
OMI v2.3

Oscar’s Menu Interpreter for VMS

Reference Guide

Oscar van Eijk
Oveas Functionality Provider

oscar.van.eijk@oveas.com
http://freeware.oveas.com/omi

Belgium, June 25, 2004

ii

Contents

Preface 3

Known Bugs . 3

About this document . 4

Conventions . 4

Copyright . 4

Acknowledgements . 4

1 Installation 5

1.1 System installation . 5

1.2 User installation . 5

1.2.1 User specific installation 5

1.2.2 Shared installation . 6

1.3 Upgrades . 6

1.4 Test the installation . 7

2 Starting OMI 9

2.1 Parameters . 9

2.2 Qualifiers . 9

2.2.1 /BACKGROUND[=mode] 10

2.2.2 /BATCH . 10

2.2.3 /DEBUG . 10

2.2.4 /IGNORE . 10

2.2.5 /JUMPS . 11

2.2.6 /PROGRESS . 11

2.2.7 /SUBMENU . 12

2.2.8 /VALIDATE . 12

3 Using OMI Menus 13

3.1 Navigating through menus . 13

3.1.1 Fast moving . 14

3.1.2 Auto mode . 14

3.2 Entering values . 15

3.2.1 Tag lists . 15

3.2.2 Select lists . 15

3.2.3 Entering all inputs in a menu 15

3.3 Protected Menus . 16

iii

iv CONTENTS

4 Configuration 17
4.1 Logical Names . 17

4.1.1 OMI$. 17
4.1.2 OMI$MENU DIRECTORY 17
4.1.3 OMI$STARTMENU . 17
4.1.4 OMI$CONFIG . 17

4.2 Configuration File . 18
4.2.1 [MAIN] . 18
4.2.2 [SCREEN] . 19
4.2.3 [QUESTIONS] . 20
4.2.4 [BGRPROCESS] . 21
4.2.5 [KEYRING] . 22
4.2.6 Adding sections . 22
4.2.7 Example Configuration file 22

5 Creating Menus 25
5.1 Defining Menus . 25

5.1.1 The Main Menu . 25
5.2 Menu Characteristics . 25

5.2.1 The ON INIT and ON EXIT elements 26
5.2.2 The PROMPT element 27
5.2.3 The NAME element . 27
5.2.4 The COMMENT element 27
5.2.5 The TITLE element . 27
5.2.6 The AUTO REFRESH element 27
5.2.7 The AUTO INCREASE element 28
5.2.8 The REQUIRED ORDER element 28
5.2.9 The ALL INPUTS element 28

5.3 Counters . 29
5.3.1 Manipulating counter values 29
5.3.2 Using default values in arrays 30

5.4 Security . 30
5.4.1 The OWNER element . 31
5.4.2 The SECURITY element 31
5.4.3 The PASSWORD element 31
5.4.4 Interactive authorization 32

5.5 The ITEM Element . 32
5.5.1 The CALL item type . 33
5.5.2 The COMMAND item type 33
5.5.3 The SUBMENU item type 33

5.6 The INPUT element . 34
5.6.1 The Free Input element 34
5.6.2 Formatting the input . 34
5.6.3 Example of the Free input type with Formatting. 36
5.6.4 The Select list input element 37
5.6.5 The Tag list input element 38
5.6.6 Reading Tag and Select values from files 40

5.7 Including Standard Libraries . 40
5.7.1 Handling duplicate items 40

5.8 Adding descriptions to the Menu file 41

CONTENTS v

5.9 Special Characters . 41
5.10 Creating menu- specific help files 41

6 Writing Modules 49
6.1 Return values of OMI commands 49
6.2 OMI Commands in modules . 49

6.2.1 OMI$ASK . 50
6.2.2 OMI$CALC . 50
6.2.3 OMI$CALL . 50
6.2.4 OMI$CHECK . 50
6.2.5 OMI$CLEAR SCREEN 51
6.2.6 OMI$CMDLINE CLEAR 52
6.2.7 OMI$CONFIRM . 52
6.2.8 OMI$CREATE MBX . 52
6.2.9 OMI$CREATE OTF . 53
6.2.10 OMI$DATE INFO . 53
6.2.11 OMI$DECRYPT . 53
6.2.12 OMI$DISPLAY INFO . 54
6.2.13 OMI$DISPLAY MESSAGE 55
6.2.14 OMI$DUMP INFO . 55
6.2.15 OMI$ENCRYPT . 55
6.2.16 OMI$GET VMSMESSAGE 55
6.2.17 OMI$INPUT VALIDATE 56
6.2.18 OMI$MSGLINE CLEAR 57
6.2.19 OMI$REFRESH . 57
6.2.20 OMI$POPUP . 57
6.2.21 OMI$REVERSE . 58
6.2.22 OMI$SIGNAL . 58
6.2.23 OMI$SUBSTITUTE . 59
6.2.24 OMI$SUBMIT . 59
6.2.25 OMI$WAIT . 60

6.3 OMI symbols . 61
6.3.1 Symbols defined by OMI 61
6.3.2 Global symbols set by OMI commands 61

7 Adding Toolboxes 63

8 Creating on-the-fly menus 65
8.1 Limitations . 65

8.1.1 Menu elements . 65
8.1.2 OMI Commands . 65

8.2 Tag- and select lists . 66
8.3 Saving an on-the-fly menu . 66

9 OMI Command Reference 69
9.1 ALL . 69
9.2 BACK . 69
9.3 CALC . 70
9.4 CLS . 70
9.5 DCL . 70

vi CONTENTS

9.6 DELETE . 71
9.6.1 DELETE TEXTAREA 71

9.7 EDIT . 71
9.7.1 EDIT ELEMENT . 71
9.7.2 EDIT MENU FILE . 72
9.7.3 EDIT VALUE FILE . 72

9.8 ENCRYPT . 72
9.9 EXIT . 73
9.10 EXPORT KEY . 73
9.11 HELP . 73
9.12 IMPORT KEY . 73
9.13 INCREASE . 73
9.14 INFO . 74
9.15 JUMP . 74
9.16 MAIN . 74
9.17 MENU . 74
9.18 QUIT . 75
9.19 REFRESH . 75
9.20 RESET . 75

9.20.1 RESET AUTO REFRESH 75
9.20.2 RESET COUNTER . 75
9.20.3 RESET NAME . 75
9.20.4 RESET ORDER . 75
9.20.5 RESET PASSWORD . 76
9.20.6 RESET VARIABLES . 76

9.21 SET . 76
9.21.1 SET AUTO REFRESH 76
9.21.2 SET COUNTER . 76
9.21.3 SET KEY . 76
9.21.4 SET NAME . 77
9.21.5 SET PASSWORD . 77
9.21.6 SET WIDTH . 77

9.22 SHOW . 77
9.22.1 SHOW COUNTER . 77
9.22.2 SHOW NAME . 77
9.22.3 SHOW ORDER . 78
9.22.4 SHOW TEXTAREA . 78
9.22.5 SHOW VERSION . 78
9.22.6 SHOW VMS MESSAGE 78

9.23 SILENT DCL . 78
9.24 SPAWN . 79
9.25 SUBMIT . 79

A Example OMI Menu 81

B Example OMI Module 85

Index 87

List of Figures

1.1 an OMI installation session . 6
1.2 an OMI user installation session 7

4.1 the OMI configuration file . 23

5.1 using initialising- and exit modules in a menu 26
5.2 using initialising- and exit commands in a menu 27
5.3 Force the order in which input is entered 28
5.4 Setting menu characteristics . 29
5.5 Using counters . 30
5.6 Defining menu security . 43
5.7 Disallow users to use interactive DCL 44
5.8 Using dynamic input in the CALL item type 44
5.9 Using dynamic input with a format section 44
5.10 Using the SUBMENU element 45
5.11 Formatting Free input . 45
5.12 Using the Select list . 46
5.13 Using the Tag list . 47
5.14 File input in Tag and Select lists 47
5.15 Including standard libraries . 48
5.16 Comments in Menu files . 48

7.1 The OMI Toolbox initialization file 63
7.2 Initializing a toolbox . 64
7.3 Write Toolbox code . 64

8.1 Creating on-the-fly menus . 67
8.2 Save and restore an on-the-fly menu 67

vii

viii LIST OF FIGURES

List of Tables

4.1 Reserved section names . 22

5.1 Security levels in Security sections 31
5.2 Security levels in the PASSWORD LEVEL element 32
5.3 Keywords for the FILESPEC format type 35
5.4 Keywords for the STRING format type 36
5.5 Keywords for the INTEGER format type 37
5.6 Keywords for the DATE format type 37
5.7 Keywords for the TEXTAREA format type 38
5.8 Keywords for the TIME format type 39

6.1 Local symbols in OMI . 61
6.2 Symbols set by OMI commands 62

8.1 Elements not allowed in on-the-fly menus 65

1

2 LIST OF TABLES

Preface

Oscar’s Menu Interface is a DCL program that reads menu files and represents
the menu structure on a ChUI based terminal. The layout depends on the user
specific configuration.

OMI does not perform any actions on its own. Additional procedures are
required to handle upon the user input. OMI is strictly created to create a
standard user interface for all kinds of actions, with a clear structure, support
for different security levels and password protection.

The additional procedures that are required for any actions are referred
to as OMI modules. Several OMI commands have been created for use in
OMI modules, and with the expandable Toolbox, it’s easy to add your own
commands.

Known Bugs

The following bugs have not been solved yet:

• When OMI$DISPLAY INFO needs to display a blank line between two
records, the OMI$RECORDn needs to contain at least one blank.
E.g. when the next three lines need to be displayed:

OMI$RECORD1 = ”The first line”
OMI$RECORD2 = ”” ! A blank line to separate
OMI$RECORD3 = ”The last line”

the command OMI$DISPLAY will display only the first line. This can be
solved by specifying OMI$RECORD2 as " " (a blank).

• When a TEXTAREA input element is defined with the option LARGE
set to TRUE, the command SHOW TEXTAREA shows nothing in certain
circumstances without warning.

• When a library file is included with #INCLUDE, and duplicate values
are encountered, a leading value can be specified with the #LEADING
attribute as described in section 5.7.1. However, when the menu file is
validated with the /VALIDATE qualifier, a warning will be displayed if
the first item of two duplicate item names was specified as leading. During
run-time this is handled properly.

• Switching menus using the MENU command causes %OMI-W-DUPL mes-
sages. After this, OMI can crash at random moments without warning.

3

4 LIST OF TABLES

About this document

Conventions

Names All OMI literal names (filenames, logicals etc) are displayed in a slanted
font.

Literals This sans-serif font is used when literal text is displayed as it should be
entered by the user.

Variables When the user should replace the text as displayed with a environment-
specific value, the text is printed italic.

Examples All examples are printed in this monotype font.

Copyright

The software and all associated files remains the copyright of the author but
may be freely used and distributed without charge to any other user, provided
that all copyright notices are retained intact.
c© 1997-2004
Oscar van Eijk - Oveas Funcionality Provider
support@oveas.com

This tool is delivered “as is”. No warranty, express or implied, is offered as to
the suitability of the software for any purpose. Any errors arising from the use
of this software, is the responsibility of the user.

Support and the latest version is available at
http://freeware.oveas.com/omi

For questions, bug reports, feature requests etc., please use the OMI forum
located at

http://freeware.oveas.com/omi/forum.html

Acknowledgements

This document was typeset with LATEX 2ε – Lesle Lamports document typeset-
ting system based upon Donald E. Knuth’s TEX.
The PDF version was created with dvipdf, GNU Ghostscript 6.52.
The Postscript version was created with dvips v5.86.
The HTML version was created with LaTeX2HTML v2002 (1.62).

Henry Juengst made me aware of possible crashes and gave me the code that
resulted in the OMI$INPUT VALIDATE command (v1.0b4).
Edward Vlak did some debugging and fixed a possible loop in REQUIRED ORDER

(v2.2).

Chapter 1

Installation

1.1 System installation

To install OMI, download one of the distributions: either the ZIP file1 (download
in BINary format) or the COM file (download in ASCII format). Also, download
OMI$INSTALL.COM in ASCII format.

Next, set default to the directory where the installation script is located, and
issue the command:

$ @OMI$INSTALL

Follow the instruction to install OMI. The procedure extracts the distri-
bution and moves all files to the desired location (that you will be prompted
for).

The installation procedure also creates the HELP library, and repairs mes-
sage datafiles, which have been corrupted by the distribution.

1.2 User installation

1.2.1 User specific installation

Let all the users who will be using OMI execute the procedure
OMI$USER INSTALL once. They should use the command:

$ @<OMI location>OMI$USER INSTALL
This will create the file OMI$SETUP.COM in the SYS$LOGIN: directory of
the user, and creates a user specific directory to contain OMI menu files (default
is [.OMI] under the SYS$LOGIN:).

Figure 1.2 shows an example session of the OMI$USER INSTALL procedure.

The newly created procedure should be called every time the user logs in, so
either the command

$ @SYS$LOGIN:OMI$SETUP
should be added to the users LOGIN.COM, or the following lines should be
added to the system-wide login procedure:

1This also requires UNZIP for VMS, available from ftp://www.process.com/vms-freeware/

5

6 CHAPTER 1. INSTALLATION

$ @omi$install

%OMI-I-INS SHARE, installing the SHARE distribution

Install in [1DKA200:[APPLIC.OMI]]:

%OMI-I-UNPACK, please wait - unpacking distribution

DELETE 1DKA200:[TEMP]OMI-V2 1.COM;1 ? [N]:

%OMI-I-EXISTS, OMI$TOOLBOX.INI exists

-OMI-S-TBPATCHED, OMI$TOOLBOX.INI successfully patched

%OMI-I-EXISTS, OMI$MENU.CFG exists

-OMI-I-NEWNAME, installing new config file as OMI$MENU.CFG NEW

%OMI-I-CREHELP, creating the help library

%OMI-I-MSGREPAIR, repairing the message datafiles - ignore BADMSGFIL

messages

%OMI-F-BADMSGFIL, message file corrupt - please repair

%OMI-F-BADMSGFIL, message file corrupt - please repair

%OMI-F-BADMSGFIL, message file corrupt - please repair

%OMIMGT-S-MSGREP, message file for OMIMGT successfully repaired

%OMI-S-INSTALLED, OMI succesfully installed

$

Figure 1.1: an OMI installation session

$ IF F$SEARCH(”SYS$LOGIN:OMI$SETUP.COM”) .NES. ”” THEN -
$ @SYS$LOGIN:OMI$SETUP

Installation is now complete. All users can optionally change the behavior
of OMI by modifying the file OMI$MENU.CFG, located in their SYS$LOGIN:.

1.2.2 Shared installation

To let all users, or groups of users, share OMI installations and configurations,
one user should execute the file OMI$USER INSTALL. When the procedure
asks for a directory to store the Menu files, enter a shared directory.

After installation is completed, move the files OMI$SETUP.COM and
OMI$MENU.CFG to a location where all users can read them.

Edit the file OMI$SETUP.COM and search for the following line
$! DEFINE /NOLOG OMI$CONFIG <Path and name of your configuration file>

Uncomment this, and let the logical point to the shared configuration file.
Repeat these steps for all groups.

NOTE: To prevent users to set a key in a shared environment (see section 4.2.1),
make sure they don’t have WRITE privilege on the configuration file!

1.3 Upgrades

If OMI is already installed on your system, and it just needs to be upgraded,
follow the steps in section 1.1. Site specific files will not be overwritten.
User installation (section 1.2) do not need an upgrade.

1.4. TEST THE INSTALLATION 7

$ @1DKA200:[APPLIC.OMI]OMI$USER INSTALL

Where do you want to store your Menu files (*.MNU) ?

[1DKA100:[OSCAR.OMI]]:

Create this directory ? ([Y]/N)

%COPY-S-COPIED, 1DKA200:[APPLIC.OMI]OMI$MENU.CFG;4 copied to

1DKA100:[OSCAR]OMI$MENU.CFG;1 (2 blocks)

What will be your default printer ? [SYS$PRINT]:

The file OMI$SETUP.COM has been created in your LOGIN directory.

To be able to use OMI every time you log in, add the command

$ @SYS$LOGIN:OMI$SETUP.COM

to your LOGIN.COM

For modifications to the setup file, refer to the comments.

%OMI-S-SETUP, OMI environment successfully initialized

OMI-I-NEWCMD, the new command OMI has been defined

$

Figure 1.2: an OMI user installation session

Figure 1.1 shows an upgrade where the configuration file OMI$MENU.CFG
is saved, and the toolbox initialisation file OMI$TOOLBOX.INI is patched.

1.4 Test the installation

To test OMI, you can use the example menu file OMI$EXAMPLE.MNU which
comes with the distribution. Start this menu with the command

$ OMI OMI$EXAMPLE
This menu performs no other action than displaying information. The Protected
menu is protected with the password test1234567892.

2Passwords are case sensitive.

8 CHAPTER 1. INSTALLATION

Chapter 2

Starting OMI

When OMI has been set up properly, as described in chapter 1, OMI can be
started from the DCL prompt with the command OMI. If the logical
OMI$STARTMENU is not defined, this will display a list of all available menus
in the directories OMI$: and OMI$MENU DIRECTORY:.

Since version 1.4, OMI also reads command line qualifiers1.

2.1 Parameters

When running interactive, OMI supports three parameters, of which the second
and third are obsolete since version 1.4 However, for backwards compatibility,
they are still supported. For description of those parameters, refer to section
2.2.7.

The first parameter is the name of the menu file that should be started. This
menu file has to be located in the OMI$: or OMI$MENU DIRECTORY:. If the
parameter is omitted, and the logical OMI$STARTMENU (see section 4.1.3),
a list with available menus is presented, from which a selection can be made.

When running in the background (see section 2.2.1), OMI supports one pa-
rameter, which is the name of the module that should be started in the back-
ground.

2.2 Qualifiers

Qualifiers can be specified after the first parameter on the DCL command line.

1When qualifiers are used, the first parameter, which refers to the menu file, is always
required, even if the logical OMI$STARTMENU is defined and points to the menu file that
should be started!

