[ipd].cbLineCfset;

next _pli

= pli + plcount;

pdr, ipd);

/* Packed line index */
/* End index */

/* Iterate through packed Iine nunbers */

for (; p

I ong

li < next_pli; pli++) {

del ta; /* tenp for conputing line delta */

/* Use the instruction count to conpute the first

* address of the next

*/

I'i ne nunber.

end_address = start_address +

(((pline[pli] & OxfU + 1) << 2);
/* Use the line delta to conpute the current
extended del tas that
packed line bytes.

*
*u
*/

ine nunber. Test
se two additional

for

if ((pline[pli] & OxfOU)

} el

}

curl

/* extended delta */

pli++;

== 0x80U) {

delta = ((signed char)pline[pli]) << 8;

pli++;
delta | = pline[pl

se {

il

delta = (signed char)pline[pli] >> 4

ine += delta;

/* Display current address range and source line */

prin

tf(" Ox% x - Ox% x :
end_address - 4, curline);

start_address,

Line % d\n",

/* Prepare for next iteration */

star

Sample Output

%cc -g -0 readl
% ./readline rea
File 1:

Proc 0:
0x120001290
0x1200012b8
0x1200012c4
0x1200012dc
0x1200012f 0

t _address = end_address;

ine readline.c
dline

- 0x1200012b4 :
0x1200012c0 :
0x1200012d8 :
- 0x1200012e8 :
0x120001310 :

18-4 Programming Examples

Li ne
Li ne
Li ne
Li ne
Li ne

0x120001314 - 0x120001330 : Line 27

18.2 Extended Source Location Information

This example illustrates the use of structures described in Section 7.3.1.2. The

following program will read extended source location information and display

the intrepreted line numbers. This example includes a few lines of source from a

header file in order to illustrate a typical use of ESLI.

Source Listing
usage. h:

if (argc < 2) {
printf("Usage: readesli <OBJECT>\n");

exit(1);
}
readesli.c:
/* readesli.c: Interpret ESLI and display ranges of addresses with
* file, line, and col umm nunbers.

*

* Om ssions for sinplification purposes:

* - file and procedure nanes. These can be found by follow ng
* the file or procedure’s first |ocal synbol entry.

* - alternate entries. These can be included in the output by
* conparing the current PC address (nmintained in the ESLI

* conputation) to the address of the next successive

* alternate entry procedure descriptor.

* - selecting between ESLI and packed line nunbers. |[|f PDRs

* have both, ESLI shoul d be prefered.

* - relative file interpretation. File nunbers within ESLI

* can be converted to actual FDR indexes using the relative
* file descriptor table.

*/

#i ncl ude <stdio. h>

#i nclude <fil ehdr.h>
#i ncl ude <scnhdr. h>
#i ncl ude <sym h>

#i ncl ude <syntonst. h>
#i ncl ude <l i nenum h>

mai n(int argc, char **argv){

FI LE *fd; /* fopen handle */

FI LHDR f head; /* object file header */

HDRR hdrr; /* synbol table header */

char *opt bfr; /* buffer for optimzation synbols */
FDR *fdr; /* buffer for FDRs */

PDR *pdr; /* buffer for PDRs */

#i ncl ude "usage. h"
/* Open file argument */

if ((fd = fopen(argv[1], "r")) == (FILE *)NULL) {
printf("Bad file %!\n", argv[1]);
exit(1);

}

/* Read file header and test magic id */

if (fread(& head, FILHSZ, 1, fd) !=1) {
printf("fread fil header!\n");
exit(1);
} else if (fhead.f_magic != ALPHAMAG C) {
if (fhead.f_magi c == ALPHAUMAG C)
printf("Conpressed object not supported\n");
el se
printf("% is not an object file\n", argv[1]);
exit(1);

/* Read synbolic header */

if (fhead.f_synptr == 0) {

Programming Examples

18-5

printf("no syns!\n");
exit(1);

}

fseek(fd, fhead.f_synptr, 0);

if (fread(&hdrr, sizeof (HDRR), 1, fd) != 1) {
printf("synheader read failed!\n");
exit(1);

}

/* Test for FDRs, PDRs, and optim zation synbols */

if (Yhdrr.ifdvax) {
printf("No file descriptors!\n");
exit(1);

} else if (!'hdrr.ipdvax) {
printf("No procedure descriptors!\n");
exit(1);

} else if (hdrr.ioptMax == 0) {
printf("No ESLI!'\n");
exit(1);

}

/* Read FDRs */

fseek(fd, hdrr.cbFdOffset, 0);

if (!(fdr = (FDR *)mal loc(hdrr.ifdMax * sizeof (FDR)))) {
printf("FDR nalloc failed\n");
exit(1);

}

if (fread(fdr, sizeof(FDR), hdrr.ifdMax, fd) !'= hdrr.ifdMax) {
printf("FDR read failed\n");
exit(1);

}

/* Read PDRs */

fseek(fd, hdrr.cbPdOfifset, 0);

if (!(pdr = (PDR *)nalloc(hdrr.ipdMax * sizeof (PDR)))) {
printf("PDR nalloc failed\n");
exit(1);

}

if (fread(pdr, sizeof(PDR), hdrr.ipdMax, fd) !'= hdrr.ipdMVax) {
printf("PDR read failed\n");
exit(1);

}

/* Read optim zation synbols */

fseek(fd, hdrr.cbOptOffset, 0);

if (!(optbfr = (char *)malloc(hdrr.ioptMax))) {
printf("opt nalloc failed\n");
exit(1);

}

if (fread(optbfr, 1, hdrr.ioptMax, fd) !'= hdrr.ioptMax) {
printf("opt read failed\n");
exit(1);

}

/* Dunp ESLI for all procedures */

dunp_esli (fdr, hdrr.ifdMax, pdr, optbfr);

}
dunp_esli (FDR *fdr, int ifdnax, /* FDRs and count */
PDR *pdr, /* PDRs */
char *optbfr) { /* optimzation synbols */

int ifd;
/* lterate through FDRs */
for (ifd =0; ifd < ifdmax; ifd++) {
/* lgnore FDRs without optimzation synbols */

if (fdr[ifd].copt == 0)
conti nue;

printf("File %:\n", ifd);

/* Dunp ESLI for PDRs in this FDR */

18-6 Programming Examples

dunp_esli_for_file(&dr[ifd],
&pdr[fdr[ifd].ipdFirst],
fdr[ifd].cpd,
optbfr + fdr[ifd].ioptBase);

dunp_esli_for_file(FDR *fdr, /* FDR */
PDR *pdr, /* First PDR for FDR */
int npdr, /* PDR count for FDR */
char *optbfr) { /* Optimzation synbols for FDR */
int i pd; /* PDR index */
char *pdr_opt bfr; /* Optimzation synbols for PDR */

PPODHDR *ppod; /* PPOD headers */

/* lterate through procedures and dunp ESLI */

for (ipd=0; ipd < npdr; ipd++) {

/* lgnore procedures w thout optimzation synbols */

if (pdr[ipd].iopt == ioptNl)
conti nue;

/* Set PPCOD header pointer and verify content */

pdr_optbfr = optbfr + pdr[ipd].iopt;

ppod = (PPODHDR *) pdr _opt bfr;

if (ppod->ppode_tag != PPCDE_STAMP ||
ppod- >ppode_val > PPOD_VERSI ON) {
conti nue;

}

/* Search for ESLI PPOD in optimzation synbols */
for (ppod++; ppod->ppode_tag != PPODE_END; ppod++) {
if (ppod->ppode_tag == PPODE_EXT_SRC) {

char
int esli_count;

esli_data; / ESLI data for procedure */
/* Nunber of bytes of data */

if (ppod->ppode_len == 0) {
/* Imredi ate data */
esli_data = (char *)&ppod->ppode_val ;
esli_count = 8§;
} else {
esli_data = pdr_optbfr + ppod->ppode_val ;
esli_count = ppod->ppode_l en;
}
printf(" Proc %:\n", ipd);
dunp_esli_for_proc(esli_data,
esli_count,
pdr[ipd] . adr,
pdr[ipd] .| nLow;
break;

unsi gned | ong
read_| eb(unsi gned char **leb) {

/* Pointer to LEB pointer */

/* Read an unsigned LEB val ue and advance the
* LEB pointer past the LEB bytes.
*/

unsi gned char *byte;
unsi gned | ong val ue;

int shift;
int norebits;
val ue = 0;

shift = 0;