9

10 CHAPTER 2. STARTING OMI

2.2.1 /BACKGROUND[=mode]

/BACKGROUND=BATCH (default)
/BACKGROUND=DETACH

Start an OMI module in the background. The first parameter is now an OMI
module name (filename.OMI) in stead of a menu name. This module should
be created to run unattended (e.g. using Mailboxes for communication, refer to
chapter 6 for more information on writing OMI modules).

An OMI module can run as a detached process (requires VMS DETACH
privilege), or in a batch queue.

2.2.2 /BATCH

/BATCH
/NOBATCH (default)

Start OMI in Batch mode. In this mode, all output, written to SYS$OUTPUT,
is suppressed. This also means the menus are not displayed at all. This option
is useful when used together with /SUBMENU and /JUMPS.

2.2.3 /DEBUG

/DEBUG
/NODEBUG (default2)

By default, all error messages from DCL are suppressed in OMI. If an error
occurs in OMI, it’s handled by OMI itself. This should also be the case in all
OMI modules, but while these modules are being developed, it is useful to see
all messages that are generated by VMS.

With the /DEBUG qualifier, all messages will be displayed. If SET VERIFY
is issued before starting OMI, all code is displayed as well.

This qualifier replaces the symbol OMI$ DEBUG, that was used until version
1.3 (however this symbol is still supported).

2.2.4 /IGNORE

/NOIGNORE (default)
/IGNORE=(keyword[,...])
Ignore specified warnings or errors during the OMI session. If you specify

only one keyword, you can omit the parentheses.

DUPLICATES

/IGNORE=DUPLICATES

2By default, debug mode is disabled. However, in versions prior to 1.4, the mode was set
by the symbol OMI$ DEBUG. Setting this symbol to 1 still enables debug mode.

2.2. QUALIFIERS 11

When starting OMI, %OMI-W-DUPL warnings are displayed when OMI tries to
set a symbol that’s already defined. This happens after a crash of the previous
OMI session, when the menu file is invalid, or when a new OMI session is started
in a subprocess from within OMI (for OTF menus, this is the only way to open
a new menu without leaving the OFT context).

The /IGNORE=DUPLICATES qualifier overwrites all existing symbols with-
out a warning.

DCLERRORS

/IGNORE=DCLERRORS

When a DCL command is given in the menu file, or entered at the OMI
prompt (commands DCL ($) or SILENT DCL), or when a subprocess is spawned
from the menu file (as an option) or using the OMI SPAWN command, OMI will
catch its exit status and act accordingly. It the exit code was an error (severity
2), OMI crashes.

The /IGNORE=DCLERRORS qualifier ignores errors generated in such cir-
cumstances.

NOTE: This does not apply to (SILENT)DCL or SPAWN action from within
OMI modules !

DCLFATALS

/IGNORE=DCLFATALS

This keyword has the same effect as the DCLERRORS keyword, but for
fatal exit codes (severity 4).

Both keywords can be given together as /IGNORE=(DCLERRORS,DCLFATALS).

2.2.5 /JUMPS

/JUMPS=option-list

With the /JUMPS qualifier, all options that are normally entered one by one at
the OMI prompt, can now be specified at the DCL prompt as a list of options
separated by comma’s. If this list with option contains OMI commands with
parameters, blanks are required to separate the parameters if they should be
specified. The option has to be enclosed by double quotes.

2.2.6 /PROGRESS

/PROGRESS
/NOPROGRESS

This qualifier can be used to overwrite the SHOW PROGRESS element from
the configuration file (see section 4.2.1).

12 CHAPTER 2. STARTING OMI

2.2.7 /SUBMENU

/SUBMENU=submenu-name

With the /SUBMENU qualifier, it is possible to start the OMI session with
the submenu that has the specified name. By default, OMI starts a menu file
with the main menu (see section 5.1.1), but when one ore more submenus have
names (see section 5.2.3), OMI can start in one of those menus.

2.2.8 /VALIDATE

/VALIDATE[=log-file]
/NOVALIDATE (default)

This qualifier reads the menu file and validates the syntax line by line. It
signals errors and warnings when errors or possible errors are found, like calling
non- existing submenus, commands or modules, missing elements (e.g. ITEM1,
ITEM2, ITEM4 . . .), duplicate elements etc.

If no errors are warnings are found, this does not guarantee a valid menu,
since not everything can be checked (especially when variables are used, or
logicals defined by an ON INIT module), but it finds the most common errors.

A filename to write all messages to can optionally be specified. If omitted,
all messages are written to SYS$ERROR.

This qualifier requires WRITE privilege to the menu.

Chapter 3

Using OMI Menus

Oscar’s Menu Interface can be used to walk through pre- defined menu struc-
tures. Such structures are created in .MNU files, which should be located in
the same directory where OMI resides (referred to with the logical OMI$) or a
special directory pointed to with the logical OMI$MENU DIRECTORY .

To start OMI, just type the command OMI at the DCL prompt. OMI will
start a menu if:

1. the logical OMI$START MENU points to a valid menu file in OMI$: (the
directory in which OMI is located) or OMI$MENU DIRECTORY :

2. the file OMI$MENU.MNU exists in OMI$: or OMI$MENU DIRECTORY :

If none of these are found, a list of all available menus in the directories will
be displayed, and OMI prompts to specify a menu file. When OMI is started
with a parameter, the menu file pointed to by that parameter will be opened.
When that file is not found, the user is prompted to enter a new menu file.

3.1 Navigating through menus

OMI Menus display a list of options and/or values that can be filled in, further
called ‘options’. To select an option, just type the number on the command
line.

OMI commands can also be entered at the command line1. All OMI com-
mands are described in chapter 9, and in the online HELP.

When input values need to be entered, the option with which all inputs can
be entered at once, will always be visible. The name of the options depends on
the setting in the configuration file. By default, this is All inputs.

To go back one level in the menu structure, you can use the BACK command,
the <Ctrl/Z> keystroke, or type a 0 (zero), followed by <Return>. When the
current menu is the top level of the menu structure, this will exit OMI.

1In “on-the-fly” menus—described in chapter 8, not all OMI commands can be used (see
also section 8.1.2). The commands that can not be used are marked in chapter 9.

13

14 CHAPTER 3. USING OMI MENUS

3.1.1 Fast moving

In stead of entering the options, or using 0 or <Ctrl/Z>, there are several com-
mands that can be used for fast navigation. They should be entered at the OMI
prompt.

The MAIN command jumps immediately to the top-level menu from any-
where in the structure. The commands EXIT or QUIT end the OMI session.

The command JUMP, followed by a menu name, jumps to the specified
submenu. Names can be displayed automatically by changing the configuration
file (described in chapter 3), or in a menu using the SHOW NAME command.

When in a menu, a different menu file can be selected with the MENU
command, followed by the name of the new .MNU file. This command cleans
up the current menu completely before starting the new menu.

3.1.2 Auto mode

When the user knows all options, a menu can also be called in Auto Mode. This
means, the menu file is specified as the first parameter for OMI2, followed by
the name of a submenu.

The third parameter can be a list of options that needs to be specified, sep-
arated by commas. If this list contains OMI commands with blanks in it (e.g.
RESET PASSWORD), that option has to be enclosed by double quotes, e.g.

$ OMI MY-MENU SUB3 ”RESET PASSWORD”,EXIT
or

$ OMI MY-MENU /SUBMENU=SUB3 /JUMPS=”RESET PASSWORD”,EXIT

The example above would remove the password of the menu with the name
SUB3, and exit the menu. However, OMI will prompt for the current password
when entering the menu before executing any command.

If one of the options selects a TAG list, the Ctrl/Z keystroke can be emulated
with the string ˆZ3.

Since version 1.4 qualifiers are also supported. With these qualifiers the menu
name can also specified as /SUBMENU=menu-name, the list of options can be
specified with the qualifier /JUMPS=options-list. For more info on qualifiers
refer to chapter 2.

To have a look at the possibilities with this Auto Mode, try starting the
example menu OMI$EXAMPLE with the following command:

$ OMI OMI$EXAMPLE INPUT 4,5,5,3,10,ˆZ,3,EXIT
or

$ OMI OMI$EXAMPLE /SUBMENU=INPUT /JUMPS=4,5,5,3,10,ˆZ,3,EXIT

NOTE: When using qualifiers, the first parameter (the menu file), is always
required, and has to be entered before all qualifiers!

2If the menu file, pointed to by the logical OMI$START MENU or the file
OMI$MENU.MNU needs to be called, the parameter can be specified empty (””)

3= ‘shift-6’ ‘Z’ on VT keyboards

3.2. ENTERING VALUES 15

3.2 Entering values

When an input option is selected, the user is either prompted for a value, or a
list is displayed from which values can be selected.

Some input options need to have special formats. This depends on the
definition in the menu file. When a wrong value or format is entered, the error
message explains what the format should be.

3.2.1 Tag lists

Some input options display a list of possibilities that can be tagged. If a tag
option is selected, a list of possible values will be displayed. Entering the cor-
responding numbers will cause the values to be selected and added to a list.

The last option from a tag list is always to reverse the current selection, so
when a tag list is selected for the first time, and all values need to be selected,
the last option will do so. After this, the last option will deselect all values.

When all required values are selected, use the <Ctrl/Z> keystroke to return
to the menu.

3.2.2 Select lists

If an input option is selected, that can have one value from a predefined list,
this list is displayed in a pop-up window. When the list is too long to fit on one
screen, the commands NEXT and PREVIOUS can be used to scroll through
the list.

Typing the corresponding number, followed by <Return>, selects that value
and returns control to the menu.
The <Ctrl/Z> keystroke cancels the selection.

It is possible to have an option defined in a select list, with which a value
can be entered that is not displayed in the list (a ‘free’ option). If this option is
selected, OMI will prompt to enter a value.

NOTE: If the values need to have a special format (e.g. an uppercase string) it
must be entered in the correct format, since unlike the usual input option, OMI
does not perform any checks or formatting on the free option in a select list!
(See also section 5.6.4.)

3.2.3 Entering all inputs in a menu

When a menu contains input options, the text on the display of the last option
is the value of ALL INPUTS in the [QUESTIONS] section of the configuration
file. This option is generated by OMI, and allows the user to enter all inputs at
once.

OMI will ask for all required inputs one by one, without the need to select the
options separately. When any if the inputs is omitted (the user enters <Return>
without a value), the current value will not be overwritten.

If this is disabled for the current menu (see section 5.2.9), this facility can
still be used by entering the ALL command at the OMI prompt.

16 CHAPTER 3. USING OMI MENUS

3.3 Protected Menus

When a menu is selected that is protected with a password, the Password prompt
will appear. When an invalid password is entered, for three times in a row, access
will be denied.

When the same menu is selected for three times in a row, and an invalid
password has been entered for nine times in total, the menu will be blocked for
the current user. An intrusion record is set, that will not disappear until the
user logs out from the system.

Chapter 4

Configuration

4.1 Logical Names

When OMI is installed using the OMI$USER INSTALL procedure, the file
OMI$SETUP.COM is created in the users SYS$LOGIN: directory, or in a
shared directory (refer to section 1.2). This file contains a few logicals, which
can be changed manually.

4.1.1 OMI$

This logical is not defined in the setup file by default, but can be added there.
If the logical does not exist when OMI starts, it will be defined automatically,
and deassigned when OMI exits.
This logical points to the location of all OMI files.

4.1.2 OMI$MENU DIRECTORY

When this logical exists, OMI looks in the directory or directories where it
points to for all menu files. If a file is not found here, OMI looks in the default
directory, pointed to by OMI$:.

Menu files should be located in one of those directories. If they can’t be
found there, an error message will be displayed. This logical can be defined as
a search list.

4.1.3 OMI$STARTMENU

If this logical is set, it points to the menu file with which OMI starts every
session.
This logical can be user specific or system wide.

4.1.4 OMI$CONFIG

This logical points to the user specific configuration file. It should represent the
full path and filename.
If not set, OMI looks for the default configuration file OMI$MENU.CFG, first
in the users SYS$LOGIN:, then in the OMI directory (OMI$:).

17

18 CHAPTER 4. CONFIGURATION

4.2 Configuration File

A great deal of the behavior (layout in specific) can be modified using a config-
uration file. This is a file called OMI$MENU.CFG, that should be located in
the users SYS$LOGIN:, or any other file name in another directory, pointed to
by the logical OMI$CONFIG
If none of these are found, the default file OMI$:OMI$MENU.CFG is used.

This section describes the elements that can be modified in the file. Some
values can be empty (only when explicitly said so). All element names are case
insensitive.

NOTE: Blank lines and comments (!) are allowed. Double quotes (”) are NOT
allowed.

4.2.1 [MAIN]

This section defines some generally used values.

EMPTY VALUE In menus where input values are displayed,
EMPTY VALUE represents the way an unspecified value will be displayed.
If it shouldn’t display anything, just remove any value (‘EMPTY VALUE = ’).

KEY If a key was set using the SET KEY command before version 1.3, it will
be stored here in the configuration file. The key has a binary code, and should
not be set or changed manually.

Since version 1.3, this key cannot be set anymore. Keys are now named and
stored in the user specific keyring (see section 4.2.5).
Decryption of strings that were encrypted with this key before version 1.3 is
still supported.

SILENT OUTPUT If DCL commands are executed in silent mode (using
the OMI command SILENT DCL), the output, if any, including errors, will be
written to the NULL device (NLA0:), or any file name specified by this element.
The final return status of the command will always be displayed.

TIME FORMAT This element can have the values 12 or 24. It specifies the
default time format for the TIME format type (see section 5.6.2). The default
value is 12.

EDITOR When you need to use an editor somewhere in an OMI procedure,
this symbol will be used. Specify any (foreign) command.
This setting can be used in OMI modules as:

$ ’MAIN’$EDITOR filename

FLOAT POINT Specifies the default character (“.” or “,”) that will be used
for the floating point INTEGER format type (see section 5.6.2).

VERSION ID This element is obsolete since v1.2.

4.2. CONFIGURATION FILE 19

PROTECT PROMPT When an own prompt is defined (see section 4.2.3),
this can be overwritten by a prompt in a chosen menu. Setting
PROTECT PROMPT to 1 or TRUE, will tell OMI to use the prompt from
the configuration file in all menus.

PRINTER This element can be used to define a user specific printer queue.
By default, this will be SYS$PRINT. The installation procedure will prompt
for a default printer (see section 1.2).

SHOW PROGRESS By default, OMI display the percentage of the menu
file that was read during initialization. This can be switched off by setting this
element to FALSE or 0.

Display the percentage read is useful if large menu files are used, since ini-
tialization can take pretty long, depending on the system on which OMI runs.

The setting can always be overwritten by specifying the /[NO]PROGRESS
qualifier when starting OMI from the DCL command line (see section 2.2.6).

4.2.2 [SCREEN]

This section contains all elements that define the layout of the menu screen.

WIDTH MARGIN You can use the full width of the screen (without bor-
derlines at both sides), by setting this margin to 0. If you do want borders, any
value (n) will cause the leftmost and rightmost n columns not to be used.

HEIGHT MARGIN You can use the full height of the screen by setting
this margin to 0. If you do want smaller windows, any value (n) will cause the
uppermost and lowermost n lines not to be used.

WIDTH The symbol WIDTH allows two values: 80 and 132. Values up to
80 will be changed to 80. All values greater than 80 will be changed to 132. It
defines the screen width of the menu window.

HEIGHT Define the number of lines the menu should use. It is not recom-
mended to change the default value of 24.

EXIT WIDTH When leaving the menu, EXIT WIDTH is the screenwidth
that is set on exit.

WINDOW TOPMARGIN Specify the number of lines that should be left
blank at the top of the window. This is inside the menu window, so is specifies
the number of blank lines between the menu header and the first line being
used.

SCROLL REGION You can enable or disable a SCROLL REGION. When
enabled, a scroll region is created, leaving the menu screen intact, for the output
of DCL commands.

20 CHAPTER 4. CONFIGURATION

SCROLLREGION AUTODISABLE Using a scroll region might screw up
the menu window when a width margin is used, since it does overwrite the left
and right borderlines. By setting SCROLLREGION AUTODISABLE to 1 or
YES, the use of a scroll region is automatically disabled in this case.

SEPARATE INPUTS This is a boolean, which can be set to TRUE or
FALSE (or 1 or 0), that specifies whether or not the menu screen should be
split in two separate parts when input options are specified in the current menu,
using the lower part of the screen for the input values.

If set to FALSE, all items and inputs will be displayed as one long list, which
spares the use of two extra lines for separating items and inputs.

DISPLAY NAMES This element, which can be TRUE or FALSE, specifies
if menu names should be displayed. If set to TRUE, the name of the submenus,
if they are set, will be displayed in the window, enclosed by brackets.

When set to FALSE, the only way to find the names of menus, is using the
SHOW NAME command when inside the menu.

TAB The TAB setting is used when more columns are displayed on the menu
screen. It specifies the number of blanks between the two columns.

A second column is used to display the values of input options on the menu
screen, and for tag and select lists if they don’t fit in one column.

4.2.3 [QUESTIONS]

This section defines the several strings, as they will be displayed whenever OMI
or the menu needs input.
These strings can be used to translate all questions in your native language.

ALL INPUTS When a menu contains input options, the last option will be
to enter all values without the need to make the choice for all options separately.
This element specifies how this choice is represented on the screen.

REVERSE TAGS In tag screens, the last option will reverse the current
selection. This element specifies how this choice is represented on the screen.

OPTION This element represents the OMI prompt. This can be overwritten
by a PROMPT element in a menu file, unless the PROTECT PROMPT (see
section 4.2.1) is set to TRUE.

INPUT Represents how the user will be prompted to enter input when an
input option is selected.

DCL COMMAND Represents how the user will be prompted to enter a
DCL command.

4.2. CONFIGURATION FILE 21

DEFAULT INPUT When input is required for dynamic input (specified by
the string ˜? in the item element—see also section 5.5.1 on page 33), this option
specifies the default prompt if none is specified in the item element (this can by
done by adding {prompt} to the input string).

CONFIRM Several commands ask for a confirmation before executing by
default. Setting this element to FALSE can change this.

WAIT PROMPT When OMI waits until the user hits return (or any called
procedure using the OMI$WAIT command), this represents the prompt.

ANSWER YES
ANSWER NO By default, the OMI$CONFIRM command asks the user to
enter ‘Y(es)’ or ‘N(o)’ by default (see section 6.2.7. If you want your users to
be able tp answer in their own language on confirmations, these values can be
modified with the values of your choice.
E.g., in Dutch, this would:

answer yes = J

answer no = N

for ‘Ja’ (Yes) and ‘Nee’ (no).

4.2.4 [BGRPROCESS]

This section contains all elements that define how background processes should
be started.

BATCH QUEUE Define which queue should be used when OMI modules
are started in a batch. Default is SYS$BATCH.

DETACHED LGICMD When starting processes in DETACHED mode,
the user’s LOGIN.COM is not executed. Therefore, several logicals, symbols
etc. might not be available.

This element specifies a command procedure which sets up the proper user
environment. Default is SYS$LOGIN:LOGIN.COM.
The file OMI$SETUP.COM will be executed automatically.

LOGFILE Specifies the name of the logfile that will be written by the back-
ground process. Default is SYS$LOGIN:OMI$BACKGROUND <identifier>.LOG.

OPTIONS BAT Used to add extra qualifiers to the SUBMIT command, eg:
OPTIONS BAT = /NOTIFY

For more information, refer to the OpenVMS documentation.

OPTIONS DET Used to add extra qualifiers to the RUN /DETACH com-
mand, eg:

OPTIONS DET = /JOB TABLE QUOTA=8192
For more information, refer to the OpenVMS documentation.

22 CHAPTER 4. CONFIGURATION

4.2.5 [KEYRING]

All encryption keys that are created by the user with the SET KEY command,
or imported with the IMPORT KEY command, are stored in this section. They
have a binary value, and cannot be added or modified manually.

4.2.6 Adding sections

When you want to create default settings that can be used in your own menus
and modules, you can add your own sections to the configuration file.
E.g., if you want to add a printer queue that can be changed per user for use in
OMI, the following section and element can be added:

[MYDEFS]
PRINT QUEUE = MY PRINTER

If a file needs to be printed on the user specific printer queue, use the command:
$ PRINT /QUEUE=’MYDEFS$PRINTER QUEUE’ filename

NOTE: Several section names are reserved! They are listed in table 4.1.

[MAIN]
[SCREEN]
[QUESTIONS]
[BGRPROCESS]
[KEYRING]
[COUNTER]
[INTERACTIVE AUTH]
[MENU *] (all sections starting with MENU)

Table 4.1: Reserved section names

It is possible to add elements to existing sections (e.g. adding the
MY PRINTER element to section [MAIN] would result in the symbol
MAIN$MY PRINTER), but this is not recommended, since this might conflict
in future releases.

4.2.7 Example Configuration file

Figure 4.1 shows how a configuration file can look like.

4.2. CONFIGURATION FILE 23

[main]

empty value =

silent output = NLA0:

editor = edit/tpu

[screen]

width margin = 4

height margin = 1

width = 80

height = 24

exit width = 80

window topmargin = 1

scroll region = enabled

scrollregion autodisable = y

tab = 8

[questions]

all inputs = All Inputs

reverse tags = Reverse selection

option = OMI>

input = Enter Value

dcl command = DCL Command

default input = Input

wait prompt = Press <Return>to continue

answer yes = Y

answer no = N

[bgrprocess]

batch queue = omi$batch

logfile = Omi$:Omi$Background Process.Log

options bat = /notify /retain=error

[keyring] ! This section is created by OMI

my key = ÒÒÒÒ1

group key = ÒçÒÒÒ1

system key = Òı́ÒÒÒ1

!

! Below are my personal additions

!

[mydefs]

print queue = my printer

data location = device:[data dir]

Figure 4.1: the OMI configuration file

24 CHAPTER 4. CONFIGURATION

Chapter 5

Creating Menus

The Menu File contains all specifications and actions of the menu structures.
The files are built with sections, specified as a name between square brackets
([section name]).

Any section name can be chosen. The elements that are specified in the
section, are defined as symbols, and are available during the OMI session.
E.g. if the following section is defined:

[MY SECTION]
A STRING = My String
AN INTEGER = 2

the symbols MY SECTION$A STRING (with value “My String”) and
MY SECTION$AN INTEGER (with value 2) are available in OMI.

These sections are used for defining and configuring the menu structure. For
special purposes, the section names COUNTER, MAIN, SCREEN and QUES-
TIONS, and all section names starting with MENU are reserved (see also table
4.1 on page 22).

5.1 Defining Menus

The name of a menu section always starts with MENU , and the main menu
has to be named MENU, so a section [MENU MENU] is required.
All information, and all elements, of the menu are specified inside a menu sec-
tion.

5.1.1 The Main Menu

As stated above, every menu file has to contain a section called [MENU MENU].
This is the main menu of the menu file.
All elements that will be described below, can be specified in the main menu.

5.2 Menu Characteristics

Each menu can have unique characteristics, which can make the navigation
easier. These elements are all optional. Every menu can have it’s own prompt,

25

26 CHAPTER 5. CREATING MENUS

title, name and comment line. Title and comment lines will be displayed by
default.

5.2.1 The ON INIT and ON EXIT elements

When the user starts enters a menu (by starting OMI or by entering a sublevel),
OMI will execute an OMI module if the menu contains the ON INIT element.
This will only be done if the user comes from a higher level, not when a coming
up from a sublevel.
If the module returns status OMI$ WARNING (described in chapter 6), control
will not be passed to the selected menu level.

If a menu contains the ON EXIT element, the specified exit module will be
executed when the user leaves that menu. This will only be done if the user
leaves a menu to go to a higher level, not when a submenu is chosen!
If the exit module returns status OMI$ WARNING (described in chapter 6),
control will be returned to the current menu.

If a submenu is left with any of the commands MENU, EXIT or QUIT,
OMI will check both the current submenu and the main menu for the ON EXIT
element.
The default type of init- and exit modules is .OMI. Figure 5.1 shows the use of
init- and exit modules.

Example of the Menu file
[MENU MENU]

ITEM1 = Exit the menu#COMMAND#EXIT

ITEM2 = Start another menu#MENU#OTHER MENU

ON INIT = START WITH ! This module will be executed when OMI starts

ON EXIT = EXIT WITH ! This module will be executed when OMI exits

Example of EXIT WITH.OMI:

$ OMI$CONFIRM "Are you sure you want to exit ? " -

’QUESTIONS$ANSWER NO’ $ IF .NOT. OMI$CONFIRMED THEN $ EXIT

OMI$ WARNING

$ EXIT OMI$ OK

This example shows how you can ask the user for a confirmation before actually
leaving OMI.

Figure 5.1: using initialising- and exit modules in a menu

Execute OMI commands with ON INIT and ON EXIT

Since version 2.2 it is also possible to execute OMI commands in the ON INIT
and ON EXIT elements.

To do so, the element value should start a colon (“:”), immediatly followed
my the OMI command. The command will be executed, then control is passed to
the selected menu. Figure 5.2 shows an example where all variables in the menu
are reset to their default values (using the command RESET VARIABLES, see
section 9.20.6) when the user leaves the menu.

5.2. MENU CHARACTERISTICS 27

The return value of the OMI command is not evaluated.

[MENU ASKINPUT]

ON EXIT = :RESET VARIABLES BACKGROUND

ITEM1 = Back to the main menu#COMMAND#MAIN

ITEM2 = Start another menu#MENU#OTHER MENU

INPUT1 = Select a day#{SEL|WEEKDAYS}wk day#VALUE1

INPUT2 = Enter a time#tme##FRM TIME the variable name wk day will be re-
set to it’s default value listed as VALUE1 in the WEEKDAYS select list. The
variable tme is removed from memory (if it was set).

Figure 5.2: using initialising- and exit commands in a menu

5.2.2 The PROMPT element

The prompt element defines the prompt that will show up in the menu. Every
submenu can have its own prompt. If none is specified, the prompt from the
top-level menu is used. If no prompt element is found at all, the prompt from
the configuration file (element OPTION from section [QUESTIONS]) is used.
This last prompt will always be used if it is protected (see section 4.2.1).

5.2.3 The NAME element

The name will only be displayed when the element DISPLAY NAMES in the
configuration file is set to TRUE, and with the SHOW NAME command on the
OMI prompt.

The name is used for the JUMP command (see section 9.15), and in auto
mode (see section 3.1.2).

5.2.4 The COMMENT element

Comment lines can contain variables. They should be enclosed by accolades.
The comment line is displayed on the first line of the menu screen. If the
comment element is omitted, the menu screen will only display the specified
elements.

5.2.5 The TITLE element

The title will be displayed in the title bar of the menu. If omitted, a default
title will be displayed.

5.2.6 The AUTO REFRESH element

When this element is specified, it gives the number of seconds that OMI waits
for input on the OMI prompt before the menu screen is automatically refreshed.
The value should be between 0 and 255. When this element is omitted, or has
value 0, the automatic screen refresh is disabled.

28 CHAPTER 5. CREATING MENUS

5.2.7 The AUTO INCREASE element

If a submenu uses a counter from another (higher level) menu, and default values
are used in array- variables, the counter has to be specified in the menu. To pre-
vent the counter from being increased automatically, set the AUTO INCREASE
value in the submenu to FALSE. If this element is set to TRUE (the default
value), the counter value will be increased each time the menu is chosen.

5.2.8 The REQUIRED ORDER element

The user can be forced to enter the input values in a predefined order. This
can be done with the REQUIRED ORDER element. Specify the list of values
in the proper order, separated by comma’s, as the value for this element.

When the user selects an input element that is found in the
REQUIRED ORDER element, but not as the first one, a warning message is
displayed, telling the user to select another input element first.

If the selected element is the first one required, it is removed from the list and
the user can enter the input. When the list is completely empty (all required
inputs have been entered in the correct order), no checks will be performed until
the RESET ORDER (see section 9.20.4) is issued from the menu.

Using the REQUIRED ORDER element will set the ALL INPUTS element
(see section 5.2.9) to FALSE.

[MENU INPUTS]

REQUIRED ORDER = 1,2,3,5

INPUT1 = Directory#{SEL|DIRLIST}DIRECT
INPUT2 = Filename#{SEL|FN ’DIRECT’LIST}FNAME
INPUT3 = Filetype#{SEL|FTYPELIST}FTYPE
INPUT4 = Comment#COMMENTLINE

INPUT5 = Action#{SEL|ACTIONLIST}ACTION
This example forces the user to enter input element 1 as the first one. With
input 1, a value is selected from a select list (select lists are described in section
5.6.4), which is required to determine from which select list input 2 has to be
selected.

Figure 5.3: Force the order in which input is entered

In figure 5.3, input 5 cannot be selected when the inputs 1, 2 and 3 have not
been selected yet. Input 4 is optional.

5.2.9 The ALL INPUTS element

By default, OMI will display an option that can be selected to enter all input
elements without selecting them separately (see also section 3.2.3). Adding the
ALL INPUTS element to a menu section with value 0 or FALSE can disable
this.

5.3. COUNTERS 29

This element will be disabled by default when the REQUIRED ORDER
element (see section 5.2.8) is specified for this menu.

Example of MYMENU.MNU:
[MENU MYMENU]

TITLE = This is the title of My Menu

NAME = my menu ! This element can not contain blanks!

COMMENT = This is an example, username is {OMI$CURRENT USER}
This example shows the use of menu characteristics. The symbol
OMI$CURRENT USER will be translated to the current username, and dis-
played on the comment line. This symbol is described in section 6.3.1.
The name can be used to let OMI start with MYMENU (specified by the sec-
tion name [MENU MYMENU], in stead of the main menu [MENU MENU], by
entering

$ OMI MYMENU MY MENU
on the DCL prompt.
Note that the first parameter (“MYMENU”, which points to the file- name) is
required, even if the logical OMI$START MENU points to that file, when the
menu- name is used as a parameter! (See also section 3.1.2)

Figure 5.4: Setting menu characteristics

5.3 Counters

A special menu element is the counter. This defines a variable that will be
increased every time the menu is called (unless the AUTO INCREASE item is
set to FALSE, as described in section 5.2.7). The use of counters requires a
section [COUNTER], which contains all counters.

Using this structure, it is possible to define arrays, as in figure 5.5.

5.3.1 Manipulating counter values

Counter values can also be manipulated using commands on the OMI prompt.
If any of these commands are used, the comment line in figure 5.5 will not be
updated until the screen is refreshed with the REFRESH command, except for
INCREASE command, with which the REFRESH parameter can optionally be
specified.
The INCREASE command increases the current counter value with one.

If the value needs to be reset to 01, use the command
RESET COUNTER.
The command SET COUNTER, followed by an integer value, sets the counter

to the specified value.

For more information about this and other OMI commands, refer to the
chapter 9.

1NOT the initial value as specified in the [COUNTER] section!

30 CHAPTER 5. CREATING MENUS

[MENU TEST]

COMMENT = The counter is now {COUNTER$TEST COUNTER}
ITEM1 = Display the array#CALL#DISPLAY ARRAY

INPUT1 = Enter any value#MY VAR’COUNTER’$TEST COUNTER‘

COUNTER = TEST COUNTER

[MENU TEST2]

.

.

.

COUNTER = TEST COUNTER

[COUNTER]

TEST COUNTER = 0

The TEST menu above has a counter that will be increased every time the menu
is called. After every call, the user can enter a value by selecting the option
‘Enter any value’ on the menu screen, which will be stored in the variable with
the name MY VARn, where ‘n’ is the current value of the counter.
The [COUNTER] section is required to initialize all counters that are used in
the menu with any value. Most likely, the initial value will be 0, but there’s no
default, so a value has to be specified!
In the example, a second menu, TEST2, uses the same counter. This means,
the counter is increased every time any of the two menus is called! Note that
one (sub)menu can have only one counter. The total number of counters in the
menu file is unlimited.
The current value of the counter can be displayed in the comment line, as in
the example, or with the SHOW COUNTER command.
The option “Display the array” calls an example OMI module, DIS-
PLAY ARRAY.OMI, which could be created to display all entered values.

Figure 5.5: Using counters

5.3.2 Using default values in arrays

If a submenu uses a counter from another (higher level) menu, and default values
are used in array- variables, the counter has to be specified in the menu.

To prevent the counter from being increased automatically, set the
AUTO INCREASE, value in the submenu to FALSE. If this element is set
to TRUE or omitted, the counter value will be increased each time the menu is
chosen.

5.4 Security

Every menu can be protected using security elements and passwords. Besides
this, every submenu can also have an owner.

None of these elements are required, and there’s no default.

5.4. SECURITY 31

5.4.1 The OWNER element

The owner can be either a single username, or a list of usernames separated by
commas.

If an owner is specified for the main menu, this user will be considered the
owner for the complete menu file (all submenus), except for those submenus
that have a different owner element.

If no SECURITY element is specified, all users have READ and EXEC
privilege on all menus, except the owner, who has READ, EXEC and WRITE.

5.4.2 The SECURITY element

The SECURITY element should point to a section in the menu file with the
security settings for the menu.

The security section contains a list of usernames with their privileges on the
selected menu. The use of this section overwrites the default highest level for
the menu owner.

By default, users that are not listed, have no access to the menu. This can
be overwritten with the ALL USERS element.

Valid security levels are listed in table 5.1.

NONE The specified user has no access to the menu
READ The user can enter the menu and see the choices, but can-

not execute any of the options, or any command at the
command line. The only way to leave the menu is by using
<Ctrl/Z>.

EXEC The user has full access to all menu elements for execution
WRITE The user can make modifications to the menu, using the

SET or RESET command

Table 5.1: Security levels in Security sections

When no security section is used, READ, EXEC is the default for all users
except for the owner, who’ll also have WRITE access.

5.4.3 The PASSWORD element

The PASSWORD element holds the password in encrypted format. It cannot
be modified using an editor; a password can only be set or changed with the
SET PASSWORD command from the OMI prompt.

If it is required to add a password using the editor anyway, e.g. while creating
a menu file, this can be done by specifying the password element with an equals-
sign, but without a value:

PASSWORD =
The password will default to Omi$System (case sensitive!). This can be used as
a reminder to change the password interactive.

32 CHAPTER 5. CREATING MENUS

The optional PASSWORD LEVEL element defines the security level for all
users when a password is required. This is valid for all users, including the
menu-owner.

If this element is not specified, the default security handling is used.

The value should be specified as an integer. Table 5.2 provides an overview
with the valid values and their corresponding security level.

0 NONE
1 READ
2 EXEC
3 WRITE

Table 5.2: Security levels in the PASSWORD LEVEL element

5.4.4 Interactive authorization

Users can be blocked from using interactive DCL with the SPAWN, DCL or
SILENT DCL command by including the section [INTERACTIVE AUTH] in
the menu file. This section can contain user names that are, or are not autho-
rized to use interactive DCL.

By default, all users can use DCL. Users that should be blocked can be
included in this section, with value FALSE.

The default can by overwritten, by including the ALL USERS with value
FALSE. All users are now disabled for interactive DCL, except those that are
explicitly included with value TRUE.

Note that this does not affect the (SILENT)DCL and SPAWN commands
that are called by menu items; they can always be executed by all users that
have EXEC privilege to the submenu that contains the items.

5.5 The ITEM Element

Items are used to define the menu structure, and the actual actions being taken.
The basic layout of an item element has the keyword ITEM, followed by an
integer, and a value consisting of three arguments, separated by a hash (#):

ITEMn = Text on display#item type#value for type
The keyword ITEM must be followed by an integer, starting with ‘1’, and
without gaps in the counting, so if a menu has three item options, the elements
have to be specified as ITEM1, ITEM2 and ITEM3.

The value of items consists of three arguments, separated by a hash (#).
The first argument represents how the option will be displayed on the window.
The second argument specifies the item type, which can be CALL, COMMAND
or SUBMENU. The meaning of the third argument depends on the item type.