/* LEB byte pointer */

/* Return val ue */

/* Accunul ated bit shift */
/* Loop control */

Programming Examples

18-7

byte = *| eb;
for (norebits=1; norebits; byte++) {

/* Get 7 bits */
value | = ((*byte) & Ox7f) << shift;

/* Increnent shift count */
shift += 7;

/* Test continue bit */
norebits = (*byte) & 0x80;
}

/* Advance data pointer past LEB bytes */
*leb = byte;

return(val ue);

I ong
read_sl eb(unsigned char **sleb) { /* Pointer to SLEB pointer */

/* Read a signed LEB val ue and advance the
* LEB pointer past the LEB bytes.

*/

unsi gned char *byte; /* SLEB byte pointer */

I ong val ue; /* Return value */

int shift; /* Accunul ated bit shift */
int norebits; /* Loop control */

val ue = 0;

shift = 0;

byte = *sl eb;
for (norebits=1; norebits; byte++) {

/* Get 7 bits */
value | = ((*byte) & Ox7f) << shift;

/* Increnent shift count */
shift += 7;

/* Test continue bit */

norebits = (*byte) & 0x80;
}
/* Extend sign bit if set */
if ((*byte) & 0x40)

value | = (-1L << shift);

/* Advance data poi nter past SLEB bytes */
*sleb = byte;

return(val ue);

}

dunp_esli_for_proc(char *esli_data, /* Raw ESLI data */
int esli_count, /* Byte size of ESLI data */
| ong pdr_address, /* Start address from PDR */

long pdr_I nLow) ({ /* First source line fromPDR */

/* Read ESLI data for a procedure and display address

* ranges with file, line, and colum information.

*/

unsi gned char *edp; /* ESLI data pointer */
unsi gned char cnd; /* ESLI command */

int data_node = 1; /* Data node 1 or 2 */

int cnd_node =
long cur_file = 0;

e

/* Command node flag */
/* Current fileno (not fdr index) */

long cur_colum = 0; /* Current colum nunber */
long cur_line = pdr_I nLow, /* Current |ine nunber */

I ong start_address; /* Start of PC address range */
| ong end_addr ess; /* End of PC address range */

/* Just |ike packed-line data, ESLI assunes a starting
* address and conputes the end of the PC range al ong

18-8 Programming Examples

* with the source line infornation that applies to that
* range.
*/

start_address = pdr_address;
end_address = start_address;

/* lterate through ESLI data. Loop pointer is increnented
* within loop and LEB readi ng subroutines.
*/

for (edp = (unsigned char *)esli_data;
edp < ((unsigned char *)esli_data + esli_count);) {

/* Data Modes */
if (!cmd_node) {
/* Test for escape to conmmand node */

if (((*edp) & OxfOU) == 0x80U) {
cmd_node = 1;
edp++;
conti nue;

}

/* Use the instruction count to conpute the first
* address of the next |ine nunber.
*/

end_address = start_address +
((((*edp) & OxfU) + 1) << 2);
cur_line += (signed char)(*edp) >> 4;

if (data_npde == 2)
cur_colum = *(++edp);

/* Display current address range and source line */
printf(" Ox%x - Ox%x : File %d Line %d Col %d\n",
start_address, end_address - 4,
cur_file, cur_line, cur_colum);

/* Prepare for next iteration */

edp++;
start_address = end_address;

} else {
/* Command Mode */
cmd = *edp++;
/* Do command (CVMD _MASK is Ox3F) */
switch(cmd & CVMD_MASK) {

case ADD PC. /* PC delta */
end_address += read_sl eb(&edp) << 2;
break;

case ADD LINE: /* Line delta */
cur_line += read_sl eb(&edp);
break;

case SET_COL: /* Colum */
cur_colum = read_| eb(&edp);
break;

case SET_FILE: /* File nunber */
cur_file = read_l eb(&edp);
break;

case SET_DATA MODE: /* Mbde */
data_node = read_| eb(&edp);
break;

case ADD LINE_PC. /* Line and PC delta */
cur_line += read_sl eb(&edp);
end_address += read_sl eb(&edp) << 2;
break;