5.5. THE ITEM ELEMENT 33

5.5.1 The CALL item type

The CALL item type specifies that an OMI module should be executed. The
third argument of the item value should be the full path and name of a DCL
procedure, without the at-sign (@). The default file type for OMI modules is
OMI.

NOTE: When an OMI module is executed, all error, warning and informational
messages generated by VMS are suppressed. If you don’t want this (e.g. while
creating and testing menus or modules), use the command

$ SET MESSAGE ’OMI$ MESSAGE’
in the top of the procedure, or start OMI with the qualifier /DEBUG.

For a further description of OMI modules, refer to chapter 6.

Dynamic input If the procedure should be called with parameters, they can
be specified in the third argument. These parameters, or a part of it, can be
dynamic. This means, the user is prompted to enter a value after selecting the
menu option, but before the module is actually executed, as in figure 5.8.

Dynamic input can also be validated and formatted using a format section.
This requires a prompt enclosed by accolades. After the prompt (still between
the accolades), the name of the format section to use can be specified. The
prompt and section name are separated by a pipe-sign (|). This is shown in
figure 5.9. For more information about formatting sections, refer to section
5.6.2.
Every item can have an unlimited number of dynamic inputs.

5.5.2 The COMMAND item type

The COMMAND item type is used to execute an OMI command. The command
that should be executed is specified in the third argument of the item value,
including all keywords and/or parameters. As with the CALL item type, a
command can also have dynamic input, as can be seen in figure 5.9.

For a further description of OMI modules, refer to chapter 6.

5.5.3 The SUBMENU item type

This item type points to a submenu. The third argument has to contain the
name of the menu section (without the MENU string!).

You can also specify dynamic menus. This is done in the third argument. In
stead of my menu name, it should contain the value
{Text|submenu}{Text|submenu}prompt, as in

ITEM1 = Choose a submenu#SUBMENU#{First submenu|MYMENU1} -
{Second submenu|MYNAME2}Select a menu

You can have as many menus in dynamic menu lists as you like, but take
care the total length of the record in the MNU file, including leading blanks and
the ITEMn = , is less than 256 characters (instead of the VMS default of 512)!

Also, if the list is too long, displaying can screw up the window screen. This
has no effect on the functionality, but the user will have to enter the REFRESH
command after selecting a menu.

34 CHAPTER 5. CREATING MENUS

Figure 5.10 illustrates the use of the SUBMENU element.

5.6 The INPUT element

Inputs can be used to collect information from the user, which can be passed to
OMI modules. The keyword INPUT has to be followed by an integer, starting
with ‘1’, and without gaps in the counting, so if a menu has three input options,
the elements have to be specified as INPUT1, INPUT2 and INPUT3.

The value of inputs consists of two to four arguments, separated by a hash
(#).

The first argument represents how the option will be displayed on the win-
dow.

The second argument contains the variable name (the symbol that is defined
after the user selected the corresponding option). This also indicates the input
type, which can be ‘Free input’, ‘Select list’ or ‘Tag list’.

The third argument can optionally contain a default value. The way this is
handled depends on the input type. This argument is not valid in Tag lists.

The fourth argument is only valid for the Free input. It will be described
below, and more specific in section 5.6.2.

5.6.1 The Free Input element

The Free input type is an element that prompts the user for input (using the
prompt represented by INPUT from the [QUESTIONS] section in the configura-
tion file) when selected. The basic layout is as follows:

INPUTn = Text on display#VARIABLE NAME#default value#format
in which the third argument, ‘default value’, and the fourth argument, ‘format’
(described below), are optional.

The default value will be initialized when OMI starts, so if the value is
changed, and another submenu is chosen, the new value will not be overwritten
when the same menu is called again.

If a FORMAT argument is used, without a default value, the default value
has to be specified empty, as in

INPUTn = Text on display#variable name##format

5.6.2 Formatting the input

If the Free input element contains a fourth argument, this should be the name
of a format section. This section contains a description of what kind of input is
expected, and/or how the input should be formatted.

The keyword TYPE is required in the format section. This can be STRING,
FILESPEC, INTEGER, DATE or TIME.

All booleans that can be used in the format sections described below, will
be FALSE by default if omitted.

The keywords will either be used for validating the user response, which will
return a warning message when validation fails (e.g. the WILDCARDS keyword

5.6. THE INPUT ELEMENT 35

in the FILESPEC type), or for converting the user input (e.g. the UPCASE
keyword in the STRING type). This is described per keyword.

Section 5.6.3 shows an example of the use format sections.

The FILESPEC type This indicates the input should be a filename, with
or without a device and directory specification.

If the input contains blanks, they will be removed, and the file name will
automatically be converted to uppercase.
Valid keywords are listed in table 5.3.

REQUIRED [TRUE or FALSE] If set to TRUE, OMI checks to see if the
file exists. If not, an error is displayed.

WILDCARDS [TRUE or FALSE] If set to TRUE, OMI will allow wild-
cards (‘*’ and ‘%’) in the file name.

FDEVICE [device name] This can specify a default device name.
FDIRECORY [directory name] This can specify a default directory

name.
FTYPE [file type] This can specify a default file type.

Table 5.3: Keywords for the FILESPEC format type

The STRING type This indicates the input should be of the STRING type.
An invalid response will result in a warning message.
Valid keywords are listed in table 5.4.

The INTEGER type This indicates the input should be of the INTEGER
type. An invalid response will result in a warning message.
Valid keywords are listed in table 5.5.

The DATE type This indicates the input should be of the DATE type. An
invalid response will result in a warning message. The user response has to be
in a valid ABSOLUTE time format (DD-MMM-YYYY).
Valid keywords are listed in table 5.6.

The TEXTAREA type Enter free input, using a text editor. The value is
both stored in a file, and in the specified variable name. The size of the value
in the variable name is limited by VMS. This does not affect the value stored
in the file.

When a valid filename is entered, the editor, specified in the configuration file
(see section 4.2.1), will be started. When the no filename is entered, a default
value will be used. This is the default value from the menu file or a newly
generated value if omitted.
The default location is OMI$MENU DIRECTORY:2.

2Note that the OMI$MENU DIRECTORY: logical can be a search path; the first physical
directory in the seach list is used by default.

36 CHAPTER 5. CREATING MENUS

UPCASE [TRUE or FALSE] If set to TRUE, the input string
will be converted to uppercase.

LOWERCASE [TRUE or FALSE] If set to TRUE, the input string
will be converted to lowercase.

COLLAPSE [TRUE or FALSE] If set to TRUE, all blanks and
tabs will be removed from the in-
put stringa

MINLENGTH [integer value] Minimum number of characters.
MAXLENGTH [integer value] Maximum number of characters.
IVCHARS [list of invalid characters] Specify a list of characters that

are not allowed in the input
string. If any if the listed charac-
ters are encountered, a warning
message will be displayedb.

ALPHANUM [TRUE or FALSE] If set to TRUE, the keyword
IVCHARS will be filled auto-
matically with the character list:
‘’~^!?@#$%&* -+=(){}[]<>:;,.\|/c.
This overwrites any other value
of IVCHARS!

Table 5.4: Keywords for the STRING format type

aIn versions prior to 2.3, the keyword BLANKS was used for this format, but this was
very confusing, since BLANKS = TRUE would remove the blanks—all defaults are FALSE
with the formatting keywords. Therefore, BLANKS has been replaced by COLLAPSE. The
BLANKS keyword is still supported, but will be overwritten by COLLAPSE if both are used.

bThis list can NOT contain an exclamation mark (!)or a double quote (”). Also, if the
list should contain a blank, it cannot be the first or the last character of the list, blanks are
allowed, but have to be enclosed by other characters

cUnlike the use of IVCHARS as a keyword directly, the exclamation mark (!) will be added
to the list of invalid characters this way, but the double quote (”) still not. The ALFANUM
keyword makes sure the formatted string only accepts all characters (‘A’-‘Z’), numbers (0-9)
and the underline () as valid input.

The file will only be available during the current OMI session, and the file
will be deleted when OMI exits, unless KEEP is set to TRUE. This and other
valid keywords are listed in tabel 5.7.

The TIME element This indicates the input should be of the TIME type.
An invalid response will result in a warning message. The user response has to
be a valid time format (HH:MM [AM|PM]or HH.MM [AM|PM]).
Valid keywords are listed in table 5.8.

5.6.3 Example of the Free input type with Formatting.

In the INPUTS menu in figure 5.11, the user can enter two values; a filename,
which has to exist (a warning will be displayed if the file is not found), and a
date, which will be the current date by default.

The filename will be converted to uppercase and all blanks will be removed
before other validation is performed.

5.6. THE INPUT ELEMENT 37

MIN [integer value] The lowest value allowed.
MAX [integer value] The highest value allowed.
FLOAT [TRUE or FALSE] Specifies the input value can be a float-

ing pointa.
FLOAT POINT [. or ,] Specifies which character will be used

as the floating-point character. It over-
writes the default value from the con-
figuration file (see section 4.2.1)b.

Table 5.5: Keywords for the INTEGER format type

aWhen an integer can have a floating point, the MIN and MAX values will still be regular
integers; they can never have floating point values.

bInput entered by the user, must contain the same floating-point character!

FORMAT [ABSOLUTE, COMPARISON or DELTA] Specify the format to
which the input will be
converted.

Table 5.6: Keywords for the DATE format type

The date will be converted to the VMS COMPARISON type, so if the date
entered is “25-JUN-1997”, this will be changed to “1997-06-25”.

5.6.4 The Select list input element

If the user cannot freely enter any input, a list with choices can be presented,
from which the user can make a selection.

To do so, the variable name in the second argument is preceded with the SEL
keyword, followed by the pipe sign (|) and the name of a section with choices,
enclosed by accolades:

INPUTn = Text on display#{SEL|section name}variable name#VALUEn
The optional third argument points to the default value. This should be the
locator of the value (VALUEn, see below), not the value itself. This input type
accepts no fourth argument.

The select section contains a list of variables, called VALUE1...VALUEn,
that will be displayed in a pop-up window.

The name of a selectlist section can be freely chosen, but it must be the same
as in the input element where it’s being called from (the name after the pipe
sign between accolades).

The selectlist section only contains numbered VALUE elements, like
VALUE1 = any value
VALUE2 = any value
VALUE3 = any value

One of the options can be enclosed by accolades. This means, the user does not
have to select from the list, but can also enter free input. It is recommended to
use the last option for this purpose3.

3If this possibility is used, it won’t display very nicely if the same list is used as a taglist

38 CHAPTER 5. CREATING MENUS

FILENAME [textitfile name] The name of the temporary file
that will be used to create the
text area. The default location
is OMI$MENU DIRECTORY:
(see footnote 2 on page 35),
and the default type is .TXT.
If this field is not specified, the
name TA menu$INPUTn will be used,
where menu is the current menu name,
and INPUTn the OMI internal element
name.

KEEP [TRUE or FALSE] If set to TRUE, the temporary file will
not be removed when OMI exists, and
so will be available for a future session.

HISTORY [TRUE or FALSE] If set to TRUE, older version of
the temporary file will also be
saved, limited by the VMS VER-
SION LIMIT. When KEEP is set
to FALSE or not specified, HIS-
TORY is automatically set to FALSE.
By default, only the last version will
be saved (if KEEP is TRUE)

LARGE [TRUE or FALSE] The size of a textarea is limited to
255 characters by default. With this
option it is possible to store values
up to 1024 characters in the variablea.
The maximum size does not affect the
value that is stored in the temporary
file.

Table 5.7: Keywords for the TEXTAREA format type

aSetting this option to TRUE, can cause the command SHOW TEXTAREA not to show
anything without a warning!

NOTE: Free input in a select list, like option 14 in figure 5.12, can NOT be
formatted or validated! So, if an OMI module is called with the variable USR-
NAME from the USER menu in the example, which requires the username to
be in uppercase, lowercase user input will cause failures!

When this input is asked using the ALL command, or the last input option
from the menu (see section 3.2.3, the current value is highlighted in the pop-up
window, and won’t be overwritten if no new value is selected.

5.6.5 The Tag list input element

If a variable needs to contain a list of values, that can be searched in an OMI
module using the F$ELEMENT lexical, tag lists can be used as an input ele-
ment.

somewhere else (refer to section 5.6.5)

5.6. THE INPUT ELEMENT 39

HOURS [12 or 24] Specifies if the time should be in
12 or 24 hours format. In 12 hours
format, the string “am” or “pm” will
be added, and the time value will, if
necessary, be converted (e.g. “21:45”
will be converted to “9:45pm”, “10:15”
will be converted to ‘10:15am”).
When omitted, the default from the
configuration file will be used (see
section 4.2.1).

SEPARATOR [separator string] By default, a colon (:) will be used to
separate hours and minutes (HH:MM),
but by using this element, any character
string can be diaplayed in the output.
For user input, only a colon (:) or a dot
(.) are allowed.

TRZERO [TRUE or FALSE] If set to TRUE, trailing zeros will
be included for the hours if necessary,
e.g. “9:45pm” will be displayed as
“09:45pm”.

UPCASE [TRUE or FALSE] If set to TRUE, the string am or pm
will be converted to uppercase. This
element will be ignored when HOURS
is specified as 24.

Table 5.8: Keywords for the TIME format type

This is done by preceding the variable name by keyword TAG, followed by
a pipe sign (|) and the name of a tag list, enclosed by accolades:

INPUTn = Text on display#{TAG|taglist name}variable name
When selected, all possible values will be displayed on the menu screen, and the
user can select all desired values, which will be highlighted. The last option in
the tag list will always be to reverse the current selection.

Pressing <Ctrl/Z> will return to the menu screen. By then, all values have
been stored in the named variable, separated by a specified delimiter.

The tag list input element cannot have a default value (a third and fourth
argument will be ignored).

The name of a taglist section can be freely chosen, but it must be the same
as in the input element(s) from where it’s being called.

The layout of the tag list section is the same as the select list section, with
the following differences:

• The DELIMITER keyword is required. This must me a single character,
which will be used to separate the selected items.

• Using the optional keyword MESSAGE, a message can be displayed on the
top of the screen to give the user a small explanation of what’s expected.

• A ‘Free input’, as option 14 in figure 5.12, cannot be used.

40 CHAPTER 5. CREATING MENUS

• Due to the same layout, Tag lists can be used as Select lists and vice
versa (as long as no ’Free input’ is required for the Select list), since the
DELIMITER and MESSAGE keywords are ignored by the Select input.

Figure 5.13 shows how a tag list element can be created, with which the user
can tag one ore more weekdays.

If this option is selected, the list of weekdays will be presented in the menu
window with all days preceded by option numbers 1-7, and option 8 to reverse
the current selection.

If the user selects the numbers 1, 3 and 5 (one at a time), the value of the
variable DAYLIST will be “Monday/Wednesday/Friday”.

5.6.6 Reading Tag and Select values from files

It is possible to let OMI read the values for a tag list or a select list from a
file. To do so, an input element and a named section should be created as
described in the previous sections but in stead of the VALUEn elements, the
section should contain the FILENAME element, which points to the filename
that contains the values. All other elements can still be used in the same way.

The default location of the file is OMI$MENU DIRECTORY:, or OMI$: if
not found there.

Figure 5.14 shows the use for input files in tag- or select lists. The VALUEn
fields are filled dynamically with values from the specified file. The file in this
example changes every month, and contains all dates for the weekends in the
selected month.

In stead of reading the variable from F$TIME(), it’s also possible to use
another input element to get the variable pointing to the requested value file.

If you have write privilege to the current menu, the value file can be modified
with the EDIT VALUE FILE command.

5.7 Including Standard Libraries

An #INCLUDE directive can be used to load one or more library menus into
the menu file. Library menus are normal OMI menus, but they should not have
a main menu (section [MENU MENU]). All sections from the library menu are
available in the menu that includes the library. The default file type for libraries
is .OML.

The #INCLUDE directive can be used anywhere in the menu file. The
number of includes is unlimited, but nested includes are not allowed (the #IN-
CLUDE directive cannot be used from within libraries).

NOTE: OMI comes with one standard library, OMI$LIBRARY.OML. It is ad-
vised not to edit this library, but to create your own ones, since the library
might be overwritten with a new distribution.

5.7.1 Handling duplicate items

When including one or more standard libraries, it can happen that one of the
libraries contains a section with values that is used in the calling menu file as
well.

5.8. ADDING DESCRIPTIONS TO THE MENU FILE 41

To prevent warning messages, the attribute #LEADING can be added to
the item that should be used.

The order in which the files are read is not relevant4; the item that has
been specified with #LEADING, will be the value that is used. If all values are
specified with #LEADING, the last one will be used.

Figure 5.15 shows how libraries can be used and warning messages for du-
plicate values can be prevented.

5.8 Adding descriptions to the Menu file

Menu files can contain descriptions, if they are outcommented using the ex-
clamation mark (!). However, if a line starts with an exclamation mark, it’s
still read by OMI. To improve performance with long descriptions, they can be
placed at the bottom of the file, after the string <EOF> .

Whenever OMI reads a line with (only!) this identifier string, it will consider
it as the end-of-file, and will stop reading from the file. Figure 5.16. shows an
example of this. The same identifier can also be used in configuration files.

5.9 Special Characters

This section briefly lists characters that are reserved by OMI in menu files.

The exclamation mark (!), double quote (”) and accolades ({}) cannot be
used for elements or their values.
An exclamation mark should be used for comments.

The hash (#), the pipe-sign (|) and the combination of tilde and question
mark (˜?) cannot be used in input- or item- elements.

5.10 Creating menu- specific help files

Each menu file can have a help file. This file can be used for brief usage infor-
mation or other descriptions.

Help files have to be located in the same directory where the menu is found,
and should have the same name but with file type .OMH, e.g. if your menu file
is called MY-MENU.MNU, the help file should be called MY-MENU.OMH.