Programming Examples 18-9

case ADD LINE_PC COL: /* Line/PC delta, colum */
cur_line += read_sl eb(&edp);
end_address += read_sl eb(&edp) << 2;
cur_colum = read_| eb(&edp);
break;

case SET_LINE: /* Line */
cur_line = read_l eb(&edp);
break;

case SET_LINE COL: /* Line and colum */
cur_line = read_l eb(&edp);
cur_colum = read_| eb(&edp);
break;

case SEQUENCE_BREAK: /* PC gap */
end_address += read_sl eb(&edp) << 2;
start_address = end_address;
break;

defaul t:
fprintf(stderr,"Unkown ESLI conmand\n");
exit(1);

/* check mark (0x80) flag */

if ((cnd & MARKb) && end_address > start_address) {
printf(" Ox%x - Ox%x : File %d Line %d Col %d\n",
start_address, end_address - 4,
cur_file, cur_line, cur_colum);

}
/* Check resunme (0x40) flags */

if (cnd & RESUMVED) {
cmd_node = 0;
}
}
}
}

Sample Output

%cc -g -0 readesli readesli.c
% ./readesli readesli

File 1:
Proc O:
0x1200013b0 - 0x1200013d4 : File O Line 25 Col
0x1200013d8 - 0x1200013e0 : File 13 Line 1 Col
0x1200013e4 - 0x1200013f8 : File 13 Line 2 Col

0x1200013fc - 0x12000140c : File 13 Line 3 Col
0x120001410 0x120001430 : File O Line 37 Col
0x120001434 - 0x120001450 : File 0 Line 38 Col

oo o0oo0ooo

18.3 Mapping GOT Addresses to Dynamic Symbol Entries

This example illustrates the use of .dynamic section entries as described in
Section 14.3.3.3 to map GOT addresses to their corresponding dynamic symbol
table entries.

Source Listing
got map. c:

/*
* For the given object, convert the given GOT entry address into
* a .dynsym i ndex.
*/

#i ncl ude <stdio. h>

#i ncl ude <filehdr.h>

#i ncl ude <aout hdr. h>

#i ncl ude <scnhdr. h>

#i ncl ude <cof f_dyn. h>

unsi gned | ong gethex(char *p) {
unsi gned | ong addr;

18-10 Programming Examples

}

#def i ne MAXGOTS 20 /*

mai n(int argc,

addr = 0;

if (p[0] =="0" && (p[1] =="x" || p[1] =="X))
p += 2
for (; *p; p++) {
if (*p>='0 && *p <='9")
addr = (addr << 4) + (*p - '0");

else if (*p >="'a && *p <="'1")

addr = (addr << 4) + 10 + (*p - 'a’');
else if (*p >="A && *p <="'F)

addr = (addr << 4) + 10 + (*p - "A);
el se

br eak;

return(addr);
Artificial

char **argv) {
FILE *fd;

unsi gned | ong addr;

FI LHDR f hdr;

SCNHDR shdr;

int i;

int ngots=0; /*
i nt ngot syn¥0; /* used to idx gotsym*/
int |gotno[MAXGOTS]; /* Got idx 1-beyond | ocal
int gotsyn]f MAXGOTS]; [/*
Cof f _Dyn dyn;

unsi gned | ong got addr;
int got_index;

if (argc == 3) {
fd = fopen(argv[1], "r");
addr = gethex(argv[2]);

limtation for this program */

nunber of gots (used to idx |gotno) */

got entries */

Dynsymidx of first got-mapped entry */

}

if (argc !'=3 || !fd || 'addr) {
printf("Usage: gotnmap OBJECT hexaddress\n");
exit(1);

}

/* Read headers and find .dynam c section */
fread(& hdr, FILHSZ, 1, fd);
fseek(fd, FILHSZ+AQUTHSZ, 0);
for (i=0; i<fhdr.f_nscns; i++) {
fread(&shdr, SCNHSZ, 1, fd);
if (shdr.s_flags & STYP_DYNAM C)

break;
}
if (i == fhdr.f_nscns) {
printf("gotmap only supports shared objects\n");
exit(1);
}

/* Read the dynam c section.

*

* Collect DT_LOCAL_GOTNO and DT_GOTSYM entri es.

* Use DT_PLTGOT as the address of the first GOT.

*

/

fseek(fd, shdr.s_scnptr, 0);
for (55) {

fread(&dyn, sizeof(Coff_Dyn), 1, fd);
/* End of dynam c section */
if (dyn.d_tag == DT_NULL)

break;

switch(dyn.d_tag) {

case DT_LOCAL_GOTNO
| got no[ngots] = dyn.d_un.d_val;
ngot s++;
if (ngots > MAXGOTS) ({

printf("gotmap only handles % gots\n",

exit(1);
}
break;
case DT_GOTsym
got synf ngot syni
ngot symt+;

= dyn.d_un.d_val;

MAXGOTS) ;

Programming Examples

18-11

break;
case DT_PLTGOT:
gotaddr = dyn.d_un.d_ptr;

break;
}
}
/* sanity check */
if (ngots != ngotsym || !gotaddr) {
printf(".dynamic entries are inconsistent\n");
exit(1);

}
fclose(fd);

/* We have all the information we need to conpute the
* . dynsym i ndex.
*/

/* Convert the given address into a GOT index. */
if (addr < gotaddr) {
printf("%x is not a GOT address\n", addr);
exit(1);

got _index = (addr - gotaddr)/sizeof (char *);

/* Find the GOT that contains this index. */
for (i=0; i<ngots; i++) {
/* Range of non-local GOT entries for each
* GOT is lgotno[N to
* lgotno[N] + (gotsyn] N+1] - gotsyniN])
*/
if (got_index < Igotno[i]) {
printf("Got entry [%d] at Ox%x is a local got entry\n",
got _i ndex, addr);
exit(0);

}

if (i < (ngots-1) &&
(got _index - lgotno[i]) < (gotsynfi+1] - gotsynii]))
break;

}

/* Use last GOT if the got_index was greater than the
* |last |gotno val ue.
*/
if (i == ngots)
i = ngots-1;

/* Convert the GOT index to a dynsymindex */

printf("Got entry [%d] at Ox% x maps to .dynsymentry [%]\n",
got _i ndex, addr,
gotsynfi] + got_index - lgotno[i]);

Sample Output

% cc -0 gotmap gotmap.c

% ./ gotmap got map 0x140000248

Cot entry [19] at 0x140000248 maps to .dynsymentry [47]

% ./gotmap /shlib/libc.so 0x3ffc0098558

Cot entry [1327] at 0x3ffc0098558 naps to .dynsymentry [3213]

18-12 Programming Examples

A

a.out header, 1-6, 2-3, 2-10, 2-18,
14-15

absolute file offset, 1-2

absolute symbol, 2-22, 2-23, 5-11,
11-9, 11-10, 14-7

address, 1-2, 2-10, 2-15, 8-8

alignment, 1-2, 1-12, 2-6, 2-10,
2-19, 13-2

alternate entry point, 7-2, 7-10,
11-34, 124, 17-9

AOUTHDR
(See a.out header)

API, 1-2,1-9

application, 1-2

ar, 1-1, 1-5, 16-1

architecture, 10-3

archive file, 1-1, 1-9, 3-8, 3-10, 4-6,
13-3, 16-1

archive header, 16—1

array, 11-40, 11-44

assembler, 1-4, 1-7

atom, 1-5, 152t

auxiliary symbol, 6-1, 6-8, 8-3, 114,
11-36

AUXU
(See auxiliary symbol)

B

base address, 1-2

basic block, 11-25

basic type, 11-6, 11-35, 11-37,
11-40, 11-42

big-endian byte order, 1-12

bss section, 3—1, 3-11, 4-2

bss segment, 2—-10, 2-21t, 3—-1, 3-12,
3-13

byte boundary, 1-2

C

C++
class, 11-17, 11-51
derived class, 11-53, 17-1
empty class, 11-52
exception handling, 11-32, 17-6
global constructor, 3—8
global destructor, 3—8