The layout of the menu file is similar to the menu file. There is a section
name between square brackets, which should be equal the menu name without
the MENU prefix. For the main menu—who’s section in the menu file always
has to be [MENU MENU]—this means the help section is called [MENU], and if a
menu is created in the menu file with section name [MENU MY-FUNNY-SUBMENU],
its helpsection is named [MY-FUNNY-SUBMENU].

4When a menu file is validated with the /VALIDATE qualifier (see section 2.2.8), a warning
will be displayed if the first item of two duplicate item names was specified as leading. During
run-time this is handled properly.

42 CHAPTER 5. CREATING MENUS

The text in the section is displayed on the screen as entered in the file. As
with long file descriptions, the <EOF> identifier can also be used to force the
end of file (see also section 5.8). Additionally, the textstring <FF> can be used
to force a newpage. By default, the user has to press Return when the last line
in the OMI screen is written, but <FF> forces an OMI$WAIT5 at the line where
it occured.

Helpfiles are read with the INFO command. For more information on this
command, refer to section 9.14.

The menu OMI$MANAGE, which comes with the distribution, has a help file
that can be used as an example.

5see section 6.2.25

5.10. CREATING MENU- SPECIFIC HELP FILES 43

[MENU MENU]

OWNER = SYSTEM

SECURITY = TOPLEVEL SECURITY

ITEM1 = First submenu#SUBMENU#FIRST

ITEM2 = Second submenu#SUBMENU#SECOND

[MENU FIRST]

OWNER = FIELD

PASSWORD =

[MENU SECOND]

SECURITY = SECONDLEVEL SECURITY

[TOPLEVEL SECURITY]

SYSTEM = READ,WRITE,EXEC

FIELD = READ,EXEC

ALL USERS = NONE ! Default when the SECURITY element is used

[SECONDLEVEL SECURITY]

FIELD = READ

ALL USERS = READ,EXEC

The owner of the main menu, and of the menu SECOND, is user SYSTEM.
In the menu FIRST, the owner is FIELD. This menu is also protected with a
passworda.
The SECURITY element defines the privileges for all listed users. If a user is
not listed, the privileges from the ALL USERS will be used, or the value NONE
if ALL USERS is not specified.
Note that user SYSTEM is granted WRITE on the main menu, even though
it’s the owner. This is necessary since the SECURITY element is used.
In the menu FIRST, all users have READ,EXEC privilege, except user FIELD
(the owner for that menu), who has READ,WRITE,EXEC, since that menu
uses no SECURITY element.

Figure 5.6: Defining menu security

awhich is empty in this example, so it defaults to Omi$System, but usually this will contain
an encrypted value

44 CHAPTER 5. CREATING MENUS

[INTERACTIVE AUTH]

SYSTEM = TRUE

SYSTEST = TRUE

DEVELOPER = TRUE

ALL USERS = FALSE ! Default is TRUE

[MENU MENU]

ITEM1 = Exit#COMMAND#DCL LOGOUT

ITEM2 = Mail#COMMAND#SPAWN MAIL

When the menu file contains this section, the users SYSTEM, SYSTEST and
DEVELOPER can use the commands (SILENT)DCL and SPAWN at the OMI
command line, all other users can’t.
All users however can execute the items that are given in the main menu in the
example.

Figure 5.7: Disallow users to use interactive DCL

Extract from a menu file:
ITEM1 = Display the weekday#CALL#DISPLAY WEEKDAY ˜?{Enter a date}
Example of DISPLAY.OMI:

$ IF P1 .EQS. "WEEKDAY" THEN $ GOTO WEEKDAY$

.

.

.

$WEEKDAY$:

$ OMI$DISPLAY MESSAGE "Weekday for ’’p2’: ",

F$CVTIME(P2,,"WEEKDAY")

$ EXIT

In this example, the user gets the prompt “Enter a date” when the CALL item
type is selected. After entering a date, it will be passed to the module as the
third parameter.
The prompt is enclosed by accolades in the item element. If omitted, the prompt
specified as DEFAULT INPUT in the [QUESTIONS] section of the configura-
tion file is used.

Figure 5.8: Using dynamic input in the CALL item type

ITEM1 = Type a text file#COMMAND# DCL TYPE /PAGE -

~?{Filename:|FILE FORMAT}

[FILE FORMAT]

TYPE = FILESPEC

REQUIRED = TRUE

FTYPE = .TXT

Figure 5.9: Using dynamic input with a format section

5.10. CREATING MENU- SPECIFIC HELP FILES 45

[MENU MENU]

ITEM1 = Go to the second Menu#SUBMENU#SECOND MENU

[MENU SECOND MENU]

ITEM1 = Dynamic Menu#SUBMENU#{Menu 1|SUB1} -

{Menu 2|SUB2}Which Menu:

[MENU SUB1]

! Menu definitions...

[MENU SUB2]

! Menu definitions...

OMI starts with a menu in which an option is displayed that is represented as
“Go to the second Menu”. When the user chooses this option, the next menu
is displayed, containing the option “Dynamic Menu’”. Choosing this option,
results in the following ‘pop-up’ window:

1> Menu 1
2> Menu 2

and on the command line, the prompt “Which Menu:”. The menu that will be
called depends on the user input.

Figure 5.10: Using the SUBMENU element

[MENU INPUTS]

INPUT1 = Enter a file name#FNAME##FILNAM FRM ! No default value

INPUT2 = Enter a date#DATE#TODAY#DATE FRM ! Default is Today

[FILNAM FRM]

TYPE = FILESPEC

REQUIRED = TRUE ! File has to exist

[DATE FRM]

TYPE = DATE

FORMAT = COMPARISON

Figure 5.11: Formatting Free input

46 CHAPTER 5. CREATING MENUS

[MENU USERS]

INPUT1 = Select a user#{SEL|SYSTEM USERS}USRNAME#VALUE3
[SYSTEM USERS]

VALUE1 = RDB$REMOTE

VALUE2 = RDM MONITOR

VALUE3 = SYSTEM

VALUE4 = SYSTEST

VALUE5 = SYSTEST CLIG

VALUE6 = UCX$FTP

VALUE7 = UCX$NTP

VALUE8 = UCX$REXEC

VALUE9 = UCX$RSH

VALUE10 = UCX$SNMP

VALUE11 = UCX LPD

VALUE12 = UCX SMTP

VALUE13 = DEFAULT

VALUE14 = {Other user}
This list lets the user select a VMS System username. The default username is
SYSTEM (VALUE3). Selecting the option in the USERS menu, will display a
pop-window like this:

1> RDB$REMOTE
2> RDM MONITOR
3> SYSTEM
4> SYSTEST
5> SYSTEST CLIG
6> UCX$FTP
7> UCX$NTP
8> UCX$REXEC
9> UCX$RSH
10> UCX$SNMP
11> UCX LPD
12> UCX SMTP
13> DEFAULT
14> Other user

However, if the user needs to select a username that’s not in the list, selecting
14 will cause OMI to prompt for “Other user”. The value between accolades
is the value as displayed in the list, and will also be used as prompt when this
option is selected.

Figure 5.12: Using the Select list

5.10. CREATING MENU- SPECIFIC HELP FILES 47

[MENU MODIFY-JOB]

INPUT1 = Select days#{TAG|WEEKDAYS}daylist
[WEEKDAYS]

MESSAGE = Select the day(s) on which the job should run

DELIMITER = /

VALUE1 = Monday

VALUE2 = Tuesday

VALUE3 = Wednesday

VALUE4 = Thursday

VALUE5 = Friday

VALUE6 = Saturday

VALUE7 = Sunday

Figure 5.13: Using the Tag list

Menu file:
[MENU PLANNING]

INPUT1 = Weekends to work#{TAG|WEEKENDS}work weekends

[WEEKENDS]

message = Select the weekend day(s) you want to work this month

delimiter = /

filename = ’’F$EXTRACT(3,3,F$TIME())’.DAT

File NOV.DAT:
Saturday 1st

Sunday 2nd

Saturday 8th

Sunday 9th

Saturday 15th

Sunday 16th

Saturday 22nd

Sunday 23rd

Saturday 29th

Sunday 30th

Figure 5.14: File input in Tag and Select lists

48 CHAPTER 5. CREATING MENUS

The menu file contains:
[MENU MENU]

INPUT1 = Select a TCP product#{SEL|TCPPRODS}TCP PROD#VALUE1

[ANOTHER SELECT]

VALUE1#LEADING = Set in the menu file

VALUE2 = Also set in the menu file

#INCLUDE MY LIB

The file MY LIB.OML contains:
[TCPPRODS]

VALUE1 = UCX

VALUE2 = WOLLONGONG

VALUE3 = TCPWARE

VALUE4 = MULTINET

VALUE5 = CMU/TEK [ANOTHER SELECT]

VALUE1 = Set in the library

VALUE2#LEADING = Also set in the library file

The menu uses a select list that’s not available in the menu file, but it is in the
library that is included.
When OMI starts, the select list is initialized from the library, and UCX will
be the default value stored in the variable TCP PROD.
The #LEADING settings cause the duplicate values to be set as follows:

ANOTHER SELECT$VALUE1 = ”Set in the menu file”
ANOTHER SELECT$VALUE2 = ”Also set in the library”

Figure 5.15: Including standard libraries

! Comments are at the bottom of this file

[MENU MENU]

ITEM1 = Leave this menu#command#exit

! Pretty short menu, isn’t it?!

<EOF>

The example you are reading now is not described in this

document, since this text is still a part of the example.

OMI won’t read this from the menu file, since the end-of-file

was already reached. Therefore, these lines don’t need to be

outcommented.

Figure 5.16: Comments in Menu files

Chapter 6

Writing Modules

Menu items can be used to start OMI modules, using the CALL item-type, as
in:
ITEM1 = Text on Display#CALL#FILENAME[.OMI]
This item executes the module FILENAME.OMI when selected. Parameters
can optionally be specified in the menu item, eventually using the dynamic
input identifier (˜?), as described in section 5.5.1.

This chapter describes a set of commands and symbols from OMI and the
standard toolbox that are available for use in OMI modules.

6.1 Return values of OMI commands

The commands that are available in the standard OMI toolbox will be described
in section 6.2. They all return their values as global symbols, if any value is
returned. When OMI exits, all symbols will be removed.

NOTE: Make sure you don’t use a local symbol with a name that’s used for any
of the global symbols in OMI commands, since that will always overwrite the
returned value of this command!

The status return values of all functions can be: OMI$ OK (normal success-
ful completion) OMI$ WARNING or OMI$ ERROR, where OMI$ ERROR has
an integer value bigger than OMI$ WARNING. This can be used to see if there
was any failure by checking the status as below:

$ IF $STATUS .GE. OMI$ WARNING THEN $ <error-handling>
If the return value of any command is equal to or greater than OMI$ WARNING,
the global symbol which should be defined by the command, might not have
been set, resulting in more errors or unpredictable behavior due to the use of
the value of a former call if the return status is not checked.

6.2 OMI Commands in modules

All commands that are available for use in OMI modules start with the string
OMI$. The way they are defined, and can be extended, is described in chapter
7.

49

50 CHAPTER 6. WRITING MODULES

6.2.1 OMI$ASK

Format: OMI$ASK question

Prompt the user for input. The prompt is specified as a parameter. If no param-
eter is specified, the value DEFAULT INPUT from the section [QUESTIONS]
from the configuration file is used.

Return value

The user response is returned in the global symbol OMI$RESPONSE. If the
user enters <Ctrl/Z>, OMI$RESPONSE will be empty, and the status code will
be OMI$ CANCELLED.

6.2.2 OMI$CALC

Format: OMI$CALC calculation

Invoke the OMI calculator. For a description of the calculator, refer to section
9.3. The result is returned in the global symbol OMI$CALCULATED.

6.2.3 OMI$CALL

Format: OMI$CALL omi-module [parameters]

This command executes an OMI module. With this, it is possible to create
several standard OMI modules that will perform generic actions, which will be
executed from the action-specific modules.

Parameters

The first parameter is required. It is the name of the OMI module that will be
executed.

By default, the file has type .OMI and is located in OMI$:. If not found
there, OMI will look in OMI$MENU DIRECTORY:, unless a full path was
specified.
All other parameters will be passed to the module.

Return value

The status code returned by this command is the final exit status of the called
module.

6.2.4 OMI$CHECK

Format: OMI$CHECK variable [message] [[NO]EMPTY ALLOWED]

This command can be used to perform checks on the existence of required
variables. This is useful if an OMI module needs input, which has to be specified
in a menu where no default values are used.

Parameters

The first parameter is required. It specifies the variable name that needs to be

6.2. OMI COMMANDS IN MODULES 51

checked.

If a message needs to be displayed when the required variable has not been
specified, this can be passed in the second parameter. This is optional.

The third parameter indicates whether or not the variable is allowed to be
empty (the variable does exist but has no value). By default, empty values are
not allowed. You can override this by specifying EMPTY ALLOWED as the
third parameter. This only influences the the message being displayed or not,
the return value will not change.

Return values

When the variable is valid, the value OMI$ OK is returned.
When the variable exists but is empty, the value OMI$ WARNING is returned.
When the variable doesn’t exist at all, the value OMI$ ERROR is returned.

Examples

$ OMI$CHECK USERNM ”* ERROR * You didn’t specify a username”
$ IF $STATUS .GE. OMI$ WARNING THEN $ EXIT

In this example, the OMI module requires a username as input. When this vari-
able has not been filled with a value or has not been specified at all, the error
message is displayed. The return value can be OMI$ WARNING or greater,
indicating not all required information was specified, due to which control is
returned to the menu.

$ OMI$CHECK FNAME ”* ERROR * No file name specified” EMPTY ALLOWED

$ STATUS = $STATUS

$ IF STATUS .EQ. OMI$ ERROR THEN $ EXIT

$ IF STATUS .EQ. OMI$ WARNING

$ THEN

$ OMI$DISPLAY MESSAGE ”* INFO * Using all files”

$ FNAME = ”*.*”

$ ENDIF

This example shows how OMI$CHECK can be used to check the value of the
variable FNAME, allowing an empty value.
The parameter EMPTY ALLOWED causes OMI to display the error message
only when the variable doesn’t exist at all. The return value does indicate an
empty value, but the message won’t be displayed, and the OMI module takes
action upon that.

6.2.5 OMI$CLEAR SCREEN

Format: OMI$CLEAR SCREEN

This command removes all text from the window, leaving the layout intact.

52 CHAPTER 6. WRITING MODULES

6.2.6 OMI$CMDLINE CLEAR

Format: OMI$CMDLINE CLEAR

This command erases the contents of the command line of the OMI menu win-
dow.

6.2.7 OMI$CONFIRM

Format: OMI$CONFIRM question [default]

This command asks a question that can be answered with Y(es) or N(o)1, and
handles all input and output, returning the value back to the calling procedure.

Parameters

The first parameter is a string, which will be displayed exactly on the input line
of the menu string, followed by the choices than can be made “(Y/N)”, where
‘Y’ and ‘N’ are values that can be modified in the [QUESTIONS] section of the
configuration file (see section 4.2.3).

The second parameter represents the default value. This parameter can
be ’QUESTIONS$ANSWER YES’ or ’QUESTIONS$ANSWER NO’ (note the
use of the single quotes (’)!). If omitted, no default value will be available, and
the user is required to enter valid input.

Return value

This command defines a global symbol OMI$CONFIRMED. This can be TRUE
or FALSE. The symbol will be cleaned up at the end of the procedure, but also
every time the OMI$CONFIRM command is called, to prevent conflicts.

Example

$ OMI$CONFIRM ”Are you sure ?” ’QUESTIONS$ANSWER NO
$ IF OMI$CONFIRMED THEN $ GOTO USER IS SURE

This command will display the following question on the input line:
Are you sure ? (Y/[N])

The square brackets indicate the default answer.

6.2.8 OMI$CREATE MBX

Format: OMI$CREATE MBX [logical-name]

Open a temporary mailbox. This command creates a mailbox for read and
write, and a logical which points to the I/O channel.

The mailbox will automatically be removed when the command
$ CLOSE logical-name

is issued and no other processes have an open connection with the mailbox.
This can be done by the OMI module, but when OMI exits, the mailboxes that
are still opened, will be closed automatically.

1refer to section 4.2.3 to translate these possible answers

6.2. OMI COMMANDS IN MODULES 53

Parameter

The optional parameter specifies the name of the logical that points to the I/O
channel, which is the same name that’s used for the logical. An error occurs if
the parameter specifies a name that’s already in use for an existing logical.

If the parameter is omitted, the name will default to OMI$MAILBOX.

Return values

OMI$CREATE MBX returns a logical name which points to the I/O channel.
This can be used to write text to the mailbox using the command

$ WRITE logical-name ”Line of text”
or to read using the command

$ READ logical-name my-symbol
A global symbol with the same name is also defined, containing the device name
of the mailbox (MBAxxx:). This value can be transferred to other processes,
with which they can open the same mailbox for communication:

$ OPEN /READ /WRITE my-logical ’symbol-name’

6.2.9 OMI$CREATE OTF

Format: OMI$CREATE OTF

This command is used to invoke on-the-fly menus. These menus are described
in chapter 8.

6.2.10 OMI$DATE INFO

Format: OMI$DATE INFO date

Calculates the current day number (day-of-year), week number and month num-
ber. The values are returned in the following global symbols:

• OMI$DAYNUMBER

• OMI$WEEKNUMBER

• OMI$MONTHNUMBER

Parameter

A date can optionally be specified as a parameter. If omitted, it defaults to
the current date. The date information is returned for the current date. The
parameter has to be a date in valid ABSOLUTE time format.

6.2.11 OMI$DECRYPT

Format: OMI$DECRYPT encrypted-string key-name

This command can be used to decrypt a string, that was encrypted with
OMI$ENCRYPT.

54 CHAPTER 6. WRITING MODULES

Parameters

The encrypted string has to be specified as a parameter. If the encrypted string
is encrypted with OMI v1.1 or higher, an encryption key is required. That has
to be the same key that was used for encrypting. This key is generated with
the SET KEY command and stored in the user specific configuration file.

The second parameter should be the name of the key with which the string
was encrypted. It has to exist at the keyring of the users configuration file (see
section 4.2.5). If it’s not there, it can be imported with the OMI command
IMPORT KEY.