Index

interlude, 11-54, 17-3
mangled name, 11-22, 11-27, 11-51,
13-4
member function, 11-18, 11-51
namespace, 1-3, 11-16, 11-18,
11-25, 174
namespace alias, 11-19, 11-27, 17-5
namespace using directive, 11-18,
11-27
opaque class, 11-17, 11-52
static data member, 11-11
structure, 11-18, 11-51
template, 11-54
unnamed namespace, 11-27, 17-5
virtual base class, 11-18, 11-54
virtual member function, 11-14, 17-3
checksum, 6-10, 14-5, 14-9, 14-12,
14-28, 14-29
class
(See C++)
CMHDR
(See comment header)
COBOL, 2-21t, 2-23, 2-24, 11-15,
11-16, 1140, 13-2, 13-4
code range descriptor, 3-2, 3-11,
3-14, 4-27, 4-29
COFF, 1-3
coff _addr, 1-10t
coff _byte, 1-10t
coff_int, 1-10t
coff long, 1-10t
coff_off, 1-10t
coff _short, 1-10t
coff_ubyte, 1-10t
coff uint, 1-10t
coff _ulong, 1-10t
coff_ushort, 1-10t
column number, 7-6, 7-7, 7-8
comment header, 15-1, 154
comment section, 1-6, 5-1, 15-1
common symbol, 1-2
alignment, 2—20
allocated common, 14—7
Fortran common, 3—11, 11-11, 11-15,
11-33, 17-8
loader allocated, 14—27
unallocated common, 11-10, 13-3,
14-7
compact relocation, 5-1, 5-3, 15-2t
compiler, 1-4, 1-7

Index—1

compression, 1-8, 1-9, 2-9
conflict section, 14-1, 14-5
conflict table, 14-9, 14-29
constant, 1-2, 3-—6, 11-17
cord, 1-5

crt0.0, 3—6, 14-10

D

data section, 3—1, 3—11

data segment, 2-10, 2-21t, 3—1, 3-12,
3-13

debugger, 1-5, 6-8, 7-1, 8-11, 8-12,
11-1, 12-1

deferred binding, 1427

dis, 1-5

dlclose, 3-9, 14-16, 1422

dlopen, 3-9, 14-16, 14-22, 14-26

dlsym, 14-17

duplicate symbol, 14-6, 14-7

dynamic header, 142

dynamic relocation, 4-11, 144,
14-7, 14-19, 14-28

dynamic section, 2-21t, 14-1

dynamic string, 14-4, 14-10

dynamic symbol, 144, 14-5, 146,
14-16, 14-22, 18-10

dynamic symbol resolution, 14-21

dynstr section, 14-1

dynsym section, 14-1

E

file descriptor, 6-1, 6-8, 6-9, 6-10,
8-1, 13-3
file header, 1-6, 1-8, 2-1, 2-9
file member name table, 16—4
file offset, 1-2
FILHDR
(See file header)
final link, 46, 4—12
FINI routine, 3—6
fini section, 2-21t, 3-1, 3-6, 144
fixso, 14-29, 14-30
Fortran
array descriptor, 11-55, 17-10
mangled name, 11-29
module, 11-4, 11-18, 11-19, 11-20,
11-28, 17-11, 17-12, 17-13
full symbol table contents, 6—8
function pointer, 11-49
function prototype, 11-14

G

entry point, 1-2, 2-4, 2-23, 2-24,
14-10
enumerated type, 11-16, 11-46
ESLI, 7-1, 7-6, 18-5
exception handling, 3-2, 3-11, 3-14
C++
(See C++)
executable, 1-1, 1-2, 1-8
dynamic executable, 1-2, 1-7, 3-5,
14-10
static executable, 1-3, 1-7, 3-5,
3-10, 16-6
expanded line number, 7-2, 7-5, 8-2,
86
external string, 6-1, 6-8, 11-8
external symbol, 6-1, 6-8, 11-20,
13-1
EXTR
(See external symbol)

F

global constructor
(See C++)

global destructor
(See C++)

GOT, 2-18, 2-22t, 3-1, 3-4, 14-1,
14-5, 14-9, 14-17, 14-18, 14-22,
14-27, 14-28, 18-10

got section
(See GOT)

GP range, 2-22t, 2-23, 3—-11, 3-15,
4-10, 4-12, 5-8

GP value, 2-4, 2-6, 2-18, 2-22t, 3-4,
3-15, 4-10, 4-12, 4-18, 4-19, 4-23,
4-32, 5-8, 86

H

hash search, 1-2

hash section, 14-1

hash table, 14—4, 14-10, 1420, 16-3,
16-5

HDRR
(See symbolic header)

heap, 2-15, 2-23

hidden symbol, 14-18, 14-23

hiprof, 1-5

FDR
(See file descriptor)