Strings that where encrypted with OMI v1.0b3 - v1.0 can still be decrypted
without the need for a key.

Return value

The decrypted result will be returned in the global symbol OMI$DECRYPTED.

6.2.12 OMI$DISPLAY INFO

Format: OMI$DISPLAY INFO

Writes specified information to the menu screen. The information has to be
specified as separate records, named OMI$RECORD1, OMI$RECORD2, ...
OMI$RECORDn.

The OMI$RECORDn symbols should be local.

NOTE: If this command is called more than once during the same run (without
any exit commands that clean up the local symbols OMI$RECORDn), make
sure the symbols OMI$RECORDn of the previous calls are erased or overwrit-
ten.
E.g. If the first call writes 5 records to the screen, and the second call should
write 4 records, it’ll also write the last record of the first call. The older fifth
record should be removed using:

$ DELETE /SYMBOL /LOCAL OMI$RECORD5
or by specifying it as empty:

$ OMI$RECORD5 = ””

Example

$ OMI$RECORD1 = ”Username : ” + USR$NAME
$ OMI$RECORD2 = ”Login dir : ” + USR$HOME
$ OMI$RECORD3 = ”Owner : ” + USR$OWNER
$ OMI$RECORD4 = ”Used quota : ” + USR$QUOTA
$ OMI$DISPLAY INFO
$ OMI$WAIT
$ OMI$REFRESH
$ EXIT

In this example, information, gathered by the procedure, is stored in the
OMI$RECORDn symbols, and presented on the menu window. After being
displayed, OMI$WAIT is called, to give the user the change to read the infor-

6.2. OMI COMMANDS IN MODULES 55

mation before the menu window is set up again.

6.2.13 OMI$DISPLAY MESSAGE

Format: OMI$DISPLAY MESSAGE message

This command writes a message to SYS$ERROR, on the message line of the
OMI menu window.

Parameter

You can enter any string as a parameter, enclosed by double quotes (”), using
double single quotes (”) for variable substitution, in exactly the same way as
the DCL command WRITE.

6.2.14 OMI$DUMP INFO

Format: OMI$DUMP INFO filename

This command can be used to dump the information, that can be displayed by
OMI$DISPLAY INFO (see section 6.2.12) to a specified file. The information
has to be specified as separate records, named OMI$RECORD1, OMI$RECORD2,
... OMI$RECORDn.

The OMI$RECORDn symbols should be local. (See also the note on page
54.)

Parameter
A parameter is required, and should contain the name of the file to write the
information to. If the file already exists, the new information will be added at
the end of the file. Otherwise, the file will be created.

6.2.15 OMI$ENCRYPT

Format: OMI$ENCRYPT string

This command can be used to perform some rude encryption on the input
string, which is specified as a parameter. The OMI encryption method requires
an encryption key, which is stored in the user specific configuration file. This
key is generated with the SET KEY command.

Return value
The result will be returned in the global symbol OMI$ENCRYPTED

6.2.16 OMI$GET VMSMESSAGE

Format: OMI$GET VMSMESSAGE status-code

This command translates a VMS status code and returns it in the global symbol
OMI$VMS MESSAGE.

Parameter

A valid status code is required. This must be an integer value, which can be

56 CHAPTER 6. WRITING MODULES

specified as decimal or hexadecimal.

Return value

If a message was found, this function returns OMI$ OK and stores the found
message in the global symbol OMI$VMS MESSAGE.

If no message was found, this function returns OMI$ WARNING. On other
warnings and errors, OMI$ ERROR is returned.

6.2.17 OMI$INPUT VALIDATE

Format: OMI$INPUT VALIDATE

On any input prompt, variables can be entered using single quotes. This com-
mand can be used to validate input entered by the user, to see if the string is
fixed, or should be interpreted as a variable or a function.

Before the function is called, the variable OMI$VARIABLE has to be de-
fined, containing the name of the variable that should be checked.

Return value

OMI$INPUT VALIDATE returns OMI$ OK when the input string or variable
has the correct syntax.

When a variable name was entered between two single quotes (e.g. ’USER-
INPUT’) and the variable (USER-INPUT in this example) is not defined, the
function returns OMI$ WARNING.

When a variable name was entered between three single quotes (e.g. ”USER-
INPUT’) and the variable (USER-INPUT in this example) is not defined, the
function returns OMI$ ERROR.

OMI$ ERROR is also the return value when OMI$VARIABLE is not set.

Examples

$ OMI$ASK ”Password: ”
$ OMI$CMDLINE CLEAR
$ OMI$VARIABLE = ”OMI$RESPONSE” ! No single quotes!
$ OMI$INPUT VALIDATE
$ IF $STATUS .EQ. OMI$ ERROR
$ THEN
$ OMI$DISPLAY MESSAGE ”Invalid password”
$ RETURN
$ ENDIF
$ OMI$ENCRYPT ””OMI$RESPONSE’”

In this example, OMI$INPUT VALIDATE is called to check the syntax of the
password that was entered.

If the input was enclosed by single quotes (’USER-INPUT’), these are com-
pared literally, but if three single quotes are used (”USER-INPUT’), USER-
INPUT will be translated by the call of OMI$ENCRYPT.

If USER-INPUT is a function like F$PID(GOTO), the function is executed

6.2. OMI COMMANDS IN MODULES 57

causing GOTO to be defined as a new symbol!

$ OMI$ASK ”Password: ”
$ OMI$CMDLINE CLEAR
$ OMI$VARIABLE = ”OMI$RESPONSE”
$ OMI$INPUT VALIDATE
$ IF $STATUS .EQ. OMI$ WARNING
$ THEN
$ OMI$DISPLAY MESSAGE ”Invalid password”
$ RETURN
$ ENDIF
$ OMI$ENCRYPT OMI$RESPONSE

The main difference in this example is the call of OMI$ENCRYPT, where the
password is not passed to the function between double quotes (causing the input
to be translated to uppercase).

Due to this, the return value of OMI$INPUT VALIDATE is checked on
warning status; any input will be evaluated when enclosed by single quotes
(’USER-INPUT’).

If you’re not sure if you should check on OMI$ WARNING or OMI$ ERROR,
it’s always safe to use the following check:

$ IF $STATUS .GE. OMI$ WARNING
This might cause valid input to be signaled as invalid, but it will never accept
invalid input.

6.2.18 OMI$MSGLINE CLEAR

Format: OMI$MSGLINE CLEAR

This command erases the contents of the message line of the OMI menu window.

6.2.19 OMI$REFRESH

Format: OMI$REFRESH

Rebuilds the menu window with the current menu options. This option is espe-
cially useful after the OMI$DISPLAY INFO command.

6.2.20 OMI$POPUP

Format: OMI$POPUP message [OPTION [,...]]

This command displays a popup- message box on top of the menu screen. The
user then has to press return to acknowledge the message.

Parameter

The first parameter should be enclosed by double quotes. It contains the mes-
sage that will be displayed in the popup box.

58 CHAPTER 6. WRITING MODULES

Options

By default, the screen will be refreshed after the call of this command, but when
the command is called by an ON INIT element (see section 5.2.1), the menu
screen is yet to be drawn. To prevent the screen to be drawn twice, specify a
second parameter as NOREFRESH in this situation.

Also default behaviour is a call of OMI$WAIT after displaying the popup.
This can be suppressed by the option NOWAIT. This is useful when the popup
has a please wait... function.

Both options can be concatenated with a comma (,), but make sure there
are no blanks between the options!

6.2.21 OMI$REVERSE

Format: OMI$REVERSE string

This command does what you would expect the DCL lexical
F$EDIT(string,”REVERSE”) to do, if it would exist; it reverses the string
that is given as an argument.

Return value

The reversed value of the input string will be returned in the global symbol
OMI$REVERSED.

Example

$ DIRECTORY = ”DEVICE:[TOPDIR.SUBDIR]”

$ OMI$REVERSE ’DIRECTORY’

$! result:]RIDBUS.RIDPOT[:ECIVED

$ REVERSED = OMI$REVERSED - ”]”

$! result: RIDBUS.RIDPOT[:ECIVED

$ FILENAME = F$ELEMENT(0, ”.”, REVERSED)

$ REVERSED = REVERSED - ””FILENAME’.”

$! result: RIDPOT[:ECIVED

$ FILENAME = ”RID.” + FILENAME + ”]” + REVERSED

$! result: RID.RIDBUS]RIDPOT[:ECIVED

$ OMI$REVERSE ’FILENAME’

$ FILENAME = OMI$REVERSED

This example reads a directory specification as input, reverses it and filters the
last directory as a filename. The new filename is composed completely reversed
including the file type (reversed of “.DIR”).

After this, the complete name is reversed again, resulting in the value
DEVICE:[TOPDIR]SUBDIR.DIR.

6.2.22 OMI$SIGNAL

Format: OMI$SIGNAL facility identifier[,variable,variable...]

This command signals a message that will be read from the message data file.

6.2. OMI COMMANDS IN MODULES 59

Message data files can be created and filled with the OMI$MANAGE menu2.

Parameters

Facility The first parameter points to the facility of which the message should
be signaled. This requires the message file OMI$:facility$MESSAGES.DAT

Identifier The second parameter identifies the message. The message file has
an indexed format, and the identifier is the key that will be used to read
the message.

variable(s) If the message contains variables, the string in the data file has to
contain the substring ˜S, which will be replaced by the arguments that
were given in the second argument, separated by commas.
NOTE: If arguments are passed to OMI$SIGNAL using lexical functions
they have to be preceded by a single quote, e.g.:
$ OMI$SIGNAL MYFACIL MYIDENT,VAR1,’F$EDIT(STR2,”UPCASE”)

6.2.23 OMI$SUBSTITUTE

Format: OMI$SUBSTITUTE search-string replace-string input-string

This command can be used to replace a substring by another string in the input
string.

Parameters

The first parameter specifies the search string. This string will be replaced by
the substring specified in the second parameter

The third parameter is the input string in which the substring has to be
replaced.

Return value

The result of this function is returned in the global symbol OMI$SUBSTITUTED.

If the search string of the first argument was not found in the input string,
this command returns OMI$ WARNING.

6.2.24 OMI$SUBMIT

Format: OMI$SUBMIT omi-module

With this command, an OMI module can be started in the background. It
works the same as using the qualifier /BACKGROUND=BATCH from the DCL
prompt.

When starting a background process from the OMI prompt, a module can
only be started as a batch job; not as a detached process.

All defaults for the Submit command (batch queue, log file) are taken from
the [BGRPROCESS] section in the user’s configuration file.

2This menu is not documented, but comes with a basic OMI help file. Type INFO in the
menu for more information.

60 CHAPTER 6. WRITING MODULES

Parameter

The parameter is the name of the OMI module to start (name.OMI). It has to
be located in the OMI$MENU DIRECTORY: search path. This module should
be created to run unattended (e.g. using Mailboxes for communication).

6.2.25 OMI$WAIT

Format: OMI$WAIT

Causes the procedure to wait until the user hits the Return key. By default
the user will be prompted with the line Press <Return> to continue. This
can be overwritten by modifying the value of WAIT PROMPT in the section
[QUESTIONS] of the configuration file.

This command is very useful when output is displayed, e.g. using the
OMI$DISPLAY INFO command and the screen has to be refreshed before re-
turning to the menu.

When running in batch mode (see section 2.2.2, this command is ignored.

Return value

By default, this command returns status code OMI$ OK (normal successful
completion). When the user presses Ctrl/Z in stead of <Return>, this function
returns OMI$ CANCELLED.

Example

$LOOP:
$ READ /END OF FILE=END INPUT RECORD
$ OMI$RECORD1 = ”Date : ” + F$ELEMENT(0, ”#”, RECORD)
$ OMI$RECORD2 = ”Count : ” + F$ELEMENT(1, ”#”, RECORD)
$ OMI$DISPLAY INFO
$ OMI$WAIT
$ IF $STATUS .EQ. OMI$ CANCELLED THEN $ GOTO END
$ GOTO LOOP
$!
$END:
$!
$ CLOSE INPUT
$ OMI$REFRESH
$ EXIT

In this example, information, read from an input file, is displayed record by
record in a loop. When the user has seen enough, she can cancel the loop by
pressing Ctrl/Z.

6.3. OMI SYMBOLS 61

6.3 OMI symbols

6.3.1 Symbols defined by OMI

When OMI starts, several symbols are defined that can be used in OMI modules.
These symbols are all local.
A list of these symbols is provided in table 6.1.

OMI$ OK This is an exit status that indicates a normal successful
completion.

OMI$ WARNING This is an exit status that can be used for warnings. If an
OMI module exits with a warning, OMI takes no action, but
it might be useful when OMI modules call other procedures.

OMI$ ERROR This is an exit status that can be used for errors. If an
OMI module exits with an error, OMI takes no action, but
it might be useful when OMI modules call other procedures.

OMI$ CANCELLED This is an exit status that can be used for special purposes.
OMI$NODENAME The nodename on which OMI is currently running.
OMI$CURRENT USER The name of the user currently running the menu is stored

in this symbol.
OMI$MENU FILE The filename of the menu that’s currently in use, without

the directory specification.
OMI$MENU LOCATION The location of the menu file that is currently in use.
OMI$ MESSAGE This symbol is used to store the environmental value of

‘message’ in. Before an OMI module is called, all messages
are switched off with

$ SET MESSAGE /NOFACILITY /NOSEVERITY -
/NOIDENTIFICATION /NOTEXT

To switch it on, use the command
$ SET MESSAGE ´OMI$ MESSAGE

This is especially useful when debugging OMI modules. In inter-
active subprocesses (after the SPAWN command), the original
message state is automatically restored.

OMI$ NOMATCH When using the VMS SEARCH command in OMI modules
to search for values in files, the return status can be com-
pared with this symbol to check if the value was found, as in:

$ IF $STATUS .EQ. OMI$ NOMATCH THEN -
$ GOTO NOTFOUND

OMI$OPTION This symbol contains the last numeric value that has been
entered by the user, or the command line.

OMI$OPTION TYPE This symbol contains the option type of the latest item
that was selected by the user. This can be SUBMENU,
COMMAND or CALL.

Table 6.1: Local symbols in OMI

6.3.2 Global symbols set by OMI commands

The commands, listed in table 6.2, are available after the OMI command is
called that sets the symbol. These commands are described in section 6.2.
All symbols will automatically be removed when OMI exits.

62 CHAPTER 6. WRITING MODULES

Symbol Set by the command
OMI$CALCULATED OMI$CALC
OMI$CONFIRMED OMI$CONFIRM
OMI$DAYNUMBER OMI$DATE INFO
OMI$DECRYPTED OMI$DECRYPT
OMI$ENCRYPTED OMI$ENCRYPT
OMI$MAILBOXa OMI$CREATE MBX
OMI$MONTHNUMBER OMI$DATE INFO
OMI$RESPONSE OMI$ASK
OMI$REVERSED OMI$REVERSE
OMI$WEEKNUMBER OMI$DATE INFO

Table 6.2: Symbols set by OMI commands

athis is the default logical name if none was specified (see section 6.2.8)

Chapter 7

Adding Toolboxes

All commands that can be used in OMI modules (the commands described in
section 6.2) are defined in a toolbox. The standard toolbox is called
OMI$TOOLBOX, and is defined by OMI$TOOLBOX.INI.

Figure 7.1 shows how the file OMI$TOOLBOX.INI looks like by default,
without the comments.

[OMI$TOOLBOX] ! Default location is OMI$:, default file type is .COM

ASK

CONFIRM

CHECK

CREATE MBX

DECRYPT

ENCRYPT

INPUT VALIDATE

REVERSE

WAIT

Figure 7.1: The OMI Toolbox initialization file

If you want to write you own OMI commands, it is possible to add a toolbox
to this initialization file.

To do this, add a section, with the name of your toolbox file, enclosed by
square brackets, as shown in figure 7.2. By default, OMI looks for a file with that
name and file type .COM, in the OMI$: directory, but this can be overridden
by specifying the full path and filename.

Next, create a file called MY TOOLBOX.COM, and store it in the directory
where OMI is located. The file should start with the following two statements:

$ GOSUB ’p1’$! Or use GOTO if all subroutines contain an EXIT
$ EXIT

Make sure the command file contains subroutines for all commands with the
label “MY-COMMAND$”. You can not change this label layout, since OMI
checks for the existence of this label during startup!

63

64 CHAPTER 7. ADDING TOOLBOXES

[MY TOOLBOX]

MY-EASY-COMMAND

MY-USEFULL-COMMAND

MY-OTHER-TOOL

Figure 7.2: Initializing a toolbox

To write the code for the commands defined in figure 7.2, the file
MY TOOLBOX.COM should look like something displayed in figure 7.3

$ EXIT STATUS = OMI$ OK ! Routines can change this to OMI$ WARNING

$! or OMI$ ERROR when errors show up.

$ GOSUB ’p1’$

$ EXIT ’EXIT STATUS

$!

$ MY-EASY-COMMAND$:

$!

$ <Write your DCL code here>

$ IF <any-condition> THEN $ EXIT STATUS = OMI$ ERROR

$ RETURN

$!

$ MY-USEFULL-COMMAND$:

$!

$ <Write your DCL code here>

$ IF <any-condition> THEN $ EXIT STATUS = OMI$ ERROR

$ RETURN

$!

$ MY-OTHER-TOOL$:

$!

$ <Write your DCL code here>

$ IF <any-condition> THEN $ EXIT STATUS = OMI$ ERROR

$ RETURN

Figure 7.3: Write Toolbox code

The examples in this section would define the following three commands that
are available in all OMI modules:

OMI$MY-EASY-COMMAND
OMI$MY-USEFULL-COMMAND
OMI$MY-OTHER-TOOL

NOTE: It is not recommended to add commands to the file OMI$TOOLBOX.COM,
since they might get lost in a future release!
You should add a new section to the initialization file, and a new toolbox com-
mand file.

Chapter 8

Creating on-the-fly menus

OMI modules can create on-the-fly menus. They are used to setup a temporary
submenu.