Index—2

ident string, 15-2t, 15-5

image, 1-3, 1-6, 2-10

immediate binding, 14-27, 14-28
INIT routine, 3—6

init section, 2-22t, 3—-1, 3-6, 144
interlude

(See C++)

K

N

kernel, 2-11, 4-7, 4-34, 14-10
kloadsrv, 2—-11

L

label, 11-13

ladebug, 6-9

lazy text, 3-5, 14-27

LD_LIBRARY_PATH, 14-13

LEB, 1-10, 7-7, 12-1

libe.so, 14-24

liblist, 14-8, 14-11

liblist section, 14—-1, 14-5

limited symbol table contents, 6—8

line number, 6-1, 6-8, 7-1, 8-2, 8-5,
8-6, 18-1

linker, 1-1, 1-3, 1-4, 1-7, 1-9, 2-15,
3-5, 3-8, 3-17, 4-6, 4-8, 4-11,
4-35, 5-3, 6-9, 6-10, 13-1, 13-3,
14-23, 14-28, 15-5, 166

linker-defined symbol, 2—-21, 5-2,
5-11, 11-12

linkerdef relocation, 5-1, 5-11, 15-2t

lit4 section, 3—1, 3—6

lit8 section, 3—1, 3—6

lita section, 2-18, 3—-1, 3—4, 3-6, 4-17,
4-19, 4-34, 4-37

literal, 1-3

little-endian byte order, 1-12

loadable device driver, 2-11, 4-7

loader, 1-2, 1-5, 1-7, 2-15, 2-19,
3-5, 3-7, 14-1

loader-defined symbol, 2—22t

local string, 6-1, 6-8, 8-2, 11-8

local strip, 1-3, 6—

local symbol, 6-1,
11-1, 11-20
with external linkage, 11-19, 11-22

local variable, 8—-10, 11-12

9
6-8, 8-2, 8-5,

M

namespace
(See C++)

namespace pollution, 1422

nm, 63

NMAGIC, 2-4, 2-10, 2-12

O

object annotation, 10—-1
object file, 1-1, 1-6
object tool, 1-4, 6-12

objZ, 1-9
odump, 1-5, 6-3
om, 1-5, 5-11

OMAGIC, 24, 2-10, 4-6

optimization symbol, 6-1, 6-5, 6-8,
6-11, 7-6, 8-2, 8-6, 12-1

optimization symbol table contents,
6-8

optimized code, 7-6, 12—-1

OPTRNDX, 12-1, 12-3, 12-7

ostrip, 1-6, 6-10, 15-5

P

magic, 2-1, 2-3, 2-9, 3-13, 6-4, 16-2,
16-3
mangled name
(See C++)
mes, 15-5
member function
(See C++)
minimal symbol table contents, 6—8
mmap, 2-15
msym section, 14-1
msym table, 14-8, 14-19

packed line number, 7-2, 18-1
parameter, 11-11
partial link, 4-6, 4-32
pascal
conformant array, 11-57
pdata section, 2-21t, 3-1, 3-2, 3-14
PDR
(See procedure descriptor)
PIC, 34
pointer type, 11-43
PPOD, 1-3
PPODE, 1-3
PPODHDR, 6-5
procedure, 11-13, 11-23
epilogue, 11-15
prologue, 4-23, 11-14
with no code, 11-14, 11-23
procedure descriptor, 6-1, 6-8, 6-9,
6-11, 7-2, 7-10, 8-5, 8-8
procedure symbol, 8—2
prof, 1-5
profile feedback data, 9-1
profiling, 1-5, 4-7, 5-3, 8-6, 9-1

Q

quickstart, 14-16, 14-28

Index—3

R

range, 11-40, 11-41, 11-59, 17-14
ranlib, 16-3, 16-5

rconst section, 3—1, 3—-6

rdata section, 3—1, 3-6, 4-32
rel.dyn section, 14-1, 14-8

relative file descriptor, 61, 6-5, 6-8,

6-10, 8-3, 11-43, 12-1
relative file offset, 1-3
relative index, 1-3

relative index record, 11-5, 11-8,
11-37, 11-38

relocatable object, 1-1, 1-3, 1-7, 3-5,

4-6
relocation, 1-6, 4—-1
count overflow, 2-9t, 4-3, 4-6, 4-15
expression stack, 4—13, 4-28, 5-8,
5-9
external, 4-3, 4-8, 5-9, 5-11
immediate, 4—13, 4-34
literal, 4—12, 4-19, 4-37
local, 4-3, 4-8, 5-9
self-relative, 4—12, 4—26
type, 4-3, 4—4, 5-7
RFD
(See relative file descriptor)
_RLD_ROOT, 14-13
RNDXR
(See relative index record)
rpath, 14—4, 14-13
RPDR