To do so, all menu items have to be specified in the module as global sym-
bols, with the menu-name OTF MENU, e.g.:

$ OTF MENU$ITEM1 == ”Leave this menu#COMMAND#BACK NOEXIT MODULE”

$ OTF MENU$ITEM2 == ”Do something, then leave#COMMAND#BACK”

$ OTF MENU$INPUT1 == ”Some input please#VARIABLE#This is default”

$ OTF MENU$ON EXIT == MY EXIT MODULE

At least one item element and one input element are required. The global
symbols are cleaned up automatically when leaving the menu.

When all menu elements are defined, use the command OMI$CREATE OTF
to invoke the menu.

8.1 Limitations

8.1.1 Menu elements

All elements that can be specified in menu files, can be specified in on-the-fly
menus, except those listed in table 8.1.

NAME Names are used for jumping, which is not
allowed to and from on-the-fly menus

PASSWORD Security checks are not performed on
SECURITY on-the-fly menus

Table 8.1: Elements not allowed in on-the-fly menus

8.1.2 OMI Commands

Since jumping is not allowed, and security checks are not performed, several
OMI commands, like JUMP and (RE)SET PASSWORD are not allowed in on-

65

66 CHAPTER 8. CREATING ON-THE-FLY MENUS

the fly menus. The commands or options that are not allowed are marked with
a † in chapter 9.

8.2 Tag- and select lists

Tag- and select lists can be used and setup in on-the-fly menus on the same way
as they are used in regular menus, like in:

$ OTF MENU$INPUT1 == ”Make a selection#{SEL|MY LIST}VARIABLE#VALUE1”

In this example, the symbol VARIABLE will be filled with a value that is se-
lected from MY LIST. This can be an existing section in the menu file, or a
section created dynamically.

NOTE: All sections in an on-the-fly menu, except the menu section itself, have
to be defined as local symbols!
E.g.:

$ MY LIST$VALUE1 = ”Yes”
$ MY LIST$VALUE2 = ”No”
$ MY LIST$VALUE3 = ”Maybe”
$ MY LIST$DELIMITER = ”/” ! So it can be used as a taglist as well

A useful way to use tag- and select lists in on-the-fly menus, is with a FILE-
NAME element combined with an ON INIT element to create a value file, as in
the figure 8.1.

This example shows an OMI module that sets up an on-the-fly menu. When
the menu is invoked, the ON INIT module WRITE VALUE FILE.OMI is exe-
cuted. Let’s say that one reads the parameter (which contains a filename), and
creates a list of values, that’s called by the select list in input element 2.

Selecting input element 2 causes OMI to read all possible values from the
specified file and creating a select list with it. When the user leaves the menu,
using element 2 (“Write changes...”), the ON EXIT module is called. This
module is user specific (which means it should be there for all users in this
example).

8.3 Saving an on-the-fly menu

On-the-fly menus are volatile envinroments, that disappear immediatly after
leaving the menu.

It might be useful however to save on on-the-fly menu so a user can return
to the menu at any time.

To do so, the temporary file – used by OMI to collect all – can be saved. An
example of this trick can be seen in figure 8.21.

1I still need to sort a few things out here. The example given here doesn’t work just like
that, but with small modifications it works. What I still need to sort out, is how it can be
documented easily.
If you’re reading this note, that means I forgot to update the docs—at the time of writing
this I don’t have the time to continue, so I’ll have to do it later.
Sorry for that, Oscar van Eijk, April 19, 2004.

8.3. SAVING AN ON-THE-FLY MENU 67

$! First, define a symbol containing a filename

$!

$ VALUE FILE = SYS$SCRATCH:OMI$VALUES ’F$CVTIME(,,"WEEKDAY")’. TMP$

$!

$! Global symbols to define the menu

$!

$ OTF MENU$ON INIT == WRITE VALUE FILE ’VALUE FILE

$ OTF MENU$ON EXIT == ’OMI$CURRENT USER’ MODULE$

$ OTF MENU$ITEM1 == "Exit without changes#COMMAND#BACK NOEXIT MODULE"

$ OTF MENU$ITEM2 == "Write changes and exit#COMMAND#BACK"

$ OTF MENU$INPUT1 == "Record ID#UPDATE REC#’’CURRENT VALUE’#FRM RECID"

$ OTF MENU$INPUT2 == "Select value#{SEL|REC VALUES}#NEW VALUE"

$!

$! Local symbols to define additional sections

$!

$ REC VALUES$FILENAME = "’’VALUE FILE’" ! Read values from this file

$!

$ FRM RECID$TYPE = "INTEGER"

$ FRM RECID$MIN = 100

$ FRM RECID$MAX = 999

$!

$! Invoke the menu

$!

$ OMI$CREATE OTF

$!

$ EXIT $STATUS

Figure 8.1: Creating on-the-fly menus

$ IF F$SEARCH ("SYS$SCRATCH:OMI$CHECK OTF MENU. TMP$") .NES. "" THEN -

$ COPYY SYS$SCRATCH:OMI$CHECK OTF MENU. TMP$ -

SYS$SCRATCH:OMI$CHECK OTF MENU SAVED$. TMP$

Call other menus or modules here

$ IF F$SEARCH ("SYS$SCRATCH:OMI$CHECK OTF MENU SAVED$. TMP$") .NES. ""

$ THEN

$ COPYY SYS$SCRATCH:OMI$CHECK OTF MENU SAVED$. TMP$ -

SYS$SCRATCH:OMI$CHECK OTF MENU. TMP$

$ OMI$CURRENT MENU = "OTF MENU"

$ DELETEE SYS$SCRATCH:OMI$CHECK OTF MENU SAVED$. TMP$;*

$ ENDIF

Figure 8.2: Save and restore an on-the-fly menu

68 CHAPTER 8. CREATING ON-THE-FLY MENUS

Chapter 9

OMI Command Reference

This command reference describes the commands that can be entered by the
user on the OMI prompt, or as the third argument in the COMMAND item
type (see section 5.5.2).

Commands marked with a † are not available in on-the-fly menus.

9.1 ALL

Format: ALL

In a window where you can specify input fields, this command enables you to
enter all values, without the need to select all options separately.

In those windows, the last option will always perform this command. The
way you are prompted for it, can be modified in the OMI configuration file by
changing the value of ALL OPTIONS in the section [QUESTIONS].

9.2 BACK

Format: BACK [NOEXIT MODULE]

With this command, you can go up one level. When you are at the top level,
this will exit the menu.

This command performs the same function as the keystroke <Ctrl/Z>, or
entering “0” (zero), followed by <Return>.

Parameter

The option NOEXIT MODULE can optionally be specified, which causes the
ON EXIT module not to be executed.

By default, if an ON EXIT module is specified, it will always be executed if
the current (sub)menu exits.

69

70 CHAPTER 9. OMI COMMAND REFERENCE

9.3 CALC

Format: CALC calculation

This command calls the internal OMI calculator. This calculator is very sim-
ple, but it can work with floating points and simple functions, and supports
parentheses.

Parameter

The calculation is entered as one up to eighth parameters (integers, operator
and parentheses can be entered as one parameter, or with blanks between them).

Integers can have a floating point. Dots (.) and commas (,) are recognized
as floating points.

Operations currently supported are add (e.g. “-12.4 + 8.53”), subtract (e.g.
14 - 68.032), multiply (e.g. “1.4 * 7”) and divide (e.g. 156 / -2.56).

When using more complex functions, like: “(2+5)*((8-3)*4/2)/2”, OMI will
just display the result: “35”. To view all steps as they are calculated by OMI,
simply put a question mark (?) somewhere in the formula (e.g.: “(2+5)*((8-
3)*4/2)/2?”). This will cause OMI to show all separate calculations as they are
performed and substituted.
The question mark itself will be removed before calculation starts.

NOTE: The maximum size of the numbers (without the floating point) is 9 digits.
This is a limitation in DCL1.

9.4 CLS

Format: CLS

This command removes all text from the window, leaving the layout intact.

9.5 DCL

Format: DCL dcl command
or: $ dcl command

Enter any DCL command. The output of the DCL command will be displayed
your terminal, and you’ll have to press <Return> when execution is completed.

If you don’t want the output on your screen, you can use the command
SILENT DCL.

In stead of the command DCL, the dollar sign ($) can also be used.

If the current user is not authorized for interactive DCL, a warning message
will be displayed.

1The maximum value of an integer is 2,147,483,647. For several internal checks, the max-
imum value has to be reduced to 999,999,999 in OMI)

9.6. DELETE 71

Parameter

Enter any valid DCL command. If you omit a parameter, you will be prompted
for the command.

When the command DCL is used in a .MNU file, OMI can prompt for
additional input for the command, if the string ˜? is used in the parameter (see
also section 5.5.1 on page 33).

9.6 DELETE

This command deletes values from the current menu environment.

9.6.1 DELETE TEXTAREA

Format: DELETE TEXTAREA [sequence-number]

Delete the value of a text area from the current menu and the file in which the
value is stored. If the current menu has more than 1 text area, a sequence num-
ber is required, indicating which text area should be displayed. This sequence
number is not the same as the option number; if internal variable INPUT2 is a
textarea, and INPUT1 is not, INPUT2 has sequence number 1!

A text area can only be deleted if the format section of the input element
has the option KEEP set to TRUE (see section 5.6.2 on page 35).

By default, this command will ask for a confirmation. This can be changed
with the CONFIRM element in the configuration file (see section 4.2.3 on page
21).

This command requires WRITE privilege to the current menu.

9.7 EDIT

This command modifies menu elements. All edit commands require write priv-
ilege to the menu in which it is invoked.

9.7.1 EDIT ELEMENT

Format: EDIT ELEMENT option nr†

Use this command to edit one of the elements in the current menu. It starts an
on-the-fly menu, in which modifications to the selected element can be made.
When the menu file is updated, changes are in effect immediately.

Parameter

The parameter should be the option number as displayed on the screen, so it’s
the same number users should enter to select the element.

72 CHAPTER 9. OMI COMMAND REFERENCE

9.7.2 EDIT MENU FILE

Format: EDIT MENU FILE†

This command starts an interactive edit session with the editor specified in the
user’s configuration file, in which the current menu file can be modified. This
command is only available in the top-level menu.

9.7.3 EDIT VALUE FILE

Format: EDIT VALUE FILE option nr

If one of the options in the current menu has an input element with a tag- or
select list that reads the values from a file (see section 5.6.6), that file can be
modified with this command.

When this command is entered, the editor, specified in the user’s configura-
tion file, is started to edit the file.

Parameter

The parameter should be the option number as displayed on the screen, so it’s
the same number users should enter to select the input element.

9.8 ENCRYPT

Format: ENCRYPT section-name element-name key-name†

Encrypt the specified element in the menu file. The encrypted new value is
written to the menu file. Therefore, WRITE privilege to the current menu is
required.

Since v1.1, encrypting an element requires a key, so you must have generated
an own key using the SET KEY command.

This command also changes the value of the selected element in the current
OMI session, so the value can only be used again if the OMI module in which
the value is required, calls OMI$DECRYPT (see section 6.2.11).

Parameters

This command requires three parameters. If they are omitted, OMI will prompt
for them.

The first parameter specifies the section which holds the element that should
be encrypted. Square brackets can be omitted.

The second parameter is the element name.
The third parameter should be the name of the key with which the string has

to be encrypted. It has to exist at the keyring of the user’s configuration file. If
it’s not there, it can be imported with the OMI command IMPORT KEY, or
created with the SET KEY command.

Please note that encrypting an element that was already encrypted can cause
unpredictable behavior!

9.9. EXIT 73

9.9 EXIT

Format: EXIT†

Use this command to leave OMI. This will return control to your previous
interface (e.g. the DCL prompt), from any menu level.

If you started a new menu using the MENU command, control will not
return to the previous menu.

EXIT and QUIT are synonymous.

9.10 EXPORT KEY

Format: EXPORT KEY key-name

Copy a key from the user specific keyring to the global keyring. This requires
write privilege to the OMI$: directory.

Parameter

Specify the name of the key as a parameter. This has to be an existing key at
the user specific keyring.

9.11 HELP

Format: HELP [topic]

This displays the online help file of OMI.

9.12 IMPORT KEY

Format: IMPORT KEY key-name

Copy a key from the global keyring to the user specific keyring.

Parameter

Specify the name of the key as a parameter. This file must be made available
at the global keyring. Keys with the same name at the user specific keyring are
not allowed to exist.

9.13 INCREASE

Format: INCREASE [REFRESH]
Increase the counter for the current menu with 1. If the current menu has no
counter, a message will be displayed.

The counter is automatically increased, every time the menu is accessed.

REFRESH

If this option is specified, the menu screen will be refreshed after the increase.

74 CHAPTER 9. OMI COMMAND REFERENCE

This option can be used if input fields with the previous counter value have to
be cleared, or a comment line containing the counter value should be updated.

9.14 INFO

Format: INFO†

If the current menu has an info section in the menu specific help file2, the INFO
command can be used to display the information. This way it is possible to add
menu specific help.

For more information on writing help files, please refer to rection 5.10

9.15 JUMP

Format: JUMP menu-name†

Jump immediately to the submenu with the name that’s specified as a parameter
of this command.

The name of submenus can be displayed using the SHOW NAME command,
or automatically by setting the option DISPLAY NAMES in the [SCREEN]
section of the configuration file to TRUE.

9.16 MAIN

Format: MAIN†

This command will always return to the top- level menu, from anywhere in the
structure.

9.17 MENU

Format: MENU menu name†

Select another menu to work with. This command cleans up the current envi-
ronment completely, causing the menu that you are working with, to be erased
from memory.

NOTE: All values that have been entered during the current OMI session will be
lost!

Parameter

Enter a valid menu file. If the parameter is omitted, you will be prompted to
enter one. The new menu will be loaded in memory, overwriting the current
menu.

To retrieve a listing of all available menu files in OMI$: and
OMI$MENU DIRECTORY:, enter a question mark (?).

2OMI$MENU DIRECTORY:menu-file-name.OMH, where menu-file-name is the same as
the filename of the current menu file

9.18. QUIT 75

9.18 QUIT

Format: QUIT†

Use this command to leave OMI. This will return control to your previous
interface (e.g. the DCL prompt), from any menu level.

If you started a new menu using the MENU command, control will NOT
return to the previous menu.

QUIT and EXIT are synonymous.

9.19 REFRESH

Format: REFRESH
Refresh the menu screen.

9.20 RESET

This command resets or removes the value of the variable, specified by a key-
word.

9.20.1 RESET AUTO REFRESH

Format: RESET AUTO REFRESH

Use this command to disable the automatic screen refresh is disabled.

9.20.2 RESET COUNTER

Format: RESET COUNTER

Set the counter of the current menu to 0 (zero) (see also footnote 1 on page 29).
If the current menu has no counter, a message will be displayed.

9.20.3 RESET NAME

Format: RESET NAME†

Remove the name of the current menu. A name can be used to jump between
menus, or to startup in a submenu when the name is specified on the DCL
prompt. This command requires WRITE privilege to the current menu.

9.20.4 RESET ORDER

Format: RESET ORDER

If the current menu has a required order (see section 5.2.8), a list is maintained
in the background, which remembers the input elements that have already been
selected. The list changes every time one of the required inputs is selected for
the first time. If all required inputs have been selected, the list is empty, and

76 CHAPTER 9. OMI COMMAND REFERENCE

will remain empty during the current OMI session, unless the command RESET
ORDER is issued in the menu having the list.

9.20.5 RESET PASSWORD

Format: RESET PASSWORD†

This command removes the password for the current menu, if one was set. This
requires WRITE privilege to the current menu.

9.20.6 RESET VARIABLES

Format: RESET PASSWORD [BACKGROUND]

Use this command to reset all variables in the current menu to their default
values as specified in the menu file.

The BACKGROUND option can be added to prevent OMI from refreshing
the screen and displaying a message if the command is called in the background.

9.21 SET

The SET command can be used to change the value of an internal OMI variable.

9.21.1 SET AUTO REFRESH

Format: SET AUTO INCREASE value
Use this command to set or change the interval in seconds with which the menu
screen is automatically refreshed. The value should be between 0 and 255.
When set to 0, the automatic refresh is disabled.

9.21.2 SET COUNTER

Format: SET COUNTER

Use this command to set the counter for the current menu to another value. If
the current menu has no counter, a message will be displayed.

9.21.3 SET KEY

Format: SET KEY value

This command defines a personal key. This key will be used for the ENCRYPT
command in OMI, and for the OMI$ENCRYPT and OMI$DECRYPT com-
mand in OMI modules.

When menu items are encrypted using any of these commands, they can only
be decrypted by the same user, or by users who have the same key defined.

Keys cannot be shared between users (except in shared installations, see
section 1.2.2). Every user can define only one key.
Parameter

The parameter must be an integer value between 1 and 1,000,000.

9.22. SHOW 77

9.21.4 SET NAME

Format: SET NAME menu-name†

Modify the name of the current menu, or define one if the current menu has no
name. A name can be used to jump between menus, or to startup in a submenu
when the name is specified on the DCL prompt.

This command requires WRITE privilege to the current menu.

NOTE: If you want a menu to have the name RESET, you need to set this name
using the editor, this won’t work with the SET command, since this name
conflicts with OMI internal names.

Parameter

The new menu name can optionally be specified as a parameter. If omitted,
OMI will prompt for a new menu name.

The parameter cannot be RESET.

9.21.5 SET PASSWORD

Format: SET PASSWORD†

Change the password for the current menu. If the current menu has no password,
it will be defined using this command. The password must be at least five
characters long.

This command requires WRITE privilege to the current menu.

NOTE: The password can not have the value RESET!

9.21.6 SET WIDTH

Format: SET WIDTH value

Use this command to modify the screen width. The value can be 80 or 132.

9.22 SHOW

This command displays the value of an internal OMI variable.

9.22.1 SHOW COUNTER

Format: SHOW COUNTER

Show the current value of the counter for this menu. If the current menu has
no counter, a warning message will be displayed.

9.22.2 SHOW NAME

Format: SHOW NAME

Display the name of the current menu, if one has been set. These names can be
used to jump to the menu immediately from anywhere in the menu structure,

78 CHAPTER 9. OMI COMMAND REFERENCE

or by specifying the menu name as the second parameter on the DCL command
line when OMI is started.

9.22.3 SHOW ORDER

Format: SHOW ORDER

If the current menu has a required order (see section 5.2.8), this command
can be used to display the list which is maintained in the background, to see
which input elements still have to be selected, and in which order.

9.22.4 SHOW TEXTAREA

Format: SHOW TEXTAREA [sequence-number]

Display the value of a text area from the current menu. If the current menu
has more than 1 text area, a sequence number is required, indicating which
text area should be displayed. This sequence number is not the same as the
option number; if internal variable INPUT2 is a textarea, and INPUT1 is not,
INPUT2 has sequence number 1

If the option LARGE in the format section of the variable is set to TRUE
(see section 5.6.2), it is possible that this command does not display anything
without warning.

9.22.5 SHOW VERSION

Format: SHOW VERSION

Show the current version of OMI.

9.22.6 SHOW VMS MESSAGE

Format: SHOW VMS MESSAGE status-code

This command translates a VMS status code to a message and displays it on
the OMI message line.

Parameter

A valid status code is required. If omitted, OMI will prompt for a status code.
The value can be specified as decimal or hexadecimal integer value.

9.23 SILENT DCL

Format: SILENT DCL dcl command

Enter any DCL command. The output of the command will not be displayed
on the screen, leaving your layout intact.

The destination of the output, including errors, is defined in the OMI con-
figuration file, element SILENT OUTPUT in section [MAIN]. By default, this
will be NLA0:

9.24. SPAWN 79

The final status code will be displayed on the OMI message line.

Parameter

Enter any valid DCL command. If you omit a parameter, you will be prompted
for the command.

When the command SILENT DCL is used in a menu file, OMI can prompt
for additional input for the command, if the string ˜? is used in the parameter.

If the current user is not authorized for interactive DCL, a warning message
will be displayed.

9.24 SPAWN

Format: SPAWN dcl command

Spawn an interactive subprocess without leaving OMI. Any VMS command
can optionally be given as a parameter. If the command is entered, control is
returned to the calling process when the execution of the command is completed.

If the current user is not authorized for interactive DCL, a warning message
will be displayed.

Parameter

Enter any valid DCL command. If you omit a parameter, you will be prompted
for the command.

When the command SPAWN is used in a menu file, OMI can prompt for
additional input for the command, if the string ˜? is used in the parameter.

9.25 SUBMIT

Format: SUBMIT omi module

With this command, an OMI module can be started in the background. It
works the same as using the qualifier /BACKGROUND=BATCH from the DCL
prompt.

When starting a background process from the OMI prompt, a module can
only be started as a batch job; not as a detached process.

All defaults for the Submit command (batch queue, log file) are taken from
the [BGRPROCESS] section in the user’s configuration file.

Parameter

The parameter is the name of the OMI module to start (name.OMI). It has to
be located in the OMI$MENU DIRECTORY: search path. This module should
be created to run unattended (e.g. using Mailboxes for communication).

80 CHAPTER 9. OMI COMMAND REFERENCE

Appendix A

Example OMI Menu

This example is included in the distribution as OMI$EXAMPLE.MNU.

[MENU_MENU]

owner = system

title = OMI Example Menu

name = Main ! Menu name for shortcut

item1 = Print the menu file#command#silent_dcl print -

/queue=~?{Printer queue:} /notify omi$:omi$example.mnu

! Print this menu file to read

! on paper what’s happening.

item2 = Exit#command#exit ! Command item, EXIT the menu

item3 = Protected Menu#submenu#pwdtest ! Submenu item, calls PWDTEST

item4 = Get some inputs#submenu#inptest ! Submenu item, calls INPTEST

item5 = Counter menu#submenu#cnttest ! Submenu item, calls CNTTEST

[MENU_PWDTEST]

password =

! password_level = 2 ! If not outcommented, nobody

! can change the password.

name = Protected ! Menu name for shortcut

comment = This menu is password protected ! Put a comment line on screen

security = grant_me_write ! Define authorisation

title = Dummy Menu ! Give this one another title

item1 = Main Menu#command#back ! Command item, one level BACK

[MENU_INPTEST]

name = Input ! Menu name for shortcut

item1 = Main Menu#command#back ! Command item, one level BACK

item2 = Formatted inputs#submenu#frmtest ! Submenu item, calls FRMTEST

item3 = Display the inputs#call#omi$:omi$example

! Call a test procedure to

! display the inputs.

input1 = Select a weekday#{SEL|weekdays}inp_weekday#value1

! Select from a predefined

81

82 APPENDIX A. EXAMPLE OMI MENU

! list. Default is "Monday"

input2 = Select some months#{TAG|months}inp_months

! Select one ore more months.

[MENU_FRMTEST]

name = Format ! Menu name for shortcut

item1 = Main Menu#command#main ! Command item, back to MAIN

item2 = Previous Menu#command#back ! Command item, one level BACK

input1 = Enter a date#inp_date#today#date_frm ! Input item, should be a date

! Default is "TODAY"

input2 = Enter a valid filename#inp_file##fname_frm

! Input item, should be a filename

input3 = Enter an int between 0 and 100#inp_int##int_frm

! Input item, should be an integer

[MENU_CNTTEST]

counter = just_a_counter ! Define a counter for this menu

comment = The counter is now {counter$just_a_counter}

name = Counter1 ! Menu name for shortcut

item1 = Main Menu#command#back ! Command item, one level BACK

item2 = More counters#submenu#cnttest2 ! Submenu item, calls CNTTEST2

[MENU_CNTTEST2]

counter = another_counter ! Define a counter for this menu

comment = The counter is now {counter$another_counter}

name = Counter2 ! Menu name for shortcut

item1 = Main Menu#command#main ! Command item, back to MAIN

item2 = Previous Menu#command#back ! Command item, one level BACK

item3 = Reset the counter#command#reset counter

! Command item, RESET counter

item4 = Increase the counter#command#increase refresh

! Command item, INCREASE counter

! followed by a screen refresh

! to update the comment line

item5 = Display the arrays#command#dcl show symbol inp_array*

! Command item, call to DCL

! to display the inputs

input1 = Enter anything#inp_arraya’counter$another_counter

input2 = Select a day#{SEL|weekdays}inp_arrayb’counter$another_counter

[DATE_FRM]

type = date ! Input should be a valid date

format = absolute ! Will be convert. to absolute

[FNAME_FRM]

type = filespec ! Input should be of FILESPEC type

wildcards = true ! Wildcards are allowed

required = false ! The file does not have to exist

83

! The arguments below are from version 1.0b2, the FILESPEC type was implemented

! later, but with the arguments below, used in the STRING type, almost

! the same result can be reached.

! The arguments are outcommented in stead of remove, so they can remain here

! as an extra example.

!

! upcase = true ! String will be conver. to upcase

! collapse = false ! All blanks will be removed

! ivchars = @#$%^&*()’?/|\+‘~{}[]<> ! These characters are not allowed

[INT_FRM]

type = integer ! Input should be an integer

min = 0 ! Input value should be between

max = 100 ! ’0’ and ’100’

[WEEKDAYS]

!

! Define the days of the week from which a selection can be made

! using the SEL input in the INPTEST menu (input1).

!

value1 = Monday

value2 = Tuesday

value3 = Wednesday

value4 = Thursday

value5 = Friday

value6 = Saturday

value7 = Sunday

[MONTHS]

!

! Define the months that can be tagged using the TAG input in the

! INPTEST menu (input2).

!

delimiter = /

value1 = January

value2 = February

value3 = March

value4 = April

value5 = May

value6 = June

value7 = July

value8 = August

value9 = September

value10 = October

value11 = November

value12 = December

84 APPENDIX A. EXAMPLE OMI MENU

[COUNTER]

just_a_counter = 0

another_counter = 0

[GRANT_ME_WRITE]

!

! This security section was added, granting write privilege to my userid,

! to enable me to set a password on the PWDTEST menu, without the need

! to log in as SYSTEM (the owner of the menu)

!

DE70VEO = write

all_users = read, exec

<EOF>

The ’<EOF>’ above will be interpreted as an end-of-file. This means the

OMI will never read these lines. This is done to improve performance while

initializing; long comments can now be written past the end-of-file.

Appendix B

Example OMI Module

This example is included in the distribution as OMI$EXAMPLE.OMI.

$! set message ’omi$_message’ ! Uncomment this for debugging

$ omi$record1 = "The weekday you have selected was:

$ omi$record2 = " ’’inp_weekday’"

$ omi$record3 = "The month(s) you have tagged were:

$ _counter = 0

$ omi$check inp_months "" empty_allowed

$ if $status .ge. omi$_warning

$ then ! Month input was not yet selected

$ omi$record4 = " <None>"

$ goto month$end_loop

$ endif

$!

$ month$_loop:

$!

$ _month = f$element(_counter, months$delimiter, inp_months)

$ if _month .eqs. "" .or. _month .eqs. months$delimiter then -

$ goto month$end_loop

$ _record = ’_counter + 4

$ omi$record’_record = " ’’_month’"

$ _counter = _counter + 1

$ goto month$_loop

$!

$ month$end_loop:

$!

$ omi$display_info

$ omi$confirm "More ? " ’questions$answer_yes

$ if .not. omi$confirmed then $ goto end

$ omi$record1 = " The date you entered was : ’’inp_date’"

$ omi$record2 = " The filename you entered was : ’’inp_file’"

$ omi$reverse "’’inp_file’" "’’inp_date’"

$ omi$record3 = " Reversing this results in : ’’omi$reversed’"

$ omi$record4 = " The integer you entered was : ’’inp_int’"

$ omi$record5 = " You called the Counter menu ’’counter$another_counter’ times"

85

86 APPENDIX B. EXAMPLE OMI MODULE

$!

$! Make sure the list with months won’t be redisplayed, starting with rec. 5

$ if f$type(omi$record6) .nes. "" then -

deletee/symbol/local omi$record5

$!

$ omi$display_info

$ omi$wait

$ omi$refresh

$!

$ end:

$!

$ exit

Index

%OMI-W-DUPL, 10
#LEADING attribute, 40
#include, 40
$, 32, 70

arrays, 29
auto mode, 11, 12, 14

batch mode, 10
batch process, 10
batch queue, 21

calculator, 50
comment lines, 29, 30
configuration

printer queue, 19
configuration file, 18

Adding your own items, 22
change the language, 20
modify the layout of OMI, 19,

74
OMI background process, 21

counters, 29
auto increase, 28
increase, 73
reset, 75

date, 35
date information, 53
debug mode, 10, 33
detached process, 10
dollar-sign, 70
duplicate values

overwrite, 40
dynamic input, 33

formatting, 33

encrypting, 55, 72
define key, 76
export key, 73
import key, 73

enter input, 15

all values, 28
required order, 28, 75, 78
selecting from a list, 15, 40
tagging from a list, 15, 34, 40

EOF, 41, 42

FF, 42
filename, 35
floating point, 18
forced end-of-file, 41
format input, 34

date, 35
filename, 35
integer, 35
string, 35
textarea, 35
time, 36

help files, 41

ignore
DCL errors, 11
DCL fatals, 11
duplicates, 10

ignore warnings, 10
including libraries, 40
installation, 5

group wide, 6
upgrades, 6
user specific, 5

integer, 35

keyring, 22

leading values, 40
libraries, 40

file type, 40
handling duplicate items, 40

logical names, 17
mailbox, 53
OMI$, 13, 17
OMI$CONFIG, 17, 18

87

88 INDEX

OMI$MAILBOX, 53
OMI$MENU DIRECTORY, 13,

17
OMI$STARTMENU, 17

long comments, 41

mailboxes, 52
menu

comment line, 29, 30
comment lines, 27
counter, 29, 76, 77

disable automatic increase, 30
define an exit procedure, 26
define an initialisation procedure,

26
edit the file, 72
exit command, 26
exit module, 26

skipping, 69
filename, 61
help file, 41
initialisation command, 26
initialisation module, 26
listing of all menu files, 74
name, 14, 20, 27, 29, 74, 75, 77
on-the-fly, 65, 69
owner, 31
password, 31
prompt, 27
security, 31, 43
title, 27, 29

menu actions
call a module, 33, 44
call a submenu, 33
execute a command, 33, 69
read user input, 34

menu elements
maximum size, 33

menu file
validate, 12

menu specific help, 41
message handling, 58
messages, 59

name, 14, 20, 27, 29, 74, 75, 77
navigating, 14
nodename, 61

OMI
libraries, 48

parameters, 9
qualifiers, 9

OMI commands
ALL, 15, 20, 38, 69
BACK, 13, 69
CALC, 70
CLS, 70
confirmation, 21
DCL, 20, 32, 70
DELETE, 71
EDIT, 71
EDIT ELEMENT, 71
EDIT MENU FILE, 72
EDIT VALUE FILE, 72
ENCRYPT, 53, 72, 76
EXIT, 14, 26, 73, 75
EXPORT, 73
HELP, 73
IMPORT, 73
INCREASE, 29, 73
INFO, 42, 74
JUMP, 14, 27, 74
MAIN, 14, 74
MENU, 74
QUIT, 14, 73, 75
REFRESH, 29, 33, 75
RESET, 75
RESET AUTO REFRESH, 75
RESET COUNTER, 29, 75
RESET NAME, 75
RESET ORDER, 75
RESET PASSWORD, 76
RESET VARIABLES, 76
SET AUTO REFRESH, 76
SET COUNTER, 29, 76
SET KEY, 18, 55, 72, 76
SET NAME, 77
SET PASSWORD, 31, 77
SET WIDTH, 77
SHOW COUNTER, 30, 77
SHOW NAME, 14, 20, 27, 74,

77
SHOW ORDER, 78
SHOW TEXTAREA, 78
SHOW VERSION, 78
SHOW VMS MESSAGE, 78
SILENT DCL, 18, 32, 70, 78
SPAWN, 32, 79
SUBMIT, 79

OMI commands in modules

INDEX 89

debugging, 10, 61
OMI$ASK, 50
OMI$CALC, 50
OMI$CALL, 50
OMI$CHECK, 50
OMI$CLEAR SCREEN, 51
OMI$CMDLINE CLEAR, 52
OMI$CONFIRM, 26, 52
OMI$CREATE MBX, 52
OMI$CREATE OTF, 53
OMI$DATE INFO, 53
OMI$DECRYPT, 53, 72, 76
OMI$DISPLAY INFO, 3, 54, 60
OMI$DISPLAY MESSAGE, 55
OMI$DUMP INFO, 55
OMI$ENCRYPT, 53, 55, 76
OMI$GET VMSMESSAGE, 55
OMI$INPUT VALIDATE, 56
OMI$MSGLINE CLEAR, 57
OMI$POPUP, 57
OMI$REFRESH, 57
OMI$REVERSE, 58
OMI$SIGNAL, 58
OMI$SUBMIT, 59
OMI$SUBSTITUTE, 59
OMI$WAIT, 21, 54, 60
return values, 61

OMI mode
background, 10
batch, 10, 79
debug, 10, 33
validate, 12

OMI symbols, 61
global symbols, 61, 62

OMI$CALCULATED, 62
OMI$CONFIRMED, 62
OMI$DAYNUMBER, 62
OMI$DECRYPTED, 62
OMI$ENCRYPTED, 62
OMI$MAILBOX, 62
OMI$MONTHNUMBER, 62
OMI$RESPONSE, 62
OMI$REVERSED, 62
OMI$WEEKNUMBER, 62

local symbols, 61
OMI$CURRENT USER, 61
OMI$MENU FILE, 61
OMI$MENU LOCATION, 61
OMI$OPTION, 61
OMI$OPTION TYPE, 61

OMI$ CANCELLED, 61
OMI$ ERROR, 61
OMI$ MESSAGE, 61
OMI$ NOMATCH, 61
OMI$ OK, 61
OMI$ WARNING, 61

omi$manage menu, 42, 59
OMI$CALCULATED, 62
OMI$CONFIRMED, 62
OMI$CURRENT USER, 61
OMI$DAYNUMBER, 62
OMI$DECRYPTED, 62
OMI$ENCRYPTED, 62
OMI$MAILBOX, 62
OMI$MENU FILE, 61
OMI$MENU LOCATION, 61
OMI$MONTHNUMBER, 62
OMI$NODENAME, 61
OMI$OPTION, 61
OMI$OPTION TYPE, 61
OMI$RESPONSE, 62
OMI$REVERSED, 62
OMI$WEEKNUMBER, 62
OMI$ CANCELLED, 61
OMI$ ERROR, 61
OMI$ MESSAGE, 61
OMI$ NOMATCH, 61
OMI$ OK, 61
OMI$ WARNING, 61
on-the-fly menus, 53, 65, 69

save environment, 66
OpenVMS prompt, 32
owner, 31

of the main menu, 31

password, 16, 31
printer queue, 19
process

batch, 10
detached, 10

prompt, 27

qualifiers, 9
background, 10
batch, 10
debug, 10
ignore, 10

dclerrors, 11
dclfatals, 11
duplicates, 10

90 INDEX

jumps, 11
progress, 11
submenu, 12
validate, 12

queue
batch, 21
printer, 19

refresh the screen, 57, 75
automatically, 27, 76

return values, 61

security, 30, 31, 43
encrypting, 55, 72
encryption key, 22, 76
interactive dcl, 32
password, 31

select lists, 15, 34, 37, 40, 46, 47
from file, 40, 72
in otf menus, 66

special characters, 18, 41
standard libraries, 40
string, 35
symbols in OMI, 61

return values, 61

tag lists, 15, 34, 38, 40, 47
from file, 40, 72
in otf menus, 66

textarea, 35
delete, 71
display contents, 78

time, 36
title, 29
toolbox, 63

initialisation file, 7, 63

user input, 34
formatting and validating, 34

username, 61

validate, 12
values for tag and select lists, 40
VMS

error messages, 78
status codes, 78