(See run-time procedure descriptor)

run-time procedure descriptor, 3—2,
3-14, 4-27

S

sbss section, 3—1, 3—13
SCNHDR
(See section header)
scope
block, 11-15, 11-21, 11-25
discontiguous, 12—6
file, 11-17, 11-21, 11-24
procedure, 11-21
program, 11-21
sdata section, 3—1, 3-13
section, 1-3
name, 2-5, 2-7, 11-12
type, 2-7, 2-8, 2-20
section header, 1-6, 2-5
segment, 1-3, 1-6
semantic event, 121
set type, 11-60, 17-14
shared library, 1-1, 1-3, 1-7,
1-11, 2-15, 2-19, 3-5, 13-3,

1-8,
14-10

Index—4

shared library dependency, 14-8,
14-11, 14-29

shared object, 1-3, 3-5, 14-10

SLEB, 1-10, 7-7, 12-1

so_locations, 2-16, 1428

soname, 14—4, 14-12

source file, 6-10, 7-1, 7-2, 7-7, 8-1,
11-24

source language, 8-3, 8—4, 11-9,
11-36, 11-62, 13-4

special symbol, 2-21, 11-61

speculative execution, 3—11

spike, 1-5, 5-11, 10-1

split lifetime, 12—-3

stack, 2—15

stack frame, 8-6, 8—8

static data member
(See C++)

static parameter, 11-11

static procedure, 11-17

stdump, 1-5, 6-3

storage class, 11-3, 11-8, 11-36, 13-2

strip, 1-6, 2-9, 5-3, 5-11, 6-10, 15-3,
15-5

structure, 11-16, 11-46
C++

(See C++)

symbol precedence, 14—26

symbol preemption, 1-3, 4-25, 14-17,
14-22

symbol resolution, 13-1

symbol search order, 14-17, 14-25

symbol table, 1-1, 1-6, 6-1

symbol table compilation options,
6-8

symbol table levels, 6—8

symbol type, 11-2, 11-8, 11-36,
11-38, 13-2

symbolic header, 6-1, 6-3, 6-8

symdef file, 16—1, 16—4, 16-5

SYMR
(See local symbol)

T

tag descriptor, 15-2, 156
tail call, 8—6, 8-7
TASO, 2-16, 4-16, 11-44
template
(See C++)
text section, 3—1, 3-5, 4-32
text segment, 2—10, 2-21t, 3—-1, 3-6,
3-13
timestamp, 14-5, 14-9, 14-27, 14-29
TIR
(See type information record)

TLS, 2-6, 2-10, 2-12, 2-15, 2-21t,
3-1, 3-8, 3-11, 3-16, 4-37, 8-12,
11-10, 13-5, 14-16, 14-23

tlsbss section, 3—1, 3—-16

tlsdata section, 3—-1, 3—16

tlsinit section, 3—1, 3—-16

type information record, 11-5, 11-36

type qualifier, 11-6, 11-7, 11-36,
11-37, 11-40

typedef
(See user-defined type)

U

union, 11-16, 11-46

unnamed structure, 11-47, 17-1
unresolved symbol, 1422

uplevel link, 8-10

user-defined section, 2-9, 3-1, 3-17
user-defined type, 11-17, 11-49

Vv

variant record, 11-15, 11-57, 17-15
version
annotation summary version, 10—1

build revision, 2—3

comment section, 15—2t

compact relocation, 5—4

object format, 1-9, 2—3

operating system, 1-1

os version, 10-3

shared library, 14-5, 14-9, 14-13

symbol table format, 1-1, 1-9, 64,
84

tool version, 15-2t, 15-7

virtual memory, 1-11

W

weak symbol, 13-2, 14-7, 14-18,
14-23, 14-30

X

xdata section, 2-23, 3-1, 3-2, 3-14

Z

ZMAGIC, 2-4, 2-10, 2-12, 2-21, 4-6,
14-10

Index-5

